Implication of Three Dimensional Framework Architecture of Graphitic Carbon Nanosheets for Improving Electrical Conductivity Under Mechanical Deformation
In this study, based on three-dimensional (3D) framework architecture built-up with two-dimensional (2D) graphitic carbon such as graphene, we have prepared a mechanically robust polymer composite without exhibiting notable deterioration of electrical conductivity under mechanical deformation. In co...
Saved in:
Published in | Macromolecular research Vol. 28; no. 3; pp. 221 - 227 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.03.2020
Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-020-8031-2 |
Cover
Abstract | In this study, based on three-dimensional (3D) framework architecture built-up with two-dimensional (2D) graphitic carbon such as graphene, we have prepared a mechanically robust polymer composite without exhibiting notable deterioration of electrical conductivity under mechanical deformation. In constructing 3D framework comprising of graphitic carbons, two sophisticated methodologies, direct formation of graphitic layers on metal foam by chemical vapor deposition (CVD), and lay-up of reduced graphene oxide (rGO) nanosheets on metal foam have been performed, respectively, and their sustainability of conductive performance under mechanical deformation has been comparatively examined in terms of electrical conductivity change by cyclic mechanical stress. The CVD-synthesized graphene (CGr) framework-embedded PDMS composite, which means a PDMS composite containing 3D graphene framework grown by CVD process, exhibited electrical conductivity of ∼5 S/m at graphene content of 1.0 wt%, which was ∼5 orders of magnitude higher than that of 3D rGO framework-embedded PDMS composite containing comparable loading of rGO. When subjected to repetitive mechanical stress, it was found that the superior conductivity performance of CGr framework over rGO framework was well retained, presumably due to the higher perfectness of graphitic layers, which would impart much longer electron transfer to the framework architecture of graphitic carbon nanosheets. |
---|---|
AbstractList | In this study, based on three-dimensional (3D) framework architecture built-up with two-dimensional (2D) graphitic carbon such as graphene, we have prepared a mechanically robust polymer composite without exhibiting notable deterioration of electrical conductivity under mechanical deformation. In constructing 3D framework comprising of graphitic carbons, two sophisticated methodologies, direct formation of graphitic layers on metal foam by chemical vapor deposition (CVD), and lay-up of reduced graphene oxide (rGO) nanosheets on metal foam have been performed, respectively, and their sustainability of conductive performance under mechanical deformation has been comparatively examined in terms of electrical conductivity change by cyclic mechanical stress. The CVD-synthesized graphene (CGr) frameworkembedded PDMS composite, which means a PDMS composite containing 3D graphene framework grown by CVD process, exhibited electrical conductivity of ~5 S/m at graphene content of 1.0 wt%, which was ~5 orders of magnitude higher than that of 3D rGO framework-embedded PDMS composite containing comparable loading of rGO. When subjected to repetitive mechanical stress, it was found that the superior conductivity performance of CGr framework over rGO framework was well retained, presumably due to the higher perfectness of graphitic layers, which would impart much longer electron transfer to the framework architecture of graphitic carbon nanosheets. KCI Citation Count: 3 In this study, based on three-dimensional (3D) framework architecture built-up with two-dimensional (2D) graphitic carbon such as graphene, we have prepared a mechanically robust polymer composite without exhibiting notable deterioration of electrical conductivity under mechanical deformation. In constructing 3D framework comprising of graphitic carbons, two sophisticated methodologies, direct formation of graphitic layers on metal foam by chemical vapor deposition (CVD), and lay-up of reduced graphene oxide (rGO) nanosheets on metal foam have been performed, respectively, and their sustainability of conductive performance under mechanical deformation has been comparatively examined in terms of electrical conductivity change by cyclic mechanical stress. The CVD-synthesized graphene (CGr) framework-embedded PDMS composite, which means a PDMS composite containing 3D graphene framework grown by CVD process, exhibited electrical conductivity of ∼5 S/m at graphene content of 1.0 wt%, which was ∼5 orders of magnitude higher than that of 3D rGO framework-embedded PDMS composite containing comparable loading of rGO. When subjected to repetitive mechanical stress, it was found that the superior conductivity performance of CGr framework over rGO framework was well retained, presumably due to the higher perfectness of graphitic layers, which would impart much longer electron transfer to the framework architecture of graphitic carbon nanosheets. |
Author | Shin, Keun-Young Lee, Sang-Soo Lim, Yeon-Jeong |
Author_xml | – sequence: 1 givenname: Yeon-Jeong surname: Lim fullname: Lim, Yeon-Jeong organization: KU-KIST Graduate School of Converging Science and Technology, Korea University, Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology – sequence: 2 givenname: Keun-Young surname: Shin fullname: Shin, Keun-Young organization: Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology, School of Nano Convergence Technology, Hallym University – sequence: 3 givenname: Sang-Soo surname: Lee fullname: Lee, Sang-Soo email: s-slee@kist.re.kr organization: KU-KIST Graduate School of Converging Science and Technology, Korea University, Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002567717$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kV2LUzEQhoOsYLf6A7wLeOXF0XzsaXIuS_fDwqog3euQ5kzabM9J6iRd2Z_ivzVtBUHQq4HJ-7yZmfeSXMQUgZC3nH3gjKmPmUshZcMEazSTvBEvyESwTjRqpuQFmfC2003LpHhFLnN-ZGzGJecT8nM57ofgbAkp0uTpaosA9DqMEHNt2YHeoh3hR8IdnaPbhgKuHBCO2ju0-9oIji4sriv_xcaUtwAlU5-QVmtMTyFu6M1QKazfDHSRYn9wJTyF8kwfYg9IP4Pb2nh6vYYKjqdpXpOX3g4Z3vyuU_Jwe7NafGruv94tF_P7xkmtSsNB6F7OXG8FuNa3HDy3M9-qlvvOct11a9s72_baXa0ZW_cAGpSXHW-15m0vp-T92TeiNzsXTLLhVDfJ7NDMv62WRgmuVKer9t1ZWxf7foBczGM6YL1SNkLqK12PXFOYEnVWOUw5I3jjQjntVNCGwXBmjpmZc2amZmaOmVWLKeF_kXsMo8Xn_zLizOSqjRvAPzP9G_oFteauRg |
CitedBy_id | crossref_primary_10_1007_s13233_020_8095_z crossref_primary_10_1016_j_matdes_2021_109558 crossref_primary_10_1007_s13233_020_8174_1 crossref_primary_10_1002_app_55491 |
Cites_doi | 10.1002/adma.201401513 10.1021/nn4021955 10.1002/adma.200901955 10.1002/adfm.200801435 10.1002/adma.201000889 10.1126/science.1188998 10.1002/adma.201204196 10.1021/nn1006368 10.1021/nl300528p 10.1016/j.jiec.2013.09.029 10.1016/j.carbon.2010.08.006 10.1002/adma.200901141 10.1002/adfm.201202638 10.1002/adfm.201201231 10.1016/j.carbon.2011.04.049 10.1038/nmat3001 10.1002/adfm.201200997 10.1021/acsami.5b01608 |
ContentType | Journal Article |
Copyright | The Polymer Society of Korea and Springer 2019 2019© The Polymer Society of Korea and Springer 2019 |
Copyright_xml | – notice: The Polymer Society of Korea and Springer 2019 – notice: 2019© The Polymer Society of Korea and Springer 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-020-8031-2 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Architecture |
EISSN | 2092-7673 |
EndPage | 227 |
ExternalDocumentID | oai_kci_go_kr_ARTI_7217798 10_1007_s13233_020_8031_2 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7X Z7Y ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION 85H ACYCR |
ID | FETCH-LOGICAL-c387t-1e28d36cda2ec5f51ef1a6f5751f9a1899badca5d8c4b00bdee8e7f39158815d3 |
IEDL.DBID | AGYKE |
ISSN | 1598-5032 |
IngestDate | Sun Mar 09 07:54:01 EDT 2025 Sat Sep 13 14:21:54 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Tue Jul 29 01:58:49 EDT 2025 Fri Feb 21 02:31:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 3D framework electrical conductivity graphitic layer flexible composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-1e28d36cda2ec5f51ef1a6f5751f9a1899badca5d8c4b00bdee8e7f39158815d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2384859823 |
PQPubID | 2044280 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_7217798 proquest_journals_2384859823 crossref_citationtrail_10_1007_s13233_020_8031_2 crossref_primary_10_1007_s13233_020_8031_2 springer_journals_10_1007_s13233_020_8031_2 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2020 |
Publisher | The Polymer Society of Korea Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer Nature B.V – name: 한국고분자학회 |
References | WuCHuangXWangGLvLChenGLiGJiangPAdv. Funct. Mater.2013235061:CAS:528:DC%2BC38XhtlGjsr3L10.1002/adfm.201201231 ImHKimJCarbon.20114935031:CAS:528:DC%2BC3MXntlais7c%3D10.1016/j.carbon.2011.04.049 SamadY ALiYAlhassanS MLiaoKACS Appl. Mater. Interfaces2015791951:CAS:528:DC%2BC2MXmsVelsL0%3D10.1021/acsami.5b01608 BozlarMHeDBaiJChalopinYMingoNVolzSAdv. Mater.20102216541:CAS:528:DC%2BC3cXkvFCmsbw%3D10.1002/adma.200901955 PrasherRScience20103281851:CAS:528:DC%2BC3cXns1ent7w%3D10.1126/science.1188998 FerrariA CMeyerJ CScardaciVCasiraghiCLazzeriMMauriFPiscanecSJiangDNovoselovK SRothSGeimA KPhys. Rev. Lett.20069787401 PeiSZhaoJDuJRenWChengH-MCarbon20104844661:CAS:528:DC%2BC3cXht1Sru7rE10.1016/j.carbon.2010.08.006 SinghMHaverinenH MDhagatPJabbourG EAdv. Mater.2010226731:CAS:528:DC%2BC3cXitVShurs%3D10.1002/adma.200901141 JiHZhangLPettesM TLiHChenSShiLPinerRRuoffR SNano Lett.20121224461:CAS:528:DC%2BC38XlvFCrt78%3D10.1021/nl300528p LiXZhaoYWuWChenJChuGZouHJ. Ind. Eng. Chem.20142020431:CAS:528:DC%2BC3sXhs1eqtrjE10.1016/j.jiec.2013.09.029 JiJZhangL LJiHLiYZhaoXBaiXFanXZhangFRuoffR SACS Nano2013762371:CAS:528:DC%2BC3sXptFeitbc%3D10.1021/nn4021955 MarcanoD CKosynkinD VBerlinJ MSinitskiiASunZSlesarevAAlemanyL BLuWTourJ MACS Nano20108480610.1021/nn1006368 ChenZRenWGaoLLiuBPeiSChengH-MNat. Mater.2011104241:CAS:528:DC%2BC3MXltFyqtr0%3D10.1038/nmat3001 ZhouMLinTHuangFZhongYWangZTangYBiHWanDLinJAdv. Funct. Mater.20132322631:CAS:528:DC%2BC38XhslOisrnE10.1002/adfm.201202638 LiuLNiuZZhangLZhouWChenXXieSAdv. Mater.20142648551:CAS:528:DC%2BC2cXotV2gu7k%3D10.1002/adma.201401513 ZhiCBandoYTeraoTTangCKuwaharaHGolbergDAdv. Funct. Mater.20091918571:CAS:528:DC%2BD1MXotFagt7Y%3D10.1002/adfm.200801435 ChenZXuCMaCRenWChengH-MAdv. Mater.20132512961:CAS:528:DC%2BC3sXltVSntA%3D%3D10.1002/adma.201204196 KwonK CChoiK SKimS YAdv. Funct. Mater.20122247241:CAS:528:DC%2BC38Xps1yhtrY%3D10.1002/adfm.201200997 OkimotoHTakenobuTYanagiKMiyataYShimotaniHKatauraHIwasaYAdv. Mater.20102239811:CAS:528:DC%2BC3cXhtF2mtr%2FF10.1002/adma.201000889 R Prasher (8031_CR8) 2010; 328 M Bozlar (8031_CR3) 2010; 22 L Liu (8031_CR1) 2014; 26 H Okimoto (8031_CR7) 2010; 22 A C Ferrari (8031_CR18) 2006; 97 X Li (8031_CR11) 2014; 20 H Im (8031_CR5) 2011; 49 S Pei (8031_CR19) 2010; 48 H Ji (8031_CR14) 2012; 12 Y A Samad (8031_CR17) 2015; 7 K C Kwon (8031_CR2) 2012; 22 M Singh (8031_CR6) 2010; 22 Z Chen (8031_CR15) 2013; 25 Z Chen (8031_CR12) 2011; 10 J Ji (8031_CR13) 2013; 7 C Wu (8031_CR10) 2013; 23 D C Marcano (8031_CR16) 2010; 8 C Zhi (8031_CR4) 2009; 19 M Zhou (8031_CR9) 2013; 23 |
References_xml | – reference: WuCHuangXWangGLvLChenGLiGJiangPAdv. Funct. Mater.2013235061:CAS:528:DC%2BC38XhtlGjsr3L10.1002/adfm.201201231 – reference: JiHZhangLPettesM TLiHChenSShiLPinerRRuoffR SNano Lett.20121224461:CAS:528:DC%2BC38XlvFCrt78%3D10.1021/nl300528p – reference: LiuLNiuZZhangLZhouWChenXXieSAdv. Mater.20142648551:CAS:528:DC%2BC2cXotV2gu7k%3D10.1002/adma.201401513 – reference: PrasherRScience20103281851:CAS:528:DC%2BC3cXns1ent7w%3D10.1126/science.1188998 – reference: FerrariA CMeyerJ CScardaciVCasiraghiCLazzeriMMauriFPiscanecSJiangDNovoselovK SRothSGeimA KPhys. Rev. Lett.20069787401 – reference: ZhouMLinTHuangFZhongYWangZTangYBiHWanDLinJAdv. Funct. Mater.20132322631:CAS:528:DC%2BC38XhslOisrnE10.1002/adfm.201202638 – reference: ChenZRenWGaoLLiuBPeiSChengH-MNat. Mater.2011104241:CAS:528:DC%2BC3MXltFyqtr0%3D10.1038/nmat3001 – reference: SamadY ALiYAlhassanS MLiaoKACS Appl. Mater. Interfaces2015791951:CAS:528:DC%2BC2MXmsVelsL0%3D10.1021/acsami.5b01608 – reference: BozlarMHeDBaiJChalopinYMingoNVolzSAdv. Mater.20102216541:CAS:528:DC%2BC3cXkvFCmsbw%3D10.1002/adma.200901955 – reference: JiJZhangL LJiHLiYZhaoXBaiXFanXZhangFRuoffR SACS Nano2013762371:CAS:528:DC%2BC3sXptFeitbc%3D10.1021/nn4021955 – reference: MarcanoD CKosynkinD VBerlinJ MSinitskiiASunZSlesarevAAlemanyL BLuWTourJ MACS Nano20108480610.1021/nn1006368 – reference: ZhiCBandoYTeraoTTangCKuwaharaHGolbergDAdv. Funct. Mater.20091918571:CAS:528:DC%2BD1MXotFagt7Y%3D10.1002/adfm.200801435 – reference: LiXZhaoYWuWChenJChuGZouHJ. Ind. Eng. Chem.20142020431:CAS:528:DC%2BC3sXhs1eqtrjE10.1016/j.jiec.2013.09.029 – reference: ChenZXuCMaCRenWChengH-MAdv. Mater.20132512961:CAS:528:DC%2BC3sXltVSntA%3D%3D10.1002/adma.201204196 – reference: OkimotoHTakenobuTYanagiKMiyataYShimotaniHKatauraHIwasaYAdv. Mater.20102239811:CAS:528:DC%2BC3cXhtF2mtr%2FF10.1002/adma.201000889 – reference: ImHKimJCarbon.20114935031:CAS:528:DC%2BC3MXntlais7c%3D10.1016/j.carbon.2011.04.049 – reference: PeiSZhaoJDuJRenWChengH-MCarbon20104844661:CAS:528:DC%2BC3cXht1Sru7rE10.1016/j.carbon.2010.08.006 – reference: KwonK CChoiK SKimS YAdv. Funct. Mater.20122247241:CAS:528:DC%2BC38Xps1yhtrY%3D10.1002/adfm.201200997 – reference: SinghMHaverinenH MDhagatPJabbourG EAdv. Mater.2010226731:CAS:528:DC%2BC3cXitVShurs%3D10.1002/adma.200901141 – volume: 26 start-page: 4855 year: 2014 ident: 8031_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201401513 – volume: 7 start-page: 6237 year: 2013 ident: 8031_CR13 publication-title: ACS Nano doi: 10.1021/nn4021955 – volume: 22 start-page: 1654 year: 2010 ident: 8031_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.200901955 – volume: 19 start-page: 1857 year: 2009 ident: 8031_CR4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801435 – volume: 22 start-page: 3981 year: 2010 ident: 8031_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201000889 – volume: 328 start-page: 185 year: 2010 ident: 8031_CR8 publication-title: Science doi: 10.1126/science.1188998 – volume: 25 start-page: 1296 year: 2013 ident: 8031_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201204196 – volume: 8 start-page: 4806 year: 2010 ident: 8031_CR16 publication-title: ACS Nano doi: 10.1021/nn1006368 – volume: 12 start-page: 2446 year: 2012 ident: 8031_CR14 publication-title: Nano Lett. doi: 10.1021/nl300528p – volume: 20 start-page: 2043 year: 2014 ident: 8031_CR11 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.09.029 – volume: 97 start-page: 87401 year: 2006 ident: 8031_CR18 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 4466 year: 2010 ident: 8031_CR19 publication-title: Carbon doi: 10.1016/j.carbon.2010.08.006 – volume: 22 start-page: 673 year: 2010 ident: 8031_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.200901141 – volume: 23 start-page: 2263 year: 2013 ident: 8031_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202638 – volume: 23 start-page: 506 year: 2013 ident: 8031_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201231 – volume: 49 start-page: 3503 year: 2011 ident: 8031_CR5 publication-title: Carbon. doi: 10.1016/j.carbon.2011.04.049 – volume: 10 start-page: 424 year: 2011 ident: 8031_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 22 start-page: 4724 year: 2012 ident: 8031_CR2 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200997 – volume: 7 start-page: 9195 year: 2015 ident: 8031_CR17 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01608 |
SSID | ssj0061311 |
Score | 2.2129328 |
Snippet | In this study, based on three-dimensional (3D) framework architecture built-up with two-dimensional (2D) graphitic carbon such as graphene, we have prepared a... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 221 |
SubjectTerms | Architecture Carbon Characterization and Evaluation of Materials Chemical vapor deposition Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Deformation Electrical resistivity Electron transfer Graphene Metal foams Nanochemistry Nanosheets Nanotechnology Physical Chemistry Polydimethylsiloxane Polymer matrix composites Polymer Sciences Silicone resins Soft and Granular Matter Three dimensional composites 고분자공학 |
Title | Implication of Three Dimensional Framework Architecture of Graphitic Carbon Nanosheets for Improving Electrical Conductivity Under Mechanical Deformation |
URI | https://link.springer.com/article/10.1007/s13233-020-8031-2 https://www.proquest.com/docview/2384859823 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002567717 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2020, 28(3), , pp.221-227 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7Bcmh7AEpbdQtFVsWJKiiJ48Q-rpZdXoLTrkRPVuJHW22VVLvh0n_Sf1uPN94FBJU45WA7TjSTmXFm5vsAjlSSuyCE2UhTwaOsLKpIFJZHxipmLDp430h7fZOfT7PLW3bb9XEvQrV7SEl6S71udqMpxZxj7KwqTSJnd7dYwgXvwdbg7NvVKBjgHBFkPEyq253FNA3JzKdu8sAdbdZz-yDSfJQc9T5nvAOT8LTLUpPZyV1bnag_j4AcX_g6u7DdxaBksFSat7Bh6j14NQzUb3vw5h5K4Tv4e7GuOieNJRMnfkNOkRZgCelBxqHCiwzu5SVw7hniYWOBHRmW88qtd9a8Wfwwpl0QFy6T1T8NMvJ8PKgyZNjUiELraS2IJ2Yi1wY7lP3oqVk1XL6H6Xg0GZ5HHaNDpCgv2igxKdc0V7pMjWKWJU4dytxi7seK0glTVKVWJdNcZc4eVNoYbgqLIPacJ0zTD9Crm9p8BMJibYWKtdFMZSKjnNu4rFheicIILvI-xEGwUnVw58i68UuugZpRAtJJQKIEZNqH49WS30usj_9N_uK0Rc7UT4kI3Xj93sjZXLpzyIV05-qiELwPB0GZZGcbFtIFSRlH3ETah69BN9bDz-746UWz9-F1isrly-UOoNfO78xnFz-11WH3vRzC5jQd_APGIBNg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5B9zB4GDCY6BhgIZ5AmZI4TuzHqmvXsnVPnTSerMQ_YCpKUJu98J_w3-Jz43abAGlPebAdJ7rL57vc3XcAH1WSOyOE2UhTwaOsLKpIFJZHxipmLB7wvpB2dpFPLrMvV-yqq-NehWz3EJL0SL0tdqMpxZhj7FCVJpHD3Z3MueBxD3YGp1_PRgGAc2SQ8TSpbncW0zQEM_92kzvH0eN6ae9YmveCo_7MGT-DeXjadarJ4vimrY7Vr3tEjg98neew19mgZLBWmhfwyNT7sDsMrd_24ektlsKX8Hu6zTonjSVzJ35DTrAtwJrSg4xDhhcZ3IpL4NxT5MPGBDsyLJeVW-_QvFl9N6ZdEWcuk80_DTLy_XhQZciwqZGF1re1IL4xE5kZrFD2oydmU3D5Ci7Ho_lwEnUdHSJFedFGiUm5prnSZWoUsyxx6lDmFmM_VpSJ8_2qUquSaa4yhweVNoabwiKJPecJ0_QAenVTm9dAWKytULE2mqlMZJRzG5cVyytRGMFF3oc4CFaqju4cu278kFuiZpSAdBKQKAGZ9uHTZsnPNdfH_yZ_cNoiF-paIkM3Xr81crGUzg-ZSudXF4XgfTgKyiQ7bFhJZyRlHHkTaR8-B93YDv9zx8MHzX4Pu5P57FyeTy_O3sCTFBXNp84dQa9d3pi3zpZqq3fdt_MHJ_8VVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgSEAPFRQQ2xawECdQ1CSOE_u42u3SBVpx6Eq9WYk9BlSUVLvhY_hbZrzxbosAiVMOsZNIbzweZ2beY-yNzUoMQqRPnNAqKeqqSXTlVQLeSvC0wYdG2rPz8nRRfLiUl4PO6SpWu8eU5LqngVia2v742vnjbeObyAXlH1P0sCJL0AffQ2-ckaEv8nF0xSVxyQTCVPwOmYo8pjX_9IhbG9PddulvxZy_pUnD7jN7xPaGsJGP1zg_Zneg3WcPJlGtbZ_t3iAWfMJ-zreF4rzz_AIRAz4lJv81CwefxaIsPr6RSqCx74nCmmri-KReNjgfHXC3-grQrzhGuHzzG4KfBAkdQplPupaIY4MSBQ9aSvwMqKk43J3CpkfyKVvMTi4mp8kgwpBYoao-ySBXTpTW1TlY6WWGCNalp3SN13WGx7WmdraWTtkCl3DjABRUnnjnlcqkE8_YTtu18JxxmTqvberASVvoQijl07qRZaMr0EqXI5ZGBIwdGMpJKOO72XIrE2gGQTMEmslH7O1myvWanuNfg18jrObKfjNEqk3XL525Who8OswNHoWrSqsRO4qom2E5rwzGNYUiqkMxYu-iJWxv__WNB_81-hW7_3k6M5_m5x8P2cOcTDMUux2xnX75A15g9NM3L4OF_wI0RvzO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implication+of+Three+Dimensional+Framework+Architecture+of+Graphitic+Carbon+Nanosheets+for+Improving+Electrical+Conductivity+Under+Mechanical+Deformation&rft.jtitle=Macromolecular+research&rft.au=Yeon-Jeong%2C+Lim&rft.au=Keun-Young%2C+Shin&rft.au=Sang-Soo%2C+Lee&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=28&rft.issue=3&rft.spage=221&rft.epage=227&rft_id=info:doi/10.1007%2Fs13233-020-8031-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |