Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also wid...
Saved in:
Published in | mBio Vol. 9; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
20.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.00105-18 |
Cover
Loading…
Abstract | Antibiotic resistance is a major problem in
Salmonella enterica
serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel
S
. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR
S
. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the
bla
CTX-M-15
extended-spectrum β-lactamase, and carrying the
qnrS
fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of
S
. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.
IMPORTANCE
Typhoid fever is a severe disease caused by the Gram-negative bacterium
Salmonella enterica
serovar Typhi. Antibiotic-resistant
S
. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR)
S
. Typhi clone in Sindh, Pakistan. The XDR
S
. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in
S
. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR
S
. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of
S
. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This
S
. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in
S
. Typhi observed here adds urgency to the need for typhoid prevention measures.
Typhoid fever is a severe disease caused by the Gram-negative bacterium
Salmonella enterica
serovar Typhi. Antibiotic-resistant
S
. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR)
S
. Typhi clone in Sindh, Pakistan. The XDR
S
. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in
S
. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR
S
. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of
S
. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This
S
. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in
S
. Typhi observed here adds urgency to the need for typhoid prevention measures. |
---|---|
AbstractList | Antibiotic resistance is a major problem in
serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel
Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR
Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the
extended-spectrum β-lactamase, and carrying the
fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of
Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.
Typhoid fever is a severe disease caused by the Gram-negative bacterium
serovar Typhi. Antibiotic-resistant
Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR)
Typhi clone in Sindh, Pakistan. The XDR
Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in
Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR
Typhi to investigate the phylogenetic relationship between these isolates and a global collection of
Typhi isolates and to identify multiple genes linked to antibiotic resistance. This
Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in
Typhi observed here adds urgency to the need for typhoid prevention measures. Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S . Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S . Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S . Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures. Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S . Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S . Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S . Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures. Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S . Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S . Typhi clone in Sindh, Pakistan. The XDR S . Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S . Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S . Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S . Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S . Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S . Typhi observed here adds urgency to the need for typhoid prevention measures. Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures.Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures. |
Author | Hasan, Rumina Saleem, Muhammad Khalid Klemm, Elizabeth J. Shakoor, Sadia Saeed, Dania K. Dougan, Gordon Judge, Kim Shaheen, Ghazala Yousafzai, Mohammad Tahir Wong, Vanessa K. Hasan, Zahra Page, Andrew J. Nair, Satheesh Qamar, Farah Naz Dallman, Timothy J. Baker, Stephen Qureshi, Shahida |
Author_xml | – sequence: 1 givenname: Elizabeth J. surname: Klemm fullname: Klemm, Elizabeth J. organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom – sequence: 2 givenname: Sadia surname: Shakoor fullname: Shakoor, Sadia organization: The Aga Khan University, Karachi, Pakistan – sequence: 3 givenname: Andrew J. surname: Page fullname: Page, Andrew J. organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom – sequence: 4 givenname: Farah Naz surname: Qamar fullname: Qamar, Farah Naz organization: The Aga Khan University, Karachi, Pakistan – sequence: 5 givenname: Kim surname: Judge fullname: Judge, Kim organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom – sequence: 6 givenname: Dania K. surname: Saeed fullname: Saeed, Dania K. organization: The Aga Khan University, Karachi, Pakistan – sequence: 7 givenname: Vanessa K. surname: Wong fullname: Wong, Vanessa K. organization: University of Cambridge Department of Medicine, Cambridge, United Kingdom – sequence: 8 givenname: Timothy J. surname: Dallman fullname: Dallman, Timothy J. organization: Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom – sequence: 9 givenname: Satheesh surname: Nair fullname: Nair, Satheesh organization: Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom – sequence: 10 givenname: Stephen surname: Baker fullname: Baker, Stephen organization: The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit-Vietnam, Ho Chi Minh City, Vietnam, Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom – sequence: 11 givenname: Ghazala surname: Shaheen fullname: Shaheen, Ghazala organization: The Aga Khan University, Karachi, Pakistan – sequence: 12 givenname: Shahida surname: Qureshi fullname: Qureshi, Shahida organization: The Aga Khan University, Karachi, Pakistan – sequence: 13 givenname: Mohammad Tahir surname: Yousafzai fullname: Yousafzai, Mohammad Tahir organization: The Aga Khan University, Karachi, Pakistan – sequence: 14 givenname: Muhammad Khalid surname: Saleem fullname: Saleem, Muhammad Khalid organization: The Aga Khan University, Karachi, Pakistan – sequence: 15 givenname: Zahra surname: Hasan fullname: Hasan, Zahra organization: The Aga Khan University, Karachi, Pakistan – sequence: 16 givenname: Gordon surname: Dougan fullname: Dougan, Gordon organization: Wellcome Trust Sanger Institute, Hinxton, United Kingdom, University of Cambridge Department of Medicine, Cambridge, United Kingdom – sequence: 17 givenname: Rumina surname: Hasan fullname: Hasan, Rumina organization: The Aga Khan University, Karachi, Pakistan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29463654$$D View this record in MEDLINE/PubMed |
BookMark | eNptUsFu1DAUtFARLUuPXJGPXFLseOM4FyTYblukSlR0OVuO87Jr5NjBTlbsz_Ft2G0XAcIXW5rxzHvz3kt04rwDhF5TckFpKd4NH42_IISSqqDiGToraUWKuqL0JL85LUpaNqfoPMZvJB3GqGDkBTotmyVnvFqeoZ_rAcIWnAbse6wcXv-YwEWzB3vAl2HeFl8gmjgpN-F7ZYfkb63C4CYIRit8D8HvVcCbw7gzeGUTjm9UaH0wbosVvgt-MFHPfo74zqo4mA6vnfZdho_SyXzy-MrOPvjvs3E-y8RUTYc3OxO64hocBDUZ7_AKxp2yPo7ZIb5Cz3tlI5w_3Qv09Wq9Wd0Ut5-vP60-3BaaiXoqmGigZV2tK8p4XQrClG5axpe6qpnmUDZ8yUnCeM26XnQVFYTzpu2VajlhLVug94-649wO0OnUf1BWjsEMKhykV0b-jTizk1u_l5UoKWmqJPD2SSC3CHGSOZacpYOUjSwJqWkaH83UN396_TY5Di0R2CNBBx9jgF5qMz2kk6yNlZTIvB0yb4d82A6Z5r5AxT-_jsL_5_8Ca_7BIg |
CitedBy_id | crossref_primary_10_1093_cid_ciz556 crossref_primary_10_1128_mSystems_00360_21 crossref_primary_10_1128_msystems_00515_19 crossref_primary_10_1080_14760584_2022_2148661 crossref_primary_10_1590_1678_9199_jvatitd_2020_0001 crossref_primary_10_2807_1560_7917_ES_2019_24_21_1900289 crossref_primary_10_1038_s41467_023_44272_1 crossref_primary_10_3390_antibiotics13070640 crossref_primary_10_1016_j_imlet_2021_05_005 crossref_primary_10_1080_0972060X_2022_2128896 crossref_primary_10_1021_acs_analchem_9b05107 crossref_primary_10_1128_mbio_01179_23 crossref_primary_10_1016_j_foodcont_2020_107761 crossref_primary_10_14260_jemds_2019_809 crossref_primary_10_1111_ped_14695 crossref_primary_10_1099_jmm_0_000972 crossref_primary_10_1136_bmj_k4766 crossref_primary_10_3389_fimmu_2024_1384642 crossref_primary_10_1099_mgen_0_000913 crossref_primary_10_1038_s41597_024_04289_7 crossref_primary_10_1080_14787210_2023_2263643 crossref_primary_10_3389_fcimb_2021_771510 crossref_primary_10_1016_j_ijid_2020_06_054 crossref_primary_10_1016_S2214_109X_18_30264_X crossref_primary_10_1134_S0026893319040113 crossref_primary_10_1371_journal_pntd_0007955 crossref_primary_10_1080_21645515_2018_1564570 crossref_primary_10_1038_s44259_024_00049_0 crossref_primary_10_3389_fpubh_2022_988317 crossref_primary_10_1097_QCO_0000000000000672 crossref_primary_10_2174_0118715265255339240102110929 crossref_primary_10_1128_mBio_03481_20 crossref_primary_10_14712_18059694_2018_130 crossref_primary_10_1093_cid_ciaa914 crossref_primary_10_1136_bmjopen_2023_074412 crossref_primary_10_1186_s13063_019_3844_z crossref_primary_10_1111_mmi_15209 crossref_primary_10_33988_auvfd_691746 crossref_primary_10_1371_journal_pntd_0010704 crossref_primary_10_1128_msystems_00365_24 crossref_primary_10_1039_C9AY02579K crossref_primary_10_1080_09286586_2019_1708120 crossref_primary_10_1093_cid_ciaa908 crossref_primary_10_1093_jacamr_dlaa109 crossref_primary_10_2139_ssrn_3946990 crossref_primary_10_3389_fmicb_2018_02941 crossref_primary_10_3390_microorganisms8030407 crossref_primary_10_1093_jac_dkae281 crossref_primary_10_1016_j_molstruc_2023_136801 crossref_primary_10_1016_j_jiph_2023_08_003 crossref_primary_10_1016_j_meegid_2024_105632 crossref_primary_10_1093_cid_ciz483 crossref_primary_10_2217_fmb_2021_0036 crossref_primary_10_1093_bib_bbab313 crossref_primary_10_26508_lsa_202402666 crossref_primary_10_1016_j_jddst_2024_106549 crossref_primary_10_3390_antibiotics13080765 crossref_primary_10_3390_pathogens10040410 crossref_primary_10_3390_microorganisms9102155 crossref_primary_10_54393_fbt_v1i01_7 crossref_primary_10_1038_s41467_019_11844_z crossref_primary_10_47429_lmo_2020_10_4_340 crossref_primary_10_12688_wellcomeopenres_16801_1 crossref_primary_10_12688_wellcomeopenres_16801_2 crossref_primary_10_3389_fmicb_2021_647044 crossref_primary_10_1093_infdis_jiab441 crossref_primary_10_1016_S0140_6736_23_02031_7 crossref_primary_10_3390_antibiotics12101504 crossref_primary_10_1016_S1473_3099_18_30804_1 crossref_primary_10_1016_S2214_109X_24_00030_5 crossref_primary_10_3390_microorganisms10102006 crossref_primary_10_3390_ijms24097892 crossref_primary_10_1016_S2214_109X_21_00346_6 crossref_primary_10_1128_AAC_01200_21 crossref_primary_10_1128_mbio_02426_22 crossref_primary_10_1016_j_sjbs_2021_10_008 crossref_primary_10_1097_QCO_0000000000000751 crossref_primary_10_1371_journal_pntd_0006779 crossref_primary_10_54393_pbmj_v5i10_841 crossref_primary_10_1371_journal_pntd_0007868 crossref_primary_10_1371_journal_pntd_0007620 crossref_primary_10_54393_fbt_v1i02_9 crossref_primary_10_1186_s12906_023_03870_8 crossref_primary_10_1097_QCO_0000000000000879 crossref_primary_10_3390_tropicalmed6010011 crossref_primary_10_4269_ajtmh_19_0624 crossref_primary_10_1016_j_micpath_2020_104159 crossref_primary_10_7759_cureus_41831 crossref_primary_10_1093_infdis_jiab144 crossref_primary_10_3390_microorganisms11030667 crossref_primary_10_1016_j_resmic_2022_103985 crossref_primary_10_1128_MRA_00427_20 crossref_primary_10_1371_journal_pntd_0009755 crossref_primary_10_1016_j_lwt_2022_113261 crossref_primary_10_1016_S0140_6736_24_00862_6 crossref_primary_10_3390_ijerph17082774 crossref_primary_10_1371_journal_pntd_0008530 crossref_primary_10_1016_j_mib_2022_102262 crossref_primary_10_1016_j_idcr_2021_e01048 crossref_primary_10_1093_jtm_taac086 crossref_primary_10_1371_journal_ppat_1010731 crossref_primary_10_1080_20009666_2020_1718480 crossref_primary_10_1128_msphere_00283_22 crossref_primary_10_1128_AAC_02581_19 crossref_primary_10_1016_j_isci_2021_102454 crossref_primary_10_1099_mgen_0_000195 crossref_primary_10_18006_2022_10_2__423_429 crossref_primary_10_1093_jac_dkae355 crossref_primary_10_1084_jem_20201116 crossref_primary_10_1128_IAI_00219_20 crossref_primary_10_4155_fsoa_2018_0003 crossref_primary_10_1007_s11274_020_02862_x crossref_primary_10_1093_infdis_jiab129 crossref_primary_10_1093_infdis_jiad427 crossref_primary_10_1007_s11033_019_04843_2 crossref_primary_10_1038_s41467_023_42353_9 crossref_primary_10_46234_ccdcw2022_062 crossref_primary_10_1093_infdis_jiy205 crossref_primary_10_3201_eid2703_200464 crossref_primary_10_1007_s10311_021_01274_z crossref_primary_10_1016_j_jmii_2020_03_017 crossref_primary_10_1371_journal_pntd_0007315 crossref_primary_10_1186_s13073_022_01020_2 crossref_primary_10_7759_cureus_11055 crossref_primary_10_1016_j_tmaid_2020_101946 crossref_primary_10_1136_bmj_k5322 crossref_primary_10_1136_bmj_n437 crossref_primary_10_1089_mdr_2020_0304 crossref_primary_10_3390_antibiotics10070785 crossref_primary_10_1016_j_ica_2023_121637 crossref_primary_10_4315_JFP_20_172 crossref_primary_10_1016_j_clinpr_2021_100069 crossref_primary_10_1016_S2214_109X_22_00275_3 crossref_primary_10_1038_s41467_018_07370_z crossref_primary_10_1099_mgen_0_001346 crossref_primary_10_1371_journal_pntd_0010306 crossref_primary_10_4269_ajtmh_20_0258 crossref_primary_10_1016_j_chom_2020_04_005 crossref_primary_10_1016_j_ygeno_2021_05_003 crossref_primary_10_1093_ofid_ofab572 crossref_primary_10_1186_s12879_021_05906_1 crossref_primary_10_1016_S1473_3099_19_30176_8 crossref_primary_10_1128_AAC_00696_20 crossref_primary_10_15585_mmwr_mm6801a3 crossref_primary_10_1089_fpd_2022_0067 crossref_primary_10_1016_j_ijmmb_2023_100448 crossref_primary_10_1002_14651858_CD010452_pub2 crossref_primary_10_1128_MRA_00804_21 crossref_primary_10_3343_alm_2022_42_2_268 crossref_primary_10_4103_IJAMR_IJAMR_132_19 crossref_primary_10_3390_microorganisms8071074 crossref_primary_10_1093_jac_dkab049 crossref_primary_10_2217_fmb_2020_0257 crossref_primary_10_1016_j_ijid_2024_107187 crossref_primary_10_1038_s41467_018_08190_x crossref_primary_10_1080_17460913_2024_2384260 crossref_primary_10_1093_cid_ciy1094 crossref_primary_10_1016_j_jiac_2024_11_018 crossref_primary_10_1371_journal_pntd_0008682 crossref_primary_10_1016_j_pcl_2021_09_007 crossref_primary_10_1093_infdis_jiz220 crossref_primary_10_1097_INF_0000000000002450 crossref_primary_10_1093_infdis_jiad585 crossref_primary_10_1371_journal_pone_0257744 crossref_primary_10_1186_s12879_020_05500_x crossref_primary_10_7189_jogh_11_04031 crossref_primary_10_1016_j_micres_2019_126311 crossref_primary_10_1016_j_vaccine_2021_08_051 crossref_primary_10_3390_microorganisms9122484 crossref_primary_10_1093_cid_ciy1076 crossref_primary_10_7759_cureus_16777 crossref_primary_10_1371_journal_pntd_0008268 crossref_primary_10_3390_microorganisms9122512 crossref_primary_10_4103_bbrj_bbrj_70_19 crossref_primary_10_1093_cid_ciaa1309 crossref_primary_10_3389_fpubh_2023_1151936 crossref_primary_10_1089_hs_2019_0104 crossref_primary_10_1016_j_celrep_2021_109654 crossref_primary_10_1016_S2214_109X_21_00255_2 crossref_primary_10_1056_NEJMoa2035916 crossref_primary_10_1186_s42269_023_00983_5 crossref_primary_10_1007_s10529_021_03219_6 crossref_primary_10_1056_NEJMoa1905047 crossref_primary_10_1016_S1473_3099_18_30483_3 crossref_primary_10_3390_genes11111365 crossref_primary_10_1155_2023_6142810 crossref_primary_10_2147_IDR_S406253 crossref_primary_10_1097_INF_0000000000003656 crossref_primary_10_1038_s42003_024_06451_8 crossref_primary_10_3389_fpubh_2023_1151805 crossref_primary_10_1016_j_jiph_2023_12_002 crossref_primary_10_1093_aje_kwy264 crossref_primary_10_4274_csmedj_galenos_2025_2024_10_1 crossref_primary_10_1016_j_med_2022_03_003 crossref_primary_10_1111_cmi_12939 crossref_primary_10_1016_S1473_3099_19_30064_7 crossref_primary_10_1093_cid_ciaa1320 crossref_primary_10_1021_acs_jafc_4c01531 crossref_primary_10_1016_j_imbio_2019_02_011 crossref_primary_10_1093_cid_ciaa1323 crossref_primary_10_1093_cid_ciaa1322 crossref_primary_10_1016_S0140_6736_21_01340_4 crossref_primary_10_1093_heapol_czaa065 crossref_primary_10_1093_cid_ciy928 crossref_primary_10_1371_journal_pntd_0008121 crossref_primary_10_1007_s12013_024_01407_5 crossref_primary_10_1128_JCM_00858_19 crossref_primary_10_1016_j_bsheal_2023_12_003 crossref_primary_10_1089_mdr_2020_0017 crossref_primary_10_2196_27268 crossref_primary_10_1093_cid_ciaa1333 crossref_primary_10_1093_cid_ciaa366 crossref_primary_10_1186_s12941_024_00748_6 crossref_primary_10_7759_cureus_12664 crossref_primary_10_1016_j_puhip_2021_100084 crossref_primary_10_1126_sciimmunol_abj1181 crossref_primary_10_1093_jtm_taab012 crossref_primary_10_1128_AAC_01974_19 crossref_primary_10_1371_journal_pone_0285287 crossref_primary_10_3390_pathogens9020151 crossref_primary_10_5694_mja2_50249 crossref_primary_10_1016_j_lwt_2024_115751 crossref_primary_10_1016_j_bbagen_2020_129627 crossref_primary_10_1128_spectrum_03102_23 crossref_primary_10_1186_s43141_023_00591_w crossref_primary_10_1016_j_micpath_2021_105150 crossref_primary_10_1016_j_bcab_2024_103235 crossref_primary_10_1093_cid_ciaa597 crossref_primary_10_1080_20477724_2024_2416864 crossref_primary_10_3201_eid2911_230499 crossref_primary_10_1177_0009922819881203 crossref_primary_10_1007_s13312_019_1566_7 crossref_primary_10_1002_cti2_1178 crossref_primary_10_1093_jac_dkab215 crossref_primary_10_1093_cid_ciy1108 crossref_primary_10_1128_spectrum_02406_23 crossref_primary_10_1080_19490976_2019_1697593 crossref_primary_10_1038_s41598_020_64934_0 crossref_primary_10_5694_mja2_50316 crossref_primary_10_1128_msphere_00215_20 crossref_primary_10_3390_vaccines6030045 crossref_primary_10_1093_cid_ciy1103 crossref_primary_10_1111_jam_15131 crossref_primary_10_1093_cid_ciy957 crossref_primary_10_1371_journal_pntd_0012558 crossref_primary_10_1016_j_vaccine_2020_09_051 crossref_primary_10_1038_s41564_019_0503_9 crossref_primary_10_1016_j_resmic_2020_103794 crossref_primary_10_1093_jac_dkab326 crossref_primary_10_1016_j_ebiom_2020_102802 crossref_primary_10_2196_27276 crossref_primary_10_1016_j_idcr_2019_e00492 crossref_primary_10_1111_1462_2920_14458 crossref_primary_10_1371_journal_pone_0267805 crossref_primary_10_1056_NEJMp1803926 crossref_primary_10_1038_s42003_021_02013_4 crossref_primary_10_32350_BSR_61_03 crossref_primary_10_1016_j_diagmicrobio_2022_115883 crossref_primary_10_20964_2019_09_15 crossref_primary_10_3389_fmicb_2021_738784 crossref_primary_10_1007_s10096_019_03658_0 crossref_primary_10_1016_j_meegid_2021_105093 crossref_primary_10_1038_s44259_023_00003_6 crossref_primary_10_1016_j_talanta_2024_126132 crossref_primary_10_1093_cid_ciaa1773 crossref_primary_10_1093_cid_ciy1126 crossref_primary_10_2147_IDR_S372136 crossref_primary_10_1093_cid_ciab897 crossref_primary_10_1371_journal_pntd_0008036 crossref_primary_10_1021_acs_jcim_3c00780 crossref_primary_10_1016_j_vaccine_2020_03_028 crossref_primary_10_1093_jac_dkz464 crossref_primary_10_3389_fimmu_2019_02582 crossref_primary_10_1016_S2214_109X_21_00308_9 crossref_primary_10_1038_s41467_021_23091_2 crossref_primary_10_1128_MRA_01466_19 crossref_primary_10_1016_S2666_5247_23_00214_8 crossref_primary_10_1007_s13312_019_1686_0 crossref_primary_10_1016_j_jksus_2022_102275 crossref_primary_10_1093_cid_ciy1118 crossref_primary_10_1371_journal_pone_0228250 crossref_primary_10_1186_s12916_019_1443_1 crossref_primary_10_1093_infdis_jiy417 crossref_primary_10_1093_cid_ciy1110 crossref_primary_10_1093_cid_ciy1111 crossref_primary_10_1016_j_ijregi_2021_10_011 crossref_primary_10_1093_cid_ciaa314 crossref_primary_10_54393_pbmj_v6i01_844 crossref_primary_10_1128_mbio_01333_23 crossref_primary_10_1093_cid_ciy1115 crossref_primary_10_1615_IntJMedMushrooms_2022044572 crossref_primary_10_1128_JCM_00167_19 crossref_primary_10_1186_s12879_021_06795_0 crossref_primary_10_1016_j_ijregi_2022_04_003 crossref_primary_10_3390_ijerph17020615 crossref_primary_10_1093_trstmh_trz053 crossref_primary_10_1093_jac_dkaa204 crossref_primary_10_1080_14760584_2020_1750375 crossref_primary_10_7554_eLife_67852 crossref_primary_10_3390_antibiotics10101236 crossref_primary_10_3390_antibiotics9060286 crossref_primary_10_1128_mBio_02112_18 crossref_primary_10_1016_j_scitotenv_2023_169116 crossref_primary_10_1016_j_lanwpc_2022_100488 crossref_primary_10_1093_ofid_ofad022 crossref_primary_10_1177_2333794X211026188 crossref_primary_10_1186_s12879_019_4114_0 crossref_primary_10_1128_spectrum_04478_22 crossref_primary_10_1093_cid_ciy877 crossref_primary_10_1016_S2214_109X_23_00585_5 crossref_primary_10_3389_fmicb_2020_599906 crossref_primary_10_1128_AAC_01084_20 crossref_primary_10_2139_ssrn_4051455 crossref_primary_10_1128_jb_00480_24 crossref_primary_10_1093_jacamr_dlaf010 crossref_primary_10_3390_microorganisms8091336 crossref_primary_10_1099_mgen_0_000633 crossref_primary_10_4103_cmrp_cmrp_134_22 crossref_primary_10_5005_jp_journals_10081_1205 crossref_primary_10_1371_journal_pntd_0009170 crossref_primary_10_1093_ofid_ofad135 crossref_primary_10_1093_jac_dkz435 crossref_primary_10_3389_fmed_2022_753085 crossref_primary_10_1016_j_jvacx_2022_100201 crossref_primary_10_1128_mBio_00482_18 crossref_primary_10_1007_s11250_023_03543_1 crossref_primary_10_4103_ijmr_IJMR_830_18 crossref_primary_10_1016_j_ijregi_2021_09_006 crossref_primary_10_1016_j_jtumed_2022_12_010 crossref_primary_10_1016_j_ijid_2019_05_036 crossref_primary_10_1186_s12879_021_06599_2 crossref_primary_10_1021_acsinfecdis_9b00302 crossref_primary_10_3390_antibiotics11101308 crossref_primary_10_1016_S2666_5247_24_00047_8 crossref_primary_10_1016_S2214_109X_21_00370_3 crossref_primary_10_1177_20503121241263032 crossref_primary_10_4103_jfmpc_jfmpc_1077_19 crossref_primary_10_1093_cid_ciaa513 crossref_primary_10_4236_aim_2021_119036 crossref_primary_10_1186_s12864_019_5916_6 crossref_primary_10_1051_bioconf_202515201003 crossref_primary_10_1056_NEJMoa2209449 crossref_primary_10_1093_jac_dky441 crossref_primary_10_1016_j_ijbiomac_2024_139003 crossref_primary_10_5799_jmid_897210 crossref_primary_10_1016_S1473_3099_21_00627_7 crossref_primary_10_1093_cid_ciz630 crossref_primary_10_1016_j_chom_2019_08_001 crossref_primary_10_1016_j_idc_2018_10_009 crossref_primary_10_1093_cid_ciaa504 crossref_primary_10_7759_cureus_11778 crossref_primary_10_4103_ijcm_ijcm_1008_21 crossref_primary_10_1093_jac_dkaa519 crossref_primary_10_1128_spectrum_04828_22 crossref_primary_10_1093_cid_ciz405 crossref_primary_10_1126_sciadv_aau6849 crossref_primary_10_1155_2020_6432580 crossref_primary_10_1093_cid_ciz1204 crossref_primary_10_5005_jp_journals_10081_1230 crossref_primary_10_1128_mbio_01920_22 crossref_primary_10_1128_JCM_00180_19 crossref_primary_10_1016_j_bioorg_2020_104244 crossref_primary_10_1371_journal_pntd_0006839 crossref_primary_10_3389_fvets_2023_1188752 crossref_primary_10_1016_j_phrs_2021_105652 crossref_primary_10_1016_S2666_5247_22_00093_3 crossref_primary_10_2147_RRTM_S282461 crossref_primary_10_1186_s12866_022_02456_7 crossref_primary_10_1128_spectrum_00619_22 crossref_primary_10_3390_vaccines8040697 crossref_primary_10_1016_j_gene_2023_147943 crossref_primary_10_1038_s41591_021_01301_0 crossref_primary_10_1093_ofid_ofad179 crossref_primary_10_1016_S1473_3099_20_30003_7 crossref_primary_10_1016_j_idc_2019_05_007 crossref_primary_10_1136_bmjgh_2019_001831 crossref_primary_10_1038_s41467_020_20639_6 crossref_primary_10_1155_jotm_3480080 crossref_primary_10_1073_pnas_1717162115 crossref_primary_10_1093_ofid_ofad044 crossref_primary_10_1371_journal_pntd_0012373 crossref_primary_10_1371_journal_pntd_0012132 crossref_primary_10_1038_s41396_019_0446_4 crossref_primary_10_1371_journal_pntd_0011168 crossref_primary_10_4103_ijcm_ijcm_740_24 crossref_primary_10_3389_fmed_2019_00205 crossref_primary_10_1097_QCO_0000000000000479 crossref_primary_10_1128_iai_00515_21 crossref_primary_10_1080_20477724_2019_1691364 |
Cites_doi | 10.3389/fmicb.2016.01862 10.1128/CMR.00002-15 10.1038/ng.3281 10.1128/AAC.00419-13 10.1093/bioinformatics/btu033 10.1016/j.jgar.2014.12.002 10.1128/JCM.01648-16 10.1371/journal.pcbi.1005595 10.1093/bioinformatics/btq413 10.1038/ncomms12827 10.1093/bioinformatics/btp352 10.1128/genomeA.00850-17 10.1371/journal.pntd.0004785 10.1186/1471-2164-12-402 10.1093/nar/gku1196 10.1016/j.ijmm.2013.02.001 10.1093/bioinformatics/btr703 10.3201/eid1509.090567 10.1186/s13059-015-0849-0 10.1186/s12879-016-1527-x 10.1371/journal.pntd.0003748 10.1099/jmm.0.044065-0 10.1093/cid/cix652 10.1128/AAC.02412-14 10.3855/jidc.3817 10.1111/j.1469-0691.2011.03570.x 10.7554/eLife.14003 10.1128/JCM.02026-14 10.1371/journal.pone.0112963 10.1093/bioinformatics/btu170 10.1186/1471-2105-10-421 10.1099/mgen.0.000056 |
ContentType | Journal Article |
Contributor | Fairweather, Neil Levine Wren, Brendan |
Contributor_xml | – sequence: 1 givenname: Neil surname: Fairweather fullname: Fairweather, Neil – sequence: 2 givenname: Brendan surname: Wren fullname: Wren, Brendan – sequence: 3 surname: Levine fullname: Levine |
Copyright | Copyright © 2018 Klemm et al. Copyright © 2018 Klemm et al. 2018 Klemm et al. |
Copyright_xml | – notice: Copyright © 2018 Klemm et al. – notice: Copyright © 2018 Klemm et al. 2018 Klemm et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/mBio.00105-18 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Emergence of Extensively Drug-Resistant Typhoid |
EISSN | 2150-7511 |
ExternalDocumentID | PMC5821095 29463654 10_1128_mBio_00105_18 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: ; |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c387t-389eb3d7c513672803ac9b364c573c6e296460136673df8d5180669bfaab603b3 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Thu Aug 21 18:24:09 EDT 2025 Thu Jul 10 22:13:44 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Tue Jul 01 01:52:36 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Salmonella Typhi antibiotic resistance typhoid |
Language | English |
License | Copyright © 2018 Klemm et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-389eb3d7c513672803ac9b364c573c6e296460136673df8d5180669bfaab603b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article is a direct contribution from a Fellow of the American Academy of Microbiology. Solicited external reviewers: Neil Fairweather, Imperial College London; Brendan Wren, London School of Hygiene and Tropical Medicine; Myron Levine, University of Maryland School of Medicine. E.J.K. and S.S., and G.D. and R.H., contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00105-18 |
PMID | 29463654 |
PQID | 2007121515 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821095 proquest_miscellaneous_2007121515 pubmed_primary_29463654 crossref_citationtrail_10_1128_mBio_00105_18 crossref_primary_10_1128_mBio_00105_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180220 |
PublicationDateYYYYMMDD | 2018-02-20 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180220 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_16_2 Munir T (e_1_3_3_17_2) 2016; 66 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 Crump JA (e_1_3_3_2_2) 2004; 82 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 29559573 - mBio. 2018 Mar 20;9(2) |
References_xml | – ident: e_1_3_3_14_2 doi: 10.3389/fmicb.2016.01862 – ident: e_1_3_3_3_2 doi: 10.1128/CMR.00002-15 – ident: e_1_3_3_4_2 doi: 10.1038/ng.3281 – ident: e_1_3_3_30_2 doi: 10.1128/AAC.00419-13 – ident: e_1_3_3_26_2 – volume: 66 start-page: 1035 year: 2016 ident: e_1_3_3_17_2 article-title: Extended spectrum beta lactamase producing cephalosporin resistant Salmonella typhi, reported from Rawalpindi, Pakistan publication-title: J Pak Med Assoc – ident: e_1_3_3_29_2 doi: 10.1093/bioinformatics/btu033 – ident: e_1_3_3_12_2 doi: 10.1016/j.jgar.2014.12.002 – ident: e_1_3_3_13_2 doi: 10.1128/JCM.01648-16 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pcbi.1005595 – ident: e_1_3_3_35_2 doi: 10.1093/bioinformatics/btq413 – ident: e_1_3_3_10_2 doi: 10.1038/ncomms12827 – ident: e_1_3_3_27_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_3_21_2 doi: 10.1128/genomeA.00850-17 – ident: e_1_3_3_7_2 doi: 10.1371/journal.pntd.0004785 – ident: e_1_3_3_36_2 doi: 10.1186/1471-2164-12-402 – ident: e_1_3_3_28_2 doi: 10.1093/nar/gku1196 – ident: e_1_3_3_11_2 doi: 10.1016/j.ijmm.2013.02.001 – ident: e_1_3_3_34_2 doi: 10.1093/bioinformatics/btr703 – ident: e_1_3_3_18_2 doi: 10.3201/eid1509.090567 – ident: e_1_3_3_24_2 doi: 10.1186/s13059-015-0849-0 – ident: e_1_3_3_15_2 doi: 10.1186/s12879-016-1527-x – volume: 82 start-page: 346 year: 2004 ident: e_1_3_3_2_2 article-title: The global burden of typhoid fever publication-title: Bull World Health Organ – ident: e_1_3_3_5_2 doi: 10.1371/journal.pntd.0003748 – ident: e_1_3_3_19_2 doi: 10.1099/jmm.0.044065-0 – ident: e_1_3_3_20_2 doi: 10.1093/cid/cix652 – ident: e_1_3_3_31_2 doi: 10.1128/AAC.02412-14 – ident: e_1_3_3_9_2 doi: 10.3855/jidc.3817 – ident: e_1_3_3_16_2 doi: 10.1111/j.1469-0691.2011.03570.x – ident: e_1_3_3_8_2 doi: 10.7554/eLife.14003 – ident: e_1_3_3_6_2 doi: 10.1128/JCM.02026-14 – ident: e_1_3_3_23_2 doi: 10.1371/journal.pone.0112963 – ident: e_1_3_3_32_2 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_3_25_2 doi: 10.1186/1471-2105-10-421 – ident: e_1_3_3_33_2 doi: 10.1099/mgen.0.000056 – reference: 29559573 - mBio. 2018 Mar 20;9(2): |
SSID | ssj0000331830 |
Score | 2.6320868 |
Snippet | Antibiotic resistance is a major problem in
Salmonella enterica
serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent... Antibiotic resistance is a major problem in serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia... Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Anti-Bacterial Agents - pharmacology Cephalosporins - pharmacology Drug Resistance, Multiple, Bacterial Fluoroquinolones - pharmacology Haplotypes Pakistan Plasmids - analysis Salmonella typhi - drug effects Salmonella typhi - genetics Salmonella typhi - isolation & purification Typhoid Fever - microbiology Whole Genome Sequencing |
Title | Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29463654 https://www.proquest.com/docview/2007121515 https://pubmed.ncbi.nlm.nih.gov/PMC5821095 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgERIXxJvyWA0S4oSXpG5s94AQlJYKadEKtlJvkR8JjZRNljRB2z_Hb2MmSQtdQOKSiy3bmZl4vnE83zD2PEjtMEpDw-XYYIBiRcS1Nxi4Inp2yqdGSkoUPv4k54vRx2W0_EUp1Atw_dfQjupJLar86OLb5g1-8K-7BBj96uxdVh61pR55qK-ya-iUJBn4cY_0201ZkPHSiQv6uIArxBlbxs3LI-x7qD9g5-Xbk7-5o9ktdrPHkfC2U_xtdiUp7rDrXWXJzV32Y9qnVSZQpmAKmF70V9XzDbyvmq_8c7Im6FjU8MXkaIt0CwqIoJM2RsAtpPxuKsAwdZXBJMd2mJvKttf1wMBJVaKBuKZs1nCCAPws8zAtXEmeELZD4-R1CbO8KentMjrBx40VV-PhdJVVnnec12QaMEnOVyYvSRNZsb7HFrPp6WTO-1IN3Amtao6wB6Nyr1xEFHBU8cq4sRVy5CIlnEzo564kejiphE-1j0KNWGdsU2OsDIQV99lBgWt4yECHKhU2GBpEkiMdWa2d8FYLq6xHQJEO2MutemLX85hTOY08buOZoY5Jm3GrzTjUA_Zi1_28I_D4V8dnW13HJEESe5GgGKlSpyISjjAasAed7ndDDcfEuBaNBkztWcWuA9F377cU2aql8aYUZQS4j_5j3sfsBgI13abSB0_YQV01yVMEQ7U9bA8R8PlhGR62Jv8TIJcO2Q |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+an+Extensively+Drug-Resistant+Salmonella+enterica+Serovar+Typhi+Clone+Harboring+a+Promiscuous+Plasmid+Encoding+Resistance+to+Fluoroquinolones+and+Third-Generation+Cephalosporins&rft.jtitle=mBio&rft.au=Klemm%2C+Elizabeth+J&rft.au=Shakoor%2C+Sadia&rft.au=Page%2C+Andrew+J&rft.au=Qamar%2C+Farah+Naz&rft.date=2018-02-20&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.00105-18&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |