Multi-Class ASD Classification via Label Distribution Learning with Class-Shared and Class-Specific Decomposition

The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMR...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 75; p. 102294
Main Authors Wang, Jun, Zhang, Fengyexin, Jia, Xiuyi, Wang, Xin, Zhang, Han, Ying, Shihui, Wang, Qian, Shi, Jun, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms. [Display omitted]
AbstractList The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms.The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms.
The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms.
The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms. [Display omitted]
ArticleNumber 102294
Author Wang, Xin
Zhang, Fengyexin
Zhang, Han
Wang, Qian
Shi, Jun
Shen, Dinggang
Ying, Shihui
Jia, Xiuyi
Wang, Jun
Author_xml – sequence: 1
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Fengyexin
  surname: Zhang
  fullname: Zhang, Fengyexin
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
– sequence: 3
  givenname: Xiuyi
  surname: Jia
  fullname: Jia, Xiuyi
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, 210094, China
– sequence: 4
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 6
  givenname: Shihui
  surname: Ying
  fullname: Ying, Shihui
  organization: Department of Mathematics, School of Science, Shanghai University, Shanghai 200444, China
– sequence: 7
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
– sequence: 8
  givenname: Jun
  surname: Shi
  fullname: Shi, Jun
  email: junshi@shu.edu.cn
  organization: School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
– sequence: 9
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: Dinggang.Shen@gmail.com
  organization: School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34826797$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqvlpn6BSZambbjzhAjb2ootopj-Rpsoi6RphfN0w8sAEcKK-fZlxposssgKuvu8KnXNOTpx3SMhHoAugUF9uFlvsrV4wyiBPGGvFG3IGvIayEYyf_L9DdUrOY9xQSqUQ9B055aJhtWzlGXn4NY3JlstRx1hc3a6Kw80O1uhkvSserS7WusOxWNmYgu2mw3iNOjjr_hRPNt3PTnl7rwP2hXb9cbBDs99UrND47c5Hu3ffk7eDHiN-eD4vyO_v3-6WP8v1zY_r5dW6NLyRqWQA0ELXygEQ5NBAZSqJgxBdLSmjFciqxgo0hR571unOiKrn-QECtGgovyBf5r274B8mjEltbTQ4jtqhn6JiNRWUNi2rMvr5BbrxU3D5d5nitGINb-pMfXqmpi4nr3bBbnX4q45hZqCdARN8jAEHZWw6xJiCtqMCqvbFqY06FKf2xam5uOzyF-5x_evW19nCHOSjxaCisehMBgOapHpvX_X_AaNGsNY
CitedBy_id crossref_primary_10_1016_j_media_2023_102916
crossref_primary_10_1016_j_jbi_2024_104711
crossref_primary_10_1016_j_neubiorev_2022_105021
crossref_primary_10_1016_j_inffus_2024_102600
crossref_primary_10_1007_s13042_023_02000_7
crossref_primary_10_1016_j_media_2023_102932
crossref_primary_10_1016_j_neucom_2024_128022
crossref_primary_10_1177_03008916221146208
crossref_primary_10_3390_brainsci14080738
crossref_primary_10_1016_j_compbiomed_2023_106890
crossref_primary_10_1016_j_patcog_2022_109056
Cites_doi 10.1109/TMI.2020.2987817
10.1093/brain/awr263
10.1016/j.brainres.2010.11.076
10.3389/fnins.2018.00959
10.1109/TNN.2005.845141
10.1109/TKDE.2016.2545658
10.1006/nimg.2001.0978
10.3389/fnhum.2018.00184
10.1093/scan/nsw027
10.1016/j.biopsych.2007.03.015
10.1613/jair.953
10.1016/j.biopsych.2018.02.1174
10.1016/j.nicl.2014.05.007
10.1016/j.patcog.2015.10.018
10.1016/j.neuroimage.2017.12.052
10.1016/j.neucom.2018.04.080
10.1097/WCO.0b013e32833782d4
10.1016/j.euroneuro.2014.07.006
10.3389/fpsyt.2016.00205
10.3390/diagnostics9010032
10.1016/j.neuroimage.2007.04.009
10.1016/j.neuroimage.2009.08.024
10.1002/hbm.22642
10.1109/TPAMI.2013.51
10.1016/j.pnpbp.2017.07.027
10.1109/TCYB.2018.2839693
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2021.102294
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 34826797
10_1016_j_media_2021_102294
S136184152100339X
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH101111
– fundername: NIA NIH HHS
  grantid: R01 AG067103
– fundername: NIMH NIH HHS
  grantid: R01 MH112847
– fundername: NIA NIH HHS
  grantid: RF1 AG054409
– fundername: NIA NIH HHS
  grantid: U01 AG068057
– fundername: NIMH NIH HHS
  grantid: R01 MH113550
– fundername: NIMH NIH HHS
  grantid: R01 MH112070
– fundername: NIH HHS
  grantid: S10 OD023495
– fundername: NIMH NIH HHS
  grantid: R01 MH113565
– fundername: NIBIB NIH HHS
  grantid: R01 EB022573
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-211191b97f1e17f815c57ef44b6702051756e51a01ded2babc45d31de141a4803
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Mon Jul 21 09:21:28 EDT 2025
Sat Jul 26 03:25:31 EDT 2025
Wed Feb 19 02:27:37 EST 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords multi-class ASD classification
imbalanced data
label distribution learning
Autism spectrum disorder
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-211191b97f1e17f815c57ef44b6702051756e51a01ded2babc45d31de141a4803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34826797
PQID 2630528386
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2604008925
proquest_journals_2630528386
pubmed_primary_34826797
crossref_citationtrail_10_1016_j_media_2021_102294
crossref_primary_10_1016_j_media_2021_102294
elsevier_sciencedirect_doi_10_1016_j_media_2021_102294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ecker, Rocha-Rego, Johnston, Mourao-Miranda, Marquand, Daly, Murphy (bib0016) 2010; 49
Zhou, Zhang, Zhou, Zhao, Geng (bib0050) 2016
Zhou, Zhang, Teng, Qiao, Shen (bib0051) 2018; 12
Stigler, Mcdonald, Anand, Saykin, McDougle (bib0038) 2011; 1380
Chawla, Bowyer, Hall, Kegelmeyer (bib0010) 2002; 16
Lin, Chen, Ma (bib0032) 2010
Minshew, Keller (bib0033) 2010; 23
Dvornek, Ventola, Pelphrey, Duncan (bib0015) 2017
Geng, Xia (bib0022) 2014
Cha (bib0009) 2007; 1
Kempton, Mcguire (bib0027) 2015; 25
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib0029) 2018; 169
Wang, Zhang, Wang, Chen, Shi, Chen, Shen (bib0043) 2020
Alaerts, Swinnen, Wenderoth (bib0002) 2016; 11
Anderson, Nielsen, Froehlich, DuBray, Druzgal, Cariello, Zielinski (bib0003) 2011; 134
.
Shen, W., Zhao, K., Guo, Y., & Yuille, A. (2017).
Tejwani, R., Liska, A., You, H., Reinen, J., & Das, P. (2017). Autism classification using brain functional connectivity dynamics and machine learning.
Zheng, Jia, Li (bib0049) 2018
Li, Dvornek, Papademetris, Zhuang, Staib, Ventola, Duncan (bib0030) 2018
Geng, Ji (bib0021) 2013
Hull, Jacokes, Torgerson, Irimia, Horn (bib0024) 2018; 7
Price, Wee, Gao, Shen (bib0034) 2014; 17
Bos, Raalten, Oranje (bib0008) 2014; 4
Andrew (bib0004) 2001; 30
Duan, Chen, He, Long, Guo, Zhou, Chen (bib0014) 2017; 79
Paper presented at the Advances in neural information processing systems.
Borràs-Ferrís, Pérez-Ramírez, Moratal (bib0007) 2019; 9
Association (bib0005) 2013
Xu, Tao, Geng (bib0046) 2019
Zhao, Zhang, Islem, An, Shen (bib0048) 2018; 12
Lin, Chen (bib0031) 2010
Kong, Gao, Xu, Pan, Wang, Liu (bib0028) 2019; 324
Chen, Zhang, Zhang, Shen, Lee, Shen (bib0011) 2017
Ren, Jia, Li, Zhao (bib0036) 2019
Wang, Deng, Choi, Jiang, Luo, Chung, Wang (bib0041) 2016; 52
Ahmadi, Mohajeri, Soltanian-Zadeh (bib0001) 2014
Banerjee, Zeng, Schunkert, Söding (bib0006) 2018
Jing, Zhang, Zhu, Wu, Yang (bib0026) 2019
Jie, Zhang, Cheng, Shen (bib0025) 2014; 36
Fredo, Jahedi, Reiter, Müller (bib0019) 2018
Xu, Wunsch (bib0047) 2005; 16
Xu, Wang, Shen, Wang, Chen (bib0044) 2014
Geng (bib0020) 2016
Wang, Wang, Zhang, Chen, Wang, Shen (bib0042) 2019; 49
Dickie, Ameis, Shahab, Calarco, Smith, Miranda, Voineskos (bib0013) 2018; 84
Fan, Gur, Gur, Wu, Shen, Calkins, Davatzikos (bib0017) 2008; 63
Tzourio-Mazoyer, Landeau, DF, Crivello, Etard, Delcroix, Marc (bib0040) 2002; 1
Ren, Jia, Li, Chen, Li (bib0035) 2019
Fan, Rao, Hurt, Giannetta, Korczykowski, Shera, Shen (bib0018) 2007; 36
Demšar (bib0012) 2006; 7
Xu, Zhou (bib0045) 2017
Geng, Yin, Zhou (bib0023) 2013; 35
Wang (10.1016/j.media.2021.102294_bib0042) 2019; 49
Jie (10.1016/j.media.2021.102294_bib0025) 2014; 36
Price (10.1016/j.media.2021.102294_bib0034) 2014; 17
Fan (10.1016/j.media.2021.102294_bib0018) 2007; 36
Association (10.1016/j.media.2021.102294_bib0005) 2013
10.1016/j.media.2021.102294_bib0039
10.1016/j.media.2021.102294_bib0037
Stigler (10.1016/j.media.2021.102294_bib0038) 2011; 1380
Anderson (10.1016/j.media.2021.102294_bib0003) 2011; 134
Alaerts (10.1016/j.media.2021.102294_bib0002) 2016; 11
Geng (10.1016/j.media.2021.102294_bib0022) 2014
Xu (10.1016/j.media.2021.102294_bib0044) 2014
Fan (10.1016/j.media.2021.102294_bib0017) 2008; 63
Xu (10.1016/j.media.2021.102294_bib0045) 2017
Ecker (10.1016/j.media.2021.102294_bib0016) 2010; 49
Kempton (10.1016/j.media.2021.102294_bib0027) 2015; 25
Zhou (10.1016/j.media.2021.102294_bib0051) 2018; 12
Andrew (10.1016/j.media.2021.102294_bib0004) 2001; 30
Tzourio-Mazoyer (10.1016/j.media.2021.102294_bib0040) 2002; 1
Zheng (10.1016/j.media.2021.102294_bib0049) 2018
Geng (10.1016/j.media.2021.102294_bib0021) 2013
Chen (10.1016/j.media.2021.102294_bib0011) 2017
Lin (10.1016/j.media.2021.102294_bib0031) 2010
Zhou (10.1016/j.media.2021.102294_bib0050) 2016
Zhao (10.1016/j.media.2021.102294_bib0048) 2018; 12
Banerjee (10.1016/j.media.2021.102294_bib0006) 2018
Lin (10.1016/j.media.2021.102294_bib0032) 2010
Li (10.1016/j.media.2021.102294_bib0030) 2018
Demšar (10.1016/j.media.2021.102294_bib0012) 2006; 7
Bos (10.1016/j.media.2021.102294_bib0008) 2014; 4
Ren (10.1016/j.media.2021.102294_bib0035) 2019
Dickie (10.1016/j.media.2021.102294_bib0013) 2018; 84
Xu (10.1016/j.media.2021.102294_bib0047) 2005; 16
Xu (10.1016/j.media.2021.102294_bib0046) 2019
Fredo (10.1016/j.media.2021.102294_bib0019) 2018
Duan (10.1016/j.media.2021.102294_bib0014) 2017; 79
Geng (10.1016/j.media.2021.102294_bib0020) 2016
Hull (10.1016/j.media.2021.102294_bib0024) 2018; 7
Borràs-Ferrís (10.1016/j.media.2021.102294_bib0007) 2019; 9
Cha (10.1016/j.media.2021.102294_bib0009) 2007; 1
Geng (10.1016/j.media.2021.102294_bib0023) 2013; 35
Kong (10.1016/j.media.2021.102294_bib0028) 2019; 324
Chawla (10.1016/j.media.2021.102294_bib0010) 2002; 16
Ktena (10.1016/j.media.2021.102294_bib0029) 2018; 169
Wang (10.1016/j.media.2021.102294_bib0041) 2016; 52
Jing (10.1016/j.media.2021.102294_bib0026) 2019
Ren (10.1016/j.media.2021.102294_bib0036) 2019
Dvornek (10.1016/j.media.2021.102294_bib0015) 2017
Ahmadi (10.1016/j.media.2021.102294_bib0001) 2014
Minshew (10.1016/j.media.2021.102294_bib0033) 2010; 23
Wang (10.1016/j.media.2021.102294_bib0043) 2020
References_xml – start-page: 14
  year: 2018
  ident: bib0006
  article-title: Bayesian multiple logistic regression for case-control GWAS
  publication-title: PLoS Genetics
– volume: 36
  start-page: 1189
  year: 2007
  end-page: 1199
  ident: bib0018
  article-title: Multivariate examination of brain abnormality using both structural and functional MRI
  publication-title: NeuroImage
– year: 2019
  ident: bib0026
  article-title: Multiset feature learning for highly imbalanced data classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0010
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– year: 2017
  ident: bib0045
  article-title: Incomplete label distribution learning
  publication-title: Paper presented at the International Joint Conference On Artificial Intelligence
– year: 2010
  ident: bib0032
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Mathematics
– volume: 30
  start-page: 103
  year: 2001
  end-page: 115
  ident: bib0004
  publication-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.
– volume: 1
  start-page: 300
  year: 2007
  end-page: 307
  ident: bib0009
  article-title: Comprehensive survey on distance/dimilarity measures between probability density functions
  publication-title: International Journal of Mathematical Models & Methods in Applied Sciences
– volume: 1
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib0040
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
– volume: 324
  start-page: 63
  year: 2019
  end-page: 68
  ident: bib0028
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– volume: 12
  start-page: 184
  year: 2018
  ident: bib0048
  article-title: Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI
  publication-title: Frontiers in Human Neuroence
– year: 2017
  ident: bib0015
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: Paper presented at the International Workshop on Machine Learning in Medical Imaging
– volume: 1380
  start-page: 146
  year: 2011
  end-page: 161
  ident: bib0038
  article-title: Structural and functional magnetic resonance imaging of autism spectrum disorders
  publication-title: Brain Research
– reference: Shen, W., Zhao, K., Guo, Y., & Yuille, A. (2017).
– year: 2014
  ident: bib0022
  article-title: Head pose estimation based on multivariate label distribution
  publication-title: IEEE Conference on Computer Vision & Pattern Recognition
– year: 2019
  ident: bib0036
  article-title: Label distribution learning with label correlations via low-rank approximation
  publication-title: Paper presented at the Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19
– year: 2020
  ident: bib0043
  article-title: Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 52
  start-page: 113
  year: 2016
  end-page: 134
  ident: bib0041
  article-title: Distance metric learning for soft subspace clustering in composite kernel space
  publication-title: Pattern Recognition
– volume: 35
  start-page: 2401
  year: 2013
  end-page: 2412
  ident: bib0023
  article-title: Facial age estimation by learning from label distributions
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0047
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on neural networks
– year: 2016
  ident: bib0020
  article-title: Label Distribution Learning
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– volume: 23
  start-page: 124
  year: 2010
  end-page: 130
  ident: bib0033
  article-title: The nature of brain dysfunction in autism: Functional brain imaging studies
  publication-title: Current Opinion in Neurology
– volume: 17
  start-page: 177
  year: 2014
  end-page: 184
  ident: bib0034
  article-title: Multiple-network classification of childhood autism using functional connectivity dynamics
  publication-title: Med Image Comput Comput Assist Interv
– year: 2018
  ident: bib0030
  article-title: 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning
  publication-title: Paper presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 134
  start-page: 3742
  year: 2011
  end-page: 3754
  ident: bib0003
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
– reference: Tejwani, R., Liska, A., You, H., Reinen, J., & Das, P. (2017). Autism classification using brain functional connectivity dynamics and machine learning.
– volume: 12
  start-page: 959
  year: 2018
  ident: bib0051
  article-title: Improving sparsity and modularity of high-order functional connectivity networks for MCI and ASD identification
  publication-title: Frontiers in neuroscience
– volume: 84
  start-page: 278
  year: 2018
  end-page: 286
  ident: bib0013
  article-title: Personalised intrinsic network topography mapping and functional connectivity deficits in autism spectrum disorder
  publication-title: Biological Psychiatry
– reference: Paper presented at the Advances in neural information processing systems.
– volume: 36
  year: 2014
  ident: bib0025
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Human Brain Mapping
– volume: 79
  start-page: 434
  year: 2017
  end-page: 441
  ident: bib0014
  article-title: Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– start-page: 1148
  year: 2018
  end-page: 1151
  ident: bib0019
  article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest
  publication-title: IEEE Engineering in Medicine and Biology Society. Annual Conference
– year: 2014
  ident: bib0044
  article-title: Learning low-rank label correlations for multi-label classification with missing labels
  publication-title: Paper presented at the IEEE International Conference on Data Mining
– year: 2013
  ident: bib0021
  article-title: Label distribution learning
  publication-title: Paper presented at the IEEE International Conference on Data Mining Workshops
– year: 2018
  ident: bib0049
  article-title: Label distribution learning by exploiting sample correlations locally
  publication-title: Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 49
  start-page: 3141
  year: 2019
  end-page: 3154
  ident: bib0042
  article-title: Sparse multiview task-centralized ensemble learning for ASD diagnosis based on age- and sex-related functional connectivity patterns
  publication-title: IEEE Transactions on Cybernetics
– year: 2010
  ident: bib0031
  article-title: Mr.KNN: soft relevance for multi-label classification
  publication-title: Paper presented at the CIKM '10:Proceedings of the 19th ACM international conference on Information and knowledge management
– year: 2019
  ident: bib0035
  article-title: Label distribution learning with label-specific features
  publication-title: Paper presented at the IJCAI
– volume: 11
  start-page: 1002
  year: 2016
  end-page: 1016
  ident: bib0002
  article-title: Sex differences in autism: A resting-state fMRI investigation of functional brain connectivity in males and females
  publication-title: Social Cognitive & Affective Neuroscience
– volume: 9
  start-page: 32
  year: 2019
  ident: bib0007
  article-title: Link-level functional connectivity neuroalterations in autism spectrum disorder: A developmental resting-state fMRI study
  publication-title: Diagnostics
– year: 2016
  ident: bib0050
  article-title: Emotion distribution learning from texts
  publication-title: Paper presented at the Prof of the 21st Conf on Empirical Methods in Natural Language Processing
– volume: 49
  start-page: 44
  year: 2010
  end-page: 56
  ident: bib0016
  article-title: Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
  publication-title: NeuroImage
– volume: 25
  start-page: 725
  year: 2015
  end-page: 732
  ident: bib0027
  article-title: How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis?
  publication-title: European Neuropsychopharmacology
– reference: .
– year: 2019
  ident: bib0046
  article-title: Label enhancement for label distribution learning
  publication-title: Paper presented at the IEEE Transactions on Knowledge and Data Engineering
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: bib0029
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
– volume: 7
  start-page: 205
  year: 2018
  ident: bib0024
  article-title: Resting-state functional connectivity in autism spectrum disorders: A review
  publication-title: Frontiers in Psychiatry
– volume: 4
  start-page: 820
  year: 2014
  end-page: 827
  ident: bib0008
  article-title: Developmental differences in higher-order resting-state networks in autism spectrum disorder
  publication-title: NeuroImage: Clinical
– start-page: 38
  year: 2017
  ident: bib0011
  article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification
  publication-title: Human Brain Mapping
– year: 2014
  ident: bib0001
  article-title: Connectivity abnormalities in autism spectrum disorder patients: A resting state fMRI study
  publication-title: Paper presented at the 22nd Iranian Conference on Electrical Engineering (ICEE)
– year: 2013
  ident: bib0005
  article-title: DSM-5: Diagnostic and Statistical Manual of Mental Disorders: Fifth Edition
– volume: 63
  start-page: 118
  year: 2008
  end-page: 124
  ident: bib0017
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study
  publication-title: Biological Psychiatry
– year: 2020
  ident: 10.1016/j.media.2021.102294_bib0043
  article-title: Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2020.2987817
– volume: 134
  start-page: 3742
  issue: 12
  year: 2011
  ident: 10.1016/j.media.2021.102294_bib0003
  article-title: Functional connectivity magnetic resonance imaging classification of autism
  publication-title: Brain
  doi: 10.1093/brain/awr263
– volume: 1380
  start-page: 146
  year: 2011
  ident: 10.1016/j.media.2021.102294_bib0038
  article-title: Structural and functional magnetic resonance imaging of autism spectrum disorders
  publication-title: Brain Research
  doi: 10.1016/j.brainres.2010.11.076
– volume: 12
  start-page: 959
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0051
  article-title: Improving sparsity and modularity of high-order functional connectivity networks for MCI and ASD identification
  publication-title: Frontiers in neuroscience
  doi: 10.3389/fnins.2018.00959
– year: 2019
  ident: 10.1016/j.media.2021.102294_bib0036
  article-title: Label distribution learning with label correlations via low-rank approximation
– year: 2016
  ident: 10.1016/j.media.2021.102294_bib0050
  article-title: Emotion distribution learning from texts
– volume: 17
  start-page: 177
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2021.102294_bib0034
  article-title: Multiple-network classification of childhood autism using functional connectivity dynamics
  publication-title: Med Image Comput Comput Assist Interv
– year: 2017
  ident: 10.1016/j.media.2021.102294_bib0045
  article-title: Incomplete label distribution learning
– ident: 10.1016/j.media.2021.102294_bib0039
– year: 2010
  ident: 10.1016/j.media.2021.102294_bib0031
  article-title: Mr.KNN: soft relevance for multi-label classification
– start-page: 14
  issue: 12
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0006
  article-title: Bayesian multiple logistic regression for case-control GWAS
  publication-title: PLoS Genetics
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.media.2021.102294_bib0047
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on neural networks
  doi: 10.1109/TNN.2005.845141
– year: 2016
  ident: 10.1016/j.media.2021.102294_bib0020
  article-title: Label Distribution Learning
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2016.2545658
– volume: 1
  start-page: 273
  issue: 15
  year: 2002
  ident: 10.1016/j.media.2021.102294_bib0040
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 12
  start-page: 184
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0048
  article-title: Diagnosis of autism spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI
  publication-title: Frontiers in Human Neuroence
  doi: 10.3389/fnhum.2018.00184
– year: 2019
  ident: 10.1016/j.media.2021.102294_bib0046
  article-title: Label enhancement for label distribution learning
– year: 2019
  ident: 10.1016/j.media.2021.102294_bib0035
  article-title: Label distribution learning with label-specific features
– volume: 11
  start-page: 1002
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2021.102294_bib0002
  article-title: Sex differences in autism: A resting-state fMRI investigation of functional brain connectivity in males and females
  publication-title: Social Cognitive & Affective Neuroscience
  doi: 10.1093/scan/nsw027
– volume: 63
  start-page: 118
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2021.102294_bib0017
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2007.03.015
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.media.2021.102294_bib0010
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 84
  start-page: 278
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0013
  article-title: Personalised intrinsic network topography mapping and functional connectivity deficits in autism spectrum disorder
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2018.02.1174
– volume: 4
  start-page: 820
  year: 2014
  ident: 10.1016/j.media.2021.102294_bib0008
  article-title: Developmental differences in higher-order resting-state networks in autism spectrum disorder
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2014.05.007
– volume: 52
  start-page: 113
  year: 2016
  ident: 10.1016/j.media.2021.102294_bib0041
  article-title: Distance metric learning for soft subspace clustering in composite kernel space
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2015.10.018
– volume: 169
  start-page: 431
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0029
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.12.052
– year: 2010
  ident: 10.1016/j.media.2021.102294_bib0032
  article-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices
  publication-title: Mathematics
– year: 2013
  ident: 10.1016/j.media.2021.102294_bib0005
– volume: 324
  start-page: 63
  year: 2019
  ident: 10.1016/j.media.2021.102294_bib0028
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– volume: 23
  start-page: 124
  issue: 2
  year: 2010
  ident: 10.1016/j.media.2021.102294_bib0033
  article-title: The nature of brain dysfunction in autism: Functional brain imaging studies
  publication-title: Current Opinion in Neurology
  doi: 10.1097/WCO.0b013e32833782d4
– volume: 30
  start-page: 103
  issue: 1
  year: 2001
  ident: 10.1016/j.media.2021.102294_bib0004
  publication-title: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Kybernetes
– year: 2017
  ident: 10.1016/j.media.2021.102294_bib0015
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
– volume: 25
  start-page: 725
  issue: 5
  year: 2015
  ident: 10.1016/j.media.2021.102294_bib0027
  article-title: How can neuroimaging facilitate the diagnosis and stratification of patients with psychosis?
  publication-title: European Neuropsychopharmacology
  doi: 10.1016/j.euroneuro.2014.07.006
– year: 2018
  ident: 10.1016/j.media.2021.102294_bib0049
  article-title: Label distribution learning by exploiting sample correlations locally
– volume: 7
  start-page: 205
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0024
  article-title: Resting-state functional connectivity in autism spectrum disorders: A review
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2016.00205
– volume: 9
  start-page: 32
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2021.102294_bib0007
  article-title: Link-level functional connectivity neuroalterations in autism spectrum disorder: A developmental resting-state fMRI study
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9010032
– ident: 10.1016/j.media.2021.102294_bib0037
– year: 2014
  ident: 10.1016/j.media.2021.102294_bib0044
  article-title: Learning low-rank label correlations for multi-label classification with missing labels
– start-page: 38
  issue: 10
  year: 2017
  ident: 10.1016/j.media.2021.102294_bib0011
  article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification
  publication-title: Human Brain Mapping
– volume: 36
  start-page: 1189
  issue: 4
  year: 2007
  ident: 10.1016/j.media.2021.102294_bib0018
  article-title: Multivariate examination of brain abnormality using both structural and functional MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.04.009
– year: 2014
  ident: 10.1016/j.media.2021.102294_bib0001
  article-title: Connectivity abnormalities in autism spectrum disorder patients: A resting state fMRI study
– volume: 49
  start-page: 44
  issue: 1
  year: 2010
  ident: 10.1016/j.media.2021.102294_bib0016
  article-title: Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.024
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.media.2021.102294_bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: The Journal of Machine Learning Research
– volume: 36
  issue: 2
  year: 2014
  ident: 10.1016/j.media.2021.102294_bib0025
  article-title: Manifold regularized multitask feature learning for multimodality disease classification
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22642
– year: 2013
  ident: 10.1016/j.media.2021.102294_bib0021
  article-title: Label distribution learning
– volume: 35
  start-page: 2401
  issue: 10
  year: 2013
  ident: 10.1016/j.media.2021.102294_bib0023
  article-title: Facial age estimation by learning from label distributions
  publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence
  doi: 10.1109/TPAMI.2013.51
– volume: 79
  start-page: 434
  year: 2017
  ident: 10.1016/j.media.2021.102294_bib0014
  article-title: Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2017.07.027
– year: 2019
  ident: 10.1016/j.media.2021.102294_bib0026
  article-title: Multiset feature learning for highly imbalanced data classification
– year: 2018
  ident: 10.1016/j.media.2021.102294_bib0030
  article-title: 2-channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning
– year: 2014
  ident: 10.1016/j.media.2021.102294_bib0022
  article-title: Head pose estimation based on multivariate label distribution
– volume: 1
  start-page: 300
  issue: 4
  year: 2007
  ident: 10.1016/j.media.2021.102294_bib0009
  article-title: Comprehensive survey on distance/dimilarity measures between probability density functions
  publication-title: International Journal of Mathematical Models & Methods in Applied Sciences
– start-page: 1148
  year: 2018
  ident: 10.1016/j.media.2021.102294_bib0019
  article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest
  publication-title: IEEE Engineering in Medicine and Biology Society. Annual Conference
– volume: 49
  start-page: 3141
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2021.102294_bib0042
  article-title: Sparse multiview task-centralized ensemble learning for ASD diagnosis based on age- and sex-related functional connectivity patterns
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2839693
SSID ssj0007440
Score 2.4548573
Snippet The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102294
SubjectTerms Algorithms
Autism
Autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Brain
Brain - diagnostic imaging
Brain mapping
Classification
Cognitive ability
Decomposition
Diagnosis
Functional magnetic resonance imaging
Humans
imbalanced data
label distribution learning
Learning
Low density lipoprotein
Magnetic Resonance Imaging
multi-class ASD classification
Neuroimaging
Signs and symptoms
Title Multi-Class ASD Classification via Label Distribution Learning with Class-Shared and Class-Specific Decomposition
URI https://dx.doi.org/10.1016/j.media.2021.102294
https://www.ncbi.nlm.nih.gov/pubmed/34826797
https://www.proquest.com/docview/2630528386
https://www.proquest.com/docview/2604008925
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB0hkFB7QBRou0CRK_VYd9dZJ06OKxa00MIFkPZm2bFdLUKBwsKRb2fGcZZygAO3KLEjyzOeebZn3gD8cANrQqgLHkxtuXRScmvqigtHO6IhIgpHucMnp8XkQh5P8-kS7He5MBRWmWx_a9OjtU5v-mk2-zezWf9MDKlYCfkfKkhWTSmDXSrS8l-Pz2EeRIDX5l4JTq075qEY4xWzM3CTmAmiMMgq-Zp3eg19Ri90uA5rCT6yUTvCT7Dkmw34-B-p4AasnqTr8k34F9NreSx8yUZnYxafKDgoyoM9zAz7Y6y_YmPiz02lr1jiXP3L6JC27cOJ2Nk7ZhrXvaDC9fgnNvYUlp5iv7bg4vDgfH_CU40FXg9LNee4_8Mdm61UEF6oUIq8zpUPUtpCIZLMEV0UPhdmIJx3mTW2lrlDAXohhZHlYPgZlpvrxn8FhrZACYST1iEIsyGWXC8RoAWLViXkrgdZN7e6TgTkVAfjSneRZpc6CkSTQHQrkB78XHS6afk33m5edELTL9RIo4d4u-NuJ2KdVvGdzgq0hoi_yqIH3xefcf3RpYpp_PU9tSEzWFZZ3oMvrWosBkrEQYWq1PZ7R7UDHzJKt4hHPruwPL-9998QBM3tXtTyPVgZHf2enD4BLW4D1Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3RINH2gCgtbVraGqnHWok39n4cI1IUIMkFkHKz7LWNgtBC29Df3xmvN2oPcOC22vWsLI8982zPvAH45obWhFDnPJjacumk5NbUFReOdkQjRBSOcofni3x6Jc-WarkFx10uDIVVJtvf2vRordObQRrNwf1qNbgQIypWQv6HCpJVyxewTexUqgfb49Pz6WJjkIkDr02_EpwEOvKhGOYVEzRwn5gJYjHIKvmYg3oMgEZHdLIHuwlBsnHbyTew5Zt9eP0Pr-A-7MzTjflb-BkzbHmsfcnGFxMWnyg-KKqE_VkZNjPW37IJUeim6lcs0a5eMzqnbWU4cTt7x0zjuhdUux7_xCaeItNT-Nc7uDr5cXk85anMAq9HZbHmuAXETZutiiC8KEIpVK0KH6S0eYFgUiHAyL0SZiicd5k1tpbKoQ69kMLIcjg6gF5z1_gPwNAcFAIRpXWIw2yIVddLxGjBomEJyvUh68ZW14mDnEph3Oou2OxGR4VoUohuFdKH7xuh-5aC4-nmeac0_d9M0ugknhY87FSs00L-rbMcDSJCsDLvw9HmMy5Bulcxjb97oDZkCcsqU314306NTUeJOygvquLjc3v1FV5OL-czPTtdnH-CVxllX8QToEPorX89-M-Iidb2S5rzfwEW1waG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Class+ASD+Classification+via+Label+Distribution+Learning+with+Class-Shared+and+Class-Specific+Decomposition&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Jun&rft.au=Zhang%2C+Fengyexin&rft.au=Jia%2C+Xiuyi&rft.au=Wang%2C+Xin&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=75&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2021.102294&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon