LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease

Abstract Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 28; no. 10; pp. 1645 - 1660
Main Authors Bonello, Fiona, Hassoun, Sidi-Mohamed, Mouton-Liger, François, Shin, Yea Seul, Muscat, Adeline, Tesson, Christelle, Lesage, Suzanne, Beart, Philip M, Brice, Alexis, Krupp, Johannes, Corvol, Jean-Christophe, Corti, Olga
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.05.2019
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN0964-6906
1460-2083
1460-2083
DOI10.1093/hmg/ddz004

Cover

Loading…
Abstract Abstract Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.
AbstractList Abstract Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.
Author Krupp, Johannes
Hassoun, Sidi-Mohamed
Shin, Yea Seul
Bonello, Fiona
Lesage, Suzanne
Beart, Philip M
Corti, Olga
Mouton-Liger, François
Tesson, Christelle
Muscat, Adeline
Brice, Alexis
Corvol, Jean-Christophe
Author_xml – sequence: 1
  givenname: Fiona
  surname: Bonello
  fullname: Bonello, Fiona
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 2
  givenname: Sidi-Mohamed
  surname: Hassoun
  fullname: Hassoun, Sidi-Mohamed
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 3
  givenname: François
  surname: Mouton-Liger
  fullname: Mouton-Liger, François
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 4
  givenname: Yea Seul
  surname: Shin
  fullname: Shin, Yea Seul
  organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
– sequence: 5
  givenname: Adeline
  surname: Muscat
  fullname: Muscat, Adeline
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 6
  givenname: Christelle
  surname: Tesson
  fullname: Tesson, Christelle
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 7
  givenname: Suzanne
  surname: Lesage
  fullname: Lesage, Suzanne
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 8
  givenname: Philip M
  surname: Beart
  fullname: Beart, Philip M
  organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
– sequence: 9
  givenname: Alexis
  surname: Brice
  fullname: Brice, Alexis
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 10
  givenname: Johannes
  surname: Krupp
  fullname: Krupp, Johannes
  organization: Ipsen Innovation, Les Ulis, France
– sequence: 11
  givenname: Jean-Christophe
  surname: Corvol
  fullname: Corvol, Jean-Christophe
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
– sequence: 12
  givenname: Olga
  surname: Corti
  fullname: Corti, Olga
  email: olga.corti@upmc.fr
  organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30629163$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02408164$$DView record in HAL
BookMark eNp90U1v1DAQBmALFdFt4cIPQL4gPqSw49hxYm5VRWnVFVQVnK1Z29k1JHaIvSstv76p0nJAiJOl8TPvYd4TchRicIS8ZPCBgeLLbb9ZWvsbQDwhCyYkFCU0_IgsQElRSAXymJyk9AOAScHrZ-SYgywVk3xB8ur29rqkvh_Qj4neXH25ZssbHH_6UFg3uGBdyLT3OQ5b3Bzo3iP1OdHpH5OjaLLf-3z4SAfM29jFjTfUh-Q32wn5kCOdw1IMbxK1Prlp7Tl52mKX3IuH95R8v_j07fyyWH39fHV-tioMb-pccCGFwLaqseKgnCg5lg6MYBxqWLcKK2aBGWxLU7Vt06ytMtZa2dTGoFGcn5J3c-4WOz2MvsfxoCN6fXm20vczKAU001H2bLJvZzuM8dfOpax7n4zrOgwu7pIuWa04k5VUE331QHfr3tk_yY9XnQDMwIwxpdG12viM2ceQR_SdZqDvi9NTcXoublp5_9fKY-o_8esZx93wP3cHpmenTA
CitedBy_id crossref_primary_10_3389_fnins_2019_01352
crossref_primary_10_3389_fnagi_2022_986849
crossref_primary_10_3390_cells9051115
crossref_primary_10_1186_s12964_024_01997_w
crossref_primary_10_3389_fnins_2020_00556
crossref_primary_10_1007_s12551_021_00894_7
crossref_primary_10_1007_s10571_021_01039_w
crossref_primary_10_1242_jcs_260395
crossref_primary_10_3390_biomedicines9111651
crossref_primary_10_5483_BMBRep_2021_54_12_107
crossref_primary_10_1128_MCB_00660_20
crossref_primary_10_3390_brainsci12101308
crossref_primary_10_3892_ijmm_2024_5371
crossref_primary_10_1080_15548627_2023_2172873
crossref_primary_10_3389_fnins_2021_746873
crossref_primary_10_1111_febs_16099
crossref_primary_10_1016_j_jmb_2023_168144
crossref_primary_10_1093_hmg_ddad102
crossref_primary_10_1242_jcs_259724
crossref_primary_10_3390_ijms22041525
crossref_primary_10_1186_s13041_019_0504_x
crossref_primary_10_7554_eLife_67604
crossref_primary_10_1016_j_tibs_2019_08_002
crossref_primary_10_1002_1873_3468_14060
crossref_primary_10_1083_jcb_202012095
crossref_primary_10_1007_s11033_022_07738_x
crossref_primary_10_3389_fnagi_2022_885500
crossref_primary_10_1007_s10565_021_09617_w
crossref_primary_10_1016_j_bbr_2024_115200
crossref_primary_10_1515_medgen_2022_2127
crossref_primary_10_1002_med_21718
crossref_primary_10_1146_annurev_cellbio_021820_101354
crossref_primary_10_1016_j_bbi_2019_07_009
crossref_primary_10_3390_jcm9124092
crossref_primary_10_3233_JPD_223363
crossref_primary_10_1016_j_envpol_2020_116413
crossref_primary_10_3390_genes11111385
crossref_primary_10_3390_biom11071012
crossref_primary_10_1155_2020_8865611
crossref_primary_10_3389_fcell_2022_837337
crossref_primary_10_3390_biom13081265
crossref_primary_10_1016_j_neuron_2023_10_014
crossref_primary_10_1016_j_envpol_2024_123875
crossref_primary_10_1016_j_arr_2022_101817
crossref_primary_10_3233_JPD_201981
crossref_primary_10_1186_s40478_020_01062_w
crossref_primary_10_1038_s41392_025_02145_7
crossref_primary_10_20517_and_2024_33
crossref_primary_10_1016_j_neuint_2020_104756
crossref_primary_10_3389_fcell_2021_612476
crossref_primary_10_3390_cells8111317
crossref_primary_10_1126_scisignal_abk3411
crossref_primary_10_1016_j_nbd_2024_106522
crossref_primary_10_1155_2022_5064494
crossref_primary_10_1016_j_apsb_2021_02_016
crossref_primary_10_1055_a_1948_3179
crossref_primary_10_3390_cells10061395
crossref_primary_10_3389_fcell_2021_765408
crossref_primary_10_1007_s00018_022_04574_x
crossref_primary_10_3389_fnagi_2025_1511272
crossref_primary_10_1016_j_neuropharm_2020_108022
crossref_primary_10_1042_BST20211288
crossref_primary_10_1242_jcs_260638
crossref_primary_10_1002_mds_28194
crossref_primary_10_3390_cells10010079
crossref_primary_10_3390_ijms241310474
crossref_primary_10_1093_hmg_ddz126
crossref_primary_10_1016_j_mito_2021_01_001
crossref_primary_10_3390_ijms231911744
crossref_primary_10_1016_j_jmb_2019_06_031
crossref_primary_10_3389_fnagi_2024_1417515
crossref_primary_10_1016_j_jmb_2019_06_032
crossref_primary_10_3390_biom11101508
crossref_primary_10_1016_j_neuint_2022_105308
crossref_primary_10_1016_j_stemcr_2022_09_001
crossref_primary_10_5607_en23023
crossref_primary_10_3389_fnins_2021_654785
crossref_primary_10_1007_s40265_019_01139_4
crossref_primary_10_3389_fnmol_2022_805087
crossref_primary_10_4103_NRR_NRR_D_23_01195
crossref_primary_10_1017_erm_2022_31
crossref_primary_10_3389_fnmol_2023_1329554
crossref_primary_10_1016_j_bbi_2023_11_004
crossref_primary_10_1016_j_mito_2021_12_006
crossref_primary_10_1042_BST20190236
crossref_primary_10_3389_fncel_2022_1031153
crossref_primary_10_1016_j_pneurobio_2020_101772
crossref_primary_10_1016_j_phrs_2020_105240
crossref_primary_10_3390_brainsci11111437
crossref_primary_10_1016_j_tibs_2020_11_007
crossref_primary_10_1016_j_bcp_2023_115591
crossref_primary_10_1016_j_nbd_2022_105851
crossref_primary_10_1097_MD_0000000000021576
crossref_primary_10_1111_jnc_14667
crossref_primary_10_1016_j_mito_2024_101926
crossref_primary_10_3390_cells8070712
crossref_primary_10_1038_s41583_024_00812_2
crossref_primary_10_1080_14728222_2022_2082937
crossref_primary_10_1038_s41392_023_01503_7
crossref_primary_10_1038_s41531_024_00660_y
crossref_primary_10_3390_ijms22137030
crossref_primary_10_3390_cells10081876
crossref_primary_10_1016_j_joca_2021_01_002
crossref_primary_10_1016_j_jmb_2023_167998
crossref_primary_10_1042_BCJ20190664
crossref_primary_10_3390_ijms22073487
crossref_primary_10_1016_j_nantod_2024_102438
crossref_primary_10_1073_pnas_2412029122
crossref_primary_10_1080_15548627_2019_1603548
crossref_primary_10_1002_ptr_8156
crossref_primary_10_1111_jnc_15002
crossref_primary_10_3389_fnmol_2022_867935
crossref_primary_10_1016_j_jmb_2020_01_037
crossref_primary_10_1016_j_phrs_2021_105433
crossref_primary_10_1186_s40779_023_00482_8
crossref_primary_10_1080_15548627_2020_1850008
crossref_primary_10_1002_brb3_70283
Cites_doi 10.1038/nn1776
10.1016/j.bbadis.2014.11.009
10.1038/nature25486
10.3389/fnmol.2018.00064
10.4161/auto.25884
10.1016/j.yexcr.2008.02.015
10.1016/j.neuron.2014.12.007
10.1083/jcb.201801044
10.1016/j.bbamcr.2013.07.020
10.1016/j.devcel.2007.11.019
10.1073/pnas.0911187107
10.1093/hmg/dds003
10.1073/pnas.0507360102
10.1016/j.stem.2016.08.002
10.1016/j.bbamcr.2014.05.012
10.1083/jcb.200910140
10.1007/s11033-009-9451-4
10.1038/cddis.2014.320
10.1002/emmm.201200215
10.1038/cddis.2016.173
10.1002/jnr.21622
10.1038/cdd.2014.224
10.1016/j.arr.2017.12.007
10.2174/1389203717666160311121748
10.1371/journal.pone.0097988
10.1038/ncomms3428
10.1038/nn.3350
10.1093/hmg/ddp346
10.1083/jcb.200809125
10.1073/pnas.0808249105
10.1016/j.ajpath.2012.10.027
10.1016/j.jmb.2011.07.033
10.1073/pnas.1111314108
10.1186/1750-1326-7-2
10.1089/gte.2006.10.221
10.1111/j.1471-4159.2008.05217.x
10.1111/j.1471-4159.2009.06235.x
10.4161/auto.5331
10.1016/j.nbd.2006.04.001
10.1093/hmg/ddt301
10.1016/j.cmet.2017.12.008
10.1212/WNL.0b013e3181ff9685
10.1016/j.neuron.2006.10.008
10.1093/hmg/ddu138
10.1111/j.1471-4159.2012.07809.x
10.1371/journal.pone.0021519
10.1016/j.cell.2016.05.039
10.1007/s00018-012-1061-y
10.1080/15548627.2016.1277309
10.1126/science.1207385
10.1073/pnas.1618610114
10.1038/ncb2012
10.1016/j.brainres.2018.06.010
10.1111/j.1749-6632.2010.05629.x
10.1093/hmg/ddt600
10.1038/sj.emboj.7601963
10.1371/journal.pbio.1000298
10.1038/nchembio.538
10.1083/jcb.201007013
10.1093/brain/awg136
10.1152/physrev.00022.2010
10.1073/pnas.1812196115
10.1016/j.ceb.2017.03.013
10.1093/hmg/ddl471
10.1007/s12035-015-9435-4
10.7554/eLife.32866
10.1093/hmg/dds244
10.1093/hmg/ddr481
10.1093/hmg/ddq081
10.4161/auto.8788
10.1016/j.nbd.2015.02.031
10.7554/eLife.01612
10.1038/nature07534
10.1016/j.neuroscience.2012.02.001
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1093/hmg/ddz004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 1660
ExternalDocumentID oai_HAL_hal_02408164v1
30629163
10_1093_hmg_ddz004
10.1093/hmg/ddz004
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: International Union of Biochemistry and Molecular Biology
  funderid: 10.13039/501100000157
– fundername: European Federation of Pharmaceutical Industries and Associations
  grantid: ANR-10-IAIHU-06
  funderid: 10.13039/100013322
– fundername: Institut National de la Santé et de la Recherche Médicale
  funderid: 10.13039/501100001677
– fundername: European Union Seventh Framework Programme
  grantid: FP7/2007-2013
  funderid: 10.13039/100011102
– fundername: Association France Parkinson
  funderid: 10.13039/501100008211
– fundername: Innovative Medicines Initiative
  grantid: 115568
  funderid: 10.13039/501100010767
– fundername: Association Nationale Recherche Technologie and Association France Parkinson
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AFYAG
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
.55
.GJ
1XC
AAJQQ
AAPGJ
AAWDT
AAYOK
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AGKRT
AGMDO
AGQPQ
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
COF
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
HVGLF
MBLQV
MBTAY
NEJ
NTWIH
NVLIB
O0~
OBFPC
O~Y
PB-
QBD
RNI
RZF
RZO
TCN
VOOES
X7M
ZCG
ZGI
ZXP
ZY4
ID FETCH-LOGICAL-c387t-34644af57a5309e423a2e0c413070bf9a51d01caf2c5ff88bd9cddd687ccac933
ISSN 0964-6906
1460-2083
IngestDate Fri May 09 12:24:08 EDT 2025
Fri Jul 11 08:26:31 EDT 2025
Thu Apr 03 06:55:32 EDT 2025
Tue Jul 01 03:32:25 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Wed Sep 11 04:52:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-34644af57a5309e423a2e0c413070bf9a51d01caf2c5ff88bd9cddd687ccac933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0941-3990
0000-0001-8172-6548
0000-0003-2093-7389
0000-0001-7325-0199
OpenAccessLink https://hal.sorbonne-universite.fr/hal-02408164
PMID 30629163
PQID 2179316569
PQPubID 23479
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_02408164v1
proquest_miscellaneous_2179316569
pubmed_primary_30629163
crossref_citationtrail_10_1093_hmg_ddz004
crossref_primary_10_1093_hmg_ddz004
oup_primary_10_1093_hmg_ddz004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2019
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Thévenet (2019050123033422700_ref15) 2011; 6
Su (2019050123033422700_ref59) 2015; 1852
Matheoud (2019050123033422700_ref47) 2016; 166
Shin (2019050123033422700_ref11) 2008; 314
Orenstein (2019050123033422700_ref62) 2013; 16
McLelland (2019050123033422700_ref69) 2018; 7
Chang (2019050123033422700_ref52) 2010; 1201
Celardo (2019050123033422700_ref68) 2016; 7
Smith (2019050123033422700_ref8) 2006; 9
Naon (2019050123033422700_ref73) 2017; 114
West (2019050123033422700_ref7) 2005; 102
Gómez-Suaga (2019050123033422700_ref58) 2012; 21
Greggio (2019050123033422700_ref9) 2006; 23
Gillardon (2019050123033422700_ref16) 2012; 208
Niu (2019050123033422700_ref26) 2012; 122
Manzoni (2019050123033422700_ref20) 2013; 1833
Kornmann (2019050123033422700_ref74) 2011; 108
Alegre-Abarrategui (2019050123033422700_ref61) 2009; 18
Yamano (2019050123033422700_ref76) 2014; 3
Di Maio (2019050123033422700_ref78) 2018; 10
Bertolin (2019050123033422700_ref38) 2013; 9
Wong (2019050123033422700_ref75) 2018; 554
Cereghetti (2019050123033422700_ref53) 2008; 105
Narendra (2019050123033422700_ref31) 2010; 8
Hakimi (2019050123033422700_ref14) 2011; 118
Smith (2019050123033422700_ref65) 2016; 53
Tanaka (2019050123033422700_ref44) 2010; 191
Bravo-San Pedro (2019050123033422700_ref19) 2013; 70
West (2019050123033422700_ref40) 2007; 16
Ito (2019050123033422700_ref42) 2014; 9
Gillardon (2019050123033422700_ref13) 2009; 110
Narendra (2019050123033422700_ref30) 2008; 183
Cassidy-Stone (2019050123033422700_ref51) 2008; 14
McWilliams (2019050123033422700_ref36) 2017; 45
Eguchi (2019050123033422700_ref77) 2018; 115
Hsieh (2019050123033422700_ref66) 2016; 19
Blanca Ramírez (2019050123033422700_ref6) 2017; 18
Gandhi (2019050123033422700_ref12) 2008; 86
Deng (2019050123033422700_ref1) 2017; 42
Saez-Atienzar (2019050123033422700_ref55) 2014; 5
Lesage (2019050123033422700_ref4) 2010; 19
Sánchez-Danés (2019050123033422700_ref60) 2012; 4
Buhlman (2019050123033422700_ref37) 2014; 1843
Geisler (2019050123033422700_ref34) 2010; 12
Stafa (2019050123033422700_ref27) 2014; 23
Papkovskaia (2019050123033422700_ref22) 2012; 21
Pickrell (2019050123033422700_ref35) 2015; 85
Yang (2019050123033422700_ref71) 2013; 4
Yue (2019050123033422700_ref56) 2015; 78
Periquet (2019050123033422700_ref79) 2003; 126
Su (2019050123033422700_ref23) 2013; 22
Rosado (2019050123033422700_ref48) 2008; 4
Gelmetti (2019050123033422700_ref67) 2017; 13
Cherra (2019050123033422700_ref24) 2013; 182
Zhao (2019050123033422700_ref46) 2009; 36
Gautier (2019050123033422700_ref50) 2016; 25
Schapansky (2019050123033422700_ref57) 2014; 23
Lee (2019050123033422700_ref63) 2018; 217
Wang (2019050123033422700_ref25) 2012; 21
Nivon (2019050123033422700_ref45) 2009; 5
Nichols (2019050123033422700_ref2) 2005; 365
Tong (2019050123033422700_ref18) 2012; 7
Plowey (2019050123033422700_ref17) 2008; 105
Friedman (2019050123033422700_ref70) 2011; 334
Perez Carrion (2019050123033422700_ref28) 2018; 11
Bertolin (2019050123033422700_ref39) 2015; 22
McWilliams (2019050123033422700_ref64) 2018; 27
Twig (2019050123033422700_ref29) 2008; 27
Mortiboys (2019050123033422700_ref21) 2010; 75
Charmpilas (2019050123033422700_ref49) 2018
Corti (2019050123033422700_ref5) 2011; 91
Gilks (2019050123033422700_ref3) 2005; 365
MacLeod (2019050123033422700_ref10) 2006; 52
Singh (2019050123033422700_ref54) 2018; 1702
Kay (2019050123033422700_ref80) 2006; 10
Matsuda (2019050123033422700_ref32) 2010; 189
Brito (2019050123033422700_ref72) 2008; 456
Vives-Bauza (2019050123033422700_ref33) 2010; 107
Deng (2019050123033422700_ref43) 2011; 7
Webber (2019050123033422700_ref41) 2011; 412
References_xml – volume: 9
  start-page: 1231
  year: 2006
  ident: 2019050123033422700_ref8
  article-title: Kinase activity of mutant LRRK2 mediates neuronal toxicity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1776
– volume: 1852
  start-page: 12
  year: 2015
  ident: 2019050123033422700_ref59
  article-title: Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2014.11.009
– volume: 554
  start-page: 382
  year: 2018
  ident: 2019050123033422700_ref75
  article-title: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis
  publication-title: Nature
  doi: 10.1038/nature25486
– volume: 11
  start-page: 64
  year: 2018
  ident: 2019050123033422700_ref28
  article-title: The LRRK2 variant E193K prevents mitochondrial fission upon MPP+ treatment by altering LRRK2 binding to DRP1
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2018.00064
– volume: 9
  start-page: 1801
  year: 2013
  ident: 2019050123033422700_ref38
  article-title: The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance
  publication-title: Autophagy
  doi: 10.4161/auto.25884
– volume: 10
  year: 2018
  ident: 2019050123033422700_ref78
  article-title: LRRK2 activation in idiopathic Parkinson's disease
  publication-title: Sci. Transl.
– volume: 314
  start-page: 2055
  year: 2008
  ident: 2019050123033422700_ref11
  article-title: LRRK2 regulates synaptic vesicle endocytosis
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2008.02.015
– volume: 85
  start-page: 257
  year: 2015
  ident: 2019050123033422700_ref35
  article-title: The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.007
– volume: 217
  start-page: 1613
  year: 2018
  ident: 2019050123033422700_ref63
  article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or Parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201801044
– volume: 1833
  start-page: 2900
  year: 2013
  ident: 2019050123033422700_ref20
  article-title: Inhibition of LRRK2 kinase activity stimulates macroautophagy
  publication-title: Biochim. Biophys. Acta BBA - Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2013.07.020
– volume: 14
  start-page: 193
  year: 2008
  ident: 2019050123033422700_ref51
  article-title: Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.11.019
– volume: 107
  start-page: 378
  year: 2010
  ident: 2019050123033422700_ref33
  article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911187107
– volume: 21
  start-page: 1931
  year: 2012
  ident: 2019050123033422700_ref25
  article-title: LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds003
– volume: 118
  start-page: 795
  year: 2011
  ident: 2019050123033422700_ref14
  article-title: Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures
  publication-title: J. Neural Transm. Vienna Austria 1996
– volume: 102
  start-page: 16842
  year: 2005
  ident: 2019050123033422700_ref7
  article-title: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507360102
– volume: 19
  start-page: 709
  year: 2016
  ident: 2019050123033422700_ref66
  article-title: Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.08.002
– volume: 1843
  start-page: 2012
  year: 2014
  ident: 2019050123033422700_ref37
  article-title: Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance
  publication-title: Biochim. Biophys. Acta BBA - Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2014.05.012
– volume: 189
  start-page: 211
  year: 2010
  ident: 2019050123033422700_ref32
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200910140
– volume: 36
  start-page: 2323
  year: 2009
  ident: 2019050123033422700_ref46
  article-title: Induction of macroautophagy by heat
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-009-9451-4
– volume: 5
  start-page: e1368
  year: 2014
  ident: 2019050123033422700_ref55
  article-title: The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.320
– volume: 4
  start-page: 380
  year: 2012
  ident: 2019050123033422700_ref60
  article-title: Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201200215
– volume: 7
  start-page: e2271
  year: 2016
  ident: 2019050123033422700_ref68
  article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/Parkin models of Parkinson’s disease
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.173
– volume: 86
  start-page: 1711
  year: 2008
  ident: 2019050123033422700_ref12
  article-title: The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21622
– volume: 22
  start-page: 1563
  year: 2015
  ident: 2019050123033422700_ref39
  article-title: Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.224
– volume: 42
  start-page: 72
  year: 2017
  ident: 2019050123033422700_ref1
  article-title: The genetics of Parkinson disease
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2017.12.007
– volume: 18
  start-page: 677
  year: 2017
  ident: 2019050123033422700_ref6
  article-title: LRRK2 and Parkinson’s disease: from lack of structure to gain of function
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203717666160311121748
– volume: 9
  year: 2014
  ident: 2019050123033422700_ref42
  article-title: Lack of correlation between the kinase activity of LRRK2 harboring kinase-modifying mutations and its phosphorylation at Ser910, 935, and Ser955
  publication-title: PloS One
  doi: 10.1371/journal.pone.0097988
– volume: 4
  start-page: 2428
  year: 2013
  ident: 2019050123033422700_ref71
  article-title: Bit-by-bit autophagic removal of Parkin-labelled mitochondria
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3428
– volume: 16
  start-page: 394
  year: 2013
  ident: 2019050123033422700_ref62
  article-title: Interplay of LRRK2 with chaperone-mediated autophagy
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3350
– volume: 365
  start-page: 410
  year: 2005
  ident: 2019050123033422700_ref2
  article-title: Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease
  publication-title: Lancet Lond. Engl.
– volume: 18
  start-page: 4022
  year: 2009
  ident: 2019050123033422700_ref61
  article-title: LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp346
– volume: 183
  start-page: 795
  year: 2008
  ident: 2019050123033422700_ref30
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 105
  start-page: 15803
  year: 2008
  ident: 2019050123033422700_ref53
  article-title: Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0808249105
– volume: 182
  start-page: 474
  year: 2013
  ident: 2019050123033422700_ref24
  article-title: Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.10.027
– volume: 412
  start-page: 94
  year: 2011
  ident: 2019050123033422700_ref41
  article-title: Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.07.033
– volume: 108
  start-page: 14151
  year: 2011
  ident: 2019050123033422700_ref74
  article-title: The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1111314108
– volume: 7
  start-page: 2
  year: 2012
  ident: 2019050123033422700_ref18
  article-title: Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-7-2
– volume: 10
  start-page: 221
  year: 2006
  ident: 2019050123033422700_ref80
  article-title: Validity and utility of a LRRK2 G2019S mutation test for the diagnosis of Parkinson’s disease
  publication-title: Genet. Test.
  doi: 10.1089/gte.2006.10.221
– volume: 105
  start-page: 1048
  year: 2008
  ident: 2019050123033422700_ref17
  article-title: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05217.x
– volume: 110
  start-page: 1514
  year: 2009
  ident: 2019050123033422700_ref13
  article-title: Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in Parkinsonian neurodegeneration?
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.06235.x
– volume: 4
  start-page: 205
  year: 2008
  ident: 2019050123033422700_ref48
  article-title: Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast
  publication-title: Autophagy
  doi: 10.4161/auto.5331
– volume: 23
  start-page: 329
  year: 2006
  ident: 2019050123033422700_ref9
  article-title: Kinase activity is required for the toxic effects of mutant LRRK2/dardarin
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.04.001
– volume: 25
  start-page: 2972
  year: 2016
  ident: 2019050123033422700_ref50
  article-title: The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations
  publication-title: Hum. Mol. Genet.
– volume: 22
  start-page: 4545
  year: 2013
  ident: 2019050123033422700_ref23
  article-title: Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt301
– volume: 27
  start-page: 439
  year: 2018
  ident: 2019050123033422700_ref64
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.12.008
– volume: 75
  start-page: 2017
  year: 2010
  ident: 2019050123033422700_ref21
  article-title: Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181ff9685
– start-page: 151
  volume-title: Methods Mol. Biol.
  year: 2018
  ident: 2019050123033422700_ref49
  article-title: Monitoring mitophagy during aging in Caenorhabditis elegans
– volume: 52
  start-page: 587
  year: 2006
  ident: 2019050123033422700_ref10
  article-title: The familial Parkinsonism gene LRRK2 regulates neurite process morphology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.008
– volume: 23
  start-page: 4201
  year: 2014
  ident: 2019050123033422700_ref57
  article-title: Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu138
– volume: 122
  start-page: 650
  year: 2012
  ident: 2019050123033422700_ref26
  article-title: Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2012.07809.x
– volume: 6
  year: 2011
  ident: 2019050123033422700_ref15
  article-title: Regulation of LRRK2 expression points to a functional role in human monocyte maturation
  publication-title: PloS One
  doi: 10.1371/journal.pone.0021519
– volume: 166
  start-page: 314
  year: 2016
  ident: 2019050123033422700_ref47
  article-title: Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.039
– volume: 70
  start-page: 121
  year: 2013
  ident: 2019050123033422700_ref19
  article-title: The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway
  publication-title: Cell. Mol. Life Sci. CMLS
  doi: 10.1007/s00018-012-1061-y
– volume: 13
  start-page: 654
  year: 2017
  ident: 2019050123033422700_ref67
  article-title: PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1277309
– volume: 334
  start-page: 358
  year: 2011
  ident: 2019050123033422700_ref70
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science
  doi: 10.1126/science.1207385
– volume: 114
  start-page: E2268
  year: 2017
  ident: 2019050123033422700_ref73
  article-title: Reply to Filadi et al.: does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria?
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1618610114
– volume: 12
  start-page: 119
  year: 2010
  ident: 2019050123033422700_ref34
  publication-title: Nat Cell Biol.
  doi: 10.1038/ncb2012
– volume: 1702
  start-page: 96
  year: 2018
  ident: 2019050123033422700_ref54
  article-title: LRRK2 and mitochondria: recent advances and current views
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.06.010
– volume: 1201
  start-page: 34
  year: 2010
  ident: 2019050123033422700_ref52
  article-title: Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05629.x
– volume: 23
  start-page: 2055
  year: 2014
  ident: 2019050123033422700_ref27
  article-title: Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt600
– volume: 27
  start-page: 433
  year: 2008
  ident: 2019050123033422700_ref29
  article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601963
– volume: 8
  year: 2010
  ident: 2019050123033422700_ref31
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 7
  start-page: 203
  year: 2011
  ident: 2019050123033422700_ref43
  article-title: Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.538
– volume: 191
  start-page: 1367
  year: 2010
  ident: 2019050123033422700_ref44
  article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007013
– volume: 126
  start-page: 1271
  year: 2003
  ident: 2019050123033422700_ref79
  article-title: Parkin mutations are frequent in patients with isolated early-onset Parkinsonism
  publication-title: Brain J. Neurol.
  doi: 10.1093/brain/awg136
– volume: 91
  start-page: 1161
  year: 2011
  ident: 2019050123033422700_ref5
  article-title: What genetics tells us about the causes and mechanisms of Parkinson’s disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00022.2010
– volume: 115
  start-page: E9115
  year: 2018
  ident: 2019050123033422700_ref77
  article-title: LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1812196115
– volume: 45
  start-page: 83
  year: 2017
  ident: 2019050123033422700_ref36
  article-title: PINK1 and Parkin: emerging themes in mitochondrial homeostasis
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2017.03.013
– volume: 16
  start-page: 223
  year: 2007
  ident: 2019050123033422700_ref40
  article-title: Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl471
– volume: 53
  start-page: 5161
  year: 2016
  ident: 2019050123033422700_ref65
  article-title: Fibroblast biomarkers of sporadic Parkinson’s disease and LRRK2 kinase inhibition
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-015-9435-4
– volume: 7
  year: 2018
  ident: 2019050123033422700_ref69
  article-title: Mfn2 ubiquitination by PINK1/Parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.32866
– volume: 21
  start-page: 4201
  year: 2012
  ident: 2019050123033422700_ref22
  article-title: G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds244
– volume: 21
  start-page: 511
  year: 2012
  ident: 2019050123033422700_ref58
  article-title: Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddr481
– volume: 19
  start-page: 1998
  year: 2010
  ident: 2019050123033422700_ref4
  article-title: Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq081
– volume: 5
  start-page: 766
  year: 2009
  ident: 2019050123033422700_ref45
  article-title: Autophagy activation by NFkappaB is essential for cell survival after heat shock
  publication-title: Autophagy
  doi: 10.4161/auto.8788
– volume: 78
  start-page: 172
  year: 2015
  ident: 2019050123033422700_ref56
  article-title: Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2015.02.031
– volume: 3
  year: 2014
  ident: 2019050123033422700_ref76
  article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy
  publication-title: Elife
  doi: 10.7554/eLife.01612
– volume: 456
  start-page: 605
  year: 2008
  ident: 2019050123033422700_ref72
  article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria
  publication-title: Nature
  doi: 10.1038/nature07534
– volume: 208
  start-page: 41
  year: 2012
  ident: 2019050123033422700_ref16
  article-title: Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.02.001
– volume: 365
  start-page: 415
  year: 2005
  ident: 2019050123033422700_ref3
  article-title: A common LRRK2 mutation in idiopathic Parkinson’s disease
  publication-title: Lancet Lond. Engl.
SSID ssj0016437
Score 2.5971541
Snippet Abstract Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most...
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of...
SourceID hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1645
SubjectTerms Adult
Aged
Benzodiazepinones - pharmacology
Carbonyl Cyanide m-Chlorophenyl Hydrazone - analogs & derivatives
Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology
Female
Fibroblasts - drug effects
Fibroblasts - pathology
Fluorescence Resonance Energy Transfer
Genetics
Human genetics
Humans
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 - antagonists & inhibitors
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 - genetics
Life Sciences
Male
Middle Aged
Mitochondria - genetics
Mitochondria - pathology
Mitophagy - drug effects
Mutation
Neurobiology
Neurons and Cognition
Parkinson Disease - genetics
Parkinson Disease - pathology
Phosphorylation
Primary Cell Culture
Protein Kinases - genetics
Pyrimidines - pharmacology
Ubiquitin-Protein Ligases - genetics
Title LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/30629163
https://www.proquest.com/docview/2179316569
https://hal.sorbonne-universite.fr/hal-02408164
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9tAFB6SlIZcSppu7hKmy6UY1ZJGi9WbaWtMY5eQBdyTGM2MY0Fth3iB5NS_0b_XX9L3ZpHtJoS0F2GkYRjrfXr7Qsg7wWIhJJOeUkHiRQnnXpElmcc4qCcyEYrpZs-9b0nnNPraj_sbm7srWUvzWfFBXN1YV_I_VIV7QFeskv0Hylabwg34DfSFK1AYrneicffo6CDUhY7lxbQOBvoB8iUsZC7HnhtvO6uPSuwewM8u64uS60gBPAfppRtp4OwIdAvgaGLDCDE_HU12zNQCzdRshzkjNi8im66Fdaxma6IBIzdtF0czY33k0gs_Gbs4Txvdj0vWBy9pbrywpSy93mTIR7biSicDz3HIcbc8M9hCRVsH99NJWe19PDSdEL4rDszPpjpaVwZWT8WeKea8rURS9109PXSeEeu9TCIPeywbMWZ4d5T4AA8zF8cx97C5CmJ_hVWDnRiviP0gMXMNrokU025rOALO25byyjfTklfQdT7S8ALbKwRdmy0Fq0sm6LSO88PP7bwLMFh_WjX47rS6-RDwpzvOwckWYNDfC8Hy0dNI-lXWUoBxVt0-0v5_13E3Yw04YsMccIdsu9OsqVubQ0z2XSvkvGZPab3qZJc8sAYRbRl0PyQbarxH7psRqZd7ZLtnkz8ekYWGO7Vwpxrujb_BTiuwUwA7BbBTA3bqwP6RLqFOHdQpQp1WUP_989eUWpA_JqftLyefOp4dG-IJ1kxnHotAx-eDOOUx8zMF9gIPlS9QW0v9YpDxOJB-IPggFPFg0GwWMhNSyqSZAjcTGWNPyNYYvolnhKYsYNJPU6X8QVSwtGgKFrFI8SJIlZBhjbx3bzcXtqc-jnb5kZvcDpYDUXJDlBp5W609N51kblz1BnHgFtyMjRrZBxreustrR94cxAXGAPlYTebTPESBjB23shp5auhe7eMw8_wuZ3hBdpaf8EuyNbuYq1egn8-KfY3YP6XZ5fs
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LRRK2+impairs+PINK1%2FParkin-dependent+mitophagy+via+its+kinase+activity%3A+pathologic+insights+into+Parkinson%E2%80%99s+disease&rft.jtitle=Human+molecular+genetics&rft.au=Bonello%2C+Fiona&rft.au=Hassoun%2C+Sidi-Mohamed&rft.au=Mouton-Liger%2C+Fran%C3%A7ois&rft.au=Shin%2C+Yea+Seul&rft.date=2019-05-15&rft.pub=Oxford+University+Press+%28OUP%29&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=28&rft.issue=10&rft.spage=1645&rft.epage=1660&rft_id=info:doi/10.1093%2Fhmg%2Fddz004&rft_id=info%3Apmid%2F30629163&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02408164v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon