Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension

•Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 259; p. 119796
Main Authors Li, Xiaojing, Zhang, Yaoyao, Shi, Chong, Chen, Xudong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack propagation process in the HPSFRC specimen. High performance steel fiber reinforced concrete (HPSFRC) is widely used in structural engineering due to its excellent performance. It is necessary to study its dynamic mechanical properties for making full use of the material, reducing the engineering cost and optimizing the structural design. Firstly, the dynamic splitting tensile tests of HPSFRC with different fiber contents (0%, 1%, 2%) were conducted by using a 74 mm-diameter splitting Hopkinson pressure bar (SHPB) system under different strain rates (70/s ~ 190/s). Then, according to failure pattern of the specimen and test data, the enhancement mechanism of strain rate and steel fiber on tensile stress of HPSFRC is analyzed, relationship between strain rate and dynamic splitting tensile strength increase factor (DIFft) is also discussed. Furthermore, the enhancement mechanism of steel fiber and strain rate on HPSFRC is verified based on energy conversion during failure process. Finally, the dynamic failure process of HPSFRC is simulated by LS-DYNA, and failure patterns of HPSFRC with different fiber contents are compared from the perspective of crack development. The results indicate that the energy dissipation ratio increases with the ascending steel fiber content and decreases with the ascending strain rate. The steel fiber can increase tensile stress of HPC, and the enhancement degree under quasi-static loading is better than that under dynamic loading. In addition, steel fiber reinforced factor and DIFft have strain-rate effect. Steel fiber reinforced factor decreases as strain rate increases. On the contrary, DIFft increases as strain rate increases, and the increasing trend gradually slows down. These results can provide a basis for improving the dynamic tensile properties of HPSFRC.
AbstractList •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was studied.•The effects of steel fiber content and strain rate on energy dissipation ratio were analyzed.•LS-DYNA was used to reproduce the crack propagation process in the HPSFRC specimen. High performance steel fiber reinforced concrete (HPSFRC) is widely used in structural engineering due to its excellent performance. It is necessary to study its dynamic mechanical properties for making full use of the material, reducing the engineering cost and optimizing the structural design. Firstly, the dynamic splitting tensile tests of HPSFRC with different fiber contents (0%, 1%, 2%) were conducted by using a 74 mm-diameter splitting Hopkinson pressure bar (SHPB) system under different strain rates (70/s ~ 190/s). Then, according to failure pattern of the specimen and test data, the enhancement mechanism of strain rate and steel fiber on tensile stress of HPSFRC is analyzed, relationship between strain rate and dynamic splitting tensile strength increase factor (DIFft) is also discussed. Furthermore, the enhancement mechanism of steel fiber and strain rate on HPSFRC is verified based on energy conversion during failure process. Finally, the dynamic failure process of HPSFRC is simulated by LS-DYNA, and failure patterns of HPSFRC with different fiber contents are compared from the perspective of crack development. The results indicate that the energy dissipation ratio increases with the ascending steel fiber content and decreases with the ascending strain rate. The steel fiber can increase tensile stress of HPC, and the enhancement degree under quasi-static loading is better than that under dynamic loading. In addition, steel fiber reinforced factor and DIFft have strain-rate effect. Steel fiber reinforced factor decreases as strain rate increases. On the contrary, DIFft increases as strain rate increases, and the increasing trend gradually slows down. These results can provide a basis for improving the dynamic tensile properties of HPSFRC.
ArticleNumber 119796
Author Zhang, Yaoyao
Li, Xiaojing
Shi, Chong
Chen, Xudong
Author_xml – sequence: 1
  givenname: Xiaojing
  surname: Li
  fullname: Li, Xiaojing
  email: li8021@163.com, 11807@sdjzu.edu.cn
  organization: College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
– sequence: 2
  givenname: Yaoyao
  surname: Zhang
  fullname: Zhang, Yaoyao
  organization: College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
– sequence: 3
  givenname: Chong
  surname: Shi
  fullname: Shi, Chong
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Xudong
  surname: Chen
  fullname: Chen, Xudong
  organization: College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
BookMark eNqNkE1OwzAQhS1UJNrCHcwBUiZJkzgrhKryI1ViA2vLtcetq8SJbAfRu3BYXMICserGI7-Z9zz-ZmRiO4uE3KawSCEt7w4L2dntYBrVirDIIIt6Wld1eUGmKavqBIqsnJAp1AUkUKbsisy8PwBAmZXZlHytP3t0pkUbREOFVdQObRRkvPkwqCPtLA1ovWkwCg7tLux_5rQwzeCQ9iIEdJZ2mu7Nbk9jnO5cK6w8GRAbqs0WHXVobGxIVDSuLB0GpINVsaOOVrRGUt83JgRjd-ODnb0ml1o0Hm9-65y8P67fVs_J5vXpZfWwSWTOqpBkEphmyESuGFasyHW1hCziUWopJCsLJVgdT4VbpQAkpJlUcpkXUNU5Q53PST3mStd571DzPiIR7shT4CfM_MD_YOYnzHzEHL33_7zSBBHi9sFFQmclrMYEjF_8MOi4lwYjPmUcysBVZ85I-QbBsqmD
CitedBy_id crossref_primary_10_1038_s41598_023_43723_5
crossref_primary_10_1088_1361_6501_acca3b
crossref_primary_10_1016_j_conbuildmat_2021_126237
crossref_primary_10_1016_j_cemconcomp_2022_104554
crossref_primary_10_1088_2053_1591_ad1076
crossref_primary_10_1016_j_conbuildmat_2024_134979
crossref_primary_10_1016_j_istruc_2022_10_086
crossref_primary_10_1061__ASCE_MT_1943_5533_0004074
crossref_primary_10_3389_feart_2022_1037756
crossref_primary_10_1016_j_compositesb_2021_109124
crossref_primary_10_1016_j_conbuildmat_2022_130145
crossref_primary_10_1051_e3sconf_202342702012
crossref_primary_10_1016_j_engfracmech_2024_110231
crossref_primary_10_31185_ejuow_Vol11_Iss1_416
crossref_primary_10_1590_1517_7076_rmat_2023_0128
crossref_primary_10_1002_suco_202200487
crossref_primary_10_1016_j_conbuildmat_2024_136655
crossref_primary_10_1111_ffe_13748
crossref_primary_10_1016_j_ijmecsci_2023_108826
crossref_primary_10_3390_fib11010004
crossref_primary_10_3390_ma14081948
crossref_primary_10_1016_j_ijimpeng_2025_105228
crossref_primary_10_1515_epoly_2024_0078
crossref_primary_10_3390_ma13235313
crossref_primary_10_3390_ma14185387
crossref_primary_10_1007_s11043_024_09750_z
crossref_primary_10_1007_s10853_024_09662_w
crossref_primary_10_1016_j_conbuildmat_2023_130358
crossref_primary_10_1007_s43452_021_00294_4
crossref_primary_10_1016_j_cemconcomp_2022_104417
crossref_primary_10_3390_ma14010094
crossref_primary_10_1016_j_jclepro_2022_134779
crossref_primary_10_1016_j_conbuildmat_2024_135893
crossref_primary_10_3390_ma15197012
crossref_primary_10_3390_ma17010047
crossref_primary_10_1016_j_conbuildmat_2024_137679
crossref_primary_10_1016_j_conbuildmat_2023_133112
crossref_primary_10_3390_ma17235724
crossref_primary_10_1016_j_jobe_2024_109836
crossref_primary_10_1016_j_engfracmech_2024_109944
crossref_primary_10_1016_j_jobe_2023_108068
crossref_primary_10_1016_j_jobe_2024_111278
crossref_primary_10_1016_j_jobe_2023_108102
crossref_primary_10_1061_JMCEE7_MTENG_17837
crossref_primary_10_1016_j_compstruct_2023_116727
crossref_primary_10_1016_j_istruc_2023_105502
crossref_primary_10_1016_j_tust_2024_106134
crossref_primary_10_1016_j_jobe_2021_103841
crossref_primary_10_1111_ffe_14137
crossref_primary_10_1016_j_coldregions_2023_104110
crossref_primary_10_1007_s11356_022_22048_2
crossref_primary_10_1016_j_conbuildmat_2021_126018
crossref_primary_10_4028_p_2m26c3
crossref_primary_10_1016_j_conbuildmat_2021_125728
Cites_doi 10.1016/S0958-9465(01)00060-9
10.1590/1679-78251513
10.1016/j.ijsolstr.2008.04.002
10.1617/s11527-016-0885-6
10.1016/j.cemconcomp.2019.103343
10.1016/j.conbuildmat.2015.10.088
10.1002/pamm.201710095
10.1016/j.compstruc.2020.106251
10.1016/j.conbuildmat.2018.04.040
10.12989/sem.2016.60.6.939
10.1061/(ASCE)0733-9445(1991)117:9(2769)
10.1016/S0013-7944(99)00065-X
10.1016/j.conbuildmat.2011.12.080
10.1016/j.ijimpeng.2010.10.028
10.1007/BF02472016
10.1016/j.ijimpeng.2009.11.005
10.1007/s00603-013-0465-9
10.1016/j.cemconres.2016.07.003
10.1016/j.engfracmech.2012.12.019
10.1016/S0020-7683(02)00526-7
10.1007/s00603-018-1402-8
10.1115/1.2842350
10.1007/s10338-008-0851-0
10.1061/(ASCE)MT.1943-5533.0002519
10.1016/j.conbuildmat.2018.05.058
10.1016/j.compositesb.2016.01.044
10.1016/j.conbuildmat.2012.09.016
10.1177/1687814018782301
10.1016/j.cemconcomp.2017.02.010
10.1016/j.conbuildmat.2018.10.020
10.1016/j.conbuildmat.2013.07.022
10.1061/(ASCE)MT.1943-5533.0000926
10.1016/j.conbuildmat.2019.07.096
10.1617/s11527-011-9709-x
10.1016/j.conbuildmat.2019.05.094
10.1016/j.conbuildmat.2018.03.101
10.1016/j.ijimpeng.2018.11.012
10.1016/0013-7952(71)90001-9
10.1016/j.matdes.2016.12.027
10.1016/j.conbuildmat.2015.03.034
10.1007/s11340-009-9284-z
10.1007/s00603-014-0602-0
10.1016/j.ceramint.2019.01.106
10.1007/BF02331117
10.1016/j.conbuildmat.2013.10.039
10.1016/0008-8846(95)00144-2
10.1007/s42452-019-0186-0
10.1016/j.conbuildmat.2014.06.033
10.1260/2041-4196.1.3.363
10.1016/0148-9062(78)91472-9
10.1007/BF02411056
10.1016/j.engstruct.2018.05.036
10.1016/j.commatsci.2012.12.018
10.3151/jact.4.79
10.1016/j.conbuildmat.2017.03.185
10.1007/s00603-018-1652-5
10.1016/j.conbuildmat.2004.04.027
10.1007/s11595-015-1306-3
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2020.119796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2020_119796
S0950061820318018
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RIG
RNS
SET
SEW
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c387t-2c08f8e8a3d8e7853f7402101dd4ac865da8965ddebdd00c012cdc43507938ef3
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Thu Apr 24 22:54:02 EDT 2025
Tue Jul 01 04:33:05 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulation
High performance steel fiber reinforced concrete
Crack propagation process
Energy dissipation
Tensile strength
Strain-rate effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-2c08f8e8a3d8e7853f7402101dd4ac865da8965ddebdd00c012cdc43507938ef3
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2020_119796
crossref_citationtrail_10_1016_j_conbuildmat_2020_119796
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2020_119796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-30
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-30
  day: 30
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Tao, Chen, Li, Jia, Zhai (b0065) 2019; 224
Albertini, Cadoni, Labibes (b0030) 1999; 39
ISRM, Rock Characterization Testing and Monitoring, ISRM Suggested Methods, International Society for Rock Mechanics, 1981, 211 pp.
Chen, Ge, Zhou, Wu (b0145) 2017; 50
Tedesco, Ross (b0220) 1998; 120
Bragov, Petrov, Karihaloo (b0245) 2013; 110
H.H. Bache, J.D. Birchall, Densified cement ultra-fine par-ticle-based materials, in: Proceedings of the 2nd International Conference on Super Plasticizers in Concrete, vol. 33, 1981, pp. 10–12.
Hassan, Wille (b0070) 2018; 191
Haeri, Sarfarazi, Hedayat (b0190) 2016; 60
Hassan, Wille (b0255) 2017; 144
Ai, Tang, Mao, Liu, Fang (b0105) 2013; 69
B. Riisgaard, T. Ngo, P. Mendis, C. Georgakis, H. Stang, Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar, in: 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007.
Khan, Hao, Hao (b0205) 2019
Sheikh, Wang, Du, Suo, Li, Zhou (b0090) 2019; 45
Zhang, Liu, Liu, Zhang (b0280) 2018; 30
Dang, Fang, Ding (b0025) 2015
Guo, Gao, Jing, Shim (b0135) 2019; 125
Khosravani, Weinberg (b0130) 2017; 17
Lu, Li (b0240) 2010; 1
Wu, Cui, Fan (b0155) 2019; 217
Su, Li, Wu, Wu, Li (b0215) 2016; 91
Peng, Ju, Wang (b0330) 2015; 48
AFGC-SETRA, Ultra high performance fibre-reinforced concretes, Interim recommendations. Bagneux, France: SETRA, 2002.
Wu, Shi, He, Wang (b0285) 2017; 79
Dai, Ng, Zhou (b0365) 2012; 31
Lu, Li (b0080) 2011; 38
Bischoff, Perry (b0295) 1991; 24
Sudarshan, Rao (b0060) 2019; 1
A.E. Naaman, G. Nammur, H. Najm, J. Alwan, Bond mechanisms in fiber reinforced cement-based composites, Report UMCE 89-9, Dept. of Civ. Engrg., Univ. of Michigan, Ann Arbor, Mich., Aug. J., 1989.
Xu, Liu, Sun (b0265) 2014; 33
Chen, Xiang, Wang (b0150) 2018; 10
Chen, Wu, Zhou (b0260) 2014; 51
CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland, 1990.
Song, Hwang (b0005) 2004; 18
Wong, Zou, Cheng (b0210) 2014; 47
Hou, Cao, Zheng (b0340) 2018; 169
Chen, Liu, Yang, Jing, Feng, Lv, Luo (b0095) 2018; 177
Su, Li, Wu, Wu, Tao, Li (b0360) 2017; 116
Wang, Wang, Liang (b0290) 2008; 21
He, Huang, Zhu (b0335) 2018; 51
Tedesco, Ross, Kuennen (b0315) 1993; 90
Shi, Wu, Xiao, Wang, Huang, Fang (b0015) 2015; 101
Erzar, Forquin (b0075) 2010; 50
Hao, Hao (b0230) 2013; 48
Wu, Ren, Fang (b0275) 2018; 173
Naaman, Namur, Alwan, Najm (b0350) 1991; 117
Long, Li, Xue (b0325) 2016; 44
Zhang, Liu, Liu, Zhang (b0055) 2018; 30
Chen, Wu, Zhou (b0300) 2013; 26
Chen, Shao, Xu, Chen (b0100) 2015; 30
Bamford, Barton, MacMahon (b0085) 1978; 15
Yang, Ma, Jing, Zhao, Wang (b0125) 2015; 12
Georgin, Reynouard (b0020) 2003; 25
ASTM-C496, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards, 2004, pp. 336–341.
Yu, Spiesz, Brouwers (b0250) 2014; 68
K. Habel, Structural behaviour of composite UHPFRC–concrete elements, Doctoral thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, to be published, 2004.
ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, 2016.
Frew, Forrestal, Chen (b0235) 2002; 42
Malvar, Ross (b0310) 1998; 95
Zhou, Hao (b0320) 2008; 45
Mellor, Hawkes (b0185) 1971; 5
Silva, De Brito, Dhir (b0010) 2015; 83
Denneman, Kearsley, Visser (b0200) 2011; 44
Wang, Wang (b0115) 2013; 38
Li, Meng (b0175) 2003; 40
Richard, Cheyrezy (b0040) 1995; 25
Pyo, El-Tawil, Naaman (b0110) 2016; 88
Rong, Sun, Zhang (b0140) 2010; 37
Wang, Xing (b0195) 1999; 64
Fujikake, Senga, Ueda, Ohno, Katagiri (b0050) 2006; 4
Li, Han, Sun (b0225) 2019; 52
Hou, Cao, Rong (b0270) 2018; 170
Naderi, Zhang (b0345) 2020; 234
Song (10.1016/j.conbuildmat.2020.119796_b0005) 2004; 18
Bischoff (10.1016/j.conbuildmat.2020.119796_b0295) 1991; 24
10.1016/j.conbuildmat.2020.119796_b0120
10.1016/j.conbuildmat.2020.119796_b0045
Khan (10.1016/j.conbuildmat.2020.119796_b0205) 2019
10.1016/j.conbuildmat.2020.119796_b0165
Hassan (10.1016/j.conbuildmat.2020.119796_b0255) 2017; 144
10.1016/j.conbuildmat.2020.119796_b0160
Ai (10.1016/j.conbuildmat.2020.119796_b0105) 2013; 69
Bragov (10.1016/j.conbuildmat.2020.119796_b0245) 2013; 110
Richard (10.1016/j.conbuildmat.2020.119796_b0040) 1995; 25
Yang (10.1016/j.conbuildmat.2020.119796_b0125) 2015; 12
Haeri (10.1016/j.conbuildmat.2020.119796_b0190) 2016; 60
Zhang (10.1016/j.conbuildmat.2020.119796_b0280) 2018; 30
Chen (10.1016/j.conbuildmat.2020.119796_b0100) 2015; 30
Long (10.1016/j.conbuildmat.2020.119796_b0325) 2016; 44
Naderi (10.1016/j.conbuildmat.2020.119796_b0345) 2020; 234
Chen (10.1016/j.conbuildmat.2020.119796_b0150) 2018; 10
Tedesco (10.1016/j.conbuildmat.2020.119796_b0220) 1998; 120
Wu (10.1016/j.conbuildmat.2020.119796_b0275) 2018; 173
Bamford (10.1016/j.conbuildmat.2020.119796_b0085) 1978; 15
Wang (10.1016/j.conbuildmat.2020.119796_b0195) 1999; 64
Sudarshan (10.1016/j.conbuildmat.2020.119796_b0060) 2019; 1
Zhang (10.1016/j.conbuildmat.2020.119796_b0055) 2018; 30
Rong (10.1016/j.conbuildmat.2020.119796_b0140) 2010; 37
Silva (10.1016/j.conbuildmat.2020.119796_b0010) 2015; 83
10.1016/j.conbuildmat.2020.119796_b0170
Chen (10.1016/j.conbuildmat.2020.119796_b0300) 2013; 26
Wu (10.1016/j.conbuildmat.2020.119796_b0285) 2017; 79
Zhou (10.1016/j.conbuildmat.2020.119796_b0320) 2008; 45
He (10.1016/j.conbuildmat.2020.119796_b0335) 2018; 51
Guo (10.1016/j.conbuildmat.2020.119796_b0065) 2019; 224
Wu (10.1016/j.conbuildmat.2020.119796_b0155) 2019; 217
Erzar (10.1016/j.conbuildmat.2020.119796_b0075) 2010; 50
Fujikake (10.1016/j.conbuildmat.2020.119796_b0050) 2006; 4
Tedesco (10.1016/j.conbuildmat.2020.119796_b0315) 1993; 90
Peng (10.1016/j.conbuildmat.2020.119796_b0330) 2015; 48
Wang (10.1016/j.conbuildmat.2020.119796_b0115) 2013; 38
Chen (10.1016/j.conbuildmat.2020.119796_b0095) 2018; 177
Xu (10.1016/j.conbuildmat.2020.119796_b0265) 2014; 33
Chen (10.1016/j.conbuildmat.2020.119796_b0145) 2017; 50
10.1016/j.conbuildmat.2020.119796_b0305
Albertini (10.1016/j.conbuildmat.2020.119796_b0030) 1999; 39
Shi (10.1016/j.conbuildmat.2020.119796_b0015) 2015; 101
Khosravani (10.1016/j.conbuildmat.2020.119796_b0130) 2017; 17
10.1016/j.conbuildmat.2020.119796_b0180
Wang (10.1016/j.conbuildmat.2020.119796_b0290) 2008; 21
Naaman (10.1016/j.conbuildmat.2020.119796_b0350) 1991; 117
Wong (10.1016/j.conbuildmat.2020.119796_b0210) 2014; 47
Malvar (10.1016/j.conbuildmat.2020.119796_b0310) 1998; 95
Hou (10.1016/j.conbuildmat.2020.119796_b0340) 2018; 169
Denneman (10.1016/j.conbuildmat.2020.119796_b0200) 2011; 44
Su (10.1016/j.conbuildmat.2020.119796_b0215) 2016; 91
10.1016/j.conbuildmat.2020.119796_b0355
10.1016/j.conbuildmat.2020.119796_b0035
Guo (10.1016/j.conbuildmat.2020.119796_b0135) 2019; 125
Dang (10.1016/j.conbuildmat.2020.119796_b0025) 2015
Pyo (10.1016/j.conbuildmat.2020.119796_b0110) 2016; 88
Frew (10.1016/j.conbuildmat.2020.119796_b0235) 2002; 42
Yu (10.1016/j.conbuildmat.2020.119796_b0250) 2014; 68
Lu (10.1016/j.conbuildmat.2020.119796_b0240) 2010; 1
Dai (10.1016/j.conbuildmat.2020.119796_b0365) 2012; 31
Mellor (10.1016/j.conbuildmat.2020.119796_b0185) 1971; 5
Su (10.1016/j.conbuildmat.2020.119796_b0360) 2017; 116
Li (10.1016/j.conbuildmat.2020.119796_b0225) 2019; 52
Georgin (10.1016/j.conbuildmat.2020.119796_b0020) 2003; 25
Hassan (10.1016/j.conbuildmat.2020.119796_b0070) 2018; 191
Lu (10.1016/j.conbuildmat.2020.119796_b0080) 2011; 38
Sheikh (10.1016/j.conbuildmat.2020.119796_b0090) 2019; 45
Chen (10.1016/j.conbuildmat.2020.119796_b0260) 2014; 51
Li (10.1016/j.conbuildmat.2020.119796_b0175) 2003; 40
Hao (10.1016/j.conbuildmat.2020.119796_b0230) 2013; 48
Hou (10.1016/j.conbuildmat.2020.119796_b0270) 2018; 170
References_xml – volume: 101
  start-page: 741
  year: 2015
  end-page: 751
  ident: b0015
  article-title: A review on ultra high performance concrete: Part I. Raw materials and mixture design
  publication-title: Constr. Build. Mater.
– volume: 45
  start-page: 7931
  year: 2019
  end-page: 7944
  ident: b0090
  article-title: Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass
  publication-title: Ceram. Int.
– volume: 25
  start-page: 131
  year: 2003
  end-page: 143
  ident: b0020
  article-title: Modeling of structures subjected to impact: concrete behaviour under high strain rate
  publication-title: Cem. Concr. Compos.
– volume: 38
  start-page: 171
  year: 2011
  end-page: 180
  ident: b0080
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int. J. Impact Eng.
– volume: 51
  start-page: 1447
  year: 2018
  end-page: 1455
  ident: b0335
  article-title: Energy dissipation-based method for fatigue life prediction of rock salt
  publication-title: Rock Mech. Rock Eng.
– volume: 38
  start-page: 1146
  year: 2013
  end-page: 1151
  ident: b0115
  article-title: Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete
  publication-title: Constr. Build. Mater.
– volume: 40
  start-page: 343
  year: 2003
  end-page: 360
  ident: b0175
  article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test
  publication-title: Int. J. Solids Struct.
– reference: CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland, 1990.
– volume: 169
  start-page: 119
  year: 2018
  end-page: 130
  ident: b0340
  article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates
  publication-title: Eng. Struct.
– volume: 110
  start-page: 477
  year: 2013
  end-page: 488
  ident: b0245
  article-title: Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete
  publication-title: Eng. Fract. Mech.
– volume: 69
  start-page: 389
  year: 2013
  end-page: 395
  ident: b0105
  article-title: Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression
  publication-title: Comput. Mater. Sci.
– volume: 95
  start-page: 735
  year: 1998
  end-page: 739
  ident: b0310
  article-title: Review of strain rate effects for concrete in tension
  publication-title: ACI Mater. J.
– volume: 45
  start-page: 4648
  year: 2008
  end-page: 4661
  ident: b0320
  article-title: Modeling of compressive behaviour of concrete-like materials at high strain rates
  publication-title: Int. J. Solids Struct.
– volume: 31
  start-page: 231
  year: 2012
  end-page: 242
  ident: b0365
  article-title: Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques
  publication-title: Constr. Build. Mater.
– volume: 15
  start-page: 319
  year: 1978
  end-page: 368
  ident: b0085
  article-title: International society for rock mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses
  publication-title: Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
– volume: 60
  start-page: 939
  year: 2016
  end-page: 952
  ident: b0190
  article-title: Suggesting a new testing device for determination of tensile strength of concrete
  publication-title: Struct. Eng. Mech.
– volume: 51
  start-page: 15
  year: 2014
  end-page: 23
  ident: b0260
  article-title: Quantification of dynamic tensile behavior of cement-based materials
  publication-title: Constr. Build. Mater.
– volume: 79
  start-page: 148
  year: 2017
  end-page: 157
  ident: b0285
  article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
  publication-title: Cem. Concr. Compos.
– volume: 90
  start-page: 162
  year: 1993
  end-page: 169
  ident: b0315
  article-title: Experimental and numerical analysis of high strain rates splitting tensile tests
  publication-title: ACI Mater. J.
– volume: 44
  start-page: 1441
  year: 2011
  end-page: 1449
  ident: b0200
  article-title: Splitting tensile test for fibre reinforced concrete
  publication-title: Mater. Struct.
– reference: K. Habel, Structural behaviour of composite UHPFRC–concrete elements, Doctoral thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, to be published, 2004.
– volume: 48
  start-page: 521
  year: 2013
  end-page: 532
  ident: b0230
  article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests
  publication-title: Constr. Build. Mater.
– volume: 42
  start-page: 93
  year: 2002
  end-page: 106
  ident: b0235
  article-title: Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar
  publication-title: Exp. Mech.
– volume: 50
  start-page: 1
  year: 2017
  ident: b0145
  article-title: Dynamic Brazilian test of concrete using split Hopkinson pressure bar
  publication-title: Mater. Struct.
– volume: 224
  start-page: 504
  year: 2019
  end-page: 514
  ident: b0065
  article-title: Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete
  publication-title: Constr. Build. Mater.
– reference: ASTM C192 / C192M, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, 2016.
– volume: 234
  start-page: 106251
  year: 2020
  ident: b0345
  article-title: A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete
  publication-title: Comput. Struct.
– volume: 25
  start-page: 1501
  year: 1995
  end-page: 1511
  ident: b0040
  article-title: Composition of reactive powder concretes
  publication-title: Cem. Concr. Res.
– volume: 33
  start-page: 2814
  year: 2014
  end-page: 2819
  ident: b0265
  article-title: Analysis of dynamic split tensile tests of flattened Brazilian disc of three rocks
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 120
  start-page: 398
  year: 1998
  end-page: 405
  ident: b0220
  article-title: Strain-rate-dependent constitutive equations for concrete
  publication-title: J. Pressure Vessel Technol.
– volume: 64
  start-page: 193
  year: 1999
  end-page: 201
  ident: b0195
  article-title: Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks
  publication-title: Eng. Fract. Mech.
– volume: 30
  start-page: 04018323
  year: 2018
  ident: b0055
  article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate
  publication-title: J. Mater. Civ. Eng.
– volume: 1
  start-page: 215
  year: 2019
  ident: b0060
  article-title: Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete
  publication-title: SN Appl. Sci.
– volume: 24
  start-page: 425
  year: 1991
  end-page: 450
  ident: b0295
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater. Struct.
– reference: ASTM-C496, Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book of ASTM Standards, 2004, pp. 336–341.
– volume: 5
  start-page: 173
  year: 1971
  end-page: 225
  ident: b0185
  article-title: Measurement of tensile strength by diametral compression of discs and annuli
  publication-title: Eng. Geol.
– volume: 52
  start-page: 1623
  year: 2019
  end-page: 1643
  ident: b0225
  article-title: Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests
  publication-title: Rock Mech. Rock Eng.
– volume: 117
  start-page: 2769
  year: 1991
  end-page: 2790
  ident: b0350
  article-title: Fiber pullout and bond slip. I: analytical study
  publication-title: J. Struct. Eng.
– volume: 91
  start-page: 595
  year: 2016
  end-page: 609
  ident: b0215
  article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete
  publication-title: Compos. B Eng.
– volume: 144
  start-page: 747
  year: 2017
  end-page: 757
  ident: b0255
  article-title: Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique
  publication-title: Constr. Build. Mater.
– volume: 17
  start-page: 251
  year: 2017
  end-page: 252
  ident: b0130
  article-title: Investigations on dynamic fracture of ultra-high performance concrete by Brazilian tests
  publication-title: PAMM
– volume: 50
  start-page: 941
  year: 2010
  end-page: 955
  ident: b0075
  article-title: An experimental method to determine the tensile strength of concrete at high rates of strain
  publication-title: Exp. Mech.
– volume: 88
  start-page: 144
  year: 2016
  end-page: 156
  ident: b0110
  article-title: Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates
  publication-title: Cem. Concr. Res.
– reference: AFGC-SETRA, Ultra high performance fibre-reinforced concretes, Interim recommendations. Bagneux, France: SETRA, 2002.
– volume: 191
  start-page: 398
  year: 2018
  end-page: 410
  ident: b0070
  article-title: Comparative experimental investigations on th einforced ultra high-performance concretes using split Hopkinson pressure bar
  publication-title: Constr. Build. Mater.
– volume: 10
  year: 2018
  ident: b0150
  article-title: Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test
  publication-title: Adv. Mech. Eng.
– volume: 48
  start-page: 509
  year: 2015
  end-page: 526
  ident: b0330
  article-title: Energy dissipation and release during coal failure under conventional triaxial compression
  publication-title: Rock Mech. Rock Eng.
– volume: 39
  start-page: 137
  year: 1999
  end-page: 141
  ident: b0030
  article-title: Study of the mechanical properties of plain concrete under dynamic loading
  publication-title: Exp. Mech.
– volume: 217
  start-page: 573
  year: 2019
  end-page: 591
  ident: b0155
  article-title: Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure
  publication-title: Constr. Build. Mater.
– volume: 21
  start-page: 420
  year: 2008
  end-page: 430
  ident: b0290
  article-title: Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes
  publication-title: Acta Mech. Solida Sin.
– volume: 4
  start-page: 79
  year: 2006
  end-page: 84
  ident: b0050
  article-title: Effects of strain rate on tensile behavior of reactive powder concrete
  publication-title: J. Adv. Concr. Technol.
– volume: 1
  start-page: 363
  year: 2010
  end-page: 390
  ident: b0240
  article-title: Appraisal of pulse-shaping technique in split hopkinson pressure bar tests for brittle materials
  publication-title: Int. J. Prot. Struct.
– reference: A.E. Naaman, G. Nammur, H. Najm, J. Alwan, Bond mechanisms in fiber reinforced cement-based composites, Report UMCE 89-9, Dept. of Civ. Engrg., Univ. of Michigan, Ann Arbor, Mich., Aug. J., 1989.
– volume: 177
  start-page: 477
  year: 2018
  end-page: 498
  ident: b0095
  article-title: Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages
  publication-title: Constr. Build. Mater.
– volume: 12
  start-page: 730
  year: 2015
  end-page: 746
  ident: b0125
  article-title: Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique
  publication-title: Latin Am. J. Solids Struct.
– volume: 26
  start-page: 04014005
  year: 2013
  ident: b0300
  article-title: Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique
  publication-title: J. Mater. Civ. Eng.
– volume: 44
  start-page: 1081
  year: 2016
  end-page: 1090
  ident: b0325
  article-title: Mechanical properties of self-compacting concrete incorporating rubber particles under impact load
  publication-title: J. Chin. Ceram. Soc.
– year: 2019
  ident: b0205
  article-title: Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension
  publication-title: Cem. Concr. Compos.
– volume: 30
  year: 2018
  ident: b0280
  article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate
  publication-title: J. Mater. Civ. Eng.
– volume: 116
  start-page: 340
  year: 2017
  end-page: 351
  ident: b0360
  article-title: Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads
  publication-title: Mater. Des.
– volume: 83
  start-page: 108
  year: 2015
  end-page: 118
  ident: b0010
  article-title: Tensile strength behaviour of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
– reference: ISRM, Rock Characterization Testing and Monitoring, ISRM Suggested Methods, International Society for Rock Mechanics, 1981, 211 pp.
– volume: 68
  start-page: 158
  year: 2014
  end-page: 171
  ident: b0250
  article-title: Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): experiments and modeling
  publication-title: Constr. Build. Mater.
– volume: 125
  start-page: 188
  year: 2019
  end-page: 211
  ident: b0135
  article-title: Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate
  publication-title: Int. J. Impact Eng.
– volume: 170
  start-page: 570
  year: 2018
  end-page: 581
  ident: b0270
  article-title: Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete
  publication-title: Constr. Build. Mater.
– volume: 173
  start-page: 251
  year: 2018
  end-page: 261
  ident: b0275
  article-title: Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC
  publication-title: Constr. Build. Mater.
– start-page: 2922
  year: 2015
  end-page: 2928
  ident: b0025
  article-title: Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 37
  start-page: 515
  year: 2010
  end-page: 520
  ident: b0140
  article-title: Dynamic compression behavior of ultra-high performance cement based composites
  publication-title: Int. J. Impact Eng.
– reference: B. Riisgaard, T. Ngo, P. Mendis, C. Georgakis, H. Stang, Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar, in: 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007.
– volume: 30
  start-page: 1268
  year: 2015
  end-page: 1273
  ident: b0100
  article-title: Experimental study on tensile behavior of cement paste, mortar and concrete under high strain rates
  publication-title: J. Wuhan Univ. Technol.-Mater Sci. Ed.
– volume: 18
  start-page: 669
  year: 2004
  end-page: 673
  ident: b0005
  article-title: Mechanical properties of high-strength steel fiber-reinforced concrete
  publication-title: Constr. Build. Mater.
– reference: H.H. Bache, J.D. Birchall, Densified cement ultra-fine par-ticle-based materials, in: Proceedings of the 2nd International Conference on Super Plasticizers in Concrete, vol. 33, 1981, pp. 10–12.
– volume: 47
  start-page: 1117
  year: 2014
  end-page: 1133
  ident: b0210
  article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests
  publication-title: Rock Mech. Rock Eng.
– ident: 10.1016/j.conbuildmat.2020.119796_b0180
– volume: 25
  start-page: 131
  issue: 1
  year: 2003
  ident: 10.1016/j.conbuildmat.2020.119796_b0020
  article-title: Modeling of structures subjected to impact: concrete behaviour under high strain rate
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(01)00060-9
– volume: 12
  start-page: 730
  issue: 4
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0125
  article-title: Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique
  publication-title: Latin Am. J. Solids Struct.
  doi: 10.1590/1679-78251513
– volume: 45
  start-page: 4648
  issue: 17
  year: 2008
  ident: 10.1016/j.conbuildmat.2020.119796_b0320
  article-title: Modeling of compressive behaviour of concrete-like materials at high strain rates
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.04.002
– volume: 50
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.119796_b0145
  article-title: Dynamic Brazilian test of concrete using split Hopkinson pressure bar
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-016-0885-6
– volume: 95
  start-page: 735
  issue: 6
  year: 1998
  ident: 10.1016/j.conbuildmat.2020.119796_b0310
  article-title: Review of strain rate effects for concrete in tension
  publication-title: ACI Mater. J.
– year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0205
  article-title: Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.103343
– volume: 101
  start-page: 741
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0015
  article-title: A review on ultra high performance concrete: Part I. Raw materials and mixture design
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.10.088
– ident: 10.1016/j.conbuildmat.2020.119796_b0305
– volume: 17
  start-page: 251
  issue: 1
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.119796_b0130
  article-title: Investigations on dynamic fracture of ultra-high performance concrete by Brazilian tests
  publication-title: PAMM
  doi: 10.1002/pamm.201710095
– volume: 234
  start-page: 106251
  year: 2020
  ident: 10.1016/j.conbuildmat.2020.119796_b0345
  article-title: A novel framework for modelling the 3D mesostructure of steel fibre reinforced concrete
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106251
– volume: 173
  start-page: 251
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0275
  article-title: Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.04.040
– volume: 60
  start-page: 939
  issue: 6
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.119796_b0190
  article-title: Suggesting a new testing device for determination of tensile strength of concrete
  publication-title: Struct. Eng. Mech.
  doi: 10.12989/sem.2016.60.6.939
– volume: 117
  start-page: 2769
  year: 1991
  ident: 10.1016/j.conbuildmat.2020.119796_b0350
  article-title: Fiber pullout and bond slip. I: analytical study
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1991)117:9(2769)
– volume: 64
  start-page: 193
  year: 1999
  ident: 10.1016/j.conbuildmat.2020.119796_b0195
  article-title: Determination of fracture roughness KIC by using the flattened Brazilian disk specimen for rocks
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(99)00065-X
– volume: 31
  start-page: 231
  year: 2012
  ident: 10.1016/j.conbuildmat.2020.119796_b0365
  article-title: Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.12.080
– ident: 10.1016/j.conbuildmat.2020.119796_b0045
– volume: 38
  start-page: 171
  issue: 4
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.119796_b0080
  article-title: About the dynamic uniaxial tensile strength of concrete-like materials
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2010.10.028
– volume: 24
  start-page: 425
  issue: 6
  year: 1991
  ident: 10.1016/j.conbuildmat.2020.119796_b0295
  article-title: Compressive behaviour of concrete at high strain rates
  publication-title: Mater. Struct.
  doi: 10.1007/BF02472016
– volume: 37
  start-page: 515
  issue: 5
  year: 2010
  ident: 10.1016/j.conbuildmat.2020.119796_b0140
  article-title: Dynamic compression behavior of ultra-high performance cement based composites
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2009.11.005
– volume: 47
  start-page: 1117
  issue: 4
  year: 2014
  ident: 10.1016/j.conbuildmat.2020.119796_b0210
  article-title: Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-013-0465-9
– volume: 88
  start-page: 144
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.119796_b0110
  article-title: Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2016.07.003
– volume: 110
  start-page: 477
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.119796_b0245
  article-title: Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2012.12.019
– volume: 40
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.conbuildmat.2020.119796_b0175
  article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(02)00526-7
– start-page: 2922
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0025
  article-title: Fractal comparison research of fracture of concrete samples under static and dynamic uniaxial tensile using CT
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 51
  start-page: 1447
  issue: 5
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0335
  article-title: Energy dissipation-based method for fatigue life prediction of rock salt
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-018-1402-8
– volume: 120
  start-page: 398
  issue: 4
  year: 1998
  ident: 10.1016/j.conbuildmat.2020.119796_b0220
  article-title: Strain-rate-dependent constitutive equations for concrete
  publication-title: J. Pressure Vessel Technol.
  doi: 10.1115/1.2842350
– volume: 21
  start-page: 420
  issue: 5
  year: 2008
  ident: 10.1016/j.conbuildmat.2020.119796_b0290
  article-title: Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1007/s10338-008-0851-0
– volume: 30
  start-page: 04018323
  issue: 12
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0055
  article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002519
– volume: 177
  start-page: 477
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0095
  article-title: Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.058
– volume: 91
  start-page: 595
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.119796_b0215
  article-title: Influences of nano-particles on dynamic strength of ultra-high performance concrete
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2016.01.044
– volume: 44
  start-page: 1081
  issue: 8
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.119796_b0325
  article-title: Mechanical properties of self-compacting concrete incorporating rubber particles under impact load
  publication-title: J. Chin. Ceram. Soc.
– ident: 10.1016/j.conbuildmat.2020.119796_b0120
– ident: 10.1016/j.conbuildmat.2020.119796_b0165
– ident: 10.1016/j.conbuildmat.2020.119796_b0035
– volume: 38
  start-page: 1146
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.119796_b0115
  article-title: Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.09.016
– volume: 10
  issue: 6
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0150
  article-title: Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018782301
– volume: 79
  start-page: 148
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.119796_b0285
  article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.02.010
– volume: 191
  start-page: 398
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0070
  article-title: Comparative experimental investigations on th einforced ultra high-performance concretes using split Hopkinson pressure bar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.020
– volume: 48
  start-page: 521
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.119796_b0230
  article-title: Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.07.022
– volume: 26
  start-page: 04014005
  issue: 6
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.119796_b0300
  article-title: Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000926
– volume: 224
  start-page: 504
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0065
  article-title: Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.096
– volume: 44
  start-page: 1441
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.119796_b0200
  article-title: Splitting tensile test for fibre reinforced concrete
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-011-9709-x
– volume: 217
  start-page: 573
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0155
  article-title: Mesomechanism of the dynamic tensile fracture and fragmentation behaviour of concrete with heterogeneous mesostructure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.05.094
– volume: 170
  start-page: 570
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0270
  article-title: Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.03.101
– volume: 125
  start-page: 188
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0135
  article-title: Quasi-static and dynamic splitting of high-strength concretes–tensile stress–strain response and effects of strain rate
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2018.11.012
– volume: 5
  start-page: 173
  issue: 3
  year: 1971
  ident: 10.1016/j.conbuildmat.2020.119796_b0185
  article-title: Measurement of tensile strength by diametral compression of discs and annuli
  publication-title: Eng. Geol.
  doi: 10.1016/0013-7952(71)90001-9
– volume: 116
  start-page: 340
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.119796_b0360
  article-title: Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.12.027
– volume: 83
  start-page: 108
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0010
  article-title: Tensile strength behaviour of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.034
– volume: 30
  issue: 12
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0280
  article-title: Effect of steel fiber on flexural toughness and fracture mechanics behavior of ultrahigh-performance concrete with coarse aggregate
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002519
– volume: 33
  start-page: 2814
  year: 2014
  ident: 10.1016/j.conbuildmat.2020.119796_b0265
  article-title: Analysis of dynamic split tensile tests of flattened Brazilian disc of three rocks
  publication-title: Chin. J. Rock Mech. Eng.
– volume: 50
  start-page: 941
  issue: 7
  year: 2010
  ident: 10.1016/j.conbuildmat.2020.119796_b0075
  article-title: An experimental method to determine the tensile strength of concrete at high rates of strain
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-009-9284-z
– volume: 48
  start-page: 509
  issue: 2
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0330
  article-title: Energy dissipation and release during coal failure under conventional triaxial compression
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-014-0602-0
– volume: 45
  start-page: 7931
  issue: 6
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0090
  article-title: Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.01.106
– volume: 39
  start-page: 137
  issue: 2
  year: 1999
  ident: 10.1016/j.conbuildmat.2020.119796_b0030
  article-title: Study of the mechanical properties of plain concrete under dynamic loading
  publication-title: Exp. Mech.
  doi: 10.1007/BF02331117
– volume: 51
  start-page: 15
  year: 2014
  ident: 10.1016/j.conbuildmat.2020.119796_b0260
  article-title: Quantification of dynamic tensile behavior of cement-based materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.10.039
– volume: 25
  start-page: 1501
  issue: 7
  year: 1995
  ident: 10.1016/j.conbuildmat.2020.119796_b0040
  article-title: Composition of reactive powder concretes
  publication-title: Cem. Concr. Res.
  doi: 10.1016/0008-8846(95)00144-2
– ident: 10.1016/j.conbuildmat.2020.119796_b0355
– volume: 1
  start-page: 215
  issue: 3
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0060
  article-title: Experimental investigations on tensile strength behavior and microstructure of ultra-high-performance fiber-reinforced concrete
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0186-0
– volume: 68
  start-page: 158
  year: 2014
  ident: 10.1016/j.conbuildmat.2020.119796_b0250
  article-title: Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): experiments and modeling
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.06.033
– volume: 1
  start-page: 363
  issue: 3
  year: 2010
  ident: 10.1016/j.conbuildmat.2020.119796_b0240
  article-title: Appraisal of pulse-shaping technique in split hopkinson pressure bar tests for brittle materials
  publication-title: Int. J. Prot. Struct.
  doi: 10.1260/2041-4196.1.3.363
– volume: 15
  start-page: 319
  issue: 6
  year: 1978
  ident: 10.1016/j.conbuildmat.2020.119796_b0085
  article-title: International society for rock mechanics commission on standardization of laboratory and field tests: suggested methods for the quantitative description of discontinuities in rock masses
  publication-title: Int. J. Rock Mech. Mining Sci. Geomech. Abstracts
  doi: 10.1016/0148-9062(78)91472-9
– volume: 42
  start-page: 93
  issue: 1
  year: 2002
  ident: 10.1016/j.conbuildmat.2020.119796_b0235
  article-title: Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar
  publication-title: Exp. Mech.
  doi: 10.1007/BF02411056
– volume: 169
  start-page: 119
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.119796_b0340
  article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.05.036
– ident: 10.1016/j.conbuildmat.2020.119796_b0160
– volume: 69
  start-page: 389
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.119796_b0105
  article-title: Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.12.018
– volume: 4
  start-page: 79
  issue: 1
  year: 2006
  ident: 10.1016/j.conbuildmat.2020.119796_b0050
  article-title: Effects of strain rate on tensile behavior of reactive powder concrete
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.4.79
– volume: 144
  start-page: 747
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.119796_b0255
  article-title: Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.03.185
– volume: 52
  start-page: 1623
  issue: 6
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.119796_b0225
  article-title: Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-018-1652-5
– volume: 18
  start-page: 669
  issue: 9
  year: 2004
  ident: 10.1016/j.conbuildmat.2020.119796_b0005
  article-title: Mechanical properties of high-strength steel fiber-reinforced concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2004.04.027
– volume: 90
  start-page: 162
  issue: 2
  year: 1993
  ident: 10.1016/j.conbuildmat.2020.119796_b0315
  article-title: Experimental and numerical analysis of high strain rates splitting tensile tests
  publication-title: ACI Mater. J.
– volume: 30
  start-page: 1268
  issue: 6
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.119796_b0100
  article-title: Experimental study on tensile behavior of cement paste, mortar and concrete under high strain rates
  publication-title: J. Wuhan Univ. Technol.-Mater Sci. Ed.
  doi: 10.1007/s11595-015-1306-3
– ident: 10.1016/j.conbuildmat.2020.119796_b0170
SSID ssj0006262
Score 2.5308852
Snippet •Dynamic response and enhancement mechanism of HPSFRC were investigated.•The effect of strain rate on fiber reinforced factor and dynamic increase factor was...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119796
SubjectTerms Crack propagation process
Energy dissipation
High performance steel fiber reinforced concrete
Numerical simulation
Strain-rate effect
Tensile strength
Title Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension
URI https://dx.doi.org/10.1016/j.conbuildmat.2020.119796
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF1MCqE9hDZJqdPGTCFXxbK8klbQizExbk19yAfJTUi7s6mLWBtXvvaX9Md2ZiXHLhRS6MXCQoOknWHnDXrzRoiLRCYajVRBmtgskCYLg9IkcZBpjDANY2s1F4pf58n0Tn55iB86YrzthWFaZbv3N3u6363bM_12NfurxaJ_Q-CAEzClMIrLcMANv1KmHOWXP3c0DwLsUaO3xwNWBupQfNxxvKjkLHn6NIFDKhUj3kCylPX7_5aj9vLO5LU4agEjjJpneiM66I7Fqz0ZwRPx62pPph8KZ8Btmg8xFXj5WFg68Ez1CoGbQ9xj_c1fZ4sF09Jh5VU2HSwtsH4xrHbtBGSAWIFlZgms0Qut0qoBvRQBzhqBu9DWYJrJ9vCDQK2nUjc3XLpTcTe5uh1Pg3bqQqCHKq2DSIfKKlTF0ChMKZvbVHJhODBGFlolsSlURr8GS2PCUFOG00YT6mKpPYV2-FYcuKXDdwK4lgpTiwwipTWmzGJt5bCIYowGZVx0hdquc65bSXKejFHlW-7Z93zPRTm7KG9c1BXRk-mq0eX4F6NPW2fmfwRZTvnjefOz_zN_L17yP5_4wg_ioF5v8JwQTV32fMj2xIvR59l0zsfZ9f3sN6fK_mk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-NQEB60gpeHZVddvKy7I_gamqa5nIAvpSj11hcVfAvJOXO0SzktNf4bf6wzSaoVBAVf8pBkSHLmMN83ZOYbgKM4jDWZUHlJbFMvNKnvFSaOvFRTQIkfWaslUbwaxoPb8PwuuluC_rwXRsoqm9hfx_QqWjdn2s1qtqejUfuayYEAMEMY70u_o5ZhRdSpohas9M4uBsPXgMycPagl92TGSketwuFbmRdnnYUMoGZ-yNliIDEkTUTC_yOYWoCe05_wo-GM2Ktf6xcskduEjQUlwS14PllQ6sfcGXRP9b-YMVYKsjhxWBWrjwmlP8Tdlw_VfTYfSWU6TiuhTYcTiyJhjNO3jgI2IBqjleISnFGltcoLh_xRzDlLQmlEm6Gph9vjI_Paqpq6fuDEbcPt6clNf-A1gxc83VVJ6QXaV1aRyrtGUcKAbpNQcsOOMWGuVRyZXKV8NFQY4_uaQU4bzcRL1PYU2e5vaLmJox1ASaf8xJLwyNAaU6SRtmE3DyIKOkWU74Kar3OmG1VyGY4xzublZ_-zBRdl4qKsdtEuBK-m01qa4ytGx3NnZu_2WcYQ8rn53vfM_8Ha4ObqMrs8G17sw7pcqXDQ_wOtcvZEB0xwyuJvs4FfAFHL_3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+study+on+tensile+strength+and+failure+pattern+of+high+performance+steel+fiber+reinforced+concrete+under+dynamic+splitting+tension&rft.jtitle=Construction+%26+building+materials&rft.au=Li%2C+Xiaojing&rft.au=Zhang%2C+Yaoyao&rft.au=Shi%2C+Chong&rft.au=Chen%2C+Xudong&rft.date=2020-10-30&rft.issn=0950-0618&rft.volume=259&rft.spage=119796&rft_id=info:doi/10.1016%2Fj.conbuildmat.2020.119796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2020_119796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon