Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function
The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extrac...
Saved in:
Published in | Journal of neurophysiology Vol. 115; no. 3; pp. 1691 - 1702 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.03.2016
|
Series | Glial Cells and Neuronal Signaling |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 |
DOI | 10.1152/jn.01054.2015 |
Cover
Loading…
Abstract | The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl- threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. |
---|---|
AbstractList | The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with
dl
-
threo
-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade with dl- threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function. |
Author | Hasser, Eileen M. Matott, Michael P. Kline, David D. Ruyle, Brian C. |
Author_xml | – sequence: 1 givenname: Michael P. orcidid: 0000-0002-7883-4473 surname: Matott fullname: Matott, Michael P. organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri – sequence: 2 givenname: Brian C. orcidid: 0000-0001-8507-8218 surname: Ruyle fullname: Ruyle, Brian C. organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri – sequence: 3 givenname: Eileen M. orcidid: 0000-0003-4552-1021 surname: Hasser fullname: Hasser, Eileen M. organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri – sequence: 4 givenname: David D. orcidid: 0000-0003-3269-0184 surname: Kline fullname: Kline, David D. organization: Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26719090$$D View this record in MEDLINE/PubMed |
BookMark | eNptUc9vFCEUJqbGbqtHr4ajl1kfsAPMxcQ01TZp4sF6JgzDKBsGRmCazsl_XbbbGjWeHnnv-xG-7wydhBgsQq8JbAlp6bt92AKBdrelQNpnaFN3tCFtJ0_QBqC-GQhxis5y3gOAaIG-QKeUC9JBBxv08_LeuKJLTCvWkwsRa-MGXJIOeY6p2JRxicEZ7f2Kk8314gIOt19wXoOeizNYhwEHu6QYtK_04u5cWSsLT3FYvC4WG50GFyt7dunoNS6hAmN4iZ6P2mf76nGeo68fL28vrpqbz5-uLz7cNIZJURpqOWU7wbhthZVCGEOFHmnPDRvanne9hoF3A7NajkTuGOus5ISOjPUw9BbYOXp_1J2XfrKDsaF-xKs5uUmnVUXt1N-X4L6rb_FO7SRIArQKvH0USPHHUnNQk8vGeq-DjUtWRAjOqRScVeibP71-mzylXgHsCDAp5pzsqB46qHEc0vWKgDp0q_ZBPXSrDt1WVvMP60n4__hf5zSqQA |
CitedBy_id | crossref_primary_10_1113_JP284907 crossref_primary_10_1152_ajpregu_00054_2019 crossref_primary_10_1152_jn_00279_2018 crossref_primary_10_1016_j_physbeh_2020_112982 crossref_primary_10_1152_ajpregu_00019_2021 crossref_primary_10_3389_fphys_2021_821110 crossref_primary_10_1152_ajpregu_00254_2020 crossref_primary_10_1113_JP285854 crossref_primary_10_1152_jn_00536_2018 crossref_primary_10_1152_ajpregu_00293_2023 crossref_primary_10_1152_ajpregu_00033_2020 crossref_primary_10_1113_JP286069 crossref_primary_10_1152_jn_00766_2019 crossref_primary_10_1113_JP274620 crossref_primary_10_1007_s11010_016_2866_z crossref_primary_10_1016_j_expneurol_2025_115190 crossref_primary_10_1002_cne_24982 crossref_primary_10_1016_j_neuroscience_2020_09_043 crossref_primary_10_1016_j_ecoenv_2024_117513 crossref_primary_10_3390_ijms23020960 crossref_primary_10_1016_j_neuroscience_2020_01_034 crossref_primary_10_1152_ajpregu_00135_2019 crossref_primary_10_1016_j_bbi_2020_02_006 crossref_primary_10_14814_phy2_13877 crossref_primary_10_1152_ajpregu_00319_2019 |
Cites_doi | 10.1113/jphysiol.1990.sp018171 10.1038/ijo.2009.10 10.1111/j.1469-7793.1998.733bg.x 10.1016/j.molmed.2006.12.005 10.1152/ajpregu.1998.275.6.R1858 10.1016/j.neuroscience.2010.11.053 10.1016/S0896-6273(00)80086-0 10.1523/JNEUROSCI.22-08-03215.2002 10.1161/01.RES.48.2.292 10.1152/japplphysiol.00252.2006 10.1016/j.brainresrev.2004.04.004 10.1113/jphysiol.2013.258103 10.1002/glia.21135 10.1016/j.brainres.2006.08.015 10.1016/j.neuroscience.2010.02.012 10.1523/JNEUROSCI.1404-04.2004 10.1152/jn.1993.70.6.2669 10.1016/j.neuropharm.2015.10.011 10.1111/jnc.12087 10.1113/jphysiol.2011.207340 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W 10.1152/ajpregu.00455.2005 10.1046/j.1471-4159.2001.00668.x 10.1523/JNEUROSCI.3105-14.2015 10.1152/ajpregu.1993.264.1.R41 10.1152/jn.1997.78.3.1320 10.1016/j.resp.2008.04.013 10.1152/jn.00764.2013 10.1126/science.6105709 10.1016/j.neuroscience.2004.05.030 10.1146/annurev.ph.56.030194.000521 10.1016/0006-8993(93)90424-L 10.1523/JNEUROSCI.20-08-02749.2000 10.2174/1381612033391261 10.1523/JNEUROSCI.0746-11.2011 10.1152/ajpregu.1999.276.5.R1469 10.1152/jn.01074.2012 10.1073/pnas.97.10.5610 10.1016/S0166-2236(98)01349-6 10.1371/journal.pone.0127764 10.1016/S0896-6273(00)80420-1 10.1016/j.tins.2009.05.001 10.1016/S0166-2236(98)01238-7 10.1016/j.autneu.2012.12.002 10.1016/j.brainres.2006.03.105 10.1111/j.1749-6632.2001.tb03676.x 10.1016/j.jchemneu.2009.03.004 10.1016/S0301-0082(00)00067-8 10.1152/ajpregu.00056.2012 10.1146/annurev.physiol.68.040504.094635 10.1523/JNEUROSCI.4946-06.2007 10.1523/JNEUROSCI.2855-11.2011 10.1124/mol.53.2.195 10.1002/phy2.80 10.1111/j.1460-9568.2004.03689.x 10.1152/ajpregu.00185.2004 10.1016/0896-6273(94)90448-0 10.1152/japplphysiol.01340.2004 10.1073/pnas.96.15.8733 10.1046/j.1471-4159.2001.00588.x 10.1016/0896-6273(95)90158-2 10.1016/j.brainres.2012.12.003 10.1523/JNEUROSCI.16-05-01634.1996 10.1113/jphysiol.2001.012948 10.1111/bph.12235 10.1523/JNEUROSCI.3257-13.2013 10.1016/0896-6273(94)90038-8 10.1016/j.neulet.2014.12.031 10.1016/S0959-4388(99)80043-9 10.1152/jn.00282.2010 10.1523/JNEUROSCI.5217-03.2004 10.1016/S0034-5687(00)00153-5 10.1523/JNEUROSCI.0315-14.2014 10.1523/JNEUROSCI.4598-14.2015 10.1016/j.neuropharm.2009.06.031 10.1016/j.brainres.2009.03.059 10.1152/ajpregu.00028.2012 10.1038/nn.3901 |
ContentType | Journal Article |
Copyright | Copyright © 2016 the American Physiological Society. Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
Copyright_xml | – notice: Copyright © 2016 the American Physiological Society. – notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.01054.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 1702 |
ExternalDocumentID | PMC4808102 26719090 10_1152_jn_01054_2015 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01-HL-098602 – fundername: NHLBI NIH HHS grantid: R01 HL098602 – fundername: NHLBI NIH HHS grantid: R01 HL128454 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI) grantid: HL098602; HL098602 – fundername: American Heart Association (AHA) grantid: 15GRNT25710159 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK .GJ 0VX 1CY 1Z7 3O- 41~ 8M5 AI. C1A CGR CUY CVF ECM EIF MVM NEJ NPM OHT UQL VH1 XJT XOL ZGI ZXP ZY4 7X8 5PM |
ID | FETCH-LOGICAL-c387t-2e6234736e57e877cc27af2b6c3d5b69ba0d69d3ea8f184339e8612f33b0dbe03 |
ISSN | 0022-3077 |
IngestDate | Thu Aug 21 18:34:16 EDT 2025 Fri Jul 11 00:35:51 EDT 2025 Mon Jul 21 05:54:13 EDT 2025 Tue Jul 01 04:09:05 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | phrenic nerve activity synaptic currents astrocytes glutamate transporters sympathetic nervous system |
Language | English |
License | Copyright © 2016 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-2e6234736e57e877cc27af2b6c3d5b69ba0d69d3ea8f184339e8612f33b0dbe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E. M. Hasser and D. D. Kline contributed equally to this work. |
ORCID | 0000-0002-7883-4473 0000-0001-8507-8218 0000-0003-3269-0184 0000-0003-4552-1021 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4808102 |
PMID | 26719090 |
PQID | 1776628763 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808102 proquest_miscellaneous_1776628763 pubmed_primary_26719090 crossref_citationtrail_10_1152_jn_01054_2015 crossref_primary_10_1152_jn_01054_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationSeriesTitle | Glial Cells and Neuronal Signaling |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2016 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 B70 B71 B72 B73 B30 B74 B31 B75 B32 B76 B33 B77 B34 B78 B35 B79 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B12 doi: 10.1113/jphysiol.1990.sp018171 – ident: B32 doi: 10.1038/ijo.2009.10 – ident: B77 doi: 10.1111/j.1469-7793.1998.733bg.x – ident: B33 doi: 10.1016/j.molmed.2006.12.005 – ident: B29 doi: 10.1152/ajpregu.1998.275.6.R1858 – ident: B27 doi: 10.1016/j.neuroscience.2010.11.053 – ident: B65 doi: 10.1016/S0896-6273(00)80086-0 – ident: B19 doi: 10.1523/JNEUROSCI.22-08-03215.2002 – ident: B71 doi: 10.1161/01.RES.48.2.292 – ident: B48 doi: 10.1152/japplphysiol.00252.2006 – ident: B67 doi: 10.1016/j.brainresrev.2004.04.004 – ident: B78 doi: 10.1113/jphysiol.2013.258103 – ident: B21 doi: 10.1002/glia.21135 – ident: B58 doi: 10.1016/j.brainres.2006.08.015 – ident: B45 doi: 10.1016/j.neuroscience.2010.02.012 – ident: B79 doi: 10.1523/JNEUROSCI.1404-04.2004 – ident: B31 doi: 10.1152/jn.1993.70.6.2669 – ident: B38 doi: 10.1016/j.neuropharm.2015.10.011 – ident: B64 doi: 10.1111/jnc.12087 – ident: B28 doi: 10.1113/jphysiol.2011.207340 – ident: B5 doi: 10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W – ident: B54 doi: 10.1152/ajpregu.00455.2005 – ident: B4 doi: 10.1046/j.1471-4159.2001.00668.x – ident: B74 doi: 10.1523/JNEUROSCI.3105-14.2015 – ident: B75 doi: 10.1152/ajpregu.1993.264.1.R41 – ident: B44 doi: 10.1152/jn.1997.78.3.1320 – ident: B47 doi: 10.1016/j.resp.2008.04.013 – ident: B59 doi: 10.1152/jn.00764.2013 – ident: B70 doi: 10.1126/science.6105709 – ident: B15 doi: 10.1016/j.neuroscience.2004.05.030 – ident: B6 doi: 10.1146/annurev.ph.56.030194.000521 – ident: B76 doi: 10.1016/0006-8993(93)90424-L – ident: B60 doi: 10.1523/JNEUROSCI.20-08-02749.2000 – ident: B16 doi: 10.2174/1381612033391261 – ident: B22 doi: 10.1523/JNEUROSCI.0746-11.2011 – ident: B30 doi: 10.1152/ajpregu.1999.276.5.R1469 – ident: B40 doi: 10.1152/jn.01074.2012 – ident: B41 doi: 10.1073/pnas.97.10.5610 – ident: B7 doi: 10.1016/S0166-2236(98)01349-6 – ident: B26 doi: 10.1371/journal.pone.0127764 – ident: B11 doi: 10.1016/S0896-6273(00)80420-1 – ident: B62 doi: 10.1016/j.tins.2009.05.001 – ident: B73 doi: 10.1016/S0166-2236(98)01238-7 – ident: B2 doi: 10.1016/j.autneu.2012.12.002 – ident: B13 doi: 10.1016/j.brainres.2006.03.105 – ident: B50 doi: 10.1111/j.1749-6632.2001.tb03676.x – ident: B9 doi: 10.1016/j.jchemneu.2009.03.004 – ident: B24 doi: 10.1016/S0301-0082(00)00067-8 – ident: B63 doi: 10.1152/ajpregu.00056.2012 – ident: B72 doi: 10.1146/annurev.physiol.68.040504.094635 – ident: B46 doi: 10.1523/JNEUROSCI.4946-06.2007 – ident: B51 doi: 10.1523/JNEUROSCI.2855-11.2011 – ident: B69 doi: 10.1124/mol.53.2.195 – ident: B3 doi: 10.1002/phy2.80 – ident: B37 doi: 10.1111/j.1460-9568.2004.03689.x – ident: B53 doi: 10.1152/ajpregu.00185.2004 – ident: B8 doi: 10.1016/0896-6273(94)90448-0 – ident: B35 doi: 10.1152/japplphysiol.01340.2004 – ident: B42 doi: 10.1073/pnas.96.15.8733 – ident: B68 doi: 10.1046/j.1471-4159.2001.00588.x – ident: B17 doi: 10.1016/0896-6273(95)90158-2 – ident: B23 doi: 10.1016/j.brainres.2012.12.003 – ident: B61 doi: 10.1523/JNEUROSCI.16-05-01634.1996 – ident: B18 doi: 10.1113/jphysiol.2001.012948 – ident: B52 doi: 10.1111/bph.12235 – ident: B49 doi: 10.1523/JNEUROSCI.3257-13.2013 – ident: B66 doi: 10.1016/0896-6273(94)90038-8 – ident: B57 doi: 10.1016/j.neulet.2014.12.031 – ident: B10 doi: 10.1016/S0959-4388(99)80043-9 – ident: B56 doi: 10.1152/jn.00282.2010 – ident: B39 doi: 10.1523/JNEUROSCI.5217-03.2004 – ident: B14 doi: 10.1016/S0034-5687(00)00153-5 – ident: B25 doi: 10.1523/JNEUROSCI.0315-14.2014 – ident: B1 doi: 10.1523/JNEUROSCI.4598-14.2015 – ident: B34 doi: 10.1016/j.neuropharm.2009.06.031 – ident: B36 doi: 10.1016/j.brainres.2009.03.059 – ident: B43 doi: 10.1152/ajpregu.00028.2012 – ident: B55 doi: 10.1038/nn.3901 |
SSID | ssj0007502 |
Score | 2.315785 |
Snippet | The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1691 |
SubjectTerms | Action Potentials Animals Call for Papers Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials Glutamate Plasma Membrane Transport Proteins - antagonists & inhibitors Glutamate Plasma Membrane Transport Proteins - metabolism Glutamic Acid - metabolism Heart Rate Male Neurons - metabolism Neurons - physiology Rats Rats, Sprague-Dawley Respiration Solitary Nucleus - metabolism Solitary Nucleus - physiology Synapses - drug effects Synapses - metabolism Synapses - physiology |
Title | Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26719090 https://www.proquest.com/docview/1776628763 https://pubmed.ncbi.nlm.nih.gov/PMC4808102 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFAeOjfMlIaC8hIXUSO3kcY2hiKhqik_YWOY6jdVrTqbTSuhf-Fj-Pe53ESdYiDV6iKondpufE99q-91xC3ucw4WKh4G6YscgNRwreOZkItxBgTPywkIXCHd3xN350Gn49i84Gg9-dqKXVMvPUzda8kv9BFc4Brpgl-w_I2k7hBHwGfOEICMPxThgfXitMEcNtcjmblnNHqmmOVR9qvfIFyjeYxMfLtYNFOLAehFNOfqBQgbxqtFqNpiV6pZjkYGpJgEM6m-dY2QvDwjBiddHZkkdbaPHcdGxNd2bFpLdkP4bGdXBIFarvnHh2u2e1rsKaPy1wwDnw2oERwwXMgD3FoA9nbC8dVxqpdVi-89nrLmCMeBvB1U0o8OtqLroeh-EceFpxb6CuEj9rRgadYRcVfzomfCRMFvcW8xCh3OxF6WFdUFxRq3vsyXDfMo82aNFMlyKWXpSpaZ5i83vkPoMJCtbOOP7e6tSDH9bq1MOjNequEfvY-_a-N7QxxbkdqdtxfSaPyMMaWrpfEfAxGejyCdndLwHQ2Zru0ROL9S751XKSGk5S5CTtcpJaTtKGkxQ4SRtOUuAkbThJG05CK9pwkm5wkjacfEpOvxxODo7cusiHq4JYLF2mwQEPRcB1JHQshFJMyIJlXAV5lPEkk37OkzzQMi6wNlGQ6Bi88iIIMj_PtB88IzvlvNQvCOUqC7UGoyTBy5dZHIeKgQubRMqP0XoNyYfmz05VrYCPD3mZboV2SPbs7VeV9MvfbnzXIJfC4Iw7brLU89XPdCQE5wxFH4fkeYWk7YpxAc544g-J6GFsb0Dh9_6VcnpuBOBDLJfjs5d3_YGvyIP2xXtNdpaLlX4DvvQye2to-wdnR9AB |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Excitatory+amino+acid+transporters+tonically+restrain+nTS+synaptic+and+neuronal+activity+to+modulate+cardiorespiratory+function&rft.jtitle=Journal+of+neurophysiology&rft.au=Matott%2C+Michael+P.&rft.au=Ruyle%2C+Brian+C.&rft.au=Hasser%2C+Eileen+M.&rft.au=Kline%2C+David+D.&rft.date=2016-03-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=115&rft.issue=3&rft.spage=1691&rft.epage=1702&rft_id=info:doi/10.1152%2Fjn.01054.2015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_01054_2015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |