A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction
Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stab...
Saved in:
Published in | NPG Asia materials Vol. 11; no. 1 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics.
Wearable electronics: bumpy textures improve human–machine interactions
A 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger.
A transparent stretchable (TS) capacitive sensor, which can detect pressure (force) and touch inputs distinguishably was fabricated by forming with a TS dielectric layer sandwiched between the upper piezoresistive electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–ionic liquid composite enabling to distinguish touch and pressure stimuli and the lower TS electrode of metal/indium tin oxide/metal multilayer on a transparent elastomeric substrate with stress-relieving three-dimensional microstructured pattern providing multi-directional stretchability and high pressure sensitivity. The TS sensor array demonstrated a good control of the interaction with a small vehicle as a multi-functional input device for future wearable electronics. |
---|---|
AbstractList | Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics.Wearable electronics: bumpy textures improve human–machine interactionsA 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger. Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics. Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics. Wearable electronics: bumpy textures improve human–machine interactions A 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger. A transparent stretchable (TS) capacitive sensor, which can detect pressure (force) and touch inputs distinguishably was fabricated by forming with a TS dielectric layer sandwiched between the upper piezoresistive electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–ionic liquid composite enabling to distinguish touch and pressure stimuli and the lower TS electrode of metal/indium tin oxide/metal multilayer on a transparent elastomeric substrate with stress-relieving three-dimensional microstructured pattern providing multi-directional stretchability and high pressure sensitivity. The TS sensor array demonstrated a good control of the interaction with a small vehicle as a multi-functional input device for future wearable electronics. |
ArticleNumber | 23 |
Author | Trung, Tran Quang Wen, Long Zabeeb, Arsalan Lee, Nae-Eung Choi, Young-In Hwang, Byeong-Ung Lee, Han-Byeol Kim, Ju Hyun Lee, Jae Deuk Han, Jeon Geon |
Author_xml | – sequence: 1 givenname: Byeong-Ung surname: Hwang fullname: Hwang, Byeong-Ung organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 2 givenname: Arsalan surname: Zabeeb fullname: Zabeeb, Arsalan organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 3 givenname: Tran Quang surname: Trung fullname: Trung, Tran Quang organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 4 givenname: Long surname: Wen fullname: Wen, Long organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 5 givenname: Jae Deuk surname: Lee fullname: Lee, Jae Deuk organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 6 givenname: Young-In surname: Choi fullname: Choi, Young-In organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 7 givenname: Han-Byeol surname: Lee fullname: Lee, Han-Byeol organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 8 givenname: Ju Hyun surname: Kim fullname: Kim, Ju Hyun organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 9 givenname: Jeon Geon surname: Han fullname: Han, Jeon Geon organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University – sequence: 10 givenname: Nae-Eung orcidid: 0000-0002-6539-5010 surname: Lee fullname: Lee, Nae-Eung email: nelee@skku.edu organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University |
BookMark | eNp9UcFu1TAQtFAr0ZZ-QG-WOKesHT8nOVYVUKRKvcDZcpz1q6uHHbwOavkD_hqHICoh0cPKK-_MeMdzyo5iisjYhYBLAW3_jpRQsmtADLWkbh5fsRPR96pRsOuO_vZqeM3OiR4AQGit-p06YT-veMk20mwzxsKpZCzu3o4H5ISRUua-1hSohLhfAm2jCQu6ElLkyfOSFnfPbZz4nJFoycjHJ-7sbF0o4Ttuo4A_Uh2vQvWKwj7aw_b0tPyWesOOvT0Qnv85z9iXD-8_X980t3cfP11f3Tau7bvSCGud7hAnmAA6FKP3YnICxl4pL1DtpG9H2wKMwsHopdKTtqAHENCvTXvG3m66c07fFqRiHtKS6zZkpBoGVX9HixdRUg5ath3Iiuo2lMuJKKM31bJd3VRn4WAEmDUgswVkakBmDcg8Vqb4hznn8NXmpxc5cuNQxcY95ued_k_6BXOEqGo |
CitedBy_id | crossref_primary_10_1002_adfm_202401532 crossref_primary_10_1016_j_nanoms_2021_11_002 crossref_primary_10_1021_acsnano_1c01621 crossref_primary_10_1002_admi_202101128 crossref_primary_10_1016_j_cej_2023_148172 crossref_primary_10_1021_acsami_0c04739 crossref_primary_10_1109_JSEN_2020_2974096 crossref_primary_10_1016_j_apmt_2023_101872 crossref_primary_10_1126_sciadv_abi4563 crossref_primary_10_3390_s24020449 crossref_primary_10_1007_s42114_021_00262_9 crossref_primary_10_46670_JSST_2022_31_5_312 crossref_primary_10_1039_D2MH00892K crossref_primary_10_3390_ma17174196 crossref_primary_10_1002_adfm_202209277 crossref_primary_10_1088_1361_665X_abe3aa crossref_primary_10_1002_adma_202002397 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1016_j_bios_2023_115449 crossref_primary_10_1109_JSEN_2020_3043625 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1002_adfm_202303535 crossref_primary_10_1021_acs_langmuir_2c02604 crossref_primary_10_1016_j_ecmx_2025_100982 crossref_primary_10_1002_admt_201900864 crossref_primary_10_1002_smll_202205643 crossref_primary_10_1021_acsami_4c22665 crossref_primary_10_3390_mi13020254 crossref_primary_10_1002_smll_202205048 crossref_primary_10_1016_j_cej_2022_138672 crossref_primary_10_3390_app10186403 crossref_primary_10_1002_admt_202001023 crossref_primary_10_1016_j_coco_2025_102249 crossref_primary_10_1002_admt_201900908 crossref_primary_10_1002_admt_202201992 crossref_primary_10_1002_adfm_202308698 crossref_primary_10_1002_mame_202100447 crossref_primary_10_1149_1945_7111_ac0e4b crossref_primary_10_1016_j_snb_2021_130373 crossref_primary_10_1038_s41378_021_00318_2 crossref_primary_10_1002_adfm_202312034 crossref_primary_10_1016_j_mee_2022_111750 crossref_primary_10_1080_09243046_2023_2270379 crossref_primary_10_1002_admt_202301615 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_3390_s22124460 crossref_primary_10_1002_marc_202400322 crossref_primary_10_1002_admi_201902170 crossref_primary_10_3390_s19214686 crossref_primary_10_1016_j_apsusc_2021_150719 crossref_primary_10_1088_2058_8585_ac97a4 crossref_primary_10_1016_j_mssp_2021_106388 crossref_primary_10_1002_aisy_202000157 crossref_primary_10_1007_s11051_023_05751_0 crossref_primary_10_1021_acsami_0c00267 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1021_acsaelm_0c00538 crossref_primary_10_3390_s21217072 crossref_primary_10_1038_s41427_020_00277_6 crossref_primary_10_1108_MI_09_2019_0060 crossref_primary_10_3390_nano11061503 crossref_primary_10_1021_acsami_3c14064 crossref_primary_10_1002_advs_202101876 |
Cites_doi | 10.1002/adma.201600720 10.1021/acsami.7b09411 10.1002/adfm.201200225 10.1126/sciadv.1500661 10.1126/sciadv.1601473 10.1039/C4MH00147H 10.1002/adma.201504441 10.1021/acsnano.5b03510 10.1002/adma.201606151 10.1063/1.4954199 10.1021/acsami.5b12588 10.1038/nnano.2014.38 10.1021/nn505953t 10.1039/C4NR03295K 10.1002/adma.201401364 10.1021/acsami.6b16716 10.1002/adma.201703004 10.1039/C7CP07318F 10.1021/acsnano.5b01835 10.1002/adfm.201605286 10.1002/adma.201505473 10.1039/c3nr05496a 10.1021/acsami.6b11988 10.1021/acsnano.5b01613 10.1002/adma.201606453 10.1021/acsnano.7b02474 10.1002/adma.201504155 10.1021/acsami.5b00695 10.1007/s10704-014-9977-x 10.1021/acsami.6b12415 10.1126/science.aaf8810 10.1002/adfm.201504804 10.1002/adma.201706738 10.1002/adma.201601572 10.1002/adma.201504239 10.1016/j.polymertesting.2016.06.003 10.1002/adma.201803388 10.1002/adma.201201886 10.1021/acsami.6b05025 10.7567/JJAP.52.115801 10.1002/adma.201505218 10.1021/acs.nanolett.5b01505 10.1002/adma.201302869 10.1038/am.2013.41 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/s41427-019-0126-x |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection (via ProQuest) Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: (Open Access) Springer Nature eJournals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1884-4057 |
ExternalDocumentID | 10_1038_s41427_019_0126_x |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2016R1A2A1A05005423 funderid: https://doi.org/10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 5VS 8FE 8FG AAJSJ AAKKN ABEEZ ABJCF ACACY ACGFO ACGFS ACIWK ACMJI ACSMW ACULB ADBBV ADMLS AENEX AFGXO AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AMTXH ARCSS B.R BAPOH BCNDV BENPR BGLVJ C24 C6C CCPQU CZ9 D1I EBLON EBS EJD GROUPED_DOAJ HCIFZ HH5 HZ~ ISHAI KB. KC. KQ8 LGEZI LOTEE NADUK NAO NXXTH OK1 PDBOC PIMPY PROAC RNT RNTTT SNYQT AASML AAYXX CITATION PHGZM PHGZT 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c387t-1aac67eed0d007e1bff1dc10b844f1e452f3ba300b1c0bf246d6a06901086a063 |
IEDL.DBID | BENPR |
ISSN | 1884-4049 |
IngestDate | Wed Aug 13 11:12:54 EDT 2025 Wed Aug 13 04:33:14 EDT 2025 Thu Apr 24 22:53:02 EDT 2025 Tue Jul 01 00:44:04 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-1aac67eed0d007e1bff1dc10b844f1e452f3ba300b1c0bf246d6a06901086a063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6539-5010 |
OpenAccessLink | https://www.proquest.com/docview/2499400061?pq-origsite=%requestingapplication% |
PQID | 2229623702 |
PQPubID | 546296 |
ParticipantIDs | proquest_journals_2499400061 proquest_journals_2229623702 crossref_citationtrail_10_1038_s41427_019_0126_x crossref_primary_10_1038_s41427_019_0126_x springer_journals_10_1038_s41427_019_0126_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191200 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Tokyo |
PublicationTitle | NPG Asia materials |
PublicationTitleAbbrev | NPG Asia Mater |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kim, Lee, Oh, Sun (CR13) 2016; 12 Lien, Nautiyal, Lee (CR44) 2013; 52 Park (CR20) 2015; 9 Kang (CR3) 2017; 11 Lee, Sathi, Kim, Jeong, Nah (CR40) 2016; 53 Zang, Zhang, Di, Zhu (CR41) 2015; 2 Lee (CR6) 2014; 6 Jung (CR14) 2014; 26 Teo (CR38) 2017; 9 Choi (CR45) 2017; 9 Trung (CR1) 2017; 9 Yao, Zhu (CR16) 2014; 6 Son (CR24) 2014; 9 Hwang (CR5) 2015; 9 Ge (CR10) 2016; 28 Kim, Lim, Song, Yang, Lee (CR15) 2016; 8 Huang (CR33) 2016; 87 Xu, Zhu (CR39) 2012; 24 Kim (CR11) 2015; 15 Trung, Ramasundaram, Hwang, Lee (CR18) 2016; 28 Roh, Hwang, Kim, Kim, Lee (CR4) 2015; 9 Xu (CR25) 2016; 28 Amjadi, Turan, Clementson, Sitti (CR21) 2016; 8 Choi (CR12) 2017; 9 Park, Kim, Lee, Lee, Ko (CR30) 2015; 1 Park, Hyun, Mun, Park, Park (CR9) 2015; 7 Wang (CR2) 2018; 30 Park (CR17) 2014; 8 Yamamoto (CR26) 2016; 2 Tien (CR28) 2014; 26 Wen, Sahu, Han (CR35) 2018; 20 You (CR23) 2016; 28 Wang (CR8) 2016; 28 Zhao, Zhu (CR27) 2017; 29 Bae (CR31) 2018; 30 Gutruf (CR43) 2013; 5 Badre, Marquant, Alsayed, Hough (CR36) 2012; 22 Lee (CR34) 2016; 28 Shi (CR7) 2016; 26 Park (CR22) 2017; 29 Roh, Lee, Kim, Lee (CR19) 2017; 29 Kim (CR29) 2015; 5 Song (CR32) 2017; 27 Kee (CR37) 2016; 28 Yang, Su, Bitar, Lu (CR42) 2014; 190 SY Lien (126_CR44) 2013; 52 I You (126_CR23) 2016; 28 TY Choi (126_CR45) 2017; 9 L Wen (126_CR35) 2018; 20 E Roh (126_CR19) 2017; 29 E Roh (126_CR4) 2015; 9 S Yao (126_CR16) 2014; 6 GB Lee (126_CR40) 2016; 53 JK Song (126_CR32) 2017; 27 S Yang (126_CR42) 2014; 190 M Amjadi (126_CR21) 2016; 8 Y Yamamoto (126_CR26) 2016; 2 S Zhao (126_CR27) 2017; 29 B Xu (126_CR25) 2016; 28 Y Huang (126_CR33) 2016; 87 X Wang (126_CR2) 2018; 30 GY Bae (126_CR31) 2018; 30 S Kee (126_CR37) 2016; 28 DI Kim (126_CR29) 2015; 5 J Park (126_CR30) 2015; 1 CC Kim (126_CR13) 2016; 12 J Shi (126_CR7) 2016; 26 TQ Trung (126_CR18) 2016; 28 P Gutruf (126_CR43) 2013; 5 Y Park (126_CR22) 2017; 29 HB Lee (126_CR34) 2016; 28 J Ge (126_CR10) 2016; 28 TQ Trung (126_CR1) 2017; 9 JJ Park (126_CR9) 2015; 7 NT Tien (126_CR28) 2014; 26 DY Choi (126_CR12) 2017; 9 D Son (126_CR24) 2014; 9 F Xu (126_CR39) 2012; 24 N Kim (126_CR15) 2016; 8 H Park (126_CR20) 2015; 9 Y Zang (126_CR41) 2015; 2 C Badre (126_CR36) 2012; 22 M Kang (126_CR3) 2017; 11 BU Hwang (126_CR5) 2015; 9 MY Teo (126_CR38) 2017; 9 J Lee (126_CR6) 2014; 6 KK Kim (126_CR11) 2015; 15 J Park (126_CR17) 2014; 8 C Wang (126_CR8) 2016; 28 S Jung (126_CR14) 2014; 26 |
References_xml | – volume: 15 start-page: 5240 year: 2015 end-page: 5247 ident: CR11 article-title: Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks publication-title: Nano Lett. – volume: 24 start-page: 5117 year: 2012 end-page: 5122 ident: CR39 article-title: Highly conductive and stretchable silver nanowire conductors publication-title: Adv. Mater. – volume: 9 start-page: 18022 year: 2017 end-page: 18030 ident: CR45 article-title: Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 6640 year: 2016 end-page: 6648 ident: CR8 article-title: Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors publication-title: Adv. Mater. – volume: 6 start-page: 2345 year: 2014 end-page: 2352 ident: CR16 article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires publication-title: Nanoscale – volume: 8 start-page: 5618 year: 2016 end-page: 5626 ident: CR21 article-title: Parallel microcracks-based ultrasensitive and highly stretchable strain sensors publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1770 year: 2017 end-page: 1780 ident: CR12 article-title: Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 8625 year: 2016 end-page: 8631 ident: CR37 article-title: Controlling molecular ordering in aqueous conducting polymers using ionic liquids publication-title: Adv. Mater. – volume: 2 start-page: 140 year: 2015 end-page: 156 ident: CR41 article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications publication-title: Mater. Horiz. – volume: 28 start-page: 3069 year: 2016 end-page: 3077 ident: CR34 article-title: Mogul-patterned elastomeric substrate for stretchable electronics publication-title: Adv. Mater. – volume: 26 start-page: 2078 year: 2016 end-page: 2084 ident: CR7 article-title: Graphene reinforced carbon nanotube networks for wearable strain sensors publication-title: Adv. Funct. Mater. – volume: 28 start-page: 6359 year: 2016 end-page: 6364 ident: CR23 article-title: Stretchable e-skin apexcardiogram sensor publication-title: Adv. Mater. – volume: 9 start-page: 819 year: 2017 end-page: 826 ident: CR38 article-title: Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 502 year: 2016 end-page: 509 ident: CR18 article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics publication-title: Adv. Mater. – volume: 22 start-page: 2723 year: 2012 end-page: 2727 ident: CR36 article-title: Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid publication-title: Adv. Funct. Mater. – volume: 8 start-page: 12020 year: 2014 end-page: 12029 ident: CR17 article-title: Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures publication-title: ACS Nano – volume: 30 start-page: 1803388 year: 2018 ident: CR31 article-title: Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity publication-title: Adv. Mater. – volume: 29 start-page: 1606151 year: 2017 ident: CR27 article-title: Electronic skin with multifunction sensors based on thermosensation publication-title: Adv. Mater. – volume: 29 start-page: 1703004 year: 2017 ident: CR19 article-title: A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device publication-title: Adv. Mater. – volume: 9 start-page: 8801 year: 2015 end-page: 8810 ident: CR5 article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities publication-title: ACS Nano – volume: 11 start-page: 7950 year: 2017 end-page: 7957 ident: CR3 article-title: Graphene-based three-dimensional capacitive touch sensor for wearable electronics publication-title: ACS Nano – volume: 9 start-page: 6252 year: 2015 end-page: 6261 ident: CR4 article-title: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers publication-title: ACS Nano – volume: 28 start-page: 4462 year: 2016 end-page: 4471 ident: CR25 article-title: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation publication-title: Adv. Mater. – volume: 8 start-page: 21070 year: 2016 end-page: 21076 ident: CR15 article-title: Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2016 ident: CR26 article-title: Printed multifunctional flexible device with an integrated motion sensor for health care monitoring publication-title: Sci. Adv. – volume: 20 start-page: 4818 year: 2018 end-page: 4830 ident: CR35 article-title: Development and utility of a new 3-D magnetron source for high rate deposition of highly conductive ITO thin films near room temperature publication-title: Phys. Chem. Chem. Phys. – volume: 190 start-page: 99 year: 2014 end-page: 110 ident: CR42 article-title: Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates publication-title: Int. J. Fract. – volume: 7 start-page: 6317 year: 2015 end-page: 6324 ident: CR9 article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 1 year: 2015 ident: CR30 article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli publication-title: Sci. Adv. – volume: 5 year: 2013 ident: CR43 article-title: Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes publication-title: NPG Asia Mater. – volume: 12 start-page: 682 year: 2016 end-page: 687 ident: CR13 article-title: Highly stretchable, transparent ionic touch panel publication-title: Science – volume: 6 start-page: 11932 year: 2014 end-page: 11939 ident: CR6 article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection publication-title: Nanoscale – volume: 5 year: 2015 ident: CR29 article-title: A sensor array using multi-functional field-effect transistors with ultrahigh sensitivity and precision for bio-monitoring publication-title: Sci. Rep. – volume: 9 start-page: 397 year: 2014 end-page: 404 ident: CR24 article-title: Multifunctional wearable devices for diagnosis and therapy of movement disorders publication-title: Nat. Nanotechnol. – volume: 53 start-page: 329 year: 2016 end-page: 337 ident: CR40 article-title: Wrinkled elastomers for the highly stretchable electrodes with excellent fatigue resistances publication-title: Polym. Test. – volume: 28 start-page: 722 year: 2016 end-page: 728 ident: CR10 article-title: A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties publication-title: Adv. Mater. – volume: 26 start-page: 796 year: 2014 end-page: 804 ident: CR28 article-title: A flexible bimodal sensor array for simultaneous sensing of pressure and temperature publication-title: Adv. Mater. – volume: 9 start-page: 9974 year: 2015 end-page: 9985 ident: CR20 article-title: Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars publication-title: ACS Nano – volume: 30 start-page: 1706738 year: 2018 ident: CR2 article-title: A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics publication-title: Adv. Mater. – volume: 9 start-page: 35958 year: 2017 end-page: 35967 ident: CR1 article-title: An omnidirectionally stretchable photodetector based on organic-inorganic heterojunctions publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 4825 year: 2014 end-page: 4830 ident: CR14 article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces publication-title: Adv. Mater. – volume: 29 start-page: 1606453 year: 2017 ident: CR22 article-title: Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array publication-title: Adv. Mater. – volume: 52 start-page: 115801 year: 2013 ident: CR44 article-title: Optoelectronic properties of indium–tin oxide films deposited on flexible and transparent poly(dimethylsiloxane) substrate publication-title: Jpn. J. Appl. Phys. – volume: 87 start-page: 065007 year: 2016 ident: CR33 article-title: A flexible touch-pressure sensor array with wireless transmission system for robotic skin publication-title: Rev. Sci. Instrum. – volume: 27 start-page: 1605286 year: 2017 ident: CR32 article-title: Wearable force touch sensor array using a flexible and transparent electrode publication-title: Adv. Funct. Mater. – volume: 28 start-page: 6359 year: 2016 ident: 126_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201600720 – volume: 9 start-page: 35958 year: 2017 ident: 126_CR1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09411 – volume: 22 start-page: 2723 year: 2012 ident: 126_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200225 – volume: 1 year: 2015 ident: 126_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500661 – volume: 2 year: 2016 ident: 126_CR26 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601473 – volume: 2 start-page: 140 year: 2015 ident: 126_CR41 publication-title: Mater. Horiz. doi: 10.1039/C4MH00147H – volume: 28 start-page: 502 year: 2016 ident: 126_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201504441 – volume: 9 start-page: 9974 year: 2015 ident: 126_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.5b03510 – volume: 29 start-page: 1606151 year: 2017 ident: 126_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201606151 – volume: 87 start-page: 065007 year: 2016 ident: 126_CR33 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4954199 – volume: 8 start-page: 5618 year: 2016 ident: 126_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12588 – volume: 9 start-page: 397 year: 2014 ident: 126_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.38 – volume: 8 start-page: 12020 year: 2014 ident: 126_CR17 publication-title: ACS Nano doi: 10.1021/nn505953t – volume: 6 start-page: 11932 year: 2014 ident: 126_CR6 publication-title: Nanoscale doi: 10.1039/C4NR03295K – volume: 26 start-page: 4825 year: 2014 ident: 126_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201401364 – volume: 9 start-page: 18022 year: 2017 ident: 126_CR45 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16716 – volume: 29 start-page: 1703004 year: 2017 ident: 126_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201703004 – volume: 20 start-page: 4818 year: 2018 ident: 126_CR35 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07318F – volume: 9 start-page: 8801 year: 2015 ident: 126_CR5 publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 27 start-page: 1605286 year: 2017 ident: 126_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605286 – volume: 28 start-page: 8625 year: 2016 ident: 126_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201505473 – volume: 5 year: 2015 ident: 126_CR29 publication-title: Sci. Rep. – volume: 6 start-page: 2345 year: 2014 ident: 126_CR16 publication-title: Nanoscale doi: 10.1039/c3nr05496a – volume: 9 start-page: 819 year: 2017 ident: 126_CR38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11988 – volume: 9 start-page: 6252 year: 2015 ident: 126_CR4 publication-title: ACS Nano doi: 10.1021/acsnano.5b01613 – volume: 29 start-page: 1606453 year: 2017 ident: 126_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201606453 – volume: 11 start-page: 7950 year: 2017 ident: 126_CR3 publication-title: ACS Nano doi: 10.1021/acsnano.7b02474 – volume: 28 start-page: 4462 year: 2016 ident: 126_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201504155 – volume: 7 start-page: 6317 year: 2015 ident: 126_CR9 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00695 – volume: 190 start-page: 99 year: 2014 ident: 126_CR42 publication-title: Int. J. Fract. doi: 10.1007/s10704-014-9977-x – volume: 9 start-page: 1770 year: 2017 ident: 126_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12415 – volume: 12 start-page: 682 year: 2016 ident: 126_CR13 publication-title: Science doi: 10.1126/science.aaf8810 – volume: 26 start-page: 2078 year: 2016 ident: 126_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504804 – volume: 30 start-page: 1706738 year: 2018 ident: 126_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201706738 – volume: 28 start-page: 6640 year: 2016 ident: 126_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201601572 – volume: 28 start-page: 722 year: 2016 ident: 126_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201504239 – volume: 53 start-page: 329 year: 2016 ident: 126_CR40 publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2016.06.003 – volume: 30 start-page: 1803388 year: 2018 ident: 126_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201803388 – volume: 24 start-page: 5117 year: 2012 ident: 126_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201201886 – volume: 8 start-page: 21070 year: 2016 ident: 126_CR15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05025 – volume: 52 start-page: 115801 year: 2013 ident: 126_CR44 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.115801 – volume: 28 start-page: 3069 year: 2016 ident: 126_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201505218 – volume: 15 start-page: 5240 year: 2015 ident: 126_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01505 – volume: 26 start-page: 796 year: 2014 ident: 126_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201302869 – volume: 5 year: 2013 ident: 126_CR43 publication-title: NPG Asia Mater. doi: 10.1038/am.2013.41 |
SSID | ssj0001664854 ssib050736229 |
Score | 2.4474146 |
Snippet | Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 639/301/1005/1007 639/301/1005/1009 Biomaterials Chemistry and Materials Science Cursor control devices Dimpling Electrodes Electronics Energy Systems Indium tin oxides Input devices Ionic liquids Materials Science Multilayers Optical and Electronic Materials Polymers Pressure sensors Sensitivity Sensor arrays Sensors Service life assessment Signal transduction Stimuli Stretchability Structural Materials Substrates Surface and Interface Science Thin Films Touch Touch screens Wearable technology Wrist |
SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LXvQgPnF9kYMnpdg02TR7XMRl2YMXXdhbyasqSCtuF9R_4L92Jm1d3-CtdNK0dNLMl-abbwg5TlPjIZDqSFrHIyGsizSElYgxnXDdZ9r5oPZ5KUcTMZ72ph3C2lyYQNoPkpZhmm7ZYWczwUSCJElk9yQyAti4jErtMLSXB4Px1bgdRIBvYE5uYn740SKlUKEaGlNKwHpJ9NvdTa6-9_s5Pi1A55d90hB-hutkrcGNdFA_6Qbp-GKTrH5QE9wirwNaBalyzO-qKGaBgEswNYrOYLFaPlIAqNThR13czLHqMpqcrwIbq6BlTqtybm-pLhwN_Fh4P9Q8UwsB1QaOUW268y8lmLEjOIUMEHiycGtXa9Fuk8nw4vp8FDWVFiLLVVpFTGsrUwiXsQPM4JnJc-Ysi40SImde9JKcG83j2DAbmzwR0kmNGsdYpwkO-A5ZKsrC7xKqlcrhon7Pci160NrFWpqcJc7IvjS6S-L2_Wa2kSHHahj3WdgO5yqrXZKBSzJ0SfbUJSfvlzzUGhx_NT5onZY1n-Msw6LlgPPSOPnZDMs-EdBcl5y2fl6Yf73X3r9a75OVBMdZ4MIckKXqce4PAdFU5qgZw2-EAPHA priority: 102 providerName: Springer Nature |
Title | A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction |
URI | https://link.springer.com/article/10.1038/s41427-019-0126-x https://www.proquest.com/docview/2229623702 https://www.proquest.com/docview/2499400061 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo7gUOFU-xpV35wAlkNX6s4z2hZdWl2kOFgEq9RX4FkFBSdrNS4R_wr5lxnLYg6CWKPH5EmfHM2B7PR8jLsnQRDKll2gfJlPKBWTArjHMrpJ1zG2LK9nmmT8_V-mJ2kTfctjmsctCJSVGH1uMe-TEsExDDG8zPm8vvDFGj8HQ1Q2jskTGoYGNGZPz25Oz9h0GiwNkBBZ0dgLTrorUyCRqNG6Ng8aTmw1GnNMdbxZXASEwMIRKaXf1prG480L8OTZMtWj0k-9mJpIue64_Ivdg8Jg9upRZ8Qn4taJfyluNlr47ilRDgD96ToltYubYbCt4qDTjDm887hGBGUohdCs1qaFvTrt35L9Q2gaZg2d0mUveDerCuPgUc9aSv8WcLZOwIijAcBL4sDR36xLRPyfnq5NPylGXYBealKTvGrfW6BNtZBHAgInd1zYPnhTNK1Tyqmails7IoHPeFq4XSQVtMeIygTfAin5FR0zbxOaHWmBoazWdeWjWD2qGw2tVcBKfn2tkJKYb_W_mckxyhMb5V6WxcmqpnSQUsqZAl1dWEvLpuctkn5Lir8uHAtCrPzW2FCObg9JWF-Df5WtAm5PXA5xvyf8c6uLuzF-S-QMFKkTCHZNRtdvEI_JnOTcmeWb2bkvFisf64nmYRhtKlUPjUy2naKfgNaZX47w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPABLiCr8WMd76FCFbBsaemplXozfoVWQknZzYqWf9A_w29kxklaQNBbb1HGdqLMxN_YnpmPkBdl6RMAqWM6RMmUCpE5gBXGuRPSTbiLKVf73NWzffXxYHywQn4OuTAYVjnMiXmijk3APfJ1WCYghzfAz5vjbwxZo_B0daDQ6MxiO51-hyXbYmPrHej3pRDT93tvZ6xnFWBBmrJl3LmgS4CGIgI-Ju6risfAC2-UqnhSY1FJ72RReB4KXwmlo3ZYzxc5ieBCwrjXyHUlAckxM336YbBfcK0ADnp3I-_xaK1MJmLjxihYqqnJcLAqzfpCcSUw7hMDloRmJ39C44W_-9cRbUa-6R1yu3dZ6WZnY3fJSqrvkVu_FTK8T842aZurpGNqWUsxAQWsAbOy6ALWyc2cgm9MI84n9ZclEj6jKKY2B4LVtKlo2yzDIXV1pDk0dzlP1J_SAFgecnhTJzpKPxoQ40BwC4NP4M3yo2NXBvcB2b8SdTwkq3VTp0eEOmMq6DQZB-nUGFrHwmlfcRG9nmjvRqQYvq8NfQV0JOL4avNJvDS2U4kFlVhUiT0ZkVfnXY678h-XNV4blGb7mWBhkS8dXMyyEP8Wn5v1iLwe9Hwh_u-zHl8-2HNyY7b3acfubO1uPyE3BRpZjsFZI6vtfJmegifV-mfZfCn5fNX_yy-EBy-O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHiqgQJ7gAvIine9WTuHChXaqKUoqhCVejP7BCRkl8RRH_-Av8SvY2Ztt4Cgt94sj72OMuP9ZrzfzgfwPM-NRyDVibIuS6S0LtEIKwnnWmR6wrXzsdvnTO0eyndH46MV-NnvhSFaZT8nxona1Za-kY-wTCANb4SfUehoEQfb09fH3xNSkKKV1l5Oow2RfX92guXbYnNvG339Qojpzse3u0mnMJDYrMibhGttVY4wkTrESs9NCNxZnppCysC9HIuQGZ2lqeE2NUFI5ZSm3r6kT4QHGY57A1ZzqooGsPpmZ3bwoY9mTLQQHLrkI37xUUoWUZaNF4XEwk1O-mXWrBgtJJeCWKBEXxIqOf0TKC-z378WbCMOTu_AWpfAsq024u7Ciq_uwe3f2hrehx9brIk902mjWcNoOwrGBu3RYgusmus5w0yZOZpdqs9Lkn8mk_NNpIVVrA6sqZf2C9OVY5Gou5x7Zs6YRWS3kezUmr768xrNNBCeIioK_rL4aNc2xX0Ah9fikIcwqOrKrwPTRRHwpsnYZlqO8WqXamUCF86oiTJ6CGn__5a264dOshzfyrgunxVl65ISXVKSS8rTIby8uOW4bQZy1cUbvdPKbl5YlKSejglnnop_my-CfAivej9fmv_7rEdXD_YMbuK7Ur7fm-0_hluCYiwScjZg0MyX_gmmVY152sUvg0_X_cr8ArPeNSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transparent+stretchable+sensor+for+distinguishable+detection+of+touch+and+pressure+by+capacitive+and+piezoresistive+signal+transduction&rft.jtitle=NPG+Asia+materials&rft.au=Hwang+Byeong-Ung&rft.au=Zabeeb+Arsalan&rft.au=Trung+Tran+Quang&rft.au=Long%2C+Wen&rft.date=2019-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1884-4049&rft.eissn=1884-4057&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41427-019-0126-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-4049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-4049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-4049&client=summon |