Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function

The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extrac...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 115; no. 3; pp. 1691 - 1702
Main Authors Matott, Michael P., Ruyle, Brian C., Hasser, Eileen M., Kline, David D.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.03.2016
SeriesGlial Cells and Neuronal Signaling
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
DOI10.1152/jn.01054.2015

Cover

Loading…
Abstract The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl- threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.
AbstractList The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl - threo -β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.
The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl- threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.
The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.
Author Hasser, Eileen M.
Matott, Michael P.
Kline, David D.
Ruyle, Brian C.
Author_xml – sequence: 1
  givenname: Michael P.
  orcidid: 0000-0002-7883-4473
  surname: Matott
  fullname: Matott, Michael P.
  organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
– sequence: 2
  givenname: Brian C.
  orcidid: 0000-0001-8507-8218
  surname: Ruyle
  fullname: Ruyle, Brian C.
  organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
– sequence: 3
  givenname: Eileen M.
  orcidid: 0000-0003-4552-1021
  surname: Hasser
  fullname: Hasser, Eileen M.
  organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
– sequence: 4
  givenname: David D.
  orcidid: 0000-0003-3269-0184
  surname: Kline
  fullname: Kline, David D.
  organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26719090$$D View this record in MEDLINE/PubMed
BookMark eNptUc9vFCEUJqbGbqtHr4ajl1kfsAPMxcQ01TZp4sF6JgzDKBsGRmCazsl_XbbbGjWeHnnv-xG-7wydhBgsQq8JbAlp6bt92AKBdrelQNpnaFN3tCFtJ0_QBqC-GQhxis5y3gOAaIG-QKeUC9JBBxv08_LeuKJLTCvWkwsRa-MGXJIOeY6p2JRxicEZ7f2Kk8314gIOt19wXoOeizNYhwEHu6QYtK_04u5cWSsLT3FYvC4WG50GFyt7dunoNS6hAmN4iZ6P2mf76nGeo68fL28vrpqbz5-uLz7cNIZJURpqOWU7wbhthZVCGEOFHmnPDRvanne9hoF3A7NajkTuGOus5ISOjPUw9BbYOXp_1J2XfrKDsaF-xKs5uUmnVUXt1N-X4L6rb_FO7SRIArQKvH0USPHHUnNQk8vGeq-DjUtWRAjOqRScVeibP71-mzylXgHsCDAp5pzsqB46qHEc0vWKgDp0q_ZBPXSrDt1WVvMP60n4__hf5zSqQA
CitedBy_id crossref_primary_10_1113_JP284907
crossref_primary_10_1152_ajpregu_00054_2019
crossref_primary_10_1152_jn_00279_2018
crossref_primary_10_1016_j_physbeh_2020_112982
crossref_primary_10_1152_ajpregu_00019_2021
crossref_primary_10_3389_fphys_2021_821110
crossref_primary_10_1152_ajpregu_00254_2020
crossref_primary_10_1113_JP285854
crossref_primary_10_1152_jn_00536_2018
crossref_primary_10_1152_ajpregu_00293_2023
crossref_primary_10_1152_ajpregu_00033_2020
crossref_primary_10_1113_JP286069
crossref_primary_10_1152_jn_00766_2019
crossref_primary_10_1113_JP274620
crossref_primary_10_1007_s11010_016_2866_z
crossref_primary_10_1016_j_expneurol_2025_115190
crossref_primary_10_1002_cne_24982
crossref_primary_10_1016_j_neuroscience_2020_09_043
crossref_primary_10_1016_j_ecoenv_2024_117513
crossref_primary_10_3390_ijms23020960
crossref_primary_10_1016_j_neuroscience_2020_01_034
crossref_primary_10_1152_ajpregu_00135_2019
crossref_primary_10_1016_j_bbi_2020_02_006
crossref_primary_10_14814_phy2_13877
crossref_primary_10_1152_ajpregu_00319_2019
Cites_doi 10.1113/jphysiol.1990.sp018171
10.1038/ijo.2009.10
10.1111/j.1469-7793.1998.733bg.x
10.1016/j.molmed.2006.12.005
10.1152/ajpregu.1998.275.6.R1858
10.1016/j.neuroscience.2010.11.053
10.1016/S0896-6273(00)80086-0
10.1523/JNEUROSCI.22-08-03215.2002
10.1161/01.RES.48.2.292
