A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction

Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stab...

Full description

Saved in:
Bibliographic Details
Published inNPG Asia materials Vol. 11; no. 1
Main Authors Hwang, Byeong-Ung, Zabeeb, Arsalan, Trung, Tran Quang, Wen, Long, Lee, Jae Deuk, Choi, Young-In, Lee, Han-Byeol, Kim, Ju Hyun, Han, Jeon Geon, Lee, Nae-Eung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics. Wearable electronics: bumpy textures improve human–machine interactions A 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger. A transparent stretchable (TS) capacitive sensor, which can detect pressure (force) and touch inputs distinguishably was fabricated by forming with a TS dielectric layer sandwiched between the upper piezoresistive electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–ionic liquid composite enabling to distinguish touch and pressure stimuli and the lower TS electrode of metal/indium tin oxide/metal multilayer on a transparent elastomeric substrate with stress-relieving three-dimensional microstructured pattern providing multi-directional stretchability and high pressure sensitivity. The TS sensor array demonstrated a good control of the interaction with a small vehicle as a multi-functional input device for future wearable electronics.
AbstractList Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics.Wearable electronics: bumpy textures improve human–machine interactionsA 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger.
Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics.
Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics. However, realization of such a device has been limited by difficulties in achieving optical transparency, stretchability, high sensitivity, stability, and distinguishable responsivity to two stimuli simultaneously. Herein, we report a TS sensor in which touch and pressure stimuli can be detected and distinguished on a substrate with a stress-relieving three-dimensional (3D) microstructured pattern providing multidirectional stretchability and increased pressure sensitivity. The TS capacitive device structure is a dielectric layer sandwiched between an upper piezoresistive electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/ionic liquid composite, which enables touch and pressure stimuli to be distinguished, and a lower electrode of metal/indium tin oxide/metal multilayer. The TS sensor array was demonstrated as a wearable input device for controlling a small vehicle. The TS touch-pressure sensor has great potential to be used as a multimodal input device for future wearable electronics. Wearable electronics: bumpy textures improve human–machine interactions A 3D-textured material has helped researchers develop a transparent patch that can act as an ergonomic electronic controller. Nae-Eung Lee from Sungkyunkwan University in Suwon, South Korea, and colleagues created a body-attachable touchscreen using an organic polymer that conducts different amounts of electricity depending on how hard it is pressed. After assembling this polymer into a transparent thin-film capacitor, the team encased it in a silicone material with thousands of microscale dimples. Experiments showed that the bumpy coating randomized the effects of mechanical stress effects occurring when the patch was attached to the wrist of human volunteers, extending device lifetime to over 10,000 cycles. The polymer device could electronically distinguish between a light touch and sustained pressure, enabling subjects to steer or accelerate a toy car with just one finger. A transparent stretchable (TS) capacitive sensor, which can detect pressure (force) and touch inputs distinguishably was fabricated by forming with a TS dielectric layer sandwiched between the upper piezoresistive electrode of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–ionic liquid composite enabling to distinguish touch and pressure stimuli and the lower TS electrode of metal/indium tin oxide/metal multilayer on a transparent elastomeric substrate with stress-relieving three-dimensional microstructured pattern providing multi-directional stretchability and high pressure sensitivity. The TS sensor array demonstrated a good control of the interaction with a small vehicle as a multi-functional input device for future wearable electronics.
ArticleNumber 23
Author Trung, Tran Quang
Wen, Long
Zabeeb, Arsalan
Lee, Nae-Eung
Choi, Young-In
Hwang, Byeong-Ung
Lee, Han-Byeol
Kim, Ju Hyun
Lee, Jae Deuk
Han, Jeon Geon
Author_xml – sequence: 1
  givenname: Byeong-Ung
  surname: Hwang
  fullname: Hwang, Byeong-Ung
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 2
  givenname: Arsalan
  surname: Zabeeb
  fullname: Zabeeb, Arsalan
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 3
  givenname: Tran Quang
  surname: Trung
  fullname: Trung, Tran Quang
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 4
  givenname: Long
  surname: Wen
  fullname: Wen, Long
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 5
  givenname: Jae Deuk
  surname: Lee
  fullname: Lee, Jae Deuk
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 6
  givenname: Young-In
  surname: Choi
  fullname: Choi, Young-In
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 7
  givenname: Han-Byeol
  surname: Lee
  fullname: Lee, Han-Byeol
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 8
  givenname: Ju Hyun
  surname: Kim
  fullname: Kim, Ju Hyun
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 9
  givenname: Jeon Geon
  surname: Han
  fullname: Han, Jeon Geon
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University
– sequence: 10
  givenname: Nae-Eung
  orcidid: 0000-0002-6539-5010
  surname: Lee
  fullname: Lee, Nae-Eung
  email: nelee@skku.edu
  organization: School of Advanced Materials Science and Engineering, Sungkyunkwan University, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University
BookMark eNp9UcFu1TAQtFAr0ZZ-QG-WOKesHT8nOVYVUKRKvcDZcpz1q6uHHbwOavkD_hqHICoh0cPKK-_MeMdzyo5iisjYhYBLAW3_jpRQsmtADLWkbh5fsRPR96pRsOuO_vZqeM3OiR4AQGit-p06YT-veMk20mwzxsKpZCzu3o4H5ISRUua-1hSohLhfAm2jCQu6ElLkyfOSFnfPbZz4nJFoycjHJ-7sbF0o4Ttuo4A_Uh2vQvWKwj7aw_b0tPyWesOOvT0Qnv85z9iXD-8_X980t3cfP11f3Tau7bvSCGud7hAnmAA6FKP3YnICxl4pL1DtpG9H2wKMwsHopdKTtqAHENCvTXvG3m66c07fFqRiHtKS6zZkpBoGVX9HixdRUg5ath3Iiuo2lMuJKKM31bJd3VRn4WAEmDUgswVkakBmDcg8Vqb4hznn8NXmpxc5cuNQxcY95ued_k_6BXOEqGo
CitedBy_id crossref_primary_10_1002_adfm_202401532
crossref_primary_10_1016_j_nanoms_2021_11_002
crossref_primary_10_1021_acsnano_1c01621
crossref_primary_10_1002_admi_202101128
crossref_primary_10_1016_j_cej_2023_148172
crossref_primary_10_1021_acsami_0c04739
crossref_primary_10_1109_JSEN_2020_2974096
crossref_primary_10_1016_j_apmt_2023_101872
crossref_primary_10_1126_sciadv_abi4563
crossref_primary_10_3390_s24020449
crossref_primary_10_1007_s42114_021_00262_9
crossref_primary_10_46670_JSST_2022_31_5_312
crossref_primary_10_1039_D2MH00892K
crossref_primary_10_3390_ma17174196
crossref_primary_10_1002_adfm_202209277
crossref_primary_10_1088_1361_665X_abe3aa
crossref_primary_10_1002_adma_202002397
crossref_primary_10_1021_acs_chemrev_3c00356
crossref_primary_10_1016_j_bios_2023_115449
crossref_primary_10_1109_JSEN_2020_3043625
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1002_adfm_202303535
crossref_primary_10_1021_acs_langmuir_2c02604
crossref_primary_10_1016_j_ecmx_2025_100982
crossref_primary_10_1002_admt_201900864
crossref_primary_10_1002_smll_202205643
crossref_primary_10_1021_acsami_4c22665
crossref_primary_10_3390_mi13020254
crossref_primary_10_1002_smll_202205048
crossref_primary_10_1016_j_cej_2022_138672
crossref_primary_10_3390_app10186403
crossref_primary_10_1002_admt_202001023
crossref_primary_10_1016_j_coco_2025_102249
crossref_primary_10_1002_admt_201900908
crossref_primary_10_1002_admt_202201992
crossref_primary_10_1002_adfm_202308698
crossref_primary_10_1002_mame_202100447
crossref_primary_10_1149_1945_7111_ac0e4b
crossref_primary_10_1016_j_snb_2021_130373
crossref_primary_10_1038_s41378_021_00318_2
crossref_primary_10_1002_adfm_202312034
crossref_primary_10_1016_j_mee_2022_111750
crossref_primary_10_1080_09243046_2023_2270379
crossref_primary_10_1002_admt_202301615
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_3390_s22124460
crossref_primary_10_1002_marc_202400322
crossref_primary_10_1002_admi_201902170
crossref_primary_10_3390_s19214686
crossref_primary_10_1016_j_apsusc_2021_150719
crossref_primary_10_1088_2058_8585_ac97a4
crossref_primary_10_1016_j_mssp_2021_106388
crossref_primary_10_1002_aisy_202000157
crossref_primary_10_1007_s11051_023_05751_0
crossref_primary_10_1021_acsami_0c00267
crossref_primary_10_1002_aisy_202300359
crossref_primary_10_1021_acsaelm_0c00538
crossref_primary_10_3390_s21217072
crossref_primary_10_1038_s41427_020_00277_6
crossref_primary_10_1108_MI_09_2019_0060
crossref_primary_10_3390_nano11061503
crossref_primary_10_1021_acsami_3c14064
crossref_primary_10_1002_advs_202101876
Cites_doi 10.1002/adma.201600720
10.1021/acsami.7b09411
10.1002/adfm.201200225
10.1126/sciadv.1500661
10.1126/sciadv.1601473
10.1039/C4MH00147H
10.1002/adma.201504441
10.1021/acsnano.5b03510
10.1002/adma.201606151
10.1063/1.4954199
10.1021/acsami.5b12588
10.1038/nnano.2014.38
10.1021/nn505953t
10.1039/C4NR03295K
10.1002/adma.201401364
10.1021/acsami.6b16716
10.1002/adma.201703004
10.1039/C7CP07318F
10.1021/acsnano.5b01835
10.1002/adfm.201605286
10.1002/adma.201505473
10.1039/c3nr05496a
10.1021/acsami.6b11988
10.1021/acsnano.5b01613
10.1002/adma.201606453
10.1021/acsnano.7b02474
10.1002/adma.201504155
10.1021/acsami.5b00695
10.1007/s10704-014-9977-x
10.1021/acsami.6b12415
10.1126/science.aaf8810
10.1002/adfm.201504804
10.1002/adma.201706738
10.1002/adma.201601572
10.1002/adma.201504239
10.1016/j.polymertesting.2016.06.003
10.1002/adma.201803388
10.1002/adma.201201886
10.1021/acsami.6b05025
10.7567/JJAP.52.115801
10.1002/adma.201505218
10.1021/acs.nanolett.5b01505
10.1002/adma.201302869
10.1038/am.2013.41
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41427-019-0126-x
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: (Open Access) Springer Nature eJournals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-4057
ExternalDocumentID 10_1038_s41427_019_0126_x
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: 2016R1A2A1A05005423
  funderid: https://doi.org/10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABJCF
ACACY
ACGFO
ACGFS
ACIWK
ACMJI
ACSMW
ACULB
ADBBV
ADMLS
AENEX
AFGXO
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARCSS
B.R
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CZ9
D1I
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
HH5
HZ~
ISHAI
KB.
KC.
KQ8
LGEZI
LOTEE
NADUK
NAO
NXXTH
OK1
PDBOC
PIMPY
PROAC
RNT
RNTTT
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c387t-1aac67eed0d007e1bff1dc10b844f1e452f3ba300b1c0bf246d6a06901086a063
IEDL.DBID BENPR
ISSN 1884-4049
IngestDate Wed Aug 13 11:12:54 EDT 2025
Wed Aug 13 04:33:14 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Tue Jul 01 00:44:04 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-1aac67eed0d007e1bff1dc10b844f1e452f3ba300b1c0bf246d6a06901086a063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6539-5010
OpenAccessLink https://www.proquest.com/docview/2499400061?pq-origsite=%requestingapplication%
PQID 2229623702
PQPubID 546296
ParticipantIDs proquest_journals_2499400061
proquest_journals_2229623702
crossref_citationtrail_10_1038_s41427_019_0126_x
crossref_primary_10_1038_s41427_019_0126_x
springer_journals_10_1038_s41427_019_0126_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191200
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Tokyo
PublicationTitle NPG Asia materials
PublicationTitleAbbrev NPG Asia Mater
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kim, Lee, Oh, Sun (CR13) 2016; 12
Lien, Nautiyal, Lee (CR44) 2013; 52
Park (CR20) 2015; 9
Kang (CR3) 2017; 11
Lee, Sathi, Kim, Jeong, Nah (CR40) 2016; 53
Zang, Zhang, Di, Zhu (CR41) 2015; 2
Lee (CR6) 2014; 6
Jung (CR14) 2014; 26
Teo (CR38) 2017; 9
Choi (CR45) 2017; 9
Trung (CR1) 2017; 9
Yao, Zhu (CR16) 2014; 6
Son (CR24) 2014; 9
Hwang (CR5) 2015; 9
Ge (CR10) 2016; 28
Kim, Lim, Song, Yang, Lee (CR15) 2016; 8
Huang (CR33) 2016; 87
Xu, Zhu (CR39) 2012; 24
Kim (CR11) 2015; 15
Trung, Ramasundaram, Hwang, Lee (CR18) 2016; 28
Roh, Hwang, Kim, Kim, Lee (CR4) 2015; 9
Xu (CR25) 2016; 28
Amjadi, Turan, Clementson, Sitti (CR21) 2016; 8
Choi (CR12) 2017; 9
Park, Kim, Lee, Lee, Ko (CR30) 2015; 1
Park, Hyun, Mun, Park, Park (CR9) 2015; 7
Wang (CR2) 2018; 30
Park (CR17) 2014; 8
Yamamoto (CR26) 2016; 2
Tien (CR28) 2014; 26
Wen, Sahu, Han (CR35) 2018; 20
You (CR23) 2016; 28
Wang (CR8) 2016; 28
Zhao, Zhu (CR27) 2017; 29
Bae (CR31) 2018; 30
Gutruf (CR43) 2013; 5
Badre, Marquant, Alsayed, Hough (CR36) 2012; 22
Lee (CR34) 2016; 28
Shi (CR7) 2016; 26
Park (CR22) 2017; 29
Roh, Lee, Kim, Lee (CR19) 2017; 29
Kim (CR29) 2015; 5
Song (CR32) 2017; 27
Kee (CR37) 2016; 28
Yang, Su, Bitar, Lu (CR42) 2014; 190
SY Lien (126_CR44) 2013; 52
I You (126_CR23) 2016; 28
TY Choi (126_CR45) 2017; 9
L Wen (126_CR35) 2018; 20
E Roh (126_CR19) 2017; 29
E Roh (126_CR4) 2015; 9
S Yao (126_CR16) 2014; 6
GB Lee (126_CR40) 2016; 53
JK Song (126_CR32) 2017; 27
S Yang (126_CR42) 2014; 190
M Amjadi (126_CR21) 2016; 8
Y Yamamoto (126_CR26) 2016; 2
S Zhao (126_CR27) 2017; 29
B Xu (126_CR25) 2016; 28
Y Huang (126_CR33) 2016; 87
X Wang (126_CR2) 2018; 30
GY Bae (126_CR31) 2018; 30
S Kee (126_CR37) 2016; 28
DI Kim (126_CR29) 2015; 5
J Park (126_CR30) 2015; 1
CC Kim (126_CR13) 2016; 12
J Shi (126_CR7) 2016; 26
TQ Trung (126_CR18) 2016; 28
P Gutruf (126_CR43) 2013; 5
Y Park (126_CR22) 2017; 29
HB Lee (126_CR34) 2016; 28
J Ge (126_CR10) 2016; 28
TQ Trung (126_CR1) 2017; 9
JJ Park (126_CR9) 2015; 7
NT Tien (126_CR28) 2014; 26
DY Choi (126_CR12) 2017; 9
D Son (126_CR24) 2014; 9
F Xu (126_CR39) 2012; 24
N Kim (126_CR15) 2016; 8
H Park (126_CR20) 2015; 9
Y Zang (126_CR41) 2015; 2
C Badre (126_CR36) 2012; 22
M Kang (126_CR3) 2017; 11
BU Hwang (126_CR5) 2015; 9
MY Teo (126_CR38) 2017; 9
J Lee (126_CR6) 2014; 6
KK Kim (126_CR11) 2015; 15
J Park (126_CR17) 2014; 8
C Wang (126_CR8) 2016; 28
S Jung (126_CR14) 2014; 26
References_xml – volume: 15
  start-page: 5240
  year: 2015
  end-page: 5247
  ident: CR11
  article-title: Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks
  publication-title: Nano Lett.
– volume: 24
  start-page: 5117
  year: 2012
  end-page: 5122
  ident: CR39
  article-title: Highly conductive and stretchable silver nanowire conductors
  publication-title: Adv. Mater.
– volume: 9
  start-page: 18022
  year: 2017
  end-page: 18030
  ident: CR45
  article-title: Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 6640
  year: 2016
  end-page: 6648
  ident: CR8
  article-title: Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2345
  year: 2014
  end-page: 2352
  ident: CR16
  article-title: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires
  publication-title: Nanoscale
– volume: 8
  start-page: 5618
  year: 2016
  end-page: 5626
  ident: CR21
  article-title: Parallel microcracks-based ultrasensitive and highly stretchable strain sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1770
  year: 2017
  end-page: 1780
  ident: CR12
  article-title: Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 8625
  year: 2016
  end-page: 8631
  ident: CR37
  article-title: Controlling molecular ordering in aqueous conducting polymers using ionic liquids
  publication-title: Adv. Mater.
– volume: 2
  start-page: 140
  year: 2015
  end-page: 156
  ident: CR41
  article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications
  publication-title: Mater. Horiz.
– volume: 28
  start-page: 3069
  year: 2016
  end-page: 3077
  ident: CR34
  article-title: Mogul-patterned elastomeric substrate for stretchable electronics
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2078
  year: 2016
  end-page: 2084
  ident: CR7
  article-title: Graphene reinforced carbon nanotube networks for wearable strain sensors
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 6359
  year: 2016
  end-page: 6364
  ident: CR23
  article-title: Stretchable e-skin apexcardiogram sensor
  publication-title: Adv. Mater.
– volume: 9
  start-page: 819
  year: 2017
  end-page: 826
  ident: CR38
  article-title: Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 502
  year: 2016
  end-page: 509
  ident: CR18
  article-title: An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2723
  year: 2012
  end-page: 2727
  ident: CR36
  article-title: Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 12020
  year: 2014
  end-page: 12029
  ident: CR17
  article-title: Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures
  publication-title: ACS Nano
– volume: 30
  start-page: 1803388
  year: 2018
  ident: CR31
  article-title: Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606151
  year: 2017
  ident: CR27
  article-title: Electronic skin with multifunction sensors based on thermosensation
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1703004
  year: 2017
  ident: CR19
  article-title: A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device
  publication-title: Adv. Mater.
– volume: 9
  start-page: 8801
  year: 2015
  end-page: 8810
  ident: CR5
  article-title: Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities
  publication-title: ACS Nano
– volume: 11
  start-page: 7950
  year: 2017
  end-page: 7957
  ident: CR3
  article-title: Graphene-based three-dimensional capacitive touch sensor for wearable electronics
  publication-title: ACS Nano
– volume: 9
  start-page: 6252
  year: 2015
  end-page: 6261
  ident: CR4
  article-title: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers
  publication-title: ACS Nano
– volume: 28
  start-page: 4462
  year: 2016
  end-page: 4471
  ident: CR25
  article-title: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation
  publication-title: Adv. Mater.
– volume: 8
  start-page: 21070
  year: 2016
  end-page: 21076
  ident: CR15
  article-title: Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2016
  ident: CR26
  article-title: Printed multifunctional flexible device with an integrated motion sensor for health care monitoring
  publication-title: Sci. Adv.
– volume: 20
  start-page: 4818
  year: 2018
  end-page: 4830
  ident: CR35
  article-title: Development and utility of a new 3-D magnetron source for high rate deposition of highly conductive ITO thin films near room temperature
  publication-title: Phys. Chem. Chem. Phys.
– volume: 190
  start-page: 99
  year: 2014
  end-page: 110
  ident: CR42
  article-title: Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates
  publication-title: Int. J. Fract.
– volume: 7
  start-page: 6317
  year: 2015
  end-page: 6324
  ident: CR9
  article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  year: 2015
  ident: CR30
  article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli
  publication-title: Sci. Adv.
– volume: 5
  year: 2013
  ident: CR43
  article-title: Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes
  publication-title: NPG Asia Mater.
– volume: 12
  start-page: 682
  year: 2016
  end-page: 687
  ident: CR13
  article-title: Highly stretchable, transparent ionic touch panel
  publication-title: Science
– volume: 6
  start-page: 11932
  year: 2014
  end-page: 11939
  ident: CR6
  article-title: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection
  publication-title: Nanoscale
– volume: 5
  year: 2015
  ident: CR29
  article-title: A sensor array using multi-functional field-effect transistors with ultrahigh sensitivity and precision for bio-monitoring
  publication-title: Sci. Rep.
– volume: 9
  start-page: 397
  year: 2014
  end-page: 404
  ident: CR24
  article-title: Multifunctional wearable devices for diagnosis and therapy of movement disorders
  publication-title: Nat. Nanotechnol.
– volume: 53
  start-page: 329
  year: 2016
  end-page: 337
  ident: CR40
  article-title: Wrinkled elastomers for the highly stretchable electrodes with excellent fatigue resistances
  publication-title: Polym. Test.
– volume: 28
  start-page: 722
  year: 2016
  end-page: 728
  ident: CR10
  article-title: A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties
  publication-title: Adv. Mater.
– volume: 26
  start-page: 796
  year: 2014
  end-page: 804
  ident: CR28
  article-title: A flexible bimodal sensor array for simultaneous sensing of pressure and temperature
  publication-title: Adv. Mater.
– volume: 9
  start-page: 9974
  year: 2015
  end-page: 9985
  ident: CR20
  article-title: Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars
  publication-title: ACS Nano
– volume: 30
  start-page: 1706738
  year: 2018
  ident: CR2
  article-title: A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics
  publication-title: Adv. Mater.
– volume: 9
  start-page: 35958
  year: 2017
  end-page: 35967
  ident: CR1
  article-title: An omnidirectionally stretchable photodetector based on organic-inorganic heterojunctions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 4825
  year: 2014
  end-page: 4830
  ident: CR14
  article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606453
  year: 2017
  ident: CR22
  article-title: Microtopography-guided conductive patterns of liquid-driven graphene nanoplatelet networks for stretchable and skin-conformal sensor array
  publication-title: Adv. Mater.
– volume: 52
  start-page: 115801
  year: 2013
  ident: CR44
  article-title: Optoelectronic properties of indium–tin oxide films deposited on flexible and transparent poly(dimethylsiloxane) substrate
  publication-title: Jpn. J. Appl. Phys.
– volume: 87
  start-page: 065007
  year: 2016
  ident: CR33
  article-title: A flexible touch-pressure sensor array with wireless transmission system for robotic skin
  publication-title: Rev. Sci. Instrum.
– volume: 27
  start-page: 1605286
  year: 2017
  ident: CR32
  article-title: Wearable force touch sensor array using a flexible and transparent electrode
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 6359
  year: 2016
  ident: 126_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600720
– volume: 9
  start-page: 35958
  year: 2017
  ident: 126_CR1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09411
– volume: 22
  start-page: 2723
  year: 2012
  ident: 126_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200225
– volume: 1
  year: 2015
  ident: 126_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500661
– volume: 2
  year: 2016
  ident: 126_CR26
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601473
– volume: 2
  start-page: 140
  year: 2015
  ident: 126_CR41
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00147H
– volume: 28
  start-page: 502
  year: 2016
  ident: 126_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504441
– volume: 9
  start-page: 9974
  year: 2015
  ident: 126_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03510
– volume: 29
  start-page: 1606151
  year: 2017
  ident: 126_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606151
– volume: 87
  start-page: 065007
  year: 2016
  ident: 126_CR33
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4954199
– volume: 8
  start-page: 5618
  year: 2016
  ident: 126_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12588
– volume: 9
  start-page: 397
  year: 2014
  ident: 126_CR24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.38
– volume: 8
  start-page: 12020
  year: 2014
  ident: 126_CR17
  publication-title: ACS Nano
  doi: 10.1021/nn505953t
– volume: 6
  start-page: 11932
  year: 2014
  ident: 126_CR6
  publication-title: Nanoscale
  doi: 10.1039/C4NR03295K
– volume: 26
  start-page: 4825
  year: 2014
  ident: 126_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401364
– volume: 9
  start-page: 18022
  year: 2017
  ident: 126_CR45
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16716
– volume: 29
  start-page: 1703004
  year: 2017
  ident: 126_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703004
– volume: 20
  start-page: 4818
  year: 2018
  ident: 126_CR35
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07318F
– volume: 9
  start-page: 8801
  year: 2015
  ident: 126_CR5
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 27
  start-page: 1605286
  year: 2017
  ident: 126_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605286
– volume: 28
  start-page: 8625
  year: 2016
  ident: 126_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505473
– volume: 5
  year: 2015
  ident: 126_CR29
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2345
  year: 2014
  ident: 126_CR16
  publication-title: Nanoscale
  doi: 10.1039/c3nr05496a
– volume: 9
  start-page: 819
  year: 2017
  ident: 126_CR38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11988
– volume: 9
  start-page: 6252
  year: 2015
  ident: 126_CR4
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01613
– volume: 29
  start-page: 1606453
  year: 2017
  ident: 126_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606453
– volume: 11
  start-page: 7950
  year: 2017
  ident: 126_CR3
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02474
– volume: 28
  start-page: 4462
  year: 2016
  ident: 126_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504155
– volume: 7
  start-page: 6317
  year: 2015
  ident: 126_CR9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00695
– volume: 190
  start-page: 99
  year: 2014
  ident: 126_CR42
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-014-9977-x
– volume: 9
  start-page: 1770
  year: 2017
  ident: 126_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12415
– volume: 12
  start-page: 682
  year: 2016
  ident: 126_CR13
  publication-title: Science
  doi: 10.1126/science.aaf8810
– volume: 26
  start-page: 2078
  year: 2016
  ident: 126_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504804
– volume: 30
  start-page: 1706738
  year: 2018
  ident: 126_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706738
– volume: 28
  start-page: 6640
  year: 2016
  ident: 126_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601572
– volume: 28
  start-page: 722
  year: 2016
  ident: 126_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504239
– volume: 53
  start-page: 329
  year: 2016
  ident: 126_CR40
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2016.06.003
– volume: 30
  start-page: 1803388
  year: 2018
  ident: 126_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803388
– volume: 24
  start-page: 5117
  year: 2012
  ident: 126_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201886
– volume: 8
  start-page: 21070
  year: 2016
  ident: 126_CR15
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05025
– volume: 52
  start-page: 115801
  year: 2013
  ident: 126_CR44
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.115801
– volume: 28
  start-page: 3069
  year: 2016
  ident: 126_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505218
– volume: 15
  start-page: 5240
  year: 2015
  ident: 126_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01505
– volume: 26
  start-page: 796
  year: 2014
  ident: 126_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302869
– volume: 5
  year: 2013
  ident: 126_CR43
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2013.41
SSID ssj0001664854
ssib050736229
Score 2.4474146
Snippet Transparent stretchable (TS) sensors capable of detecting and distinguishing touch and pressure inputs are a promising development in wearable electronics....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 639/301/1005/1007
639/301/1005/1009
Biomaterials
Chemistry and Materials Science
Cursor control devices
Dimpling
Electrodes
Electronics
Energy Systems
Indium tin oxides
Input devices
Ionic liquids
Materials Science
Multilayers
Optical and Electronic Materials
Polymers
Pressure sensors
Sensitivity
Sensor arrays
Sensors
Service life assessment
Signal transduction
Stimuli
Stretchability
Structural Materials
Substrates
Surface and Interface Science
Thin Films
Touch
Touch screens
Wearable technology
Wrist
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LXvQgPnF9kYMnpdg02TR7XMRl2YMXXdhbyasqSCtuF9R_4L92Jm1d3-CtdNK0dNLMl-abbwg5TlPjIZDqSFrHIyGsizSElYgxnXDdZ9r5oPZ5KUcTMZ72ph3C2lyYQNoPkpZhmm7ZYWczwUSCJElk9yQyAti4jErtMLSXB4Px1bgdRIBvYE5uYn740SKlUKEaGlNKwHpJ9NvdTa6-9_s5Pi1A55d90hB-hutkrcGNdFA_6Qbp-GKTrH5QE9wirwNaBalyzO-qKGaBgEswNYrOYLFaPlIAqNThR13czLHqMpqcrwIbq6BlTqtybm-pLhwN_Fh4P9Q8UwsB1QaOUW268y8lmLEjOIUMEHiycGtXa9Fuk8nw4vp8FDWVFiLLVVpFTGsrUwiXsQPM4JnJc-Ysi40SImde9JKcG83j2DAbmzwR0kmNGsdYpwkO-A5ZKsrC7xKqlcrhon7Pci160NrFWpqcJc7IvjS6S-L2_Wa2kSHHahj3WdgO5yqrXZKBSzJ0SfbUJSfvlzzUGhx_NT5onZY1n-Msw6LlgPPSOPnZDMs-EdBcl5y2fl6Yf73X3r9a75OVBMdZ4MIckKXqce4PAdFU5qgZw2-EAPHA
  priority: 102
  providerName: Springer Nature
Title A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction
URI https://link.springer.com/article/10.1038/s41427-019-0126-x
https://www.proquest.com/docview/2229623702
https://www.proquest.com/docview/2499400061
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo7gUOFU-xpV35wAlkNX6s4z2hZdWl2kOFgEq9RX4FkFBSdrNS4R_wr5lxnLYg6CWKPH5EmfHM2B7PR8jLsnQRDKll2gfJlPKBWTArjHMrpJ1zG2LK9nmmT8_V-mJ2kTfctjmsctCJSVGH1uMe-TEsExDDG8zPm8vvDFGj8HQ1Q2jskTGoYGNGZPz25Oz9h0GiwNkBBZ0dgLTrorUyCRqNG6Ng8aTmw1GnNMdbxZXASEwMIRKaXf1prG480L8OTZMtWj0k-9mJpIue64_Ivdg8Jg9upRZ8Qn4taJfyluNlr47ilRDgD96ToltYubYbCt4qDTjDm887hGBGUohdCs1qaFvTrt35L9Q2gaZg2d0mUveDerCuPgUc9aSv8WcLZOwIijAcBL4sDR36xLRPyfnq5NPylGXYBealKTvGrfW6BNtZBHAgInd1zYPnhTNK1Tyqmails7IoHPeFq4XSQVtMeIygTfAin5FR0zbxOaHWmBoazWdeWjWD2qGw2tVcBKfn2tkJKYb_W_mckxyhMb5V6WxcmqpnSQUsqZAl1dWEvLpuctkn5Lir8uHAtCrPzW2FCObg9JWF-Df5WtAm5PXA5xvyf8c6uLuzF-S-QMFKkTCHZNRtdvEI_JnOTcmeWb2bkvFisf64nmYRhtKlUPjUy2naKfgNaZX47w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsFPABLiCr8WMd76FCFbBsaemplXozfoVWQknZzYqWf9A_w29kxklaQNBbb1HGdqLMxN_YnpmPkBdl6RMAqWM6RMmUCpE5gBXGuRPSTbiLKVf73NWzffXxYHywQn4OuTAYVjnMiXmijk3APfJ1WCYghzfAz5vjbwxZo_B0daDQ6MxiO51-hyXbYmPrHej3pRDT93tvZ6xnFWBBmrJl3LmgS4CGIgI-Ju6risfAC2-UqnhSY1FJ72RReB4KXwmlo3ZYzxc5ieBCwrjXyHUlAckxM336YbBfcK0ADnp3I-_xaK1MJmLjxihYqqnJcLAqzfpCcSUw7hMDloRmJ39C44W_-9cRbUa-6R1yu3dZ6WZnY3fJSqrvkVu_FTK8T842aZurpGNqWUsxAQWsAbOy6ALWyc2cgm9MI84n9ZclEj6jKKY2B4LVtKlo2yzDIXV1pDk0dzlP1J_SAFgecnhTJzpKPxoQ40BwC4NP4M3yo2NXBvcB2b8SdTwkq3VTp0eEOmMq6DQZB-nUGFrHwmlfcRG9nmjvRqQYvq8NfQV0JOL4avNJvDS2U4kFlVhUiT0ZkVfnXY678h-XNV4blGb7mWBhkS8dXMyyEP8Wn5v1iLwe9Hwh_u-zHl8-2HNyY7b3acfubO1uPyE3BRpZjsFZI6vtfJmegifV-mfZfCn5fNX_yy-EBy-O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqHiqgQJ7gAvIine9WTuHChXaqKUoqhCVejP7BCRkl8RRH_-Av8SvY2Ztt4Cgt94sj72OMuP9ZrzfzgfwPM-NRyDVibIuS6S0LtEIKwnnWmR6wrXzsdvnTO0eyndH46MV-NnvhSFaZT8nxona1Za-kY-wTCANb4SfUehoEQfb09fH3xNSkKKV1l5Oow2RfX92guXbYnNvG339Qojpzse3u0mnMJDYrMibhGttVY4wkTrESs9NCNxZnppCysC9HIuQGZ2lqeE2NUFI5ZSm3r6kT4QHGY57A1ZzqooGsPpmZ3bwoY9mTLQQHLrkI37xUUoWUZaNF4XEwk1O-mXWrBgtJJeCWKBEXxIqOf0TKC-z378WbCMOTu_AWpfAsq024u7Ciq_uwe3f2hrehx9brIk902mjWcNoOwrGBu3RYgusmus5w0yZOZpdqs9Lkn8mk_NNpIVVrA6sqZf2C9OVY5Gou5x7Zs6YRWS3kezUmr768xrNNBCeIioK_rL4aNc2xX0Ah9fikIcwqOrKrwPTRRHwpsnYZlqO8WqXamUCF86oiTJ6CGn__5a264dOshzfyrgunxVl65ISXVKSS8rTIby8uOW4bQZy1cUbvdPKbl5YlKSejglnnop_my-CfAivej9fmv_7rEdXD_YMbuK7Ur7fm-0_hluCYiwScjZg0MyX_gmmVY152sUvg0_X_cr8ArPeNSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transparent+stretchable+sensor+for+distinguishable+detection+of+touch+and+pressure+by+capacitive+and+piezoresistive+signal+transduction&rft.jtitle=NPG+Asia+materials&rft.au=Hwang+Byeong-Ung&rft.au=Zabeeb+Arsalan&rft.au=Trung+Tran+Quang&rft.au=Long%2C+Wen&rft.date=2019-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1884-4049&rft.eissn=1884-4057&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41427-019-0126-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-4049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-4049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-4049&client=summon