Xylanase enzyme from novel strain and its immobilization onto metal organic framework MOF for fruit juice clarification

Bacillus pumilus , a bacterial strain was isolated from agricultural soil and used for xylanase enzyme (Xy) production under the submerged fermentation technique. The (Xy) enzyme had an optimum temperature at 50℃ (maximum activity from 45–60 °C) and was active at broad pH range (5.0–8.0) with an opt...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 29; no. 1; pp. 197 - 210
Main Authors Kaushal, Jyoti, Khatri, Madhu, Singh, Gursharan, Arya, Shailendra Kumar
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.02.2024
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bacillus pumilus , a bacterial strain was isolated from agricultural soil and used for xylanase enzyme (Xy) production under the submerged fermentation technique. The (Xy) enzyme had an optimum temperature at 50℃ (maximum activity from 45–60 °C) and was active at broad pH range (5.0–8.0) with an optimum pH at around 6.3 as evaluated from response surface methodology studies. This enzyme after purification (purification; 2.87 folds, specific activity; 64.3 U/mg) was immobilized onto MOF Cu-BTC (a copper ion-based metal organic framework) and was used for clarification of freshly squeezed fruit juice (pineapple and pomegranate). The study revealed an improved catalytic efficiency ( V max from 1.252.5 to 1.361 U/mL/mg of support) and greater half-life of the immobilized system (77–99 min). The activation energy decreased from that required for the free system (37.59–25.63 kJ/mol). The reusability of the enzyme improved after immobilization where 61% of the enzyme’s activity was retained after 21 cycles of usage. The MOF Xy-Cu-BTC system showed improved clarification (47.58–57.97% for pineapple, and 15.34–18.3 for pomegranate) thereby showing its effectiveness in commercial juice clarification process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-024-00007-7