Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension
•Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack...
Saved in:
Published in | Construction & building materials Vol. 259; p. 119796 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack propagation process in the HPSFRC specimen.
High performance steel fiber reinforced concrete (HPSFRC) is widely used in structural engineering due to its excellent performance. It is necessary to study its dynamic mechanical properties for making full use of the material, reducing the engineering cost and optimizing the structural design. Firstly, the dynamic splitting tensile tests of HPSFRC with different fiber contents (0%, 1%, 2%) were conducted by using a 74 mm-diameter splitting Hopkinson pressure bar (SHPB) system under different strain rates (70/s ~ 190/s). Then, according to failure pattern of the specimen and test data, the enhancement mechanism of strain rate and steel fiber on tensile stress of HPSFRC is analyzed, relationship between strain rate and dynamic splitting tensile strength increase factor (DIFft) is also discussed. Furthermore, the enhancement mechanism of steel fiber and strain rate on HPSFRC is verified based on energy conversion during failure process. Finally, the dynamic failure process of HPSFRC is simulated by LS-DYNA, and failure patterns of HPSFRC with different fiber contents are compared from the perspective of crack development. The results indicate that the energy dissipation ratio increases with the ascending steel fiber content and decreases with the ascending strain rate. The steel fiber can increase tensile stress of HPC, and the enhancement degree under quasi-static loading is better than that under dynamic loading. In addition, steel fiber reinforced factor and DIFft have strain-rate effect. Steel fiber reinforced factor decreases as strain rate increases. On the contrary, DIFft increases as strain rate increases, and the increasing trend gradually slows down. These results can provide a basis for improving the dynamic tensile properties of HPSFRC. |
---|---|
AbstractList | •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack propagation process in the HPSFRC specimen.
High performance steel fiber reinforced concrete (HPSFRC) is widely used in structural engineering due to its excellent performance. It is necessary to study its dynamic mechanical properties for making full use of the material, reducing the engineering cost and optimizing the structural design. Firstly, the dynamic splitting tensile tests of HPSFRC with different fiber contents (0%, 1%, 2%) were conducted by using a 74 mm-diameter splitting Hopkinson pressure bar (SHPB) system under different strain rates (70/s ~ 190/s). Then, according to failure pattern of the specimen and test data, the enhancement mechanism of strain rate and steel fiber on tensile stress of HPSFRC is analyzed, relationship between strain rate and dynamic splitting tensile strength increase factor (DIFft) is also discussed. Furthermore, the enhancement mechanism of steel fiber and strain rate on HPSFRC is verified based on energy conversion during failure process. Finally, the dynamic failure process of HPSFRC is simulated by LS-DYNA, and failure patterns of HPSFRC with different fiber contents are compared from the perspective of crack development. The results indicate that the energy dissipation ratio increases with the ascending steel fiber content and decreases with the ascending strain rate. The steel fiber can increase tensile stress of HPC, and the enhancement degree under quasi-static loading is better than that under dynamic loading. In addition, steel fiber reinforced factor and DIFft have strain-rate effect. Steel fiber reinforced factor decreases as strain rate increases. On the contrary, DIFft increases as strain rate increases, and the increasing trend gradually slows down. These results can provide a basis for improving the dynamic tensile properties of HPSFRC. |
ArticleNumber | 119796 |
Author | Zhang, Yaoyao Li, Xiaojing Shi, Chong Chen, Xudong |
Author_xml | – sequence: 1 givenname: Xiaojing surname: Li fullname: Li, Xiaojing email: li8021@163.com, 11807@sdjzu.edu.cn organization: College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China – sequence: 2 givenname: Yaoyao surname: Zhang fullname: Zhang, Yaoyao organization: College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China – sequence: 3 givenname: Chong surname: Shi fullname: Shi, Chong organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China – sequence: 4 givenname: Xudong surname: Chen fullname: Chen, Xudong organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China |
BookMark | eNqNkE1OwzAQhS1UJNrCHcwBUiZJkzgrhKryI1ViA2vLtcetq8SJbAfRu3BYXMICserGI7-Z9zz-ZmRiO4uE3KawSCEt7w4L2dntYBrVirDIIIt6Wld1eUGmKavqBIqsnJAp1AUkUKbsisy8PwBAmZXZlHytP3t0pkUbREOFVdQObRRkvPkwqCPtLA1ovWkwCg7tLux_5rQwzeCQ9iIEdJZ2mu7Nbk9jnO5cK6w8GRAbqs0WHXVobGxIVDSuLB0GpINVsaOOVrRGUt83JgRjd-ODnb0ml1o0Hm9-65y8P67fVs_J5vXpZfWwSWTOqpBkEphmyESuGFasyHW1hCziUWopJCsLJVgdT4VbpQAkpJlUcpkXUNU5Q53PST3mStd571DzPiIR7shT4CfM_MD_YOYnzHzEHL33_7zSBBHi9sFFQmclrMYEjF_8MOi4lwYjPmUcysBVZ85I-QbBsqmD |
CitedBy_id | crossref_primary_10_1038_s41598_023_43723_5 crossref_primary_10_1088_1361_6501_acca3b crossref_primary_10_1016_j_conbuildmat_2021_126237 crossref_primary_10_1016_j_cemconcomp_2022_104554 crossref_primary_10_1088_2053_1591_ad1076 crossref_primary_10_1016_j_conbuildmat_2024_134979 crossref_primary_10_1016_j_istruc_2022_10_086 crossref_primary_10_1061__ASCE_MT_1943_5533_0004074 crossref_primary_10_3389_feart_2022_1037756 crossref_primary_10_1016_j_compositesb_2021_109124 crossref_primary_10_1016_j_conbuildmat_2022_130145 crossref_primary_10_1051_e3sconf_202342702012 crossref_primary_10_1016_j_engfracmech_2024_110231 crossref_primary_10_31185_ejuow_Vol11_Iss1_416 crossref_primary_10_1590_1517_7076_rmat_2023_0128 crossref_primary_10_1002_suco_202200487 crossref_primary_10_1016_j_conbuildmat_2024_136655 crossref_primary_10_1111_ffe_13748 crossref_primary_10_1016_j_ijmecsci_2023_108826 crossref_primary_10_3390_fib11010004 crossref_primary_10_3390_ma14081948 crossref_primary_10_1016_j_ijimpeng_2025_105228 crossref_primary_10_1515_epoly_2024_0078 crossref_primary_10_3390_ma13235313 crossref_primary_10_3390_ma14185387 crossref_primary_10_1007_s11043_024_09750_z crossref_primary_10_1007_s10853_024_09662_w crossref_primary_10_1016_j_conbuildmat_2023_130358 crossref_primary_10_1007_s43452_021_00294_4 crossref_primary_10_1016_j_cemconcomp_2022_104417 crossref_primary_10_3390_ma14010094 crossref_primary_10_1016_j_jclepro_2022_134779 crossref_primary_10_1016_j_conbuildmat_2024_135893 crossref_primary_10_3390_ma15197012 crossref_primary_10_3390_ma17010047 crossref_primary_10_1016_j_conbuildmat_2024_137679 crossref_primary_10_1016_j_conbuildmat_2023_133112 crossref_primary_10_3390_ma17235724 crossref_primary_10_1016_j_jobe_2024_109836 crossref_primary_10_1016_j_engfracmech_2024_109944 crossref_primary_10_1016_j_jobe_2023_108068 crossref_primary_10_1016_j_jobe_2024_111278 crossref_primary_10_1016_j_jobe_2023_108102 crossref_primary_10_1061_JMCEE7_MTENG_17837 crossref_primary_10_1016_j_compstruct_2023_116727 crossref_primary_10_1016_j_istruc_2023_105502 crossref_primary_10_1016_j_tust_2024_106134 crossref_primary_10_1016_j_jobe_2021_103841 crossref_primary_10_1111_ffe_14137 crossref_primary_10_1016_j_coldregions_2023_104110 crossref_primary_10_1007_s11356_022_22048_2 crossref_primary_10_1016_j_conbuildmat_2021_126018 crossref_primary_10_4028_p_2m26c3 crossref_primary_10_1016_j_conbuildmat_2021_125728 |
Cites_doi | 10.1016/S0958-9465(01)00060-9 10.1590/1679-78251513 10.1016/j.ijsolstr.2008.04.002 10.1617/s11527-016-0885-6 10.1016/j.cemconcomp.2019.103343 10.1016/j.conbuildmat.2015.10.088 10.1002/pamm.201710095 10.1016/j.compstruc.2020.106251 10.1016/j.conbuildmat.2018.04.040 10.12989/sem.2016.60.6.939 10.1061/(ASCE)0733-9445(1991)117:9(2769) 10.1016/S0013-7944(99)00065-X 10.1016/j.conbuildmat.2011.12.080 10.1016/j.ijimpeng.2010.10.028 10.1007/BF02472016 10.1016/j.ijimpeng.2009.11.005 10.1007/s00603-013-0465-9 10.1016/j.cemconres.2016.07.003 10.1016/j.engfracmech.2012.12.019 10.1016/S0020-7683(02)00526-7 10.1007/s00603-018-1402-8 10.1115/1.2842350 10.1007/s10338-008-0851-0 10.1061/(ASCE)MT.1943-5533.0002519 10.1016/j.conbuildmat.2018.05.058 10.1016/j.compositesb.2016.01.044 10.1016/j.conbuildmat.2012.09.016 10.1177/1687814018782301 10.1016/j.cemconcomp.2017.02.010 10.1016/j.conbuildmat.2018.10.020 10.1016/j.conbuildmat.2013.07.022 10.1061/(ASCE)MT.1943-5533.0000926 10.1016/j.conbuildmat.2019.07.096 10.1617/s11527-011-9709-x 10.1016/j.conbuildmat.2019.05.094 10.1016/j.conbuildmat.2018.03.101 10.1016/j.ijimpeng.2018.11.012 10.1016/0013-7952(71)90001-9 10.1016/j.matdes.2016.12.027 10.1016/j.conbuildmat.2015.03.034 10.1007/s11340-009-9284-z 10.1007/s00603-014-0602-0 10.1016/j.ceramint.2019.01.106 10.1007/BF02331117 10.1016/j.conbuildmat.2013.10.039 10.1016/0008-8846(95)00144-2 10.1007/s42452-019-0186-0 10.1016/j.conbuildmat.2014.06.033 10.1260/2041-4196.1.3.363 10.1016/0148-9062(78)91472-9 10.1007/BF02411056 10.1016/j.engstruct.2018.05.036 10.1016/j.commatsci.2012.12.018 10.3151/jact.4.79 10.1016/j.conbuildmat.2017.03.185 10.1007/s00603-018-1652-5 10.1016/j.conbuildmat.2004.04.027 10.1007/s11595-015-1306-3 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2020.119796 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2020_119796 S0950061820318018 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SEW SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c387t-2c08f8e8a3d8e7853f7402101dd4ac865da8965ddebdd00c012cdc43507938ef3 |
IEDL.DBID | .~1 |
ISSN | 0950-0618 |
IngestDate | Thu Apr 24 22:54:02 EDT 2025 Tue Jul 01 04:33:05 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulation High performance steel fiber reinforced concrete Crack propagation process Energy dissipation Tensile strength Strain-rate effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-2c08f8e8a3d8e7853f7402101dd4ac865da8965ddebdd00c012cdc43507938ef3 |
ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2020_119796 crossref_citationtrail_10_1016_j_conbuildmat_2020_119796 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2020_119796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-30 |
PublicationDateYYYYMMDD | 2020-10-30 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Tao, Chen, Li, Jia, Zhai (b0065) 2019; 224 Albertini, Cadoni, Labibes (b0030) 1999; 39 ISRM, Rock Characterization Testing and Monitoring, ISRM Suggested Methods, International Society for Rock Mechanics, 1981, 211 pp. Chen, Ge, Zhou, Wu (b0145) 2017; 50 Tedesco, Ross (b0220) 1998; 120 Bragov, Petrov, Karihaloo (b0245) 2013; 110 H.H. Bache, J.D. Birchall, Densified cement ultra-fine par-ticle-based materials, in: Proceedings of the 2nd International Conference on Super Plasticizers in Concrete, vol. 33, 1981, pp. 10–12. Hassan, Wille (b0070) 2018; 191 Haeri, Sarfarazi, Hedayat (b0190) 2016; 60 Hassan, Wille (b0255) 2017; 144 Ai, Tang, Mao, Liu, Fang (b0105) 2013; 69 B. Riisgaard, T. Ngo, P. Mendis, C. Georgakis, H. Stang, Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar, in: 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007. Khan, Hao, Hao (b0205) 2019 Sheikh, Wang, Du, Suo, Li, Zhou (b0090) 2019; 45 Zhang, Liu, Liu, Zhang (b0280) 2018; 30 Dang, Fang, Ding (b0025) 2015 Guo, Gao, Jing, Shim (b0135) 2019; 125 Khosravani, Weinberg (b0130) 2017; 17 Lu, Li (b0240) 2010; 1 Wu, Cui, Fan (b0155) 2019; 217 Su, Li, Wu, Wu, Li (b0215) 2016; 91 Peng, Ju, Wang (b0330) 2015; 48 AFGC-SETRA, Ultra high performance fibre-reinforced concretes, Interim recommendations. Bagneux, France: SETRA, 2002. Wu, Shi, He, Wang (b0285) 2017; 79 Dai, Ng, Zhou (b0365) 2012; 31 Lu, Li (b0080) 2011; 38 Bischoff, Perry (b0295) 1991; 24 Sudarshan, Rao (b0060) 2019; 1 A.E. Naaman, G. Nammur, H. Najm, J. Alwan, Bond mechanisms in fiber reinforced cement-based composites, Report UMCE 89-9, Dept. of Civ. Engrg., Univ. of Michigan, Ann Arbor, Mich., Aug. J., 1989. Xu, Liu, Sun (b0265) 2014; 33 Chen, Xiang, Wang (b0150) 2018; 10 Chen, Wu, Zhou (b0260) 2014; 51 CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland, 1990. Song, Hwang (b0005) 2004; 18 Wong, Zou, Cheng (b0210) 2014; 47 Hou, Cao, Zheng (b0340) 2018; 169 Chen, Liu, Yang, Jing, Feng, Lv, Luo (b0095) 2018; 177 Su, Li, Wu, Wu, Tao, Li (b0360) 2017; 116 Wang, Wang, Liang (b0290) 2008; 21 He, Huang, Zhu (b0335) 2018; 51 Tedesco, Ross, Kuennen (b0315) 1993; 90 Shi, Wu, Xiao, Wang, Huang, Fang (b0015) 2015; 101 Erzar, Forquin (b0075) 2010; 50 Hao, Hao (b0230) 2013; 48 Wu, Ren, Fang (b0275) 2018; 173 Naaman, Namur, Alwan, Najm (b0350) 1991; 117 Long, Li, Xue (b0325) 2016; 44 Zhang, Liu, Liu, Zhang (b0055) 2018; 30 Chen, Wu, Zhou (b0300) 2013; 26 Chen, Shao, Xu, Chen (b0100) 2015; 30 Bamford, Barton, MacMahon (b0085) 1978; 15 Yang, Ma, Jing, Zhao, Wang (b0125) 2015; 12 Georgin, Reynouard (b0020) 2003; 25 ASTM-C496, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards, 2004, pp. 336–341. Yu, Spiesz, Brouwers (b0250) 2014; 68 K. Habel, Structural behaviour of composite UHPFRC–concrete elements, Doctoral thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, to be published, 2004. ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, 2016. Frew, Forrestal, Chen (b0235) 2002; 42 Malvar, Ross (b0310) 1998; 95 Zhou, Hao (b0320) 2008; 45 Mellor, Hawkes (b0185) 1971; 5 Silva, De Brito, Dhir (b0010) 2015; 83 Denneman, Kearsley, Visser (b0200) 2011; 44 Wang, Wang (b0115) 2013; 38 Li, Meng (b0175) 2003; 40 Richard, Cheyrezy (b0040) 1995; 25 Pyo, El-Tawil, Naaman (b0110) 2016; 88 Rong, Sun, Zhang (b0140) 2010; 37 Wang, Xing (b0195) 1999; 64 Fujikake, Senga, Ueda, Ohno, Katagiri (b0050) 2006; 4 Li, Han, Sun (b0225) 2019; 52 Hou, Cao, Rong (b0270) 2018; 170 Naderi, Zhang (b0345) 2020; 234 Song (10.1016/j.conbuildmat.2020.119796_b0005) 2004; 18 Bischoff (10.1016/j.conbuildmat.2020.119796_b0295) 1991; 24 10.1016/j.conbuildmat.2020.119796_b0120 10.1016/j.conbuildmat.2020.119796_b0045 Khan (10.1016/j.conbuildmat.2020.119796_b0205) 2019 10.1016/j.conbuildmat.2020.119796_b0165 Hassan (10.1016/j.conbuildmat.2020.119796_b0255) 2017; 144 10.1016/j.conbuildmat.2020.119796_b0160 Ai (10.1016/j.conbuildmat.2020.119796_b0105) 2013; 69 Bragov (10.1016/j.conbuildmat.2020.119796_b0245) 2013; 110 Richard (10.1016/j.conbuildmat.2020.119796_b0040) 1995; 25 Yang (10.1016/j.conbuildmat.2020.119796_b0125) 2015; 12 Haeri (10.1016/j.conbuildmat.2020.119796_b0190) 2016; 60 Zhang (10.1016/j.conbuildmat.2020.119796_b0280) 2018; 30 Chen (10.1016/j.conbuildmat.2020.119796_b0100) 2015; 30 Long (10.1016/j.conbuildmat.2020.119796_b0325) 2016; 44 Naderi (10.1016/j.conbuildmat.2020.119796_b0345) 2020; 234 Chen (10.1016/j.conbuildmat.2020.119796_b0150) 2018; 10 Tedesco (10.1016/j.conbuildmat.2020.119796_b0220) 1998; 120 Wu (10.1016/j.conbuildmat.2020.119796_b0275) 2018; 173 Bamford (10.1016/j.conbuildmat.2020.119796_b0085) 1978; 15 Wang (10.1016/j.conbuildmat.2020.119796_b0195) 1999; 64 Sudarshan (10.1016/j.conbuildmat.2020.119796_b0060) 2019; 1 Zhang (10.1016/j.conbuildmat.2020.119796_b0055) 2018; 30 Rong (10.1016/j.conbuildmat.2020.119796_b0140) 2010; 37 Silva (10.1016/j.conbuildmat.2020.119796_b0010) 2015; 83 10.1016/j.conbuildmat.2020.119796_b0170 Chen (10.1016/j.conbuildmat.2020.119796_b0300) 2013; 26 Wu (10.1016/j.conbuildmat.2020.119796_b0285) 2017; 79 Zhou (10.1016/j.conbuildmat.2020.119796_b0320) 2008; 45 He (10.1016/j.conbuildmat.2020.119796_b0335) 2018; 51 Guo (10.1016/j.conbuildmat.2020.119796_b0065) 2019; 224 Wu (10.1016/j.conbuildmat.2020.119796_b0155) 2019; 217 Erzar (10.1016/j.conbuildmat.2020.119796_b0075) 2010; 50 Fujikake (10.1016/j.conbuildmat.2020.119796_b0050) 2006; 4 Tedesco (10.1016/j.conbuildmat.2020.119796_b0315) 1993; 90 Peng (10.1016/j.conbuildmat.2020.119796_b0330) 2015; 48 Wang (10.1016/j.conbuildmat.2020.119796_b0115) 2013; 38 Chen (10.1016/j.conbuildmat.2020.119796_b0095) 2018; 177 Xu (10.1016/j.conbuildmat.2020.119796_b0265) 2014; 33 Chen (10.1016/j.conbuildmat.2020.119796_b0145) 2017; 50 10.1016/j.conbuildmat.2020.119796_b0305 Albertini (10.1016/j.conbuildmat.2020.119796_b0030) 1999; 39 Shi (10.1016/j.conbuildmat.2020.119796_b0015) 2015; 101 Khosravani (10.1016/j.conbuildmat.2020.119796_b0130) 2017; 17 10.1016/j.conbuildmat.2020.119796_b0180 Wang (10.1016/j.conbuildmat.2020.119796_b0290) 2008; 21 Naaman (10.1016/j.conbuildmat.2020.119796_b0350) 1991; 117 Wong (10.1016/j.conbuildmat.2020.119796_b0210) 2014; 47 Malvar (10.1016/j.conbuildmat.2020.119796_b0310) 1998; 95 Hou (10.1016/j.conbuildmat.2020.119796_b0340) 2018; 169 Denneman (10.1016/j.conbuildmat.2020.119796_b0200) 2011; 44 Su (10.1016/j.conbuildmat.2020.119796_b0215) 2016; 91 10.1016/j.conbuildmat.2020.119796_b0355 10.1016/j.conbuildmat.2020.119796_b0035 Guo (10.1016/j.conbuildmat.2020.119796_b0135) 2019; 125 Dang (10.1016/j.conbuildmat.2020.119796_b0025) 2015 Pyo (10.1016/j.conbuildmat.2020.119796_b0110) 2016; 88 Frew (10.1016/j.conbuildmat.2020.119796_b0235) 2002; 42 Yu (10.1016/j.conbuildmat.2020.119796_b0250) 2014; 68 Lu (10.1016/j.conbuildmat.2020.119796_b0240) 2010; 1 Dai (10.1016/j.conbuildmat.2020.119796_b0365) 2012; 31 Mellor (10.1016/j.conbuildmat.2020.119796_b0185) 1971; 5 Su (10.1016/j.conbuildmat.2020.119796_b0360) 2017; 116 Li (10.1016/j.conbuildmat.2020.119796_b0225) 2019; 52 Georgin (10.1016/j.conbuildmat.2020.119796_b0020) 2003; 25 Hassan (10.1016/j.conbuildmat.2020.119796_b0070) 2018; 191 Lu (10.1016/j.conbuildmat.2020.119796_b0080) 2011; 38 Sheikh (10.1016/j.conbuildmat.2020.119796_b0090) 2019; 45 Chen (10.1016/j.conbuildmat.2020.119796_b0260) 2014; 51 Li (10.1016/j.conbuildmat.2020.119796_b0175) 2003; 40 Hao (10.1016/j.conbuildmat.2020.119796_b0230) 2013; 48 Hou (10.1016/j.conbuildmat.2020.119796_b0270) 2018; 170 |
References_xml | – volume: 101 start-page: 741 year: 2015 end-page: 751 ident: b0015 article-title: A review on ultra high performance concrete: Part I. Raw materials and mixture design publication-title: Constr. Build. Mater. – volume: 45 start-page: 7931 year: 2019 end-page: 7944 ident: b0090 article-title: Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass publication-title: Ceram. Int. – volume: 25 start-page: 131 year: 2003 end-page: 143 ident: b0020 article-title: Modeling of structures subjected to impact: concrete behaviour under high strain rate publication-title: Cem. Concr. Compos. – volume: 38 start-page: 171 year: 2011 end-page: 180 ident: b0080 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int. J. Impact Eng. – volume: 51 start-page: 1447 year: 2018 end-page: 1455 ident: b0335 article-title: Energy dissipation-based method for fatigue life prediction of rock salt publication-title: Rock Mech. Rock Eng. – volume: 38 start-page: 1146 year: 2013 end-page: 1151 ident: b0115 article-title: Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete publication-title: Constr. Build. Mater. – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: b0175 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int. J. Solids Struct. – reference: CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland, 1990. – volume: 169 start-page: 119 year: 2018 end-page: 130 ident: b0340 article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates publication-title: Eng. Struct. – volume: 110 start-page: 477 year: 2013 end-page: 488 ident: b0245 article-title: Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete publication-title: Eng. Fract. Mech. – volume: 69 start-page: 389 year: 2013 end-page: 395 ident: b0105 article-title: Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression publication-title: Comput. Mater. Sci. – volume: 95 start-page: 735 year: 1998 end-page: 739 ident: b0310 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater. J. – volume: 45 start-page: 4648 year: 2008 end-page: 4661 ident: b0320 article-title: Modeling of compressive behaviour of concrete-like materials at high strain rates publication-title: Int. J. Solids Struct. – volume: 31 start-page: 231 year: 2012 end-page: 242 ident: b0365 article-title: Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques publication-title: Constr. Build. Mater. – volume: 15 start-page: 319 year: 1978 end-page: 368 ident: b0085 article-title: International society for rock mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses publication-title: Int. J. Rock Mech. Mining Sci. Geomech. Abstracts – volume: 60 start-page: 939 year: 2016 end-page: 952 ident: b0190 article-title: Suggesting a new testing device for determination of tensile strength of concrete publication-title: Struct. Eng. Mech. – volume: 51 start-page: 15 year: 2014 end-page: 23 ident: b0260 article-title: Quantification of dynamic tensile behavior of cement-based materials publication-title: Constr. Build. Mater. – volume: 79 start-page: 148 year: 2017 end-page: 157 ident: b0285 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem. Concr. Compos. – volume: 90 start-page: 162 year: 1993 end-page: 169 ident: b0315 article-title: Experimental and numerical analysis of high strain rates splitting tensile tests publication-title: ACI Mater. J. – volume: 44 start-page: 1441 year: 2011 end-page: 1449 ident: b0200 article-title: Splitting tensile test for fibre reinforced concrete publication-title: Mater. Struct. – reference: K. Habel, Structural behaviour of composite UHPFRC–concrete elements, Doctoral thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, to be published, 2004. – volume: 48 start-page: 521 year: 2013 end-page: 532 ident: b0230 article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests publication-title: Constr. Build. Mater. – volume: 42 start-page: 93 year: 2002 end-page: 106 ident: b0235 article-title: Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar publication-title: Exp. Mech. – volume: 50 start-page: 1 year: 2017 ident: b0145 article-title: Dynamic Brazilian test of concrete using split Hopkinson pressure bar publication-title: Mater. Struct. – volume: 224 start-page: 504 year: 2019 end-page: 514 ident: b0065 article-title: Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete publication-title: Constr. Build. Mater. – reference: ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, 2016. – volume: 234 start-page: 106251 year: 2020 ident: b0345 article-title: A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete publication-title: Comput. Struct. – volume: 25 start-page: 1501 year: 1995 end-page: 1511 ident: b0040 article-title: Composition of reactive powder concretes publication-title: Cem. Concr. Res. – volume: 33 start-page: 2814 year: 2014 end-page: 2819 ident: b0265 article-title: Analysis of dynamic split tensile tests of flattened Brazilian disc of three rocks publication-title: Chin. J. Rock Mech. Eng. – volume: 120 start-page: 398 year: 1998 end-page: 405 ident: b0220 article-title: Strain-rate-dependent constitutive equations for concrete publication-title: J. Pressure Vessel Technol. – volume: 64 start-page: 193 year: 1999 end-page: 201 ident: b0195 article-title: Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks publication-title: Eng. Fract. Mech. – volume: 30 start-page: 04018323 year: 2018 ident: b0055 article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate publication-title: J. Mater. Civ. Eng. – volume: 1 start-page: 215 year: 2019 ident: b0060 article-title: Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete publication-title: SN Appl. Sci. – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: b0295 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater. Struct. – reference: ASTM-C496, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards, 2004, pp. 336–341. – volume: 5 start-page: 173 year: 1971 end-page: 225 ident: b0185 article-title: Measurement of tensile strength by diametral compression of discs and annuli publication-title: Eng. Geol. – volume: 52 start-page: 1623 year: 2019 end-page: 1643 ident: b0225 article-title: Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests publication-title: Rock Mech. Rock Eng. – volume: 117 start-page: 2769 year: 1991 end-page: 2790 ident: b0350 article-title: Fiber pullout and bond slip. I: analytical study publication-title: J. Struct. Eng. – volume: 91 start-page: 595 year: 2016 end-page: 609 ident: b0215 article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete publication-title: Compos. B Eng. – volume: 144 start-page: 747 year: 2017 end-page: 757 ident: b0255 article-title: Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique publication-title: Constr. Build. Mater. – volume: 17 start-page: 251 year: 2017 end-page: 252 ident: b0130 article-title: Investigations on dynamic fracture of ultra-high performance concrete by Brazilian tests publication-title: PAMM – volume: 50 start-page: 941 year: 2010 end-page: 955 ident: b0075 article-title: An experimental method to determine the tensile strength of concrete at high rates of strain publication-title: Exp. Mech. – volume: 88 start-page: 144 year: 2016 end-page: 156 ident: b0110 article-title: Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates publication-title: Cem. Concr. Res. – reference: AFGC-SETRA, Ultra high performance fibre-reinforced concretes, Interim recommendations. Bagneux, France: SETRA, 2002. – volume: 191 start-page: 398 year: 2018 end-page: 410 ident: b0070 article-title: Comparative experimental investigations on th einforced ultra high-performance concretes using split Hopkinson pressure bar publication-title: Constr. Build. Mater. – volume: 10 year: 2018 ident: b0150 article-title: Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test publication-title: Adv. Mech. Eng. – volume: 48 start-page: 509 year: 2015 end-page: 526 ident: b0330 article-title: Energy dissipation and release during coal failure under conventional triaxial compression publication-title: Rock Mech. Rock Eng. – volume: 39 start-page: 137 year: 1999 end-page: 141 ident: b0030 article-title: Study of the mechanical properties of plain concrete under dynamic loading publication-title: Exp. Mech. – volume: 217 start-page: 573 year: 2019 end-page: 591 ident: b0155 article-title: Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure publication-title: Constr. Build. Mater. – volume: 21 start-page: 420 year: 2008 end-page: 430 ident: b0290 article-title: Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes publication-title: Acta Mech. Solida Sin. – volume: 4 start-page: 79 year: 2006 end-page: 84 ident: b0050 article-title: Effects of strain rate on tensile behavior of reactive powder concrete publication-title: J. Adv. Concr. Technol. – volume: 1 start-page: 363 year: 2010 end-page: 390 ident: b0240 article-title: Appraisal of pulse-shaping technique in split hopkinson pressure bar tests for brittle materials publication-title: Int. J. Prot. Struct. – reference: A.E. Naaman, G. Nammur, H. Najm, J. Alwan, Bond mechanisms in fiber reinforced cement-based composites, Report UMCE 89-9, Dept. of Civ. Engrg., Univ. of Michigan, Ann Arbor, Mich., Aug. J., 1989. – volume: 177 start-page: 477 year: 2018 end-page: 498 ident: b0095 article-title: Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages publication-title: Constr. Build. Mater. – volume: 12 start-page: 730 year: 2015 end-page: 746 ident: b0125 article-title: Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique publication-title: Latin Am. J. Solids Struct. – volume: 26 start-page: 04014005 year: 2013 ident: b0300 article-title: Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique publication-title: J. Mater. Civ. Eng. – volume: 44 start-page: 1081 year: 2016 end-page: 1090 ident: b0325 article-title: Mechanical properties of self-compacting concrete incorporating rubber particles under impact load publication-title: J. Chin. Ceram. Soc. – year: 2019 ident: b0205 article-title: Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension publication-title: Cem. Concr. Compos. – volume: 30 year: 2018 ident: b0280 article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate publication-title: J. Mater. Civ. Eng. – volume: 116 start-page: 340 year: 2017 end-page: 351 ident: b0360 article-title: Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads publication-title: Mater. Des. – volume: 83 start-page: 108 year: 2015 end-page: 118 ident: b0010 article-title: Tensile strength behaviour of recycled aggregate concrete publication-title: Constr. Build. Mater. – reference: ISRM, Rock Characterization Testing and Monitoring, ISRM Suggested Methods, International Society for Rock Mechanics, 1981, 211 pp. – volume: 68 start-page: 158 year: 2014 end-page: 171 ident: b0250 article-title: Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): experiments and modeling publication-title: Constr. Build. Mater. – volume: 125 start-page: 188 year: 2019 end-page: 211 ident: b0135 article-title: Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate publication-title: Int. J. Impact Eng. – volume: 170 start-page: 570 year: 2018 end-page: 581 ident: b0270 article-title: Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete publication-title: Constr. Build. Mater. – volume: 173 start-page: 251 year: 2018 end-page: 261 ident: b0275 article-title: Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC publication-title: Constr. Build. Mater. – start-page: 2922 year: 2015 end-page: 2928 ident: b0025 article-title: Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT publication-title: Chin. J. Rock Mech. Eng. – volume: 37 start-page: 515 year: 2010 end-page: 520 ident: b0140 article-title: Dynamic compression behavior of ultra-high performance cement based composites publication-title: Int. J. Impact Eng. – reference: B. Riisgaard, T. Ngo, P. Mendis, C. Georgakis, H. Stang, Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar, in: 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007. – volume: 30 start-page: 1268 year: 2015 end-page: 1273 ident: b0100 article-title: Experimental study on tensile behavior of cement paste, mortar and concrete under high strain rates publication-title: J. Wuhan Univ. Technol.-Mater Sci. Ed. – volume: 18 start-page: 669 year: 2004 end-page: 673 ident: b0005 article-title: Mechanical properties of high-strength steel fiber-reinforced concrete publication-title: Constr. Build. Mater. – reference: H.H. Bache, J.D. Birchall, Densified cement ultra-fine par-ticle-based materials, in: Proceedings of the 2nd International Conference on Super Plasticizers in Concrete, vol. 33, 1981, pp. 10–12. – volume: 47 start-page: 1117 year: 2014 end-page: 1133 ident: b0210 article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests publication-title: Rock Mech. Rock Eng. – ident: 10.1016/j.conbuildmat.2020.119796_b0180 – volume: 25 start-page: 131 issue: 1 year: 2003 ident: 10.1016/j.conbuildmat.2020.119796_b0020 article-title: Modeling of structures subjected to impact: concrete behaviour under high strain rate publication-title: Cem. Concr. Compos. doi: 10.1016/S0958-9465(01)00060-9 – volume: 12 start-page: 730 issue: 4 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0125 article-title: Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique publication-title: Latin Am. J. Solids Struct. doi: 10.1590/1679-78251513 – volume: 45 start-page: 4648 issue: 17 year: 2008 ident: 10.1016/j.conbuildmat.2020.119796_b0320 article-title: Modeling of compressive behaviour of concrete-like materials at high strain rates publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2008.04.002 – volume: 50 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.conbuildmat.2020.119796_b0145 article-title: Dynamic Brazilian test of concrete using split Hopkinson pressure bar publication-title: Mater. Struct. doi: 10.1617/s11527-016-0885-6 – volume: 95 start-page: 735 issue: 6 year: 1998 ident: 10.1016/j.conbuildmat.2020.119796_b0310 article-title: Review of strain rate effects for concrete in tension publication-title: ACI Mater. J. – year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0205 article-title: Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.103343 – volume: 101 start-page: 741 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0015 article-title: A review on ultra high performance concrete: Part I. Raw materials and mixture design publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.10.088 – ident: 10.1016/j.conbuildmat.2020.119796_b0305 – volume: 17 start-page: 251 issue: 1 year: 2017 ident: 10.1016/j.conbuildmat.2020.119796_b0130 article-title: Investigations on dynamic fracture of ultra-high performance concrete by Brazilian tests publication-title: PAMM doi: 10.1002/pamm.201710095 – volume: 234 start-page: 106251 year: 2020 ident: 10.1016/j.conbuildmat.2020.119796_b0345 article-title: A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106251 – volume: 173 start-page: 251 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0275 article-title: Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.04.040 – volume: 60 start-page: 939 issue: 6 year: 2016 ident: 10.1016/j.conbuildmat.2020.119796_b0190 article-title: Suggesting a new testing device for determination of tensile strength of concrete publication-title: Struct. Eng. Mech. doi: 10.12989/sem.2016.60.6.939 – volume: 117 start-page: 2769 year: 1991 ident: 10.1016/j.conbuildmat.2020.119796_b0350 article-title: Fiber pullout and bond slip. I: analytical study publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769) – volume: 64 start-page: 193 year: 1999 ident: 10.1016/j.conbuildmat.2020.119796_b0195 article-title: Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(99)00065-X – volume: 31 start-page: 231 year: 2012 ident: 10.1016/j.conbuildmat.2020.119796_b0365 article-title: Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.12.080 – ident: 10.1016/j.conbuildmat.2020.119796_b0045 – volume: 38 start-page: 171 issue: 4 year: 2011 ident: 10.1016/j.conbuildmat.2020.119796_b0080 article-title: About the dynamic uniaxial tensile strength of concrete-like materials publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2010.10.028 – volume: 24 start-page: 425 issue: 6 year: 1991 ident: 10.1016/j.conbuildmat.2020.119796_b0295 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater. Struct. doi: 10.1007/BF02472016 – volume: 37 start-page: 515 issue: 5 year: 2010 ident: 10.1016/j.conbuildmat.2020.119796_b0140 article-title: Dynamic compression behavior of ultra-high performance cement based composites publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2009.11.005 – volume: 47 start-page: 1117 issue: 4 year: 2014 ident: 10.1016/j.conbuildmat.2020.119796_b0210 article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-013-0465-9 – volume: 88 start-page: 144 year: 2016 ident: 10.1016/j.conbuildmat.2020.119796_b0110 article-title: Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2016.07.003 – volume: 110 start-page: 477 year: 2013 ident: 10.1016/j.conbuildmat.2020.119796_b0245 article-title: Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2012.12.019 – volume: 40 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.conbuildmat.2020.119796_b0175 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(02)00526-7 – start-page: 2922 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0025 article-title: Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT publication-title: Chin. J. Rock Mech. Eng. – volume: 51 start-page: 1447 issue: 5 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0335 article-title: Energy dissipation-based method for fatigue life prediction of rock salt publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1402-8 – volume: 120 start-page: 398 issue: 4 year: 1998 ident: 10.1016/j.conbuildmat.2020.119796_b0220 article-title: Strain-rate-dependent constitutive equations for concrete publication-title: J. Pressure Vessel Technol. doi: 10.1115/1.2842350 – volume: 21 start-page: 420 issue: 5 year: 2008 ident: 10.1016/j.conbuildmat.2020.119796_b0290 article-title: Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-008-0851-0 – volume: 30 start-page: 04018323 issue: 12 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0055 article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002519 – volume: 177 start-page: 477 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0095 article-title: Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.058 – volume: 91 start-page: 595 year: 2016 ident: 10.1016/j.conbuildmat.2020.119796_b0215 article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.01.044 – volume: 44 start-page: 1081 issue: 8 year: 2016 ident: 10.1016/j.conbuildmat.2020.119796_b0325 article-title: Mechanical properties of self-compacting concrete incorporating rubber particles under impact load publication-title: J. Chin. Ceram. Soc. – ident: 10.1016/j.conbuildmat.2020.119796_b0120 – ident: 10.1016/j.conbuildmat.2020.119796_b0165 – ident: 10.1016/j.conbuildmat.2020.119796_b0035 – volume: 38 start-page: 1146 year: 2013 ident: 10.1016/j.conbuildmat.2020.119796_b0115 article-title: Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.09.016 – volume: 10 issue: 6 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0150 article-title: Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018782301 – volume: 79 start-page: 148 year: 2017 ident: 10.1016/j.conbuildmat.2020.119796_b0285 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.02.010 – volume: 191 start-page: 398 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0070 article-title: Comparative experimental investigations on th einforced ultra high-performance concretes using split Hopkinson pressure bar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.020 – volume: 48 start-page: 521 year: 2013 ident: 10.1016/j.conbuildmat.2020.119796_b0230 article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.07.022 – volume: 26 start-page: 04014005 issue: 6 year: 2013 ident: 10.1016/j.conbuildmat.2020.119796_b0300 article-title: Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000926 – volume: 224 start-page: 504 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0065 article-title: Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.096 – volume: 44 start-page: 1441 year: 2011 ident: 10.1016/j.conbuildmat.2020.119796_b0200 article-title: Splitting tensile test for fibre reinforced concrete publication-title: Mater. Struct. doi: 10.1617/s11527-011-9709-x – volume: 217 start-page: 573 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0155 article-title: Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.05.094 – volume: 170 start-page: 570 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0270 article-title: Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.03.101 – volume: 125 start-page: 188 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0135 article-title: Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2018.11.012 – volume: 5 start-page: 173 issue: 3 year: 1971 ident: 10.1016/j.conbuildmat.2020.119796_b0185 article-title: Measurement of tensile strength by diametral compression of discs and annuli publication-title: Eng. Geol. doi: 10.1016/0013-7952(71)90001-9 – volume: 116 start-page: 340 year: 2017 ident: 10.1016/j.conbuildmat.2020.119796_b0360 article-title: Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.12.027 – volume: 83 start-page: 108 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0010 article-title: Tensile strength behaviour of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.034 – volume: 30 issue: 12 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0280 article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002519 – volume: 33 start-page: 2814 year: 2014 ident: 10.1016/j.conbuildmat.2020.119796_b0265 article-title: Analysis of dynamic split tensile tests of flattened Brazilian disc of three rocks publication-title: Chin. J. Rock Mech. Eng. – volume: 50 start-page: 941 issue: 7 year: 2010 ident: 10.1016/j.conbuildmat.2020.119796_b0075 article-title: An experimental method to determine the tensile strength of concrete at high rates of strain publication-title: Exp. Mech. doi: 10.1007/s11340-009-9284-z – volume: 48 start-page: 509 issue: 2 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0330 article-title: Energy dissipation and release during coal failure under conventional triaxial compression publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-014-0602-0 – volume: 45 start-page: 7931 issue: 6 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0090 article-title: Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.01.106 – volume: 39 start-page: 137 issue: 2 year: 1999 ident: 10.1016/j.conbuildmat.2020.119796_b0030 article-title: Study of the mechanical properties of plain concrete under dynamic loading publication-title: Exp. Mech. doi: 10.1007/BF02331117 – volume: 51 start-page: 15 year: 2014 ident: 10.1016/j.conbuildmat.2020.119796_b0260 article-title: Quantification of dynamic tensile behavior of cement-based materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.10.039 – volume: 25 start-page: 1501 issue: 7 year: 1995 ident: 10.1016/j.conbuildmat.2020.119796_b0040 article-title: Composition of reactive powder concretes publication-title: Cem. Concr. Res. doi: 10.1016/0008-8846(95)00144-2 – ident: 10.1016/j.conbuildmat.2020.119796_b0355 – volume: 1 start-page: 215 issue: 3 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0060 article-title: Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0186-0 – volume: 68 start-page: 158 year: 2014 ident: 10.1016/j.conbuildmat.2020.119796_b0250 article-title: Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): experiments and modeling publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.06.033 – volume: 1 start-page: 363 issue: 3 year: 2010 ident: 10.1016/j.conbuildmat.2020.119796_b0240 article-title: Appraisal of pulse-shaping technique in split hopkinson pressure bar tests for brittle materials publication-title: Int. J. Prot. Struct. doi: 10.1260/2041-4196.1.3.363 – volume: 15 start-page: 319 issue: 6 year: 1978 ident: 10.1016/j.conbuildmat.2020.119796_b0085 article-title: International society for rock mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses publication-title: Int. J. Rock Mech. Mining Sci. Geomech. Abstracts doi: 10.1016/0148-9062(78)91472-9 – volume: 42 start-page: 93 issue: 1 year: 2002 ident: 10.1016/j.conbuildmat.2020.119796_b0235 article-title: Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar publication-title: Exp. Mech. doi: 10.1007/BF02411056 – volume: 169 start-page: 119 year: 2018 ident: 10.1016/j.conbuildmat.2020.119796_b0340 article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.05.036 – ident: 10.1016/j.conbuildmat.2020.119796_b0160 – volume: 69 start-page: 389 year: 2013 ident: 10.1016/j.conbuildmat.2020.119796_b0105 article-title: Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.12.018 – volume: 4 start-page: 79 issue: 1 year: 2006 ident: 10.1016/j.conbuildmat.2020.119796_b0050 article-title: Effects of strain rate on tensile behavior of reactive powder concrete publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.4.79 – volume: 144 start-page: 747 year: 2017 ident: 10.1016/j.conbuildmat.2020.119796_b0255 article-title: Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.03.185 – volume: 52 start-page: 1623 issue: 6 year: 2019 ident: 10.1016/j.conbuildmat.2020.119796_b0225 article-title: Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1652-5 – volume: 18 start-page: 669 issue: 9 year: 2004 ident: 10.1016/j.conbuildmat.2020.119796_b0005 article-title: Mechanical properties of high-strength steel fiber-reinforced concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2004.04.027 – volume: 90 start-page: 162 issue: 2 year: 1993 ident: 10.1016/j.conbuildmat.2020.119796_b0315 article-title: Experimental and numerical analysis of high strain rates splitting tensile tests publication-title: ACI Mater. J. – volume: 30 start-page: 1268 issue: 6 year: 2015 ident: 10.1016/j.conbuildmat.2020.119796_b0100 article-title: Experimental study on tensile behavior of cement paste, mortar and concrete under high strain rates publication-title: J. Wuhan Univ. Technol.-Mater Sci. Ed. doi: 10.1007/s11595-015-1306-3 – ident: 10.1016/j.conbuildmat.2020.119796_b0170 |
SSID | ssj0006262 |
Score | 2.5308852 |
Snippet | •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 119796 |
SubjectTerms | Crack propagation process Energy dissipation High performance steel fiber reinforced concrete Numerical simulation Strain-rate effect Tensile strength |
Title | Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2020.119796 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1MCqE9hDZJqdPGTCFXxbK8klbQizExbk19yAfJTUi7s6mLWBtXvvaX9Md2ZiXHLhRS6MXCQoOknWHnDXrzRoiLRCYajVRBmtgskCYLg9IkcZBpjDANY2s1F4pf58n0Tn55iB86YrzthWFaZbv3N3u6363bM_12NfurxaJ_Q-CAEzClMIrLcMANv1KmHOWXP3c0DwLsUaO3xwNWBupQfNxxvKjkLHn6NIFDKhUj3kCylPX7_5aj9vLO5LU4agEjjJpneiM66I7Fqz0ZwRPx62pPph8KZ8Btmg8xFXj5WFg68Ez1CoGbQ9xj_c1fZ4sF09Jh5VU2HSwtsH4xrHbtBGSAWIFlZgms0Qut0qoBvRQBzhqBu9DWYJrJ9vCDQK2nUjc3XLpTcTe5uh1Pg3bqQqCHKq2DSIfKKlTF0ChMKZvbVHJhODBGFlolsSlURr8GS2PCUFOG00YT6mKpPYV2-FYcuKXDdwK4lgpTiwwipTWmzGJt5bCIYowGZVx0hdquc65bSXKejFHlW-7Z93zPRTm7KG9c1BXRk-mq0eX4F6NPW2fmfwRZTvnjefOz_zN_L17yP5_4wg_ioF5v8JwQTV32fMj2xIvR59l0zsfZ9f3sN6fK_mk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NQEB60gpeHZVddvKy7I_gamqa5nIAvpSj11hcVfAvJOXO0SzktNf4bf6wzSaoVBAVf8pBkSHLmMN83ZOYbgKM4jDWZUHlJbFMvNKnvFSaOvFRTQIkfWaslUbwaxoPb8PwuuluC_rwXRsoqm9hfx_QqWjdn2s1qtqejUfuayYEAMEMY70u_o5ZhRdSpohas9M4uBsPXgMycPagl92TGSketwuFbmRdnnYUMoGZ-yNliIDEkTUTC_yOYWoCe05_wo-GM2Ktf6xcskduEjQUlwS14PllQ6sfcGXRP9b-YMVYKsjhxWBWrjwmlP8Tdlw_VfTYfSWU6TiuhTYcTiyJhjNO3jgI2IBqjleISnFGltcoLh_xRzDlLQmlEm6Gph9vjI_Paqpq6fuDEbcPt6clNf-A1gxc83VVJ6QXaV1aRyrtGUcKAbpNQcsOOMWGuVRyZXKV8NFQY4_uaQU4bzcRL1PYU2e5vaLmJox1ASaf8xJLwyNAaU6SRtmE3DyIKOkWU74Kar3OmG1VyGY4xzublZ_-zBRdl4qKsdtEuBK-m01qa4ytGx3NnZu_2WcYQ8rn53vfM_8Ha4ObqMrs8G17sw7pcqXDQ_wOtcvZEB0xwyuJvs4FfAFHL_3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+study+on+tensile+strength+and+failure+pattern+of+high+performance+steel+fiber+reinforced+concrete+under+dynamic+splitting+tension&rft.jtitle=Construction+%26+building+materials&rft.au=Li%2C+Xiaojing&rft.au=Zhang%2C+Yaoyao&rft.au=Shi%2C+Chong&rft.au=Chen%2C+Xudong&rft.date=2020-10-30&rft.issn=0950-0618&rft.volume=259&rft.spage=119796&rft_id=info:doi/10.1016%2Fj.conbuildmat.2020.119796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2020_119796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |