Facile synthesis of iron-ruthenium bimetallic oxide nanoparticles on carbon nanotube composites by liquid phase plasma method for supercapacitor

Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 34; no. 11; pp. 2993 - 2998
Main Authors Lee, Won-June, Jeong, Sangmin, Lee, Heon, Kim, Byung-Joo, An, Kay-Hyeok, Park, Young-Kwon, Jung, Sang-Chul
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2017
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-017-0205-z

Cover

Abstract Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe 3+ and Ru 4+ . Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable.
AbstractList Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe 3+ and Ru 4+ . Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable.
Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe3+ and Ru4+. Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable.
Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe3+ and Ru4+. Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable. KCI Citation Count: 45
Author Jeong, Sangmin
Jung, Sang-Chul
An, Kay-Hyeok
Park, Young-Kwon
Lee, Won-June
Lee, Heon
Kim, Byung-Joo
Author_xml – sequence: 1
  givenname: Won-June
  surname: Lee
  fullname: Lee, Won-June
  organization: Department of Environmental Engineering, Sunchon National University
– sequence: 2
  givenname: Sangmin
  surname: Jeong
  fullname: Jeong, Sangmin
  organization: Department of Environmental Engineering, Sunchon National University
– sequence: 3
  givenname: Heon
  surname: Lee
  fullname: Lee, Heon
  organization: Department of Environmental Engineering, Sunchon National University
– sequence: 4
  givenname: Byung-Joo
  surname: Kim
  fullname: Kim, Byung-Joo
  organization: R&D Division, Korea Institute of Carbon Convergence Technology
– sequence: 5
  givenname: Kay-Hyeok
  surname: An
  fullname: An, Kay-Hyeok
  organization: Department of Nano & Advanced Materials Engineering, Jeonju University
– sequence: 6
  givenname: Young-Kwon
  surname: Park
  fullname: Park, Young-Kwon
  organization: School of Environmental Engineering, University of Seoul
– sequence: 7
  givenname: Sang-Chul
  surname: Jung
  fullname: Jung, Sang-Chul
  email: jsc@sunchon.ac.kr
  organization: Department of Environmental Engineering, Sunchon National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002278860$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9LHTEUxUOx4FP7AdwFuuoibW5m8uctRWorCIWi65DJZHzRmWRMMtDnp_AjN89xUQrt6sDN-V3OzTlBRyEGh9A50M9AqfySARS0hIIklFFOnt-hDWwlJ5IxeoQ2lHFBAIAfo5OcHyjlXDC6QS9XxvrR4bwPZeeyzzgO2KcYSFrqIPhlwp2fXDHj6C2Ov3zvcDAhziYVb0dXgYCtSV2Vw7wsncM2TnPMvtTXbo9H_7T4Hs87kx2eR5Mng-vGXezxEBPOy-ySNXMNUmI6Q-8HM2b34U1P0d3V19vL7-Tmx7fry4sbYhslC2kMOKqE6IfWsIGqreMArmFKMslpr4yRQIe2Z1IBVbZ-SSesY6KR_bZrmWxO0ad1b0iDfrReR-Nf9T7qx6Qvft5ea8ZYK7io3o-rd07xaXG56Ie4pFDjadgKUE3bwsElV5dNMefkBl0PMsXHUJLxowaqD1XptSpdq9KHqvRzJeEvck5-Mmn_X4atTK7ecO_SH5n-Cf0Gy7eq-A
CitedBy_id crossref_primary_10_1016_j_est_2021_103322
crossref_primary_10_1016_j_apsusc_2018_01_044
crossref_primary_10_1016_j_apsusc_2019_03_153
crossref_primary_10_1007_s11814_018_0199_1
crossref_primary_10_1016_j_compositesb_2024_111436
crossref_primary_10_1039_C9RA07157A
crossref_primary_10_1007_s11814_020_0544_z
crossref_primary_10_1016_j_cej_2019_02_076
crossref_primary_10_1007_s10853_020_04355_6
crossref_primary_10_3390_ijms19123830
crossref_primary_10_1016_j_apsusc_2020_148354
crossref_primary_10_1016_j_jallcom_2024_176539
crossref_primary_10_1021_acsanm_1c01056
crossref_primary_10_1016_j_jcis_2019_08_096
crossref_primary_10_3390_catal11081010
crossref_primary_10_1016_j_envres_2021_110899
crossref_primary_10_1002_smll_202005414
crossref_primary_10_1016_j_apsusc_2018_11_249
crossref_primary_10_1016_j_optlastec_2021_107559
crossref_primary_10_1016_j_cej_2019_01_092
crossref_primary_10_1002_smll_201803716
crossref_primary_10_1016_j_cattod_2020_06_004
crossref_primary_10_1007_s11814_018_0200_z
crossref_primary_10_1016_j_electacta_2018_03_147
crossref_primary_10_1007_s11664_024_11002_2
crossref_primary_10_1039_D0CE01006E
crossref_primary_10_1016_j_electacta_2018_12_187
crossref_primary_10_1002_ente_202000466
crossref_primary_10_1016_j_cattod_2019_07_008
crossref_primary_10_1007_s11814_018_0164_z
crossref_primary_10_1007_s11814_020_0582_6
crossref_primary_10_1002_smll_201901145
crossref_primary_10_1002_admi_201800283
crossref_primary_10_1002_cnma_202200569
crossref_primary_10_1016_j_electacta_2018_10_125
crossref_primary_10_1007_s11581_020_03535_3
crossref_primary_10_1007_s11814_018_0089_6
crossref_primary_10_1149_2_0181811jes
crossref_primary_10_1016_j_electacta_2019_134879
crossref_primary_10_1088_1361_6463_aab130
crossref_primary_10_1016_j_apsusc_2022_155647
crossref_primary_10_1016_j_ijhydene_2018_08_067
crossref_primary_10_3390_coatings12020215
Cites_doi 10.1166/sam.2014.1815
10.1039/b923153f
10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
10.1063/1.1800011
10.1016/S0013-4686(97)81190-5
10.1016/j.ijhydene.2014.08.085
10.1016/j.matchemphys.2007.02.038
10.1016/j.nanoen.2012.07.016
10.1007/s11814-015-0262-0
10.1186/s11671-016-1557-8
10.1039/C4TA04996A
10.1166/sam.2016.2887
10.1016/S0378-7753(00)00485-7
10.1016/j.mee.2014.07.014
10.5185/amlett.2016.6110
10.1007/s11051-005-9058-1
10.1002/adfm.200900971
10.1016/j.electacta.2006.09.039
10.1016/S0378-7753(03)00600-1
10.1039/c1ee01094h
10.1007/s11814-014-0392-9
10.1016/j.ijhydene.2016.02.011
ContentType Journal Article
Copyright Korean Institute of Chemical Engineers, Seoul, Korea 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-017-0205-z
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 2998
ExternalDocumentID oai_kci_go_kr_ARTI_2224656
10_1007_s11814_017_0205_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c387t-3a1e0866df4a2f089e511e32872750d8aa710f4d278108c205b6ce2637d9b4273
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:50 EST 2024
Sat Sep 13 14:42:05 EDT 2025
Tue Jul 01 03:29:35 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Fri Feb 21 02:35:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Specific Capacitance
Liquid Phase Plasma
Iron
Ruthenium
Bimetallic Oxide Nanoparticle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-3a1e0866df4a2f089e511e32872750d8aa710f4d278108c205b6ce2637d9b4273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1961834416
PQPubID 2044390
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_2224656
proquest_journals_1961834416
crossref_citationtrail_10_1007_s11814_017_0205_z
crossref_primary_10_1007_s11814_017_0205_z
springer_journals_10_1007_s11814_017_0205_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References WanC.AzumiK.KonnoH.Electrochim. Acta20075230611:CAS:528:DC%2BD2sXht1Gmt78%3D10.1016/j.electacta.2006.09.039
BurkeA.J. Power Sources200091371:CAS:528:DC%2BD3cXlvVWlsL4%3D10.1016/S0378-7753(00)00485-7
ZhangY.LiL.SuH.HuangW.DongX.J. Mater. Chem. A20153431:CAS:528:DC%2BC2cXhslGnsrfK10.1039/C4TA04996A
ParkK.C.JangI.Y.WongwiriyapanW.MorimotoS.KimY. J.JungY.C.ToyaT.EndoM.J. Mater. Chem.20102053451:CAS:528:DC%2BC3cXntlGisbo%3D10.1039/b923153f
VenugopalN.KimW. S.Korean J. Chem. Eng.20153219181:CAS:528:DC%2BC2MXnvFegtrw%3D10.1007/s11814-014-0392-9
LeeH.ParkS. H.KimS. J.ParkY. K.KimB. H.JungS.C.Microelectron. Eng.20141261531:CAS:528:DC%2BC2cXht1CkurjO10.1016/j.mee.2014.07.014
LeeH.ParkS. H.KimS. J.ParkY. K.KimB. J.AnK. H.KiS. J.JungS. C.Int. J.^Hydrogen Energy2015407541:CAS:528:DC%2BC2cXhsFWgtrzM10.1016/j.ijhydene.2014.08.085
LeeH.ParkS. H.KimS. J.ParkY. K.AnK. H.KimB. J.JungS.C.J. Nanomater.2014
ShanY.GaoL.Mater. Chem. Phys.20071032061:CAS:528:DC%2BD2sXlslOnsLs%3D10.1016/j.matchemphys.2007.02.038
SansonettiJ. E.MartinW. C.J. Phys. Chem. Ref. Data20053415591:CAS:528:DC%2BD2MXht1GjsbjO10.1063/1.1800011
KimB. H.ParkY. K.AnK. H.LeeH.JungS. C.Sci. Adv. Mater.2016817691:CAS:528:DC%2BC2sXptVygsrY%3D10.1166/sam.2016.2887
AnK. H.KimW. S.ParkY. S.MoonJ. M.BaeD. J.LimS. C.LeeY. S.LeeY.H.Adv. Funct. Mater.2001113871:CAS:528:DC%2BD3MXnsVCgtrw%3D10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
LiuT.C.PellW.G.ConwayB.E.Electrochim. Acta19974235411:CAS:528:DyaK2sXnsFGksbY%3D10.1016/S0013-4686(97)81190-5
ReddyR. N.ReddyR. G.J. Power Sources20031243301:CAS:528:DC%2BD3sXmvF2ksrw%3D10.1016/S0378-7753(03)00600-1
SunS.H.JungS. C.Korean J. Chem. Eng.20163310751:CAS:528:DC%2BC28XitFalu7c%3D10.1007/s11814-015-0262-0
XieJ.F.SunX.ZhangN.XuK.ZhouM.XieY.Nano Energy20132651:CAS:528:DC%2BC3sXhsVyntbk%3D10.1016/j.nanoen.2012.07.016
LeeH.KimB. H.ParkY. K.AnK. H.ChoiY. J.JungS. C.Int. J. Hydrogen Energy20164175821:CAS:528:DC%2BC28Xjt1eks74%3D10.1016/j.ijhydene.2016.02.011
LeeH.KimS. J.AnK. H.KimJ. S.KimB. H.JungS. C.Adv. Mater. Lett.20167981:CAS:528:DC%2BC28XotlShtrs%3D10.5185/amlett.2016.6110
SalomonssonA.PetoralR.M.JrUvdalK.AulinC.KallP.O.OjamaeL.StrandM.SanatiM.SpetzA. L.J. Nanoparticle Res.200688991:CAS:528:DC%2BD28Xht1elt7rP10.1007/s11051-005-9058-1
LeiZ.B.ChristovN.ZhaoX. S.Energy Environ. Sci.2011418661:CAS:528:DC%2BC3MXmslOju7o%3D10.1039/c1ee01094h
ChenZ.QinY. C.WengD.XiaoQ. F.PengY.T.WangX. L.LiH. X.WeiF.LuY. F.Adv. Funct. Mater.20091934201:CAS:528:DC%2BD1MXhtlKhtLjF10.1002/adfm.200900971
LeeS. J.LeeH.JeonK. J.ParkH.ParkY. K.JungS. C.Nanoscale Res. Lett.20161134410.1186/s11671-016-1557-8
LeeD. J.KimS. J.LeeJ.LeeH.KimH. G.JungS. C.Sci. Adv. Mater.2014615991:CAS:528:DC%2BC2cXht1ems7nK10.1166/sam.2014.1815
R. N. Reddy (205_CR4) 2003; 124
T.C. Liu (205_CR12) 1997; 42
H. Lee (205_CR6) 2015; 40
S. J. Lee (205_CR17) 2016; 11
Z.B. Lei (205_CR2) 2011; 4
J.F. Xie (205_CR13) 2013; 2
K. H. An (205_CR7) 2001; 11
Y. Zhang (205_CR9) 2015; 3
S.H. Sun (205_CR16) 2016; 33
D. J. Lee (205_CR18) 2014; 6
C. Wan (205_CR5) 2007; 52
Z. Chen (205_CR3) 2009; 19
H. Lee (205_CR15) 2014; 126
Y. Shan (205_CR10) 2007; 103
H. Lee (205_CR11) 2016; 41
H. Lee (205_CR14) 2014
H. Lee (205_CR19) 2016; 7
B. H. Kim (205_CR20) 2016; 8
N. Venugopal (205_CR8) 2015; 32
J. E. Sansonetti (205_CR21) 2005; 34
K.C. Park (205_CR22) 2010; 20
A. Burke (205_CR1) 2000; 91
A. Salomonsson (205_CR23) 2006; 8
References_xml – reference: LiuT.C.PellW.G.ConwayB.E.Electrochim. Acta19974235411:CAS:528:DyaK2sXnsFGksbY%3D10.1016/S0013-4686(97)81190-5
– reference: ChenZ.QinY. C.WengD.XiaoQ. F.PengY.T.WangX. L.LiH. X.WeiF.LuY. F.Adv. Funct. Mater.20091934201:CAS:528:DC%2BD1MXhtlKhtLjF10.1002/adfm.200900971
– reference: ParkK.C.JangI.Y.WongwiriyapanW.MorimotoS.KimY. J.JungY.C.ToyaT.EndoM.J. Mater. Chem.20102053451:CAS:528:DC%2BC3cXntlGisbo%3D10.1039/b923153f
– reference: LeiZ.B.ChristovN.ZhaoX. S.Energy Environ. Sci.2011418661:CAS:528:DC%2BC3MXmslOju7o%3D10.1039/c1ee01094h
– reference: AnK. H.KimW. S.ParkY. S.MoonJ. M.BaeD. J.LimS. C.LeeY. S.LeeY.H.Adv. Funct. Mater.2001113871:CAS:528:DC%2BD3MXnsVCgtrw%3D10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– reference: VenugopalN.KimW. S.Korean J. Chem. Eng.20153219181:CAS:528:DC%2BC2MXnvFegtrw%3D10.1007/s11814-014-0392-9
– reference: WanC.AzumiK.KonnoH.Electrochim. Acta20075230611:CAS:528:DC%2BD2sXht1Gmt78%3D10.1016/j.electacta.2006.09.039
– reference: ReddyR. N.ReddyR. G.J. Power Sources20031243301:CAS:528:DC%2BD3sXmvF2ksrw%3D10.1016/S0378-7753(03)00600-1
– reference: ShanY.GaoL.Mater. Chem. Phys.20071032061:CAS:528:DC%2BD2sXlslOnsLs%3D10.1016/j.matchemphys.2007.02.038
– reference: KimB. H.ParkY. K.AnK. H.LeeH.JungS. C.Sci. Adv. Mater.2016817691:CAS:528:DC%2BC2sXptVygsrY%3D10.1166/sam.2016.2887
– reference: LeeH.ParkS. H.KimS. J.ParkY. K.AnK. H.KimB. J.JungS.C.J. Nanomater.2014
– reference: LeeH.KimB. H.ParkY. K.AnK. H.ChoiY. J.JungS. C.Int. J. Hydrogen Energy20164175821:CAS:528:DC%2BC28Xjt1eks74%3D10.1016/j.ijhydene.2016.02.011
– reference: LeeH.ParkS. H.KimS. J.ParkY. K.KimB. J.AnK. H.KiS. J.JungS. C.Int. J.^Hydrogen Energy2015407541:CAS:528:DC%2BC2cXhsFWgtrzM10.1016/j.ijhydene.2014.08.085
– reference: SansonettiJ. E.MartinW. C.J. Phys. Chem. Ref. Data20053415591:CAS:528:DC%2BD2MXht1GjsbjO10.1063/1.1800011
– reference: LeeH.KimS. J.AnK. H.KimJ. S.KimB. H.JungS. C.Adv. Mater. Lett.20167981:CAS:528:DC%2BC28XotlShtrs%3D10.5185/amlett.2016.6110
– reference: BurkeA.J. Power Sources200091371:CAS:528:DC%2BD3cXlvVWlsL4%3D10.1016/S0378-7753(00)00485-7
– reference: ZhangY.LiL.SuH.HuangW.DongX.J. Mater. Chem. A20153431:CAS:528:DC%2BC2cXhslGnsrfK10.1039/C4TA04996A
– reference: SunS.H.JungS. C.Korean J. Chem. Eng.20163310751:CAS:528:DC%2BC28XitFalu7c%3D10.1007/s11814-015-0262-0
– reference: LeeH.ParkS. H.KimS. J.ParkY. K.KimB. H.JungS.C.Microelectron. Eng.20141261531:CAS:528:DC%2BC2cXht1CkurjO10.1016/j.mee.2014.07.014
– reference: XieJ.F.SunX.ZhangN.XuK.ZhouM.XieY.Nano Energy20132651:CAS:528:DC%2BC3sXhsVyntbk%3D10.1016/j.nanoen.2012.07.016
– reference: LeeS. J.LeeH.JeonK. J.ParkH.ParkY. K.JungS. C.Nanoscale Res. Lett.20161134410.1186/s11671-016-1557-8
– reference: LeeD. J.KimS. J.LeeJ.LeeH.KimH. G.JungS. C.Sci. Adv. Mater.2014615991:CAS:528:DC%2BC2cXht1ems7nK10.1166/sam.2014.1815
– reference: SalomonssonA.PetoralR.M.JrUvdalK.AulinC.KallP.O.OjamaeL.StrandM.SanatiM.SpetzA. L.J. Nanoparticle Res.200688991:CAS:528:DC%2BD28Xht1elt7rP10.1007/s11051-005-9058-1
– volume-title: J. Nanomater.
  year: 2014
  ident: 205_CR14
– volume: 6
  start-page: 1599
  year: 2014
  ident: 205_CR18
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2014.1815
– volume: 20
  start-page: 5345
  year: 2010
  ident: 205_CR22
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923153f
– volume: 11
  start-page: 387
  year: 2001
  ident: 205_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
– volume: 34
  start-page: 1559
  year: 2005
  ident: 205_CR21
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1800011
– volume: 42
  start-page: 3541
  year: 1997
  ident: 205_CR12
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(97)81190-5
– volume: 40
  start-page: 754
  year: 2015
  ident: 205_CR6
  publication-title: Int. J.^Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.085
– volume: 103
  start-page: 206
  year: 2007
  ident: 205_CR10
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2007.02.038
– volume: 2
  start-page: 65
  year: 2013
  ident: 205_CR13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.07.016
– volume: 33
  start-page: 1075
  year: 2016
  ident: 205_CR16
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-015-0262-0
– volume: 11
  start-page: 344
  year: 2016
  ident: 205_CR17
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1557-8
– volume: 3
  start-page: 43
  year: 2015
  ident: 205_CR9
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04996A
– volume: 8
  start-page: 1769
  year: 2016
  ident: 205_CR20
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2016.2887
– volume: 91
  start-page: 37
  year: 2000
  ident: 205_CR1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00485-7
– volume: 126
  start-page: 153
  year: 2014
  ident: 205_CR15
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.07.014
– volume: 7
  start-page: 98
  year: 2016
  ident: 205_CR19
  publication-title: Adv. Mater. Lett.
  doi: 10.5185/amlett.2016.6110
– volume: 8
  start-page: 899
  year: 2006
  ident: 205_CR23
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-005-9058-1
– volume: 19
  start-page: 3420
  year: 2009
  ident: 205_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900971
– volume: 52
  start-page: 3061
  year: 2007
  ident: 205_CR5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.09.039
– volume: 124
  start-page: 330
  year: 2003
  ident: 205_CR4
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00600-1
– volume: 4
  start-page: 1866
  year: 2011
  ident: 205_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01094h
– volume: 32
  start-page: 1918
  year: 2015
  ident: 205_CR8
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0392-9
– volume: 41
  start-page: 7582
  year: 2016
  ident: 205_CR11
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.011
SSID ssj0055620
Score 2.3476517
Snippet Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2993
SubjectTerms Bimetals
Biotechnology
Carbon
Carbon nanotubes
Catalysis
Chemistry
Chemistry and Materials Science
Electrochemical analysis
Electrodes
Electronic
Industrial Chemistry/Chemical Engineering
Inorganic
Iron
Materials (Organic
Materials Science
Nanoparticles
Nanotubes
Ruthenium
Ruthenium oxide
Supercapacitors
Thin Films
화학공학
Title Facile synthesis of iron-ruthenium bimetallic oxide nanoparticles on carbon nanotube composites by liquid phase plasma method for supercapacitor
URI https://link.springer.com/article/10.1007/s11814-017-0205-z
https://www.proquest.com/docview/1961834416
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002278860
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2017, 34(11), 212, pp.2993-2998
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6x2wNw4FGoWGhXFuIESrWJ7SR73FZdCoieulI5WX6ljXY32eYhtfsr-MmMN0lfAqSeLMWOk9jjmW_i8TcAn9BD9g1XzMO5Zx5TSeBJKi0qQ2loSJPEbKLdf56ExzP2_Yyftee4yy7avduS3Gjq28NuaIxcxETkIcTh3roHW9yPx3EftiZff_046hQwR5Pe_FpxFHuIeLrNzL91cs8c9bIiuYc0H2yObmzO9CWcdm_bhJrM9-tK7ev1AyLHR37OK3jRYlAyaYTmNTyx2TY8PexSv23D8zsshW_g91Rq1B2kvM4QLZZpSfKEuNNxXuHC47O0XhKVLi3C-EWqSX6VGksymaE73kbdkTwjWhYKC3e9qpUlLpbdBYxhrbomi_SyTg1ZXaBRJStE9EtJmuTWBFE1KeuVLTTadY0KqHgLs-nR6eGx1yZy8DSNo8qj0rfoOoUmYTJIRvHYIsyzFJ01xy5vYikR5yTMBFHsj2KNw6FcorKQRmasGAKsHehneWbfARmpgHKjuOJUMhomKooZsxI787kymg1g1M2n0C3LuUu2sRC3_Mxu4AUOvHADL9YD-Hxzy6qh-Phf448oJGKuU-GIuV15not5IdD9-CYCR8_HwwHsdjIkWpVQCt_l1qGIPrH6SycSd6r_9cT3j2r9AZ4FTqY2pyV3oV8Vtd1D2FSpIS6T6cHBybBdLkPozYLJH_l-Ep0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7aFw4FGoWGjBQpxAqZLYefRYVV229HHaSuVk-dlGu5sseUh0fwU_mfEm6UuA1FOk2HESezLzTTzzDcBn9JADHUnm4dozj0kbeoIKg8pQaBpTa_Uq2v30LB6fs-8X0UWXx1310e79luRKU98mu6ExchETiYcQJ_KWa7DO0AX3B7C-_-3H8WGvgCM06e2vFUexh4in38z82yD3zNFaXtp7SPPB5ujK5oxewKR_2jbUZLrb1HJXLR8QOT7ydV7C8w6Dkv1WaF7BE5NvwsZBX_ptE57dYSl8Db9HQqHuINV1jmixyipSWOKy47zShcfnWTMnMpsbhPGzTJHiV6YNyUWO7ngXdUeKnChRSjy483UjDXGx7C5gDFvlNZllP5tMk8UVGlWyQEQ_F6Qtbk0QVZOqWZhSoV1XqIDKN3A-OpwcjL2ukIOnaJrUHhWBQdcp1paJ0PrpnkGYZyg6a45dXqdCIM6xTIdJGvipwumQrlBZTBO9JxkCrC0Y5EVu3gLxZUgjLSMZUcFobGWSMmYEDhZEUis2BL9fT646lnNXbGPGb_mZ3cRznHjuJp4vh_Dl5pJFS_Hxv86fUEj4VGXcEXO742XBpyVH9-OIh46eL4qHsN3LEO9UQsUDV1uHIvrE5q-9SNxp_tcd3z2q90fYGE9OT_jJ0dnxe3gaOvlaZU5uw6AuG7ODEKqWH7pP5g-_IhMV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokaA9IChUXShgIU6gqJvYTtJjVVi1PCoOrNSb5SdE3XXSPCTaX9GfzMwmoS0CJE6WYseRPGPPN_HMN4S8Bg85tkLzCGTPI659EimmHByGyrKUeW9X0e6fT9KjOf9wKk6HOqfNGO0-Xkn2OQ3I0hTavcr6vevENzBMGD2RRQB3RHS5Ru7CaRyjos-Tg_EoFmDc-58sSLYH2Ge81vzTFLcM01qo_S3M-ds16cr6zB6SBwNspAe9nB-ROy5skfuHY7W2LbJ5g1jwMbmaKQPbnTYXAQBeUzS09BQT2qIaI9pD0S2pLpYOkPeiMLT8UVhHgwrgQQ-BcrQM1KhaQ4PP2047iuHnGOMFvfqCLorzrrC0-g52kFYAwpeK9vWoKQBh2nSVqw2YYgNnRv2EzGfvvx4eRUPthciwPGsjpmIH3k5qPVeJn-b7DpCZY-BfISG8zZUCaOK5TbI8nuYGVlBjbbGUZXZfc8BE22Q9lMHtEDrVCRNWCy2Y4iz1Oss5dwomi4W2hk_IdFx4aQZicqyPsZDXlMooKwmykigreTkhb369UvWsHP8a_AqkKc9MIZFLG9tvpTyrJXgMxzJBRj2RTsjuKGw57OJGxlgOhwFghO63owLc6P7bF5_-1-iX5N6XdzP56fjk4zOykaBGrnIdd8l6W3fuOYCeVr9YKfZPrvP6Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis+of+iron-ruthenium+bimetallic+oxide+nanoparticles+on+carbon+nanotube+composites+by+liquid+phase+plasma+method+for+supercapacitor&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=%EC%9D%B4%EC%9B%90%EC%A4%80&rft.au=%EC%A0%95%EC%83%81%EB%AF%BC&rft.au=%EC%9D%B4%ED%97%8C&rft.au=%EA%B9%80%EB%B3%91%EC%A3%BC&rft.date=2017-11-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=2993&rft.epage=2998&rft_id=info:doi/10.1007%2Fs11814-017-0205-z&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_2224656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon