SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport
Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this sce...
Saved in:
Published in | Journal of computational biology Vol. 29; no. 1; p. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2022
|
Subjects | |
Online Access | Get more information |
ISSN | 1557-8666 |
DOI | 10.1089/cmb.2021.0446 |
Cover
Abstract | Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this scenario, computational integration of multi-omic measurements is crucial to enable joint analyses. This integration task is particularly challenging due to the lack of sample-wise or feature-wise correspondences. We present single-cell alignment with optimal transport (SCOT), an unsupervised algorithm that uses the Gromov-Wasserstein optimal transport to align single-cell multi-omics data sets. SCOT performs on par with the current state-of-the-art unsupervised alignment methods, is faster, and requires tuning of fewer hyperparameters. More importantly, SCOT uses a self-tuning heuristic to guide hyperparameter selection based on the Gromov-Wasserstein distance. Thus, in the fully unsupervised setting, SCOT aligns single-cell data sets better than the existing methods without requiring any orthogonal correspondence information. |
---|---|
AbstractList | Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this scenario, computational integration of multi-omic measurements is crucial to enable joint analyses. This integration task is particularly challenging due to the lack of sample-wise or feature-wise correspondences. We present single-cell alignment with optimal transport (SCOT), an unsupervised algorithm that uses the Gromov-Wasserstein optimal transport to align single-cell multi-omics data sets. SCOT performs on par with the current state-of-the-art unsupervised alignment methods, is faster, and requires tuning of fewer hyperparameters. More importantly, SCOT uses a self-tuning heuristic to guide hyperparameter selection based on the Gromov-Wasserstein distance. Thus, in the fully unsupervised setting, SCOT aligns single-cell data sets better than the existing methods without requiring any orthogonal correspondence information. |
Author | Noble, William Stafford Singh, Ritambhara Demetci, Pinar Sandstede, Björn Santorella, Rebecca |
Author_xml | – sequence: 1 givenname: Pinar orcidid: 0000-0002-5644-0326 surname: Demetci fullname: Demetci, Pinar organization: Department of Computer Science, Brown University, Providence, Rhode Island, USA – sequence: 2 givenname: Rebecca surname: Santorella fullname: Santorella, Rebecca organization: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA – sequence: 3 givenname: Björn surname: Sandstede fullname: Sandstede, Björn organization: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA – sequence: 4 givenname: William Stafford surname: Noble fullname: Noble, William Stafford organization: Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA – sequence: 5 givenname: Ritambhara orcidid: 0000-0002-7523-160X surname: Singh fullname: Singh, Ritambhara organization: Department of Computer Science, Brown University, Providence, Rhode Island, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35050714$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRoMozkWXbiUvkDF_ro0LYSjeYKSLqeuhTZMxkmZKm0F8ewfU1bc753wLdJ4OySF0A3QFtDB3tm9XjDJYUSHUGZqDlJoUSqkZWkzTJ6XAFdWXaMYllVSDmKOHbVnV93gb0j46UroY8dsx5kCqPtgJr2PYp96ljL9C_sDVkEPfRFyPTZqGw5iv0IVv4uSu_3aJ3p8e6_KFbKrn13K9IZYXOhN-0ilhVSE77UA3XnRgjbfOeWO8bhvpeWGEAWgZANdcSMPBM6EF41K2bIluf7nDse1dtxvGU8f4vfs_wn4AYfdILg |
CitedBy_id | crossref_primary_10_1038_s43586_024_00334_2 crossref_primary_10_1073_pnas_2313719121 crossref_primary_10_1038_s41467_022_31104_x crossref_primary_10_1016_j_gpb_2022_11_013 crossref_primary_10_1038_s41587_022_01284_4 crossref_primary_10_3389_fgene_2023_998504 crossref_primary_10_7554_eLife_91597_3 crossref_primary_10_1186_s13059_023_02989_8 crossref_primary_10_3389_fcell_2022_883861 crossref_primary_10_3389_fbinf_2023_1191961 crossref_primary_10_1016_j_cotox_2024_100477 crossref_primary_10_1093_bib_bbad130 crossref_primary_10_26508_lsa_202402713 crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_1093_lifemedi_lnae015 crossref_primary_10_1016_j_jocs_2023_101998 crossref_primary_10_7554_eLife_91597 crossref_primary_10_1093_bioinformatics_btac481 crossref_primary_10_1186_s13059_024_03422_4 crossref_primary_10_1016_j_cels_2024_12_001 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1002_cyto_a_24918 crossref_primary_10_1007_s11538_023_01175_y crossref_primary_10_1038_s41587_023_01657_3 crossref_primary_10_1038_s41592_023_01969_x crossref_primary_10_1051_cocv_2024063 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_1137_24M1630499 crossref_primary_10_1016_j_isci_2025_112029 crossref_primary_10_1214_24_AOS2406 crossref_primary_10_1038_s41586_024_08453_2 crossref_primary_10_1093_bioinformatics_btae300 crossref_primary_10_1016_j_jmb_2024_168522 crossref_primary_10_1093_nargab_lqad069 crossref_primary_10_1093_bioadv_vbad171 crossref_primary_10_1038_s41587_024_02186_3 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1007_s00216_023_05028_4 crossref_primary_10_1038_s41467_024_51382_x crossref_primary_10_1016_j_knosys_2024_112774 crossref_primary_10_1038_s44161_022_00205_7 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1089/cmb.2021.0446 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
ExternalDocumentID | 35050714 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Evaluation Study Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: UM1 HG011586 – fundername: NIDDK NIH HHS grantid: U54 DK107979 |
GroupedDBID | --- 0R~ 29K 34G 39C 4.4 53G 5GY ABBKN ABEFU ACGFO ADBBV AENEX AFOSN AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CAG CGR COF CS3 CUY CVF D-I DIK DU5 EBS ECM EIF EJD F5P IAO IER IGS IHR IM4 ITC MV1 NPM NQHIM O9- P2P R.V RIG RML RMSOB RNS TN5 TR2 UE5 VH1 |
ID | FETCH-LOGICAL-c387t-305064c685d7e17af4d1c9fceef99f7ba5f3894911b21137345931f24742355b2 |
IngestDate | Mon Jul 21 05:45:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | multi-omics optimal transport single-cell genomics manifold alignment data integration |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-305064c685d7e17af4d1c9fceef99f7ba5f3894911b21137345931f24742355b2 |
ORCID | 0000-0002-7523-160X 0000-0002-5644-0326 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8812493 |
PMID | 35050714 |
ParticipantIDs | pubmed_primary_35050714 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2022 |
SSID | ssj0013607 |
Score | 2.610276 |
Snippet | Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 3 |
SubjectTerms | Algorithms Computational Biology Computer Simulation Databases, Genetic - statistics & numerical data Genomics - statistics & numerical data Humans Models, Statistical Sequence Alignment - statistics & numerical data Single-Cell Analysis - statistics & numerical data Unsupervised Machine Learning |
Title | SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35050714 |
Volume | 29 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VUepBtL5f7MHr6m422ex6EKooIliFKniTJpuI0q2l1oP-emeyD6MoPi5L2WzLku_rZPJNZoaQHUazXtBj2k-Z1j6TQOM0VolvMs6Y5EJmNtB-3olPr9nZDb9pNNxTS89juatev8wr-Q-qcA9wxSzZPyBb_yjcgM-AL1wBYbj-CuMubMhxS9-F9aev_SPU4WxGrX-RY_Xldv_-roj2W7n1AsxDjvn4VUHzbzxTZTs9VCphWaap9nh1DkjbMwCXmMtbSzTYjXiEZ6kc1JzBDHVVq54ePmB0_jAe1bzsYFMbe9qvUH9sU2E8de9qEpQ6moQu7SiHxS8uGqpUhraUNlxCFVYz-tKWBwmWQlW5hF08DXcx8uw-B9M7zC2wEXhxmIf18-in0trV0ASZEAKtegelnioEFQeiLMoKb7L34T2aZKb67qftiHVLrubJXIma1y7IsUAaetAi00WH0ZcWmT2vy_I-LZIDJMy-59DFc-ji1XTxkC5eSRevpssSuT45vjo69csGGr6KEjH2wZaDx6nihGdCh6JnWBaq1IBfZNLUCNnjBvxVBuudpGEYiYjxNAoNZRi-51zSZTI5eBzoVeJJk6QhVSoWgWQB1SlVYWDAW5QxqivJGlkppuF2WFRJua0maP3bkQ3SfCfPJpky8LfUW-DjjeW2xeINJJtOwA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCOT%3A+Single-Cell+Multi-Omics+Alignment+with+Optimal+Transport&rft.jtitle=Journal+of+computational+biology&rft.au=Demetci%2C+Pinar&rft.au=Santorella%2C+Rebecca&rft.au=Sandstede%2C+Bj%C3%B6rn&rft.au=Noble%2C+William+Stafford&rft.date=2022-01-01&rft.eissn=1557-8666&rft.volume=29&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1089%2Fcmb.2021.0446&rft_id=info%3Apmid%2F35050714&rft_id=info%3Apmid%2F35050714&rft.externalDocID=35050714 |