SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport

Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this sce...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biology Vol. 29; no. 1; p. 3
Main Authors Demetci, Pinar, Santorella, Rebecca, Sandstede, Björn, Noble, William Stafford, Singh, Ritambhara
Format Journal Article
LanguageEnglish
Published United States 01.01.2022
Subjects
Online AccessGet more information
ISSN1557-8666
DOI10.1089/cmb.2021.0446

Cover

Abstract Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this scenario, computational integration of multi-omic measurements is crucial to enable joint analyses. This integration task is particularly challenging due to the lack of sample-wise or feature-wise correspondences. We present single-cell alignment with optimal transport (SCOT), an unsupervised algorithm that uses the Gromov-Wasserstein optimal transport to align single-cell multi-omics data sets. SCOT performs on par with the current state-of-the-art unsupervised alignment methods, is faster, and requires tuning of fewer hyperparameters. More importantly, SCOT uses a self-tuning heuristic to guide hyperparameter selection based on the Gromov-Wasserstein distance. Thus, in the fully unsupervised setting, SCOT aligns single-cell data sets better than the existing methods without requiring any orthogonal correspondence information.
AbstractList Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a few of co-assaying technologies, it is not possible to simultaneously apply different sequencing assays on the same single cell. In this scenario, computational integration of multi-omic measurements is crucial to enable joint analyses. This integration task is particularly challenging due to the lack of sample-wise or feature-wise correspondences. We present single-cell alignment with optimal transport (SCOT), an unsupervised algorithm that uses the Gromov-Wasserstein optimal transport to align single-cell multi-omics data sets. SCOT performs on par with the current state-of-the-art unsupervised alignment methods, is faster, and requires tuning of fewer hyperparameters. More importantly, SCOT uses a self-tuning heuristic to guide hyperparameter selection based on the Gromov-Wasserstein distance. Thus, in the fully unsupervised setting, SCOT aligns single-cell data sets better than the existing methods without requiring any orthogonal correspondence information.
Author Noble, William Stafford
Singh, Ritambhara
Demetci, Pinar
Sandstede, Björn
Santorella, Rebecca
Author_xml – sequence: 1
  givenname: Pinar
  orcidid: 0000-0002-5644-0326
  surname: Demetci
  fullname: Demetci, Pinar
  organization: Department of Computer Science, Brown University, Providence, Rhode Island, USA
– sequence: 2
  givenname: Rebecca
  surname: Santorella
  fullname: Santorella, Rebecca
  organization: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
– sequence: 3
  givenname: Björn
  surname: Sandstede
  fullname: Sandstede, Björn
  organization: Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
– sequence: 4
  givenname: William Stafford
  surname: Noble
  fullname: Noble, William Stafford
  organization: Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA
– sequence: 5
  givenname: Ritambhara
  orcidid: 0000-0002-7523-160X
  surname: Singh
  fullname: Singh, Ritambhara
  organization: Department of Computer Science, Brown University, Providence, Rhode Island, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35050714$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRoMozkWXbiUvkDF_ro0LYSjeYKSLqeuhTZMxkmZKm0F8ewfU1bc753wLdJ4OySF0A3QFtDB3tm9XjDJYUSHUGZqDlJoUSqkZWkzTJ6XAFdWXaMYllVSDmKOHbVnV93gb0j46UroY8dsx5kCqPtgJr2PYp96ljL9C_sDVkEPfRFyPTZqGw5iv0IVv4uSu_3aJ3p8e6_KFbKrn13K9IZYXOhN-0ilhVSE77UA3XnRgjbfOeWO8bhvpeWGEAWgZANdcSMPBM6EF41K2bIluf7nDse1dtxvGU8f4vfs_wn4AYfdILg
CitedBy_id crossref_primary_10_1038_s43586_024_00334_2
crossref_primary_10_1073_pnas_2313719121
crossref_primary_10_1038_s41467_022_31104_x
crossref_primary_10_1016_j_gpb_2022_11_013
crossref_primary_10_1038_s41587_022_01284_4
crossref_primary_10_3389_fgene_2023_998504
crossref_primary_10_7554_eLife_91597_3
crossref_primary_10_1186_s13059_023_02989_8
crossref_primary_10_3389_fcell_2022_883861
crossref_primary_10_3389_fbinf_2023_1191961
crossref_primary_10_1016_j_cotox_2024_100477
crossref_primary_10_1093_bib_bbad130
crossref_primary_10_26508_lsa_202402713
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1093_lifemedi_lnae015
crossref_primary_10_1016_j_jocs_2023_101998
crossref_primary_10_7554_eLife_91597
crossref_primary_10_1093_bioinformatics_btac481
crossref_primary_10_1186_s13059_024_03422_4
crossref_primary_10_1016_j_cels_2024_12_001
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1002_cyto_a_24918
crossref_primary_10_1007_s11538_023_01175_y
crossref_primary_10_1038_s41587_023_01657_3
crossref_primary_10_1038_s41592_023_01969_x
crossref_primary_10_1051_cocv_2024063
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_1137_24M1630499
crossref_primary_10_1016_j_isci_2025_112029
crossref_primary_10_1214_24_AOS2406
crossref_primary_10_1038_s41586_024_08453_2
crossref_primary_10_1093_bioinformatics_btae300
crossref_primary_10_1016_j_jmb_2024_168522
crossref_primary_10_1093_nargab_lqad069
crossref_primary_10_1093_bioadv_vbad171
crossref_primary_10_1038_s41587_024_02186_3
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1007_s00216_023_05028_4
crossref_primary_10_1038_s41467_024_51382_x
crossref_primary_10_1016_j_knosys_2024_112774
crossref_primary_10_1038_s44161_022_00205_7
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/cmb.2021.0446
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
ExternalDocumentID 35050714
Genre Research Support, U.S. Gov't, Non-P.H.S
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: UM1 HG011586
– fundername: NIDDK NIH HHS
  grantid: U54 DK107979
GroupedDBID ---
0R~
29K
34G
39C
4.4
53G
5GY
ABBKN
ABEFU
ACGFO
ADBBV
AENEX
AFOSN
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
D-I
DIK
DU5
EBS
ECM
EIF
EJD
F5P
IAO
IER
IGS
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
R.V
RIG
RML
RMSOB
RNS
TN5
TR2
UE5
VH1
ID FETCH-LOGICAL-c387t-305064c685d7e17af4d1c9fceef99f7ba5f3894911b21137345931f24742355b2
IngestDate Mon Jul 21 05:45:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multi-omics
optimal transport
single-cell genomics
manifold alignment
data integration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-305064c685d7e17af4d1c9fceef99f7ba5f3894911b21137345931f24742355b2
ORCID 0000-0002-7523-160X
0000-0002-5644-0326
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8812493
PMID 35050714
ParticipantIDs pubmed_primary_35050714
PublicationCentury 2000
PublicationDate 2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2022
SSID ssj0013607
Score 2.610276
Snippet Recent advances in sequencing technologies have allowed us to capture various aspects of the genome at single-cell resolution. However, with the exception of a...
SourceID pubmed
SourceType Index Database
StartPage 3
SubjectTerms Algorithms
Computational Biology
Computer Simulation
Databases, Genetic - statistics & numerical data
Genomics - statistics & numerical data
Humans
Models, Statistical
Sequence Alignment - statistics & numerical data
Single-Cell Analysis - statistics & numerical data
Unsupervised Machine Learning
Title SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport
URI https://www.ncbi.nlm.nih.gov/pubmed/35050714
Volume 29
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VUepBtL5f7MHr6m422ex6EKooIliFKniTJpuI0q2l1oP-emeyD6MoPi5L2WzLku_rZPJNZoaQHUazXtBj2k-Z1j6TQOM0VolvMs6Y5EJmNtB-3olPr9nZDb9pNNxTS89juatev8wr-Q-qcA9wxSzZPyBb_yjcgM-AL1wBYbj-CuMubMhxS9-F9aev_SPU4WxGrX-RY_Xldv_-roj2W7n1AsxDjvn4VUHzbzxTZTs9VCphWaap9nh1DkjbMwCXmMtbSzTYjXiEZ6kc1JzBDHVVq54ePmB0_jAe1bzsYFMbe9qvUH9sU2E8de9qEpQ6moQu7SiHxS8uGqpUhraUNlxCFVYz-tKWBwmWQlW5hF08DXcx8uw-B9M7zC2wEXhxmIf18-in0trV0ASZEAKtegelnioEFQeiLMoKb7L34T2aZKb67qftiHVLrubJXIma1y7IsUAaetAi00WH0ZcWmT2vy_I-LZIDJMy-59DFc-ji1XTxkC5eSRevpssSuT45vjo69csGGr6KEjH2wZaDx6nihGdCh6JnWBaq1IBfZNLUCNnjBvxVBuudpGEYiYjxNAoNZRi-51zSZTI5eBzoVeJJk6QhVSoWgWQB1SlVYWDAW5QxqivJGlkppuF2WFRJua0maP3bkQ3SfCfPJpky8LfUW-DjjeW2xeINJJtOwA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCOT%3A+Single-Cell+Multi-Omics+Alignment+with+Optimal+Transport&rft.jtitle=Journal+of+computational+biology&rft.au=Demetci%2C+Pinar&rft.au=Santorella%2C+Rebecca&rft.au=Sandstede%2C+Bj%C3%B6rn&rft.au=Noble%2C+William+Stafford&rft.date=2022-01-01&rft.eissn=1557-8666&rft.volume=29&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1089%2Fcmb.2021.0446&rft_id=info%3Apmid%2F35050714&rft_id=info%3Apmid%2F35050714&rft.externalDocID=35050714