10.1152/japplphysiol.00252.2006
10.1016/j.brainresrev.2004.04.004
10.1113/jphysiol.2013.258103
10.1002/glia.21135
10.1016/j.brainres.2006.08.015
10.1016/j.neuroscience.2010.02.012
10.1523/JNEUROSCI.1404-04.2004
10.1152/jn.1993.70.6.2669
10.1016/j.neuropharm.2015.10.011
10.1111/jnc.12087
10.1113/jphysiol.2011.207340
10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
10.1152/ajpregu.00455.2005
10.1046/j.1471-4159.2001.00668.x
10.1523/JNEUROSCI.3105-14.2015
10.1152/ajpregu.1993.264.1.R41
10.1152/jn.1997.78.3.1320
10.1016/j.resp.2008.04.013
10.1152/jn.00764.2013
10.1126/science.6105709
10.1016/j.neuroscience.2004.05.030
10.1146/annurev.ph.56.030194.000521
10.1016/0006-8993(93)90424-L
10.1523/JNEUROSCI.20-08-02749.2000
10.2174/1381612033391261
10.1523/JNEUROSCI.0746-11.2011
10.1152/ajpregu.1999.276.5.R1469
10.1152/jn.01074.2012
10.1073/pnas.97.10.5610
10.1016/S0166-2236(98)01349-6
10.1371/journal.pone.0127764
10.1016/S0896-6273(00)80420-1
10.1016/j.tins.2009.05.001
10.1016/S0166-2236(98)01238-7
10.1016/j.autneu.2012.12.002
10.1016/j.brainres.2006.03.105
10.1111/j.1749-6632.2001.tb03676.x
10.1016/j.jchemneu.2009.03.004
10.1016/S0301-0082(00)00067-8
10.1152/ajpregu.00056.2012
10.1146/annurev.physiol.68.040504.094635
10.1523/JNEUROSCI.4946-06.2007
10.1523/JNEUROSCI.2855-11.2011
10.1124/mol.53.2.195
10.1002/phy2.80
10.1111/j.1460-9568.2004.03689.x
10.1152/ajpregu.00185.2004
10.1016/0896-6273(94)90448-0
10.1152/japplphysiol.01340.2004
10.1073/pnas.96.15.8733
10.1046/j.1471-4159.2001.00588.x
10.1016/0896-6273(95)90158-2
10.1016/j.brainres.2012.12.003
10.1523/JNEUROSCI.16-05-01634.1996
10.1113/jphysiol.2001.012948
10.1111/bph.12235
10.1523/JNEUROSCI.3257-13.2013
10.1016/0896-6273(94)90038-8
10.1016/j.neulet.2014.12.031
10.1016/S0959-4388(99)80043-9
10.1152/jn.00282.2010
10.1523/JNEUROSCI.5217-03.2004
10.1016/S0034-5687(00)00153-5
10.1523/JNEUROSCI.0315-14.2014
10.1523/JNEUROSCI.4598-14.2015
10.1016/j.neuropharm.2009.06.031
10.1016/j.brainres.2009.03.059
10.1152/ajpregu.00028.2012
10.1038/nn.3901
ContentType Journal Article
Copyright Copyright © 2016 the American Physiological Society.
Copyright © 2016 the American Physiological Society 2016 American Physiological Society
Copyright_xml – notice: Copyright © 2016 the American Physiological Society.
– notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.01054.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 1702
ExternalDocumentID PMC4808102
26719090
10_1152_jn_01054_2015
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01-HL-098602
– fundername: NHLBI NIH HHS
  grantid: R01 HL098602
– fundername: NHLBI NIH HHS
  grantid: R01 HL128454
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
  grantid: HL098602; HL098602
– fundername: American Heart Association (AHA)
  grantid: 15GRNT25710159
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
.GJ
0VX
1CY
1Z7
3O-
41~
8M5
AI.
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NEJ
NPM
OHT
UQL
VH1
XJT
XOL
ZGI
ZXP
ZY4
7X8
5PM
ID FETCH-LOGICAL-c387t-2e6234736e57e877cc27af2b6c3d5b69ba0d69d3ea8f184339e8612f33b0dbe03
ISSN 0022-3077
IngestDate Thu Aug 21 18:34:16 EDT 2025
Fri Jul 11 00:35:51 EDT 2025
Mon Jul 21 05:54:13 EDT 2025
Tue Jul 01 04:09:05 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phrenic nerve activity
synaptic currents
astrocytes
glutamate transporters
sympathetic nervous system
Language English
License Copyright © 2016 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-2e6234736e57e877cc27af2b6c3d5b69ba0d69d3ea8f184339e8612f33b0dbe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E. M. Hasser and D. D. Kline contributed equally to this work.
ORCID 0000-0002-7883-4473
0000-0001-8507-8218
0000-0003-3269-0184
0000-0003-4552-1021
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4808102
PMID 26719090
PQID 1776628763
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808102
proquest_miscellaneous_1776628763
pubmed_primary_26719090
crossref_citationtrail_10_1152_jn_01054_2015
crossref_primary_10_1152_jn_01054_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationSeriesTitle Glial Cells and Neuronal Signaling
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2016
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B70
B71
B72
B73
B30
B74
B31
B75
B32
B76
B33
B77
B34
B78
B35
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B12
  doi: 10.1113/jphysiol.1990.sp018171
– ident: B32
  doi: 10.1038/ijo.2009.10
– ident: B77
  doi: 10.1111/j.1469-7793.1998.733bg.x
– ident: B33
  doi: 10.1016/j.molmed.2006.12.005
– ident: B29
  doi: 10.1152/ajpregu.1998.275.6.R1858
– ident: B27
  doi: 10.1016/j.neuroscience.2010.11.053
– ident: B65
  doi: 10.1016/S0896-6273(00)80086-0
– ident: B19
  doi: 10.1523/JNEUROSCI.22-08-03215.2002
– ident: B71
  doi: 10.1161/01.RES.48.2.292
– ident: B48
  doi: 10.1152/japplphysiol.00252.2006
– ident: B67
  doi: 10.1016/j.brainresrev.2004.04.004
– ident: B78
  doi: 10.1113/jphysiol.2013.258103
– ident: B21
  doi: 10.1002/glia.21135
– ident: B58
  doi: 10.1016/j.brainres.2006.08.015
– ident: B45
  doi: 10.1016/j.neuroscience.2010.02.012
– ident: B79
  doi: 10.1523/JNEUROSCI.1404-04.2004
– ident: B31
  doi: 10.1152/jn.1993.70.6.2669
– ident: B38
  doi: 10.1016/j.neuropharm.2015.10.011
– ident: B64
  doi: 10.1111/jnc.12087
– ident: B28
  doi: 10.1113/jphysiol.2011.207340
– ident: B5
  doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
– ident: B54
  doi: 10.1152/ajpregu.00455.2005
– ident: B4
  doi: 10.1046/j.1471-4159.2001.00668.x
– ident: B74
  doi: 10.1523/JNEUROSCI.3105-14.2015
– ident: B75
  doi: 10.1152/ajpregu.1993.264.1.R41
– ident: B44
  doi: 10.1152/jn.1997.78.3.1320
– ident: B47
  doi: 10.1016/j.resp.2008.04.013
– ident: B59
  doi: 10.1152/jn.00764.2013
– ident: B70
  doi: 10.1126/science.6105709
– ident: B15
  doi: 10.1016/j.neuroscience.2004.05.030
– ident: B6
  doi: 10.1146/annurev.ph.56.030194.000521
– ident: B76
  doi: 10.1016/0006-8993(93)90424-L
– ident: B60
  doi: 10.1523/JNEUROSCI.20-08-02749.2000
– ident: B16
  doi: 10.2174/1381612033391261
– ident: B22
  doi: 10.1523/JNEUROSCI.0746-11.2011
– ident: B30
  doi: 10.1152/ajpregu.1999.276.5.R1469
– ident: B40
  doi: 10.1152/jn.01074.2012
– ident: B41
  doi: 10.1073/pnas.97.10.5610
– ident: B7
  doi: 10.1016/S0166-2236(98)01349-6
– ident: B26
  doi: 10.1371/journal.pone.0127764
– ident: B11
  doi: 10.1016/S0896-6273(00)80420-1
– ident: B62
  doi: 10.1016/j.tins.2009.05.001
– ident: B73
  doi: 10.1016/S0166-2236(98)01238-7
– ident: B2
  doi: 10.1016/j.autneu.2012.12.002
– ident: B13
  doi: 10.1016/j.brainres.2006.03.105
– ident: B50
  doi: 10.1111/j.1749-6632.2001.tb03676.x
– ident: B9
  doi: 10.1016/j.jchemneu.2009.03.004
– ident: B24
  doi: 10.1016/S0301-0082(00)00067-8
– ident: B63
  doi: 10.1152/ajpregu.00056.2012
– ident: B72
  doi: 10.1146/annurev.physiol.68.040504.094635
– ident: B46
  doi: 10.1523/JNEUROSCI.4946-06.2007
– ident: B51
  doi: 10.1523/JNEUROSCI.2855-11.2011
– ident: B69
  doi: 10.1124/mol.53.2.195
– ident: B3
  doi: 10.1002/phy2.80
– ident: B37
  doi: 10.1111/j.1460-9568.2004.03689.x
– ident: B53
  doi: 10.1152/ajpregu.00185.2004
– ident: B8
  doi: 10.1016/0896-6273(94)90448-0
– ident: B35
  doi: 10.1152/japplphysiol.01340.2004
– ident: B42
  doi: 10.1073/pnas.96.15.8733
– ident: B68
  doi: 10.1046/j.1471-4159.2001.00588.x
– ident: B17
  doi: 10.1016/0896-6273(95)90158-2
– ident: B23
  doi: 10.1016/j.brainres.2012.12.003
– ident: B61
  doi: 10.1523/JNEUROSCI.16-05-01634.1996
– ident: B18
  doi: 10.1113/jphysiol.2001.012948
– ident: B52
  doi: 10.1111/bph.12235
– ident: B49
  doi: 10.1523/JNEUROSCI.3257-13.2013
– ident: B66
  doi: 10.1016/0896-6273(94)90038-8
– ident: B57
  doi: 10.1016/j.neulet.2014.12.031
– ident: B10
  doi: 10.1016/S0959-4388(99)80043-9
– ident: B56
  doi: 10.1152/jn.00282.2010
– ident: B39
  doi: 10.1523/JNEUROSCI.5217-03.2004
– ident: B14
  doi: 10.1016/S0034-5687(00)00153-5
– ident: B25
  doi: 10.1523/JNEUROSCI.0315-14.2014
– ident: B1
  doi: 10.1523/JNEUROSCI.4598-14.2015
– ident: B34
  doi: 10.1016/j.neuropharm.2009.06.031
– ident: B36
  doi: 10.1016/j.brainres.2009.03.059
– ident: B43
  doi: 10.1152/ajpregu.00028.2012
– ident: B55
  doi: 10.1038/nn.3901
SSID ssj0007502
Score 2.315785
Snippet The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1691
SubjectTerms Action Potentials
Animals
Call for Papers
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials
Glutamate Plasma Membrane Transport Proteins - antagonists & inhibitors
Glutamate Plasma Membrane Transport Proteins - metabolism
Glutamic Acid - metabolism
Heart Rate
Male
Neurons - metabolism
Neurons - physiology
Rats
Rats, Sprague-Dawley
Respiration
Solitary Nucleus - metabolism
Solitary Nucleus - physiology
Synapses - drug effects
Synapses - metabolism
Synapses - physiology
Title Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function
URI https://www.ncbi.nlm.nih.gov/pubmed/26719090
https://www.proquest.com/docview/1776628763
https://pubmed.ncbi.nlm.nih.gov/PMC4808102
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFAeOjfMlIaC8hIXUSO3kcY2hiKhqik_YWOY6jdVrTqbTSuhf-Fj-Pe53ESdYiDV6iKondpufE99q-91xC3ucw4WKh4G6YscgNRwreOZkItxBgTPywkIXCHd3xN350Gn49i84Gg9-dqKXVMvPUzda8kv9BFc4Brpgl-w_I2k7hBHwGfOEICMPxThgfXitMEcNtcjmblnNHqmmOVR9qvfIFyjeYxMfLtYNFOLAehFNOfqBQgbxqtFqNpiV6pZjkYGpJgEM6m-dY2QvDwjBiddHZkkdbaPHcdGxNd2bFpLdkP4bGdXBIFarvnHh2u2e1rsKaPy1wwDnw2oERwwXMgD3FoA9nbC8dVxqpdVi-89nrLmCMeBvB1U0o8OtqLroeh-EceFpxb6CuEj9rRgadYRcVfzomfCRMFvcW8xCh3OxF6WFdUFxRq3vsyXDfMo82aNFMlyKWXpSpaZ5i83vkPoMJCtbOOP7e6tSDH9bq1MOjNequEfvY-_a-N7QxxbkdqdtxfSaPyMMaWrpfEfAxGejyCdndLwHQ2Zru0ROL9S751XKSGk5S5CTtcpJaTtKGkxQ4SRtOUuAkbThJG05CK9pwkm5wkjacfEpOvxxODo7cusiHq4JYLF2mwQEPRcB1JHQshFJMyIJlXAV5lPEkk37OkzzQMi6wNlGQ6Bi88iIIMj_PtB88IzvlvNQvCOUqC7UGoyTBy5dZHIeKgQubRMqP0XoNyYfmz05VrYCPD3mZboV2SPbs7VeV9MvfbnzXIJfC4Iw7brLU89XPdCQE5wxFH4fkeYWk7YpxAc544g-J6GFsb0Dh9_6VcnpuBOBDLJfjs5d3_YGvyIP2xXtNdpaLlX4DvvQye2to-wdnR9AB
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitatory+amino+acid+transporters+tonically+restrain+nTS+synaptic+and+neuronal+activity+to+modulate+cardiorespiratory+function&rft.jtitle=Journal+of+neurophysiology&rft.au=Matott%2C+Michael+P.&rft.au=Ruyle%2C+Brian+C.&rft.au=Hasser%2C+Eileen+M.&rft.au=Kline%2C+David+D.&rft.date=2016-03-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=115&rft.issue=3&rft.spage=1691&rft.epage=1702&rft_id=info:doi/10.1152%2Fjn.01054.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_01054_2015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon