Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins

Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also wid...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 9; no. 1
Main Authors Klemm, Elizabeth J., Shakoor, Sadia, Page, Andrew J., Qamar, Farah Naz, Judge, Kim, Saeed, Dania K., Wong, Vanessa K., Dallman, Timothy J., Nair, Satheesh, Baker, Stephen, Shaheen, Ghazala, Qureshi, Shahida, Yousafzai, Mohammad Tahir, Saleem, Muhammad Khalid, Hasan, Zahra, Dougan, Gordon, Hasan, Rumina
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 20.02.2018
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.00105-18

Cover

Loading…
Abstract Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S . Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S . Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S . Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures.
AbstractList Antibiotic resistance is a major problem in serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel  Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR  Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the extended-spectrum β-lactamase, and carrying the fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of  Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. Typhoid fever is a severe disease caused by the Gram-negative bacterium serovar Typhi. Antibiotic-resistant  Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR)  Typhi clone in Sindh, Pakistan. The XDR  Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in  Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR  Typhi to investigate the phylogenetic relationship between these isolates and a global collection of  Typhi isolates and to identify multiple genes linked to antibiotic resistance. This  Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in  Typhi observed here adds urgency to the need for typhoid prevention measures.
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S . Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S . Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S . Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures.
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S . Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S . Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S . Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures.
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures.Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures.
Author Hasan, Rumina
Saleem, Muhammad Khalid
Klemm, Elizabeth J.
Shakoor, Sadia
Saeed, Dania K.
Dougan, Gordon
Judge, Kim
Shaheen, Ghazala
Yousafzai, Mohammad Tahir
Wong, Vanessa K.
Hasan, Zahra
Page, Andrew J.
Nair, Satheesh
Qamar, Farah Naz
Dallman, Timothy J.
Baker, Stephen
Qureshi, Shahida
Author_xml – sequence: 1
  givenname: Elizabeth J.
  surname: Klemm
  fullname: Klemm, Elizabeth J.
  organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom
– sequence: 2
  givenname: Sadia
  surname: Shakoor
  fullname: Shakoor, Sadia
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 3
  givenname: Andrew J.
  surname: Page
  fullname: Page, Andrew J.
  organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom
– sequence: 4
  givenname: Farah Naz
  surname: Qamar
  fullname: Qamar, Farah Naz
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 5
  givenname: Kim
  surname: Judge
  fullname: Judge, Kim
  organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom
– sequence: 6
  givenname: Dania K.
  surname: Saeed
  fullname: Saeed, Dania K.
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 7
  givenname: Vanessa K.
  surname: Wong
  fullname: Wong, Vanessa K.
  organization: University of Cambridge Department of Medicine, Cambridge, United Kingdom
– sequence: 8
  givenname: Timothy J.
  surname: Dallman
  fullname: Dallman, Timothy J.
  organization: Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
– sequence: 9
  givenname: Satheesh
  surname: Nair
  fullname: Nair, Satheesh
  organization: Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
– sequence: 10
  givenname: Stephen
  surname: Baker
  fullname: Baker, Stephen
  organization: The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit-Vietnam, Ho Chi Minh City, Vietnam, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
– sequence: 11
  givenname: Ghazala
  surname: Shaheen
  fullname: Shaheen, Ghazala
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 12
  givenname: Shahida
  surname: Qureshi
  fullname: Qureshi, Shahida
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 13
  givenname: Mohammad Tahir
  surname: Yousafzai
  fullname: Yousafzai, Mohammad Tahir
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 14
  givenname: Muhammad Khalid
  surname: Saleem
  fullname: Saleem, Muhammad Khalid
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 15
  givenname: Zahra
  surname: Hasan
  fullname: Hasan, Zahra
  organization: The Aga Khan University, Karachi, Pakistan
– sequence: 16
  givenname: Gordon
  surname: Dougan
  fullname: Dougan, Gordon
  organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom, University of Cambridge Department of Medicine, Cambridge, United Kingdom
– sequence: 17
  givenname: Rumina
  surname: Hasan
  fullname: Hasan, Rumina
  organization: The Aga Khan University, Karachi, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29463654$$D View this record in MEDLINE/PubMed
BookMark eNptUsFu1DAUtFARLUuPXJGPXFLseOM4FyTYblukSlR0OVuO87Jr5NjBTlbsz_Ft2G0XAcIXW5rxzHvz3kt04rwDhF5TckFpKd4NH42_IISSqqDiGToraUWKuqL0JL85LUpaNqfoPMZvJB3GqGDkBTotmyVnvFqeoZ_rAcIWnAbse6wcXv-YwEWzB3vAl2HeFl8gmjgpN-F7ZYfkb63C4CYIRit8D8HvVcCbw7gzeGUTjm9UaH0wbosVvgt-MFHPfo74zqo4mA6vnfZdho_SyXzy-MrOPvjvs3E-y8RUTYc3OxO64hocBDUZ7_AKxp2yPo7ZIb5Cz3tlI5w_3Qv09Wq9Wd0Ut5-vP60-3BaaiXoqmGigZV2tK8p4XQrClG5axpe6qpnmUDZ8yUnCeM26XnQVFYTzpu2VajlhLVug94-649wO0OnUf1BWjsEMKhykV0b-jTizk1u_l5UoKWmqJPD2SSC3CHGSOZacpYOUjSwJqWkaH83UN396_TY5Di0R2CNBBx9jgF5qMz2kk6yNlZTIvB0yb4d82A6Z5r5AxT-_jsL_5_8Ca_7BIg
CitedBy_id crossref_primary_10_1093_cid_ciz556
crossref_primary_10_1128_mSystems_00360_21
crossref_primary_10_1128_msystems_00515_19
crossref_primary_10_1080_14760584_2022_2148661
crossref_primary_10_1590_1678_9199_jvatitd_2020_0001
crossref_primary_10_2807_1560_7917_ES_2019_24_21_1900289
crossref_primary_10_1038_s41467_023_44272_1
crossref_primary_10_3390_antibiotics13070640
crossref_primary_10_1016_j_imlet_2021_05_005
crossref_primary_10_1080_0972060X_2022_2128896
crossref_primary_10_1021_acs_analchem_9b05107
crossref_primary_10_1128_mbio_01179_23
crossref_primary_10_1016_j_foodcont_2020_107761
crossref_primary_10_14260_jemds_2019_809
crossref_primary_10_1111_ped_14695
crossref_primary_10_1099_jmm_0_000972
crossref_primary_10_1136_bmj_k4766
crossref_primary_10_3389_fimmu_2024_1384642
crossref_primary_10_1099_mgen_0_000913
crossref_primary_10_1038_s41597_024_04289_7
crossref_primary_10_1080_14787210_2023_2263643
crossref_primary_10_3389_fcimb_2021_771510
crossref_primary_10_1016_j_ijid_2020_06_054
crossref_primary_10_1016_S2214_109X_18_30264_X
crossref_primary_10_1134_S0026893319040113
crossref_primary_10_1371_journal_pntd_0007955
crossref_primary_10_1080_21645515_2018_1564570
crossref_primary_10_1038_s44259_024_00049_0
crossref_primary_10_3389_fpubh_2022_988317
crossref_primary_10_1097_QCO_0000000000000672
crossref_primary_10_2174_0118715265255339240102110929
crossref_primary_10_1128_mBio_03481_20
crossref_primary_10_14712_18059694_2018_130
crossref_primary_10_1093_cid_ciaa914
crossref_primary_10_1136_bmjopen_2023_074412
crossref_primary_10_1186_s13063_019_3844_z
crossref_primary_10_1111_mmi_15209
crossref_primary_10_33988_auvfd_691746
crossref_primary_10_1371_journal_pntd_0010704
crossref_primary_10_1128_msystems_00365_24
crossref_primary_10_1039_C9AY02579K
crossref_primary_10_1080_09286586_2019_1708120
crossref_primary_10_1093_cid_ciaa908
crossref_primary_10_1093_jacamr_dlaa109
crossref_primary_10_2139_ssrn_3946990
crossref_primary_10_3389_fmicb_2018_02941
crossref_primary_10_3390_microorganisms8030407
crossref_primary_10_1093_jac_dkae281
crossref_primary_10_1016_j_molstruc_2023_136801
crossref_primary_10_1016_j_jiph_2023_08_003
crossref_primary_10_1016_j_meegid_2024_105632
crossref_primary_10_1093_cid_ciz483
crossref_primary_10_2217_fmb_2021_0036
crossref_primary_10_1093_bib_bbab313
crossref_primary_10_26508_lsa_202402666
crossref_primary_10_1016_j_jddst_2024_106549
crossref_primary_10_3390_antibiotics13080765
crossref_primary_10_3390_pathogens10040410
crossref_primary_10_3390_microorganisms9102155
crossref_primary_10_54393_fbt_v1i01_7
crossref_primary_10_1038_s41467_019_11844_z
crossref_primary_10_47429_lmo_2020_10_4_340
crossref_primary_10_12688_wellcomeopenres_16801_1
crossref_primary_10_12688_wellcomeopenres_16801_2
crossref_primary_10_3389_fmicb_2021_647044
crossref_primary_10_1093_infdis_jiab441
crossref_primary_10_1016_S0140_6736_23_02031_7
crossref_primary_10_3390_antibiotics12101504
crossref_primary_10_1016_S1473_3099_18_30804_1
crossref_primary_10_1016_S2214_109X_24_00030_5
crossref_primary_10_3390_microorganisms10102006
crossref_primary_10_3390_ijms24097892
crossref_primary_10_1016_S2214_109X_21_00346_6
crossref_primary_10_1128_AAC_01200_21
crossref_primary_10_1128_mbio_02426_22
crossref_primary_10_1016_j_sjbs_2021_10_008
crossref_primary_10_1097_QCO_0000000000000751
crossref_primary_10_1371_journal_pntd_0006779
crossref_primary_10_54393_pbmj_v5i10_841
crossref_primary_10_1371_journal_pntd_0007868
crossref_primary_10_1371_journal_pntd_0007620
crossref_primary_10_54393_fbt_v1i02_9
crossref_primary_10_1186_s12906_023_03870_8
crossref_primary_10_1097_QCO_0000000000000879
crossref_primary_10_3390_tropicalmed6010011
crossref_primary_10_4269_ajtmh_19_0624
crossref_primary_10_1016_j_micpath_2020_104159
crossref_primary_10_7759_cureus_41831
crossref_primary_10_1093_infdis_jiab144
crossref_primary_10_3390_microorganisms11030667
crossref_primary_10_1016_j_resmic_2022_103985
crossref_primary_10_1128_MRA_00427_20
crossref_primary_10_1371_journal_pntd_0009755
crossref_primary_10_1016_j_lwt_2022_113261
crossref_primary_10_1016_S0140_6736_24_00862_6
crossref_primary_10_3390_ijerph17082774
crossref_primary_10_1371_journal_pntd_0008530
crossref_primary_10_1016_j_mib_2022_102262
crossref_primary_10_1016_j_idcr_2021_e01048
crossref_primary_10_1093_jtm_taac086
crossref_primary_10_1371_journal_ppat_1010731
crossref_primary_10_1080_20009666_2020_1718480
crossref_primary_10_1128_msphere_00283_22
crossref_primary_10_1128_AAC_02581_19
crossref_primary_10_1016_j_isci_2021_102454
crossref_primary_10_1099_mgen_0_000195
crossref_primary_10_18006_2022_10_2__423_429
crossref_primary_10_1093_jac_dkae355
crossref_primary_10_1084_jem_20201116
crossref_primary_10_1128_IAI_00219_20
crossref_primary_10_4155_fsoa_2018_0003
crossref_primary_10_1007_s11274_020_02862_x
crossref_primary_10_1093_infdis_jiab129
crossref_primary_10_1093_infdis_jiad427
crossref_primary_10_1007_s11033_019_04843_2
crossref_primary_10_1038_s41467_023_42353_9
crossref_primary_10_46234_ccdcw2022_062
crossref_primary_10_1093_infdis_jiy205
crossref_primary_10_3201_eid2703_200464
crossref_primary_10_1007_s10311_021_01274_z
crossref_primary_10_1016_j_jmii_2020_03_017
crossref_primary_10_1371_journal_pntd_0007315
crossref_primary_10_1186_s13073_022_01020_2
crossref_primary_10_7759_cureus_11055
crossref_primary_10_1016_j_tmaid_2020_101946
crossref_primary_10_1136_bmj_k5322
crossref_primary_10_1136_bmj_n437
crossref_primary_10_1089_mdr_2020_0304
crossref_primary_10_3390_antibiotics10070785
crossref_primary_10_1016_j_ica_2023_121637
crossref_primary_10_4315_JFP_20_172
crossref_primary_10_1016_j_clinpr_2021_100069
crossref_primary_10_1016_S2214_109X_22_00275_3
crossref_primary_10_1038_s41467_018_07370_z
crossref_primary_10_1099_mgen_0_001346
crossref_primary_10_1371_journal_pntd_0010306
crossref_primary_10_4269_ajtmh_20_0258
crossref_primary_10_1016_j_chom_2020_04_005
crossref_primary_10_1016_j_ygeno_2021_05_003
crossref_primary_10_1093_ofid_ofab572
crossref_primary_10_1186_s12879_021_05906_1
crossref_primary_10_1016_S1473_3099_19_30176_8
crossref_primary_10_1128_AAC_00696_20
crossref_primary_10_15585_mmwr_mm6801a3
crossref_primary_10_1089_fpd_2022_0067
crossref_primary_10_1016_j_ijmmb_2023_100448
crossref_primary_10_1002_14651858_CD010452_pub2
crossref_primary_10_1128_MRA_00804_21
crossref_primary_10_3343_alm_2022_42_2_268
crossref_primary_10_4103_IJAMR_IJAMR_132_19
crossref_primary_10_3390_microorganisms8071074
crossref_primary_10_1093_jac_dkab049
crossref_primary_10_2217_fmb_2020_0257
crossref_primary_10_1016_j_ijid_2024_107187
crossref_primary_10_1038_s41467_018_08190_x
crossref_primary_10_1080_17460913_2024_2384260
crossref_primary_10_1093_cid_ciy1094
crossref_primary_10_1016_j_jiac_2024_11_018
crossref_primary_10_1371_journal_pntd_0008682
crossref_primary_10_1016_j_pcl_2021_09_007
crossref_primary_10_1093_infdis_jiz220
crossref_primary_10_1097_INF_0000000000002450
crossref_primary_10_1093_infdis_jiad585
crossref_primary_10_1371_journal_pone_0257744
crossref_primary_10_1186_s12879_020_05500_x
crossref_primary_10_7189_jogh_11_04031
crossref_primary_10_1016_j_micres_2019_126311
crossref_primary_10_1016_j_vaccine_2021_08_051
crossref_primary_10_3390_microorganisms9122484
crossref_primary_10_1093_cid_ciy1076
crossref_primary_10_7759_cureus_16777
crossref_primary_10_1371_journal_pntd_0008268
crossref_primary_10_3390_microorganisms9122512
crossref_primary_10_4103_bbrj_bbrj_70_19
crossref_primary_10_1093_cid_ciaa1309
crossref_primary_10_3389_fpubh_2023_1151936
crossref_primary_10_1089_hs_2019_0104
crossref_primary_10_1016_j_celrep_2021_109654
crossref_primary_10_1016_S2214_109X_21_00255_2
crossref_primary_10_1056_NEJMoa2035916
crossref_primary_10_1186_s42269_023_00983_5
crossref_primary_10_1007_s10529_021_03219_6
crossref_primary_10_1056_NEJMoa1905047
crossref_primary_10_1016_S1473_3099_18_30483_3
crossref_primary_10_3390_genes11111365
crossref_primary_10_1155_2023_6142810
crossref_primary_10_2147_IDR_S406253
crossref_primary_10_1097_INF_0000000000003656
crossref_primary_10_1038_s42003_024_06451_8
crossref_primary_10_3389_fpubh_2023_1151805
crossref_primary_10_1016_j_jiph_2023_12_002
crossref_primary_10_1093_aje_kwy264
crossref_primary_10_4274_csmedj_galenos_2025_2024_10_1
crossref_primary_10_1016_j_med_2022_03_003
crossref_primary_10_1111_cmi_12939
crossref_primary_10_1016_S1473_3099_19_30064_7
crossref_primary_10_1093_cid_ciaa1320
crossref_primary_10_1021_acs_jafc_4c01531
crossref_primary_10_1016_j_imbio_2019_02_011
crossref_primary_10_1093_cid_ciaa1323
crossref_primary_10_1093_cid_ciaa1322
crossref_primary_10_1016_S0140_6736_21_01340_4
crossref_primary_10_1093_heapol_czaa065
crossref_primary_10_1093_cid_ciy928
crossref_primary_10_1371_journal_pntd_0008121
crossref_primary_10_1007_s12013_024_01407_5
crossref_primary_10_1128_JCM_00858_19
crossref_primary_10_1016_j_bsheal_2023_12_003
crossref_primary_10_1089_mdr_2020_0017
crossref_primary_10_2196_27268
crossref_primary_10_1093_cid_ciaa1333
crossref_primary_10_1093_cid_ciaa366
crossref_primary_10_1186_s12941_024_00748_6
crossref_primary_10_7759_cureus_12664
crossref_primary_10_1016_j_puhip_2021_100084
crossref_primary_10_1126_sciimmunol_abj1181
crossref_primary_10_1093_jtm_taab012
crossref_primary_10_1128_AAC_01974_19
crossref_primary_10_1371_journal_pone_0285287
crossref_primary_10_3390_pathogens9020151
crossref_primary_10_5694_mja2_50249
crossref_primary_10_1016_j_lwt_2024_115751
crossref_primary_10_1016_j_bbagen_2020_129627
crossref_primary_10_1128_spectrum_03102_23
crossref_primary_10_1186_s43141_023_00591_w
crossref_primary_10_1016_j_micpath_2021_105150
crossref_primary_10_1016_j_bcab_2024_103235
crossref_primary_10_1093_cid_ciaa597
crossref_primary_10_1080_20477724_2024_2416864
crossref_primary_10_3201_eid2911_230499
crossref_primary_10_1177_0009922819881203
crossref_primary_10_1007_s13312_019_1566_7
crossref_primary_10_1002_cti2_1178
crossref_primary_10_1093_jac_dkab215
crossref_primary_10_1093_cid_ciy1108
crossref_primary_10_1128_spectrum_02406_23
crossref_primary_10_1080_19490976_2019_1697593
crossref_primary_10_1038_s41598_020_64934_0
crossref_primary_10_5694_mja2_50316
crossref_primary_10_1128_msphere_00215_20
crossref_primary_10_3390_vaccines6030045
crossref_primary_10_1093_cid_ciy1103
crossref_primary_10_1111_jam_15131
crossref_primary_10_1093_cid_ciy957
crossref_primary_10_1371_journal_pntd_0012558
crossref_primary_10_1016_j_vaccine_2020_09_051
crossref_primary_10_1038_s41564_019_0503_9
crossref_primary_10_1016_j_resmic_2020_103794
crossref_primary_10_1093_jac_dkab326
crossref_primary_10_1016_j_ebiom_2020_102802
crossref_primary_10_2196_27276
crossref_primary_10_1016_j_idcr_2019_e00492
crossref_primary_10_1111_1462_2920_14458
crossref_primary_10_1371_journal_pone_0267805
crossref_primary_10_1056_NEJMp1803926
crossref_primary_10_1038_s42003_021_02013_4
crossref_primary_10_32350_BSR_61_03
crossref_primary_10_1016_j_diagmicrobio_2022_115883
crossref_primary_10_20964_2019_09_15
crossref_primary_10_3389_fmicb_2021_738784
crossref_primary_10_1007_s10096_019_03658_0
crossref_primary_10_1016_j_meegid_2021_105093
crossref_primary_10_1038_s44259_023_00003_6
crossref_primary_10_1016_j_talanta_2024_126132
crossref_primary_10_1093_cid_ciaa1773
crossref_primary_10_1093_cid_ciy1126
crossref_primary_10_2147_IDR_S372136
crossref_primary_10_1093_cid_ciab897
crossref_primary_10_1371_journal_pntd_0008036
crossref_primary_10_1021_acs_jcim_3c00780
crossref_primary_10_1016_j_vaccine_2020_03_028
crossref_primary_10_1093_jac_dkz464
crossref_primary_10_3389_fimmu_2019_02582
crossref_primary_10_1016_S2214_109X_21_00308_9
crossref_primary_10_1038_s41467_021_23091_2
crossref_primary_10_1128_MRA_01466_19
crossref_primary_10_1016_S2666_5247_23_00214_8
crossref_primary_10_1007_s13312_019_1686_0
crossref_primary_10_1016_j_jksus_2022_102275
crossref_primary_10_1093_cid_ciy1118
crossref_primary_10_1371_journal_pone_0228250
crossref_primary_10_1186_s12916_019_1443_1
crossref_primary_10_1093_infdis_jiy417
crossref_primary_10_1093_cid_ciy1110
crossref_primary_10_1093_cid_ciy1111
crossref_primary_10_1016_j_ijregi_2021_10_011
crossref_primary_10_1093_cid_ciaa314
crossref_primary_10_54393_pbmj_v6i01_844
crossref_primary_10_1128_mbio_01333_23
crossref_primary_10_1093_cid_ciy1115
crossref_primary_10_1615_IntJMedMushrooms_2022044572
crossref_primary_10_1128_JCM_00167_19
crossref_primary_10_1186_s12879_021_06795_0
crossref_primary_10_1016_j_ijregi_2022_04_003
crossref_primary_10_3390_ijerph17020615
crossref_primary_10_1093_trstmh_trz053
crossref_primary_10_1093_jac_dkaa204
crossref_primary_10_1080_14760584_2020_1750375
crossref_primary_10_7554_eLife_67852
crossref_primary_10_3390_antibiotics10101236
crossref_primary_10_3390_antibiotics9060286
crossref_primary_10_1128_mBio_02112_18
crossref_primary_10_1016_j_scitotenv_2023_169116
crossref_primary_10_1016_j_lanwpc_2022_100488
crossref_primary_10_1093_ofid_ofad022
crossref_primary_10_1177_2333794X211026188
crossref_primary_10_1186_s12879_019_4114_0
crossref_primary_10_1128_spectrum_04478_22
crossref_primary_10_1093_cid_ciy877
crossref_primary_10_1016_S2214_109X_23_00585_5
crossref_primary_10_3389_fmicb_2020_599906
crossref_primary_10_1128_AAC_01084_20
crossref_primary_10_2139_ssrn_4051455
crossref_primary_10_1128_jb_00480_24
crossref_primary_10_1093_jacamr_dlaf010
crossref_primary_10_3390_microorganisms8091336
crossref_primary_10_1099_mgen_0_000633
crossref_primary_10_4103_cmrp_cmrp_134_22
crossref_primary_10_5005_jp_journals_10081_1205
crossref_primary_10_1371_journal_pntd_0009170
crossref_primary_10_1093_ofid_ofad135
crossref_primary_10_1093_jac_dkz435
crossref_primary_10_3389_fmed_2022_753085
crossref_primary_10_1016_j_jvacx_2022_100201
crossref_primary_10_1128_mBio_00482_18
crossref_primary_10_1007_s11250_023_03543_1
crossref_primary_10_4103_ijmr_IJMR_830_18
crossref_primary_10_1016_j_ijregi_2021_09_006
crossref_primary_10_1016_j_jtumed_2022_12_010
crossref_primary_10_1016_j_ijid_2019_05_036
crossref_primary_10_1186_s12879_021_06599_2
crossref_primary_10_1021_acsinfecdis_9b00302
crossref_primary_10_3390_antibiotics11101308
crossref_primary_10_1016_S2666_5247_24_00047_8
crossref_primary_10_1016_S2214_109X_21_00370_3
crossref_primary_10_1177_20503121241263032
crossref_primary_10_4103_jfmpc_jfmpc_1077_19
crossref_primary_10_1093_cid_ciaa513
crossref_primary_10_4236_aim_2021_119036
crossref_primary_10_1186_s12864_019_5916_6
crossref_primary_10_1051_bioconf_202515201003
crossref_primary_10_1056_NEJMoa2209449
crossref_primary_10_1093_jac_dky441
crossref_primary_10_1016_j_ijbiomac_2024_139003
crossref_primary_10_5799_jmid_897210
crossref_primary_10_1016_S1473_3099_21_00627_7
crossref_primary_10_1093_cid_ciz630
crossref_primary_10_1016_j_chom_2019_08_001
crossref_primary_10_1016_j_idc_2018_10_009
crossref_primary_10_1093_cid_ciaa504
crossref_primary_10_7759_cureus_11778
crossref_primary_10_4103_ijcm_ijcm_1008_21
crossref_primary_10_1093_jac_dkaa519
crossref_primary_10_1128_spectrum_04828_22
crossref_primary_10_1093_cid_ciz405
crossref_primary_10_1126_sciadv_aau6849
crossref_primary_10_1155_2020_6432580
crossref_primary_10_1093_cid_ciz1204
crossref_primary_10_5005_jp_journals_10081_1230
crossref_primary_10_1128_mbio_01920_22
crossref_primary_10_1128_JCM_00180_19
crossref_primary_10_1016_j_bioorg_2020_104244
crossref_primary_10_1371_journal_pntd_0006839
crossref_primary_10_3389_fvets_2023_1188752
crossref_primary_10_1016_j_phrs_2021_105652
crossref_primary_10_1016_S2666_5247_22_00093_3
crossref_primary_10_2147_RRTM_S282461
crossref_primary_10_1186_s12866_022_02456_7
crossref_primary_10_1128_spectrum_00619_22
crossref_primary_10_3390_vaccines8040697
crossref_primary_10_1016_j_gene_2023_147943
crossref_primary_10_1038_s41591_021_01301_0
crossref_primary_10_1093_ofid_ofad179
crossref_primary_10_1016_S1473_3099_20_30003_7
crossref_primary_10_1016_j_idc_2019_05_007
crossref_primary_10_1136_bmjgh_2019_001831
crossref_primary_10_1038_s41467_020_20639_6
crossref_primary_10_1155_jotm_3480080
crossref_primary_10_1073_pnas_1717162115
crossref_primary_10_1093_ofid_ofad044
crossref_primary_10_1371_journal_pntd_0012373
crossref_primary_10_1371_journal_pntd_0012132
crossref_primary_10_1038_s41396_019_0446_4
crossref_primary_10_1371_journal_pntd_0011168
crossref_primary_10_4103_ijcm_ijcm_740_24
crossref_primary_10_3389_fmed_2019_00205
crossref_primary_10_1097_QCO_0000000000000479
crossref_primary_10_1128_iai_00515_21
crossref_primary_10_1080_20477724_2019_1691364
Cites_doi 10.3389/fmicb.2016.01862
10.1128/CMR.00002-15
10.1038/ng.3281
10.1128/AAC.00419-13
10.1093/bioinformatics/btu033
10.1016/j.jgar.2014.12.002
10.1128/JCM.01648-16
10.1371/journal.pcbi.1005595
10.1093/bioinformatics/btq413
10.1038/ncomms12827
10.1093/bioinformatics/btp352
10.1128/genomeA.00850-17
10.1371/journal.pntd.0004785
10.1186/1471-2164-12-402
10.1093/nar/gku1196
10.1016/j.ijmm.2013.02.001
10.1093/bioinformatics/btr703
10.3201/eid1509.090567
10.1186/s13059-015-0849-0
10.1186/s12879-016-1527-x
10.1371/journal.pntd.0003748
10.1099/jmm.0.044065-0
10.1093/cid/cix652
10.1128/AAC.02412-14
10.3855/jidc.3817
10.1111/j.1469-0691.2011.03570.x
10.7554/eLife.14003
10.1128/JCM.02026-14
10.1371/journal.pone.0112963
10.1093/bioinformatics/btu170
10.1186/1471-2105-10-421
10.1099/mgen.0.000056
ContentType Journal Article
Contributor Fairweather, Neil
Levine
Wren, Brendan
Contributor_xml – sequence: 1
  givenname: Neil
  surname: Fairweather
  fullname: Fairweather, Neil
– sequence: 2
  givenname: Brendan
  surname: Wren
  fullname: Wren, Brendan
– sequence: 3
  surname: Levine
  fullname: Levine
Copyright Copyright © 2018 Klemm et al.
Copyright © 2018 Klemm et al. 2018 Klemm et al.
Copyright_xml – notice: Copyright © 2018 Klemm et al.
– notice: Copyright © 2018 Klemm et al. 2018 Klemm et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/mBio.00105-18
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Emergence of Extensively Drug-Resistant Typhoid
EISSN 2150-7511
ExternalDocumentID PMC5821095
29463654
10_1128_mBio_00105_18
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: ;
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c387t-389eb3d7c513672803ac9b364c573c6e296460136673df8d5180669bfaab603b3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Thu Aug 21 18:24:09 EDT 2025
Thu Jul 10 22:13:44 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Tue Jul 01 01:52:36 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Salmonella
Typhi
antibiotic resistance
typhoid
Language English
License Copyright © 2018 Klemm et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-389eb3d7c513672803ac9b364c573c6e296460136673df8d5180669bfaab603b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Neil Fairweather, Imperial College London; Brendan Wren, London School of Hygiene and Tropical Medicine; Myron Levine, University of Maryland School of Medicine.
E.J.K. and S.S., and G.D. and R.H., contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00105-18
PMID 29463654
PQID 2007121515
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821095
proquest_miscellaneous_2007121515
pubmed_primary_29463654
crossref_citationtrail_10_1128_mBio_00105_18
crossref_primary_10_1128_mBio_00105_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180220
PublicationDateYYYYMMDD 2018-02-20
PublicationDate_xml – month: 2
  year: 2018
  text: 20180220
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2018
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_16_2
Munir T (e_1_3_3_17_2) 2016; 66
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
Crump JA (e_1_3_3_2_2) 2004; 82
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
29559573 - mBio. 2018 Mar 20;9(2)
References_xml – ident: e_1_3_3_14_2
  doi: 10.3389/fmicb.2016.01862
– ident: e_1_3_3_3_2
  doi: 10.1128/CMR.00002-15
– ident: e_1_3_3_4_2
  doi: 10.1038/ng.3281
– ident: e_1_3_3_30_2
  doi: 10.1128/AAC.00419-13
– ident: e_1_3_3_26_2
– volume: 66
  start-page: 1035
  year: 2016
  ident: e_1_3_3_17_2
  article-title: Extended spectrum beta lactamase producing cephalosporin resistant Salmonella typhi, reported from Rawalpindi, Pakistan
  publication-title: J Pak Med Assoc
– ident: e_1_3_3_29_2
  doi: 10.1093/bioinformatics/btu033
– ident: e_1_3_3_12_2
  doi: 10.1016/j.jgar.2014.12.002
– ident: e_1_3_3_13_2
  doi: 10.1128/JCM.01648-16
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pcbi.1005595
– ident: e_1_3_3_35_2
  doi: 10.1093/bioinformatics/btq413
– ident: e_1_3_3_10_2
  doi: 10.1038/ncomms12827
– ident: e_1_3_3_27_2
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_3_3_21_2
  doi: 10.1128/genomeA.00850-17
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.pntd.0004785
– ident: e_1_3_3_36_2
  doi: 10.1186/1471-2164-12-402
– ident: e_1_3_3_28_2
  doi: 10.1093/nar/gku1196
– ident: e_1_3_3_11_2
  doi: 10.1016/j.ijmm.2013.02.001
– ident: e_1_3_3_34_2
  doi: 10.1093/bioinformatics/btr703
– ident: e_1_3_3_18_2
  doi: 10.3201/eid1509.090567
– ident: e_1_3_3_24_2
  doi: 10.1186/s13059-015-0849-0
– ident: e_1_3_3_15_2
  doi: 10.1186/s12879-016-1527-x
– volume: 82
  start-page: 346
  year: 2004
  ident: e_1_3_3_2_2
  article-title: The global burden of typhoid fever
  publication-title: Bull World Health Organ
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.pntd.0003748
– ident: e_1_3_3_19_2
  doi: 10.1099/jmm.0.044065-0
– ident: e_1_3_3_20_2
  doi: 10.1093/cid/cix652
– ident: e_1_3_3_31_2
  doi: 10.1128/AAC.02412-14
– ident: e_1_3_3_9_2
  doi: 10.3855/jidc.3817
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1469-0691.2011.03570.x
– ident: e_1_3_3_8_2
  doi: 10.7554/eLife.14003
– ident: e_1_3_3_6_2
  doi: 10.1128/JCM.02026-14
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pone.0112963
– ident: e_1_3_3_32_2
  doi: 10.1093/bioinformatics/btu170
– ident: e_1_3_3_25_2
  doi: 10.1186/1471-2105-10-421
– ident: e_1_3_3_33_2
  doi: 10.1099/mgen.0.000056
– reference: 29559573 - mBio. 2018 Mar 20;9(2):
SSID ssj0000331830
Score 2.6320868
Snippet Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent...
Antibiotic resistance is a major problem in serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia...
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Anti-Bacterial Agents - pharmacology
Cephalosporins - pharmacology
Drug Resistance, Multiple, Bacterial
Fluoroquinolones - pharmacology
Haplotypes
Pakistan
Plasmids - analysis
Salmonella typhi - drug effects
Salmonella typhi - genetics
Salmonella typhi - isolation & purification
Typhoid Fever - microbiology
Whole Genome Sequencing
Title Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins
URI https://www.ncbi.nlm.nih.gov/pubmed/29463654
https://www.proquest.com/docview/2007121515
https://pubmed.ncbi.nlm.nih.gov/PMC5821095
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJvyWA0S4oSXpG5s94AQlJYKadEKtlJvkR8JjZRNljRB2z_Hb2MmSQtdQOKSiy3bmZl4vnE83zD2PEjtMEpDw-XYYIBiRcS1Nxi4Inp2yqdGSkoUPv4k54vRx2W0_EUp1Atw_dfQjupJLar86OLb5g1-8K-7BBj96uxdVh61pR55qK-ya-iUJBn4cY_0201ZkPHSiQv6uIArxBlbxs3LI-x7qD9g5-Xbk7-5o9ktdrPHkfC2U_xtdiUp7rDrXWXJzV32Y9qnVSZQpmAKmF70V9XzDbyvmq_8c7Im6FjU8MXkaIt0CwqIoJM2RsAtpPxuKsAwdZXBJMd2mJvKttf1wMBJVaKBuKZs1nCCAPws8zAtXEmeELZD4-R1CbO8KentMjrBx40VV-PhdJVVnnec12QaMEnOVyYvSRNZsb7HFrPp6WTO-1IN3Amtao6wB6Nyr1xEFHBU8cq4sRVy5CIlnEzo564kejiphE-1j0KNWGdsU2OsDIQV99lBgWt4yECHKhU2GBpEkiMdWa2d8FYLq6xHQJEO2MutemLX85hTOY08buOZoY5Jm3GrzTjUA_Zi1_28I_D4V8dnW13HJEESe5GgGKlSpyISjjAasAed7ndDDcfEuBaNBkztWcWuA9F377cU2aql8aYUZQS4j_5j3sfsBgI13abSB0_YQV01yVMEQ7U9bA8R8PlhGR62Jv8TIJcO2Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+an+Extensively+Drug-Resistant+Salmonella+enterica+Serovar+Typhi+Clone+Harboring+a+Promiscuous+Plasmid+Encoding+Resistance+to+Fluoroquinolones+and+Third-Generation+Cephalosporins&rft.jtitle=mBio&rft.au=Klemm%2C+Elizabeth+J&rft.au=Shakoor%2C+Sadia&rft.au=Page%2C+Andrew+J&rft.au=Qamar%2C+Farah+Naz&rft.date=2018-02-20&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.00105-18&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon