LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease
Abstract Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest...
Saved in:
Published in | Human molecular genetics Vol. 28; no. 10; pp. 1645 - 1660 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.05.2019
Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
ISSN | 0964-6906 1460-2083 1460-2083 |
DOI | 10.1093/hmg/ddz004 |
Cover
Loading…
Abstract | Abstract
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy. |
---|---|
AbstractList | Abstract
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy. Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy.Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy. Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy. |
Author | Krupp, Johannes Hassoun, Sidi-Mohamed Shin, Yea Seul Bonello, Fiona Lesage, Suzanne Beart, Philip M Corti, Olga Mouton-Liger, François Tesson, Christelle Muscat, Adeline Brice, Alexis Corvol, Jean-Christophe |
Author_xml | – sequence: 1 givenname: Fiona surname: Bonello fullname: Bonello, Fiona organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 2 givenname: Sidi-Mohamed surname: Hassoun fullname: Hassoun, Sidi-Mohamed organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 3 givenname: François surname: Mouton-Liger fullname: Mouton-Liger, François organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 4 givenname: Yea Seul surname: Shin fullname: Shin, Yea Seul organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia – sequence: 5 givenname: Adeline surname: Muscat fullname: Muscat, Adeline organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 6 givenname: Christelle surname: Tesson fullname: Tesson, Christelle organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 7 givenname: Suzanne surname: Lesage fullname: Lesage, Suzanne organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 8 givenname: Philip M surname: Beart fullname: Beart, Philip M organization: Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia – sequence: 9 givenname: Alexis surname: Brice fullname: Brice, Alexis organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 10 givenname: Johannes surname: Krupp fullname: Krupp, Johannes organization: Ipsen Innovation, Les Ulis, France – sequence: 11 givenname: Jean-Christophe surname: Corvol fullname: Corvol, Jean-Christophe organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France – sequence: 12 givenname: Olga surname: Corti fullname: Corti, Olga email: olga.corti@upmc.fr organization: Institut du Cerveau et de la Moelle épinière, ICM, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30629163$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02408164$$DView record in HAL |
BookMark | eNp90U1v1DAQBmALFdFt4cIPQL4gPqSw49hxYm5VRWnVFVQVnK1Z29k1JHaIvSstv76p0nJAiJOl8TPvYd4TchRicIS8ZPCBgeLLbb9ZWvsbQDwhCyYkFCU0_IgsQElRSAXymJyk9AOAScHrZ-SYgywVk3xB8ur29rqkvh_Qj4neXH25ZssbHH_6UFg3uGBdyLT3OQ5b3Bzo3iP1OdHpH5OjaLLf-3z4SAfM29jFjTfUh-Q32wn5kCOdw1IMbxK1Prlp7Tl52mKX3IuH95R8v_j07fyyWH39fHV-tioMb-pccCGFwLaqseKgnCg5lg6MYBxqWLcKK2aBGWxLU7Vt06ytMtZa2dTGoFGcn5J3c-4WOz2MvsfxoCN6fXm20vczKAU001H2bLJvZzuM8dfOpax7n4zrOgwu7pIuWa04k5VUE331QHfr3tk_yY9XnQDMwIwxpdG12viM2ceQR_SdZqDvi9NTcXoublp5_9fKY-o_8esZx93wP3cHpmenTA |
CitedBy_id | crossref_primary_10_3389_fnins_2019_01352 crossref_primary_10_3389_fnagi_2022_986849 crossref_primary_10_3390_cells9051115 crossref_primary_10_1186_s12964_024_01997_w crossref_primary_10_3389_fnins_2020_00556 crossref_primary_10_1007_s12551_021_00894_7 crossref_primary_10_1007_s10571_021_01039_w crossref_primary_10_1242_jcs_260395 crossref_primary_10_3390_biomedicines9111651 crossref_primary_10_5483_BMBRep_2021_54_12_107 crossref_primary_10_1128_MCB_00660_20 crossref_primary_10_3390_brainsci12101308 crossref_primary_10_3892_ijmm_2024_5371 crossref_primary_10_1080_15548627_2023_2172873 crossref_primary_10_3389_fnins_2021_746873 crossref_primary_10_1111_febs_16099 crossref_primary_10_1016_j_jmb_2023_168144 crossref_primary_10_1093_hmg_ddad102 crossref_primary_10_1242_jcs_259724 crossref_primary_10_3390_ijms22041525 crossref_primary_10_1186_s13041_019_0504_x crossref_primary_10_7554_eLife_67604 crossref_primary_10_1016_j_tibs_2019_08_002 crossref_primary_10_1002_1873_3468_14060 crossref_primary_10_1083_jcb_202012095 crossref_primary_10_1007_s11033_022_07738_x crossref_primary_10_3389_fnagi_2022_885500 crossref_primary_10_1007_s10565_021_09617_w crossref_primary_10_1016_j_bbr_2024_115200 crossref_primary_10_1515_medgen_2022_2127 crossref_primary_10_1002_med_21718 crossref_primary_10_1146_annurev_cellbio_021820_101354 crossref_primary_10_1016_j_bbi_2019_07_009 crossref_primary_10_3390_jcm9124092 crossref_primary_10_3233_JPD_223363 crossref_primary_10_1016_j_envpol_2020_116413 crossref_primary_10_3390_genes11111385 crossref_primary_10_3390_biom11071012 crossref_primary_10_1155_2020_8865611 crossref_primary_10_3389_fcell_2022_837337 crossref_primary_10_3390_biom13081265 crossref_primary_10_1016_j_neuron_2023_10_014 crossref_primary_10_1016_j_envpol_2024_123875 crossref_primary_10_1016_j_arr_2022_101817 crossref_primary_10_3233_JPD_201981 crossref_primary_10_1186_s40478_020_01062_w crossref_primary_10_1038_s41392_025_02145_7 crossref_primary_10_20517_and_2024_33 crossref_primary_10_1016_j_neuint_2020_104756 crossref_primary_10_3389_fcell_2021_612476 crossref_primary_10_3390_cells8111317 crossref_primary_10_1126_scisignal_abk3411 crossref_primary_10_1016_j_nbd_2024_106522 crossref_primary_10_1155_2022_5064494 crossref_primary_10_1016_j_apsb_2021_02_016 crossref_primary_10_1055_a_1948_3179 crossref_primary_10_3390_cells10061395 crossref_primary_10_3389_fcell_2021_765408 crossref_primary_10_1007_s00018_022_04574_x crossref_primary_10_3389_fnagi_2025_1511272 crossref_primary_10_1016_j_neuropharm_2020_108022 crossref_primary_10_1042_BST20211288 crossref_primary_10_1242_jcs_260638 crossref_primary_10_1002_mds_28194 crossref_primary_10_3390_cells10010079 crossref_primary_10_3390_ijms241310474 crossref_primary_10_1093_hmg_ddz126 crossref_primary_10_1016_j_mito_2021_01_001 crossref_primary_10_3390_ijms231911744 crossref_primary_10_1016_j_jmb_2019_06_031 crossref_primary_10_3389_fnagi_2024_1417515 crossref_primary_10_1016_j_jmb_2019_06_032 crossref_primary_10_3390_biom11101508 crossref_primary_10_1016_j_neuint_2022_105308 crossref_primary_10_1016_j_stemcr_2022_09_001 crossref_primary_10_5607_en23023 crossref_primary_10_3389_fnins_2021_654785 crossref_primary_10_1007_s40265_019_01139_4 crossref_primary_10_3389_fnmol_2022_805087 crossref_primary_10_4103_NRR_NRR_D_23_01195 crossref_primary_10_1017_erm_2022_31 crossref_primary_10_3389_fnmol_2023_1329554 crossref_primary_10_1016_j_bbi_2023_11_004 crossref_primary_10_1016_j_mito_2021_12_006 crossref_primary_10_1042_BST20190236 crossref_primary_10_3389_fncel_2022_1031153 crossref_primary_10_1016_j_pneurobio_2020_101772 crossref_primary_10_1016_j_phrs_2020_105240 crossref_primary_10_3390_brainsci11111437 crossref_primary_10_1016_j_tibs_2020_11_007 crossref_primary_10_1016_j_bcp_2023_115591 crossref_primary_10_1016_j_nbd_2022_105851 crossref_primary_10_1097_MD_0000000000021576 crossref_primary_10_1111_jnc_14667 crossref_primary_10_1016_j_mito_2024_101926 crossref_primary_10_3390_cells8070712 crossref_primary_10_1038_s41583_024_00812_2 crossref_primary_10_1080_14728222_2022_2082937 crossref_primary_10_1038_s41392_023_01503_7 crossref_primary_10_1038_s41531_024_00660_y crossref_primary_10_3390_ijms22137030 crossref_primary_10_3390_cells10081876 crossref_primary_10_1016_j_joca_2021_01_002 crossref_primary_10_1016_j_jmb_2023_167998 crossref_primary_10_1042_BCJ20190664 crossref_primary_10_3390_ijms22073487 crossref_primary_10_1016_j_nantod_2024_102438 crossref_primary_10_1073_pnas_2412029122 crossref_primary_10_1080_15548627_2019_1603548 crossref_primary_10_1002_ptr_8156 crossref_primary_10_1111_jnc_15002 crossref_primary_10_3389_fnmol_2022_867935 crossref_primary_10_1016_j_jmb_2020_01_037 crossref_primary_10_1016_j_phrs_2021_105433 crossref_primary_10_1186_s40779_023_00482_8 crossref_primary_10_1080_15548627_2020_1850008 crossref_primary_10_1002_brb3_70283 |
Cites_doi | 10.1038/nn1776 10.1016/j.bbadis.2014.11.009 10.1038/nature25486 10.3389/fnmol.2018.00064 10.4161/auto.25884 10.1016/j.yexcr.2008.02.015 10.1016/j.neuron.2014.12.007 10.1083/jcb.201801044 10.1016/j.bbamcr.2013.07.020 10.1016/j.devcel.2007.11.019 10.1073/pnas.0911187107 10.1093/hmg/dds003 10.1073/pnas.0507360102 10.1016/j.stem.2016.08.002 10.1016/j.bbamcr.2014.05.012 10.1083/jcb.200910140 10.1007/s11033-009-9451-4 10.1038/cddis.2014.320 10.1002/emmm.201200215 10.1038/cddis.2016.173 10.1002/jnr.21622 10.1038/cdd.2014.224 10.1016/j.arr.2017.12.007 10.2174/1389203717666160311121748 10.1371/journal.pone.0097988 10.1038/ncomms3428 10.1038/nn.3350 10.1093/hmg/ddp346 10.1083/jcb.200809125 10.1073/pnas.0808249105 10.1016/j.ajpath.2012.10.027 10.1016/j.jmb.2011.07.033 10.1073/pnas.1111314108 10.1186/1750-1326-7-2 10.1089/gte.2006.10.221 10.1111/j.1471-4159.2008.05217.x 10.1111/j.1471-4159.2009.06235.x 10.4161/auto.5331 10.1016/j.nbd.2006.04.001 10.1093/hmg/ddt301 10.1016/j.cmet.2017.12.008 10.1212/WNL.0b013e3181ff9685 10.1016/j.neuron.2006.10.008 10.1093/hmg/ddu138 10.1111/j.1471-4159.2012.07809.x 10.1371/journal.pone.0021519 10.1016/j.cell.2016.05.039 10.1007/s00018-012-1061-y 10.1080/15548627.2016.1277309 10.1126/science.1207385 10.1073/pnas.1618610114 10.1038/ncb2012 10.1016/j.brainres.2018.06.010 10.1111/j.1749-6632.2010.05629.x 10.1093/hmg/ddt600 10.1038/sj.emboj.7601963 10.1371/journal.pbio.1000298 10.1038/nchembio.538 10.1083/jcb.201007013 10.1093/brain/awg136 10.1152/physrev.00022.2010 10.1073/pnas.1812196115 10.1016/j.ceb.2017.03.013 10.1093/hmg/ddl471 10.1007/s12035-015-9435-4 10.7554/eLife.32866 10.1093/hmg/dds244 10.1093/hmg/ddr481 10.1093/hmg/ddq081 10.4161/auto.8788 10.1016/j.nbd.2015.02.031 10.7554/eLife.01612 10.1038/nature07534 10.1016/j.neuroscience.2012.02.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019 – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1093/hmg/ddz004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 1660 |
ExternalDocumentID | oai_HAL_hal_02408164v1 30629163 10_1093_hmg_ddz004 10.1093/hmg/ddz004 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: International Union of Biochemistry and Molecular Biology funderid: 10.13039/501100000157 – fundername: European Federation of Pharmaceutical Industries and Associations grantid: ANR-10-IAIHU-06 funderid: 10.13039/100013322 – fundername: Institut National de la Santé et de la Recherche Médicale funderid: 10.13039/501100001677 – fundername: European Union Seventh Framework Programme grantid: FP7/2007-2013 funderid: 10.13039/100011102 – fundername: Association France Parkinson funderid: 10.13039/501100008211 – fundername: Innovative Medicines Initiative grantid: 115568 funderid: 10.13039/501100010767 – fundername: Association Nationale Recherche Technologie and Association France Parkinson |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN ABEUO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 ML0 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AFYAG AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 .55 .GJ 1XC AAJQQ AAPGJ AAWDT AAYOK ABEFU ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEHUL AEKPW AFFNX AFFQV AFSHK AGKRT AGMDO AGQPQ AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG COF CXTWN DFGAJ EIHJH ELUNK FEDTE HVGLF MBLQV MBTAY NEJ NTWIH NVLIB O0~ OBFPC O~Y PB- QBD RNI RZF RZO TCN VOOES X7M ZCG ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c387t-34644af57a5309e423a2e0c413070bf9a51d01caf2c5ff88bd9cddd687ccac933 |
ISSN | 0964-6906 1460-2083 |
IngestDate | Fri May 09 12:24:08 EDT 2025 Fri Jul 11 08:26:31 EDT 2025 Thu Apr 03 06:55:32 EDT 2025 Tue Jul 01 03:32:25 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Wed Sep 11 04:52:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-34644af57a5309e423a2e0c413070bf9a51d01caf2c5ff88bd9cddd687ccac933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0941-3990 0000-0001-8172-6548 0000-0003-2093-7389 0000-0001-7325-0199 |
OpenAccessLink | https://hal.sorbonne-universite.fr/hal-02408164 |
PMID | 30629163 |
PQID | 2179316569 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_02408164v1 proquest_miscellaneous_2179316569 pubmed_primary_30629163 crossref_citationtrail_10_1093_hmg_ddz004 crossref_primary_10_1093_hmg_ddz004 oup_primary_10_1093_hmg_ddz004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2019 |
Publisher | Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
References | Thévenet (2019050123033422700_ref15) 2011; 6 Su (2019050123033422700_ref59) 2015; 1852 Matheoud (2019050123033422700_ref47) 2016; 166 Shin (2019050123033422700_ref11) 2008; 314 Orenstein (2019050123033422700_ref62) 2013; 16 McLelland (2019050123033422700_ref69) 2018; 7 Chang (2019050123033422700_ref52) 2010; 1201 Celardo (2019050123033422700_ref68) 2016; 7 Smith (2019050123033422700_ref8) 2006; 9 Naon (2019050123033422700_ref73) 2017; 114 West (2019050123033422700_ref7) 2005; 102 Gómez-Suaga (2019050123033422700_ref58) 2012; 21 Greggio (2019050123033422700_ref9) 2006; 23 Gillardon (2019050123033422700_ref16) 2012; 208 Niu (2019050123033422700_ref26) 2012; 122 Manzoni (2019050123033422700_ref20) 2013; 1833 Kornmann (2019050123033422700_ref74) 2011; 108 Alegre-Abarrategui (2019050123033422700_ref61) 2009; 18 Yamano (2019050123033422700_ref76) 2014; 3 Di Maio (2019050123033422700_ref78) 2018; 10 Bertolin (2019050123033422700_ref38) 2013; 9 Wong (2019050123033422700_ref75) 2018; 554 Cereghetti (2019050123033422700_ref53) 2008; 105 Narendra (2019050123033422700_ref31) 2010; 8 Hakimi (2019050123033422700_ref14) 2011; 118 Smith (2019050123033422700_ref65) 2016; 53 Tanaka (2019050123033422700_ref44) 2010; 191 Bravo-San Pedro (2019050123033422700_ref19) 2013; 70 West (2019050123033422700_ref40) 2007; 16 Ito (2019050123033422700_ref42) 2014; 9 Gillardon (2019050123033422700_ref13) 2009; 110 Narendra (2019050123033422700_ref30) 2008; 183 Cassidy-Stone (2019050123033422700_ref51) 2008; 14 McWilliams (2019050123033422700_ref36) 2017; 45 Eguchi (2019050123033422700_ref77) 2018; 115 Hsieh (2019050123033422700_ref66) 2016; 19 Blanca Ramírez (2019050123033422700_ref6) 2017; 18 Gandhi (2019050123033422700_ref12) 2008; 86 Deng (2019050123033422700_ref1) 2017; 42 Saez-Atienzar (2019050123033422700_ref55) 2014; 5 Lesage (2019050123033422700_ref4) 2010; 19 Sánchez-Danés (2019050123033422700_ref60) 2012; 4 Buhlman (2019050123033422700_ref37) 2014; 1843 Geisler (2019050123033422700_ref34) 2010; 12 Stafa (2019050123033422700_ref27) 2014; 23 Papkovskaia (2019050123033422700_ref22) 2012; 21 Pickrell (2019050123033422700_ref35) 2015; 85 Yang (2019050123033422700_ref71) 2013; 4 Yue (2019050123033422700_ref56) 2015; 78 Periquet (2019050123033422700_ref79) 2003; 126 Su (2019050123033422700_ref23) 2013; 22 Rosado (2019050123033422700_ref48) 2008; 4 Gelmetti (2019050123033422700_ref67) 2017; 13 Cherra (2019050123033422700_ref24) 2013; 182 Zhao (2019050123033422700_ref46) 2009; 36 Gautier (2019050123033422700_ref50) 2016; 25 Schapansky (2019050123033422700_ref57) 2014; 23 Lee (2019050123033422700_ref63) 2018; 217 Wang (2019050123033422700_ref25) 2012; 21 Nivon (2019050123033422700_ref45) 2009; 5 Nichols (2019050123033422700_ref2) 2005; 365 Tong (2019050123033422700_ref18) 2012; 7 Plowey (2019050123033422700_ref17) 2008; 105 Friedman (2019050123033422700_ref70) 2011; 334 Perez Carrion (2019050123033422700_ref28) 2018; 11 Bertolin (2019050123033422700_ref39) 2015; 22 McWilliams (2019050123033422700_ref64) 2018; 27 Twig (2019050123033422700_ref29) 2008; 27 Mortiboys (2019050123033422700_ref21) 2010; 75 Charmpilas (2019050123033422700_ref49) 2018 Corti (2019050123033422700_ref5) 2011; 91 Gilks (2019050123033422700_ref3) 2005; 365 MacLeod (2019050123033422700_ref10) 2006; 52 Singh (2019050123033422700_ref54) 2018; 1702 Kay (2019050123033422700_ref80) 2006; 10 Matsuda (2019050123033422700_ref32) 2010; 189 Brito (2019050123033422700_ref72) 2008; 456 Vives-Bauza (2019050123033422700_ref33) 2010; 107 Deng (2019050123033422700_ref43) 2011; 7 Webber (2019050123033422700_ref41) 2011; 412 |
References_xml | – volume: 9 start-page: 1231 year: 2006 ident: 2019050123033422700_ref8 article-title: Kinase activity of mutant LRRK2 mediates neuronal toxicity publication-title: Nat. Neurosci. doi: 10.1038/nn1776 – volume: 1852 start-page: 12 year: 2015 ident: 2019050123033422700_ref59 article-title: Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2014.11.009 – volume: 554 start-page: 382 year: 2018 ident: 2019050123033422700_ref75 article-title: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis publication-title: Nature doi: 10.1038/nature25486 – volume: 11 start-page: 64 year: 2018 ident: 2019050123033422700_ref28 article-title: The LRRK2 variant E193K prevents mitochondrial fission upon MPP+ treatment by altering LRRK2 binding to DRP1 publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00064 – volume: 9 start-page: 1801 year: 2013 ident: 2019050123033422700_ref38 article-title: The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance publication-title: Autophagy doi: 10.4161/auto.25884 – volume: 10 year: 2018 ident: 2019050123033422700_ref78 article-title: LRRK2 activation in idiopathic Parkinson's disease publication-title: Sci. Transl. – volume: 314 start-page: 2055 year: 2008 ident: 2019050123033422700_ref11 article-title: LRRK2 regulates synaptic vesicle endocytosis publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2008.02.015 – volume: 85 start-page: 257 year: 2015 ident: 2019050123033422700_ref35 article-title: The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease publication-title: Neuron doi: 10.1016/j.neuron.2014.12.007 – volume: 217 start-page: 1613 year: 2018 ident: 2019050123033422700_ref63 article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201801044 – volume: 1833 start-page: 2900 year: 2013 ident: 2019050123033422700_ref20 article-title: Inhibition of LRRK2 kinase activity stimulates macroautophagy publication-title: Biochim. Biophys. Acta BBA - Mol. Cell Res. doi: 10.1016/j.bbamcr.2013.07.020 – volume: 14 start-page: 193 year: 2008 ident: 2019050123033422700_ref51 article-title: Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.11.019 – volume: 107 start-page: 378 year: 2010 ident: 2019050123033422700_ref33 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911187107 – volume: 21 start-page: 1931 year: 2012 ident: 2019050123033422700_ref25 article-title: LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds003 – volume: 118 start-page: 795 year: 2011 ident: 2019050123033422700_ref14 article-title: Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures publication-title: J. Neural Transm. Vienna Austria 1996 – volume: 102 start-page: 16842 year: 2005 ident: 2019050123033422700_ref7 article-title: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507360102 – volume: 19 start-page: 709 year: 2016 ident: 2019050123033422700_ref66 article-title: Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.08.002 – volume: 1843 start-page: 2012 year: 2014 ident: 2019050123033422700_ref37 article-title: Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance publication-title: Biochim. Biophys. Acta BBA - Mol. Cell Res. doi: 10.1016/j.bbamcr.2014.05.012 – volume: 189 start-page: 211 year: 2010 ident: 2019050123033422700_ref32 article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200910140 – volume: 36 start-page: 2323 year: 2009 ident: 2019050123033422700_ref46 article-title: Induction of macroautophagy by heat publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-009-9451-4 – volume: 5 start-page: e1368 year: 2014 ident: 2019050123033422700_ref55 article-title: The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.320 – volume: 4 start-page: 380 year: 2012 ident: 2019050123033422700_ref60 article-title: Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201200215 – volume: 7 start-page: e2271 year: 2016 ident: 2019050123033422700_ref68 article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/Parkin models of Parkinson’s disease publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.173 – volume: 86 start-page: 1711 year: 2008 ident: 2019050123033422700_ref12 article-title: The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21622 – volume: 22 start-page: 1563 year: 2015 ident: 2019050123033422700_ref39 article-title: Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10 publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.224 – volume: 42 start-page: 72 year: 2017 ident: 2019050123033422700_ref1 article-title: The genetics of Parkinson disease publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2017.12.007 – volume: 18 start-page: 677 year: 2017 ident: 2019050123033422700_ref6 article-title: LRRK2 and Parkinson’s disease: from lack of structure to gain of function publication-title: Curr. Protein Pept. Sci. doi: 10.2174/1389203717666160311121748 – volume: 9 year: 2014 ident: 2019050123033422700_ref42 article-title: Lack of correlation between the kinase activity of LRRK2 harboring kinase-modifying mutations and its phosphorylation at Ser910, 935, and Ser955 publication-title: PloS One doi: 10.1371/journal.pone.0097988 – volume: 4 start-page: 2428 year: 2013 ident: 2019050123033422700_ref71 article-title: Bit-by-bit autophagic removal of Parkin-labelled mitochondria publication-title: Nat. Commun. doi: 10.1038/ncomms3428 – volume: 16 start-page: 394 year: 2013 ident: 2019050123033422700_ref62 article-title: Interplay of LRRK2 with chaperone-mediated autophagy publication-title: Nat. Neurosci. doi: 10.1038/nn.3350 – volume: 365 start-page: 410 year: 2005 ident: 2019050123033422700_ref2 article-title: Genetic screening for a single common LRRK2 mutation in familial Parkinson’s disease publication-title: Lancet Lond. Engl. – volume: 18 start-page: 4022 year: 2009 ident: 2019050123033422700_ref61 article-title: LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp346 – volume: 183 start-page: 795 year: 2008 ident: 2019050123033422700_ref30 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 105 start-page: 15803 year: 2008 ident: 2019050123033422700_ref53 article-title: Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0808249105 – volume: 182 start-page: 474 year: 2013 ident: 2019050123033422700_ref24 article-title: Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.10.027 – volume: 412 start-page: 94 year: 2011 ident: 2019050123033422700_ref41 article-title: Autophosphorylation in the leucine-rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP-binding activities publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.07.033 – volume: 108 start-page: 14151 year: 2011 ident: 2019050123033422700_ref74 article-title: The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1111314108 – volume: 7 start-page: 2 year: 2012 ident: 2019050123033422700_ref18 article-title: Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-7-2 – volume: 10 start-page: 221 year: 2006 ident: 2019050123033422700_ref80 article-title: Validity and utility of a LRRK2 G2019S mutation test for the diagnosis of Parkinson’s disease publication-title: Genet. Test. doi: 10.1089/gte.2006.10.221 – volume: 105 start-page: 1048 year: 2008 ident: 2019050123033422700_ref17 article-title: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05217.x – volume: 110 start-page: 1514 year: 2009 ident: 2019050123033422700_ref13 article-title: Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in Parkinsonian neurodegeneration? publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2009.06235.x – volume: 4 start-page: 205 year: 2008 ident: 2019050123033422700_ref48 article-title: Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast publication-title: Autophagy doi: 10.4161/auto.5331 – volume: 23 start-page: 329 year: 2006 ident: 2019050123033422700_ref9 article-title: Kinase activity is required for the toxic effects of mutant LRRK2/dardarin publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.04.001 – volume: 25 start-page: 2972 year: 2016 ident: 2019050123033422700_ref50 article-title: The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations publication-title: Hum. Mol. Genet. – volume: 22 start-page: 4545 year: 2013 ident: 2019050123033422700_ref23 article-title: Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt301 – volume: 27 start-page: 439 year: 2018 ident: 2019050123033422700_ref64 article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.12.008 – volume: 75 start-page: 2017 year: 2010 ident: 2019050123033422700_ref21 article-title: Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2 publication-title: Neurology doi: 10.1212/WNL.0b013e3181ff9685 – start-page: 151 volume-title: Methods Mol. Biol. year: 2018 ident: 2019050123033422700_ref49 article-title: Monitoring mitophagy during aging in Caenorhabditis elegans – volume: 52 start-page: 587 year: 2006 ident: 2019050123033422700_ref10 article-title: The familial Parkinsonism gene LRRK2 regulates neurite process morphology publication-title: Neuron doi: 10.1016/j.neuron.2006.10.008 – volume: 23 start-page: 4201 year: 2014 ident: 2019050123033422700_ref57 article-title: Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu138 – volume: 122 start-page: 650 year: 2012 ident: 2019050123033422700_ref26 article-title: Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2012.07809.x – volume: 6 year: 2011 ident: 2019050123033422700_ref15 article-title: Regulation of LRRK2 expression points to a functional role in human monocyte maturation publication-title: PloS One doi: 10.1371/journal.pone.0021519 – volume: 166 start-page: 314 year: 2016 ident: 2019050123033422700_ref47 article-title: Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation publication-title: Cell doi: 10.1016/j.cell.2016.05.039 – volume: 70 start-page: 121 year: 2013 ident: 2019050123033422700_ref19 article-title: The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway publication-title: Cell. Mol. Life Sci. CMLS doi: 10.1007/s00018-012-1061-y – volume: 13 start-page: 654 year: 2017 ident: 2019050123033422700_ref67 article-title: PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation publication-title: Autophagy doi: 10.1080/15548627.2016.1277309 – volume: 334 start-page: 358 year: 2011 ident: 2019050123033422700_ref70 article-title: ER tubules mark sites of mitochondrial division publication-title: Science doi: 10.1126/science.1207385 – volume: 114 start-page: E2268 year: 2017 ident: 2019050123033422700_ref73 article-title: Reply to Filadi et al.: does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1618610114 – volume: 12 start-page: 119 year: 2010 ident: 2019050123033422700_ref34 publication-title: Nat Cell Biol. doi: 10.1038/ncb2012 – volume: 1702 start-page: 96 year: 2018 ident: 2019050123033422700_ref54 article-title: LRRK2 and mitochondria: recent advances and current views publication-title: Brain Res. doi: 10.1016/j.brainres.2018.06.010 – volume: 1201 start-page: 34 year: 2010 ident: 2019050123033422700_ref52 article-title: Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05629.x – volume: 23 start-page: 2055 year: 2014 ident: 2019050123033422700_ref27 article-title: Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt600 – volume: 27 start-page: 433 year: 2008 ident: 2019050123033422700_ref29 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: EMBO J. doi: 10.1038/sj.emboj.7601963 – volume: 8 year: 2010 ident: 2019050123033422700_ref31 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 7 start-page: 203 year: 2011 ident: 2019050123033422700_ref43 article-title: Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.538 – volume: 191 start-page: 1367 year: 2010 ident: 2019050123033422700_ref44 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201007013 – volume: 126 start-page: 1271 year: 2003 ident: 2019050123033422700_ref79 article-title: Parkin mutations are frequent in patients with isolated early-onset Parkinsonism publication-title: Brain J. Neurol. doi: 10.1093/brain/awg136 – volume: 91 start-page: 1161 year: 2011 ident: 2019050123033422700_ref5 article-title: What genetics tells us about the causes and mechanisms of Parkinson’s disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00022.2010 – volume: 115 start-page: E9115 year: 2018 ident: 2019050123033422700_ref77 article-title: LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1812196115 – volume: 45 start-page: 83 year: 2017 ident: 2019050123033422700_ref36 article-title: PINK1 and Parkin: emerging themes in mitochondrial homeostasis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.03.013 – volume: 16 start-page: 223 year: 2007 ident: 2019050123033422700_ref40 article-title: Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl471 – volume: 53 start-page: 5161 year: 2016 ident: 2019050123033422700_ref65 article-title: Fibroblast biomarkers of sporadic Parkinson’s disease and LRRK2 kinase inhibition publication-title: Mol. Neurobiol. doi: 10.1007/s12035-015-9435-4 – volume: 7 year: 2018 ident: 2019050123033422700_ref69 article-title: Mfn2 ubiquitination by PINK1/Parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy publication-title: eLife doi: 10.7554/eLife.32866 – volume: 21 start-page: 4201 year: 2012 ident: 2019050123033422700_ref22 article-title: G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds244 – volume: 21 start-page: 511 year: 2012 ident: 2019050123033422700_ref58 article-title: Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr481 – volume: 19 start-page: 1998 year: 2010 ident: 2019050123033422700_ref4 article-title: Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq081 – volume: 5 start-page: 766 year: 2009 ident: 2019050123033422700_ref45 article-title: Autophagy activation by NFkappaB is essential for cell survival after heat shock publication-title: Autophagy doi: 10.4161/auto.8788 – volume: 78 start-page: 172 year: 2015 ident: 2019050123033422700_ref56 article-title: Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.02.031 – volume: 3 year: 2014 ident: 2019050123033422700_ref76 article-title: Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy publication-title: Elife doi: 10.7554/eLife.01612 – volume: 456 start-page: 605 year: 2008 ident: 2019050123033422700_ref72 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature doi: 10.1038/nature07534 – volume: 208 start-page: 41 year: 2012 ident: 2019050123033422700_ref16 article-title: Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.02.001 – volume: 365 start-page: 415 year: 2005 ident: 2019050123033422700_ref3 article-title: A common LRRK2 mutation in idiopathic Parkinson’s disease publication-title: Lancet Lond. Engl. |
SSID | ssj0016437 |
Score | 2.5971541 |
Snippet | Abstract
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most... Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of... |
SourceID | hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1645 |
SubjectTerms | Adult Aged Benzodiazepinones - pharmacology Carbonyl Cyanide m-Chlorophenyl Hydrazone - analogs & derivatives Carbonyl Cyanide m-Chlorophenyl Hydrazone - pharmacology Female Fibroblasts - drug effects Fibroblasts - pathology Fluorescence Resonance Energy Transfer Genetics Human genetics Humans Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 - antagonists & inhibitors Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 - genetics Life Sciences Male Middle Aged Mitochondria - genetics Mitochondria - pathology Mitophagy - drug effects Mutation Neurobiology Neurons and Cognition Parkinson Disease - genetics Parkinson Disease - pathology Phosphorylation Primary Cell Culture Protein Kinases - genetics Pyrimidines - pharmacology Ubiquitin-Protein Ligases - genetics |
Title | LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30629163 https://www.proquest.com/docview/2179316569 https://hal.sorbonne-universite.fr/hal-02408164 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja9tAFB6SlIZcSppu7hKmy6UY1ZJGi9WbaWtMY5eQBdyTGM2MY0Fth3iB5NS_0b_XX9L3ZpHtJoS0F2GkYRjrfXr7Qsg7wWIhJJOeUkHiRQnnXpElmcc4qCcyEYrpZs-9b0nnNPraj_sbm7srWUvzWfFBXN1YV_I_VIV7QFeskv0Hylabwg34DfSFK1AYrneicffo6CDUhY7lxbQOBvoB8iUsZC7HnhtvO6uPSuwewM8u64uS60gBPAfppRtp4OwIdAvgaGLDCDE_HU12zNQCzdRshzkjNi8im66Fdaxma6IBIzdtF0czY33k0gs_Gbs4Txvdj0vWBy9pbrywpSy93mTIR7biSicDz3HIcbc8M9hCRVsH99NJWe19PDSdEL4rDszPpjpaVwZWT8WeKea8rURS9109PXSeEeu9TCIPeywbMWZ4d5T4AA8zF8cx97C5CmJ_hVWDnRiviP0gMXMNrokU025rOALO25byyjfTklfQdT7S8ALbKwRdmy0Fq0sm6LSO88PP7bwLMFh_WjX47rS6-RDwpzvOwckWYNDfC8Hy0dNI-lXWUoBxVt0-0v5_13E3Yw04YsMccIdsu9OsqVubQ0z2XSvkvGZPab3qZJc8sAYRbRl0PyQbarxH7psRqZd7ZLtnkz8ekYWGO7Vwpxrujb_BTiuwUwA7BbBTA3bqwP6RLqFOHdQpQp1WUP_989eUWpA_JqftLyefOp4dG-IJ1kxnHotAx-eDOOUx8zMF9gIPlS9QW0v9YpDxOJB-IPggFPFg0GwWMhNSyqSZAjcTGWNPyNYYvolnhKYsYNJPU6X8QVSwtGgKFrFI8SJIlZBhjbx3bzcXtqc-jnb5kZvcDpYDUXJDlBp5W609N51kblz1BnHgFtyMjRrZBxreustrR94cxAXGAPlYTebTPESBjB23shp5auhe7eMw8_wuZ3hBdpaf8EuyNbuYq1egn8-KfY3YP6XZ5fs |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LRRK2+impairs+PINK1%2FParkin-dependent+mitophagy+via+its+kinase+activity%3A+pathologic+insights+into+Parkinson%E2%80%99s+disease&rft.jtitle=Human+molecular+genetics&rft.au=Bonello%2C+Fiona&rft.au=Hassoun%2C+Sidi-Mohamed&rft.au=Mouton-Liger%2C+Fran%C3%A7ois&rft.au=Shin%2C+Yea+Seul&rft.date=2019-05-15&rft.pub=Oxford+University+Press+%28OUP%29&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=28&rft.issue=10&rft.spage=1645&rft.epage=1660&rft_id=info:doi/10.1093%2Fhmg%2Fddz004&rft_id=info%3Apmid%2F30629163&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02408164v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |