Prenatal Arsenic Exposure and the Epigenome: Identifying Sites of 5-methylcytosine Alterations that Predict Functional Changes in Gene Expression in Newborn Cord Blood and Subsequent Birth Outcomes
Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregna...
Saved in:
Published in | Toxicological sciences Vol. 143; no. 1; pp. 97 - 106 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. |
---|---|
AbstractList | Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the B iomarkers of E xposure to AR senic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456–236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424 935 CpG sites representing 18 761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5′ untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments.Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments. |
Author | Rojas, Daniel García-Vargas, Gonzalo Bailey, Kathryn A. Rubio-Andrade, Marisela Rager, Julia E. Smeester, Lisa Fry, Rebecca C. Drobná, Zuzana Stýblo, Miroslav |
Author_xml | – sequence: 1 givenname: Daniel surname: Rojas fullname: Rojas, Daniel – sequence: 2 givenname: Julia E. surname: Rager fullname: Rager, Julia E. – sequence: 3 givenname: Lisa surname: Smeester fullname: Smeester, Lisa – sequence: 4 givenname: Kathryn A. surname: Bailey fullname: Bailey, Kathryn A. – sequence: 5 givenname: Zuzana surname: Drobná fullname: Drobná, Zuzana – sequence: 6 givenname: Marisela surname: Rubio-Andrade fullname: Rubio-Andrade, Marisela – sequence: 7 givenname: Miroslav surname: Stýblo fullname: Stýblo, Miroslav – sequence: 8 givenname: Gonzalo surname: García-Vargas fullname: García-Vargas, Gonzalo – sequence: 9 givenname: Rebecca C. surname: Fry fullname: Fry, Rebecca C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25304211$$D View this record in MEDLINE/PubMed |
BookMark | eNptUs1vFCEUJ6bGfujRq-HoZSwwzJcHk-1mW5s01qR6Jgw8dtAZWIHR7h_o_yXb3Ro1XoC89_sC3ik6ct4BQi8peUNJV54nfx-VPf9qZkbJE3SSi3VBOtYdHc41ackxOo3xCyGU1qR7ho5ZVRLOKD1BPz8GcDLJES9CBGcVXt1vfJwDYOk0TgPg1cauwfkJ3uJrDS5Zs7Vuje9sgoi9wVUxQRq2o9omH60DvBgTBJmsdzELyISzh7Yq4cvZqV05uy0H6daZbx2-gszJrgFizM1d6QP86H1weOmDxhej9_ohzd3cR_g25wz4woY04Ns5qRwsPkdPjRwjvDjsZ-jz5erT8n1xc3t1vVzcFKpsm1TQlkPNdFdVqssLz1vLW2MkUNO3layY7EzDCQMOXNcV60pJG12aHlhdN6Y8Q-_2upu5n0CrnCTIUWyCnWTYCi-t-Lvj7CDW_rvgrOFly7LA64NA8PkiMYnJRgXjKB34OQpac8LbkpM6Q1_96fXb5PHvMqDcA1TwMQYwQtn08OzZ2o6CErGbELGfELGfkMwq_mE9Cv8f_wv9EsYZ |
CitedBy_id | crossref_primary_10_1021_acs_chemrestox_7b00221 crossref_primary_10_1289_EHP6263 crossref_primary_10_1080_10408444_2020_1812511 crossref_primary_10_1289_EHP4522 crossref_primary_10_1016_j_taap_2022_116266 crossref_primary_10_1186_s44342_024_00004_5 crossref_primary_10_1289_ehp_1510209 crossref_primary_10_1007_s00775_019_01740_8 crossref_primary_10_1016_j_taap_2025_117242 crossref_primary_10_1007_s00204_023_03582_5 crossref_primary_10_1016_j_fct_2019_01_015 crossref_primary_10_1021_acs_est_6b04374 crossref_primary_10_1371_journal_pone_0141294 crossref_primary_10_1289_EHP2192 crossref_primary_10_1038_s41598_017_00384_5 crossref_primary_10_3390_ijms222010969 crossref_primary_10_1007_s12011_022_03323_2 crossref_primary_10_1016_j_reprotox_2017_07_023 crossref_primary_10_1038_s41390_020_0985_4 crossref_primary_10_1016_j_envres_2021_112021 crossref_primary_10_1080_10937404_2019_1643539 crossref_primary_10_1016_j_envint_2022_107278 crossref_primary_10_1080_17501911_2024_2426441 crossref_primary_10_1016_j_envint_2024_108645 crossref_primary_10_1007_s40572_015_0049_9 crossref_primary_10_1016_j_mrrev_2017_07_002 crossref_primary_10_1186_s13059_016_1068_z crossref_primary_10_1007_s40572_018_0184_1 crossref_primary_10_1016_j_taap_2023_116768 crossref_primary_10_1016_j_cotox_2017_06_003 crossref_primary_10_1021_acs_chemrestox_9b00107 crossref_primary_10_1007_s00204_015_1658_7 crossref_primary_10_1007_s00204_018_2206_z crossref_primary_10_1016_j_bbr_2018_07_008 crossref_primary_10_1016_j_envint_2021_106772 crossref_primary_10_1016_j_envint_2024_108955 crossref_primary_10_1007_s00204_018_2239_3 crossref_primary_10_1186_s12940_017_0262_0 crossref_primary_10_1016_j_yhbeh_2018_02_007 crossref_primary_10_1101_gr_233213_117 crossref_primary_10_1016_j_ntt_2017_12_002 crossref_primary_10_1016_j_taap_2016_12_015 crossref_primary_10_1186_s12940_022_00875_7 crossref_primary_10_1007_s12011_023_03828_4 crossref_primary_10_1002_em_22062 crossref_primary_10_1016_j_reprotox_2016_02_017 crossref_primary_10_2217_epi_2017_0178 crossref_primary_10_1016_j_jaci_2018_11_043 crossref_primary_10_1039_C6TX00234J crossref_primary_10_1177_2516865721989719 crossref_primary_10_1289_EHP3849 crossref_primary_10_1186_s13148_021_01198_z crossref_primary_10_1016_j_ecoenv_2022_114323 crossref_primary_10_1186_s13148_020_00894_6 crossref_primary_10_1007_s00204_019_02428_3 crossref_primary_10_1016_j_envres_2019_05_011 crossref_primary_10_1016_j_scitotenv_2021_151218 crossref_primary_10_2217_epi_2016_0112 crossref_primary_10_1177_15353702221079620 crossref_primary_10_1016_j_envint_2022_107243 crossref_primary_10_1016_j_envint_2024_108575 crossref_primary_10_1186_s13148_015_0055_7 crossref_primary_10_1186_s12940_019_0455_9 crossref_primary_10_1002_jat_4520 crossref_primary_10_1021_acs_chemrestox_8b00352 crossref_primary_10_1016_j_envint_2018_06_024 crossref_primary_10_1080_15592294_2015_1105424 crossref_primary_10_1186_s12940_021_00754_7 crossref_primary_10_1016_j_envint_2017_12_017 crossref_primary_10_1146_annurev_pharmtox_010818_021031 crossref_primary_10_2903_j_efsa_2024_8488 crossref_primary_10_1186_s13073_020_0716_9 crossref_primary_10_1016_j_gene_2021_146114 crossref_primary_10_1016_j_mehy_2023_111233 crossref_primary_10_1021_acs_chemrestox_9b00042 crossref_primary_10_1080_15592294_2018_1516453 crossref_primary_10_1016_j_envint_2024_108566 crossref_primary_10_1016_j_scitotenv_2019_136071 crossref_primary_10_1093_toxsci_kfw215 crossref_primary_10_3390_toxics12070476 crossref_primary_10_1289_ehp_1409360 crossref_primary_10_1007_s10534_016_9950_4 crossref_primary_10_1007_s40572_018_0204_1 crossref_primary_10_1186_s13148_015_0130_0 crossref_primary_10_1016_j_taap_2017_06_001 crossref_primary_10_1016_j_taap_2018_06_029 crossref_primary_10_1016_j_ynstr_2021_100336 crossref_primary_10_1016_j_envint_2023_107774 crossref_primary_10_1007_s00204_016_1879_4 crossref_primary_10_1007_s11892_019_1272_9 crossref_primary_10_3390_biomedicines10123090 crossref_primary_10_3390_nu11112804 crossref_primary_10_2217_epi_2016_0097 crossref_primary_10_1016_j_bcp_2024_116330 crossref_primary_10_1016_j_toxrep_2015_10_003 crossref_primary_10_1016_j_aogh_2016_01_015 crossref_primary_10_1038_s41390_022_02150_4 crossref_primary_10_1161_CIRCRESAHA_122_320991 crossref_primary_10_1016_j_reprotox_2020_02_004 crossref_primary_10_2217_epi_2016_0132 crossref_primary_10_1093_eep_dvv011 crossref_primary_10_1002_ana_26942 crossref_primary_10_1293_tox_2022_0093 crossref_primary_10_1016_j_biochi_2016_01_002 crossref_primary_10_1016_j_envint_2022_107183 crossref_primary_10_36790_epistemus_v18i37_374 crossref_primary_10_1016_j_taap_2017_02_019 crossref_primary_10_1021_tx500393y crossref_primary_10_1158_1055_9965_EPI_15_0432 crossref_primary_10_3390_genes7120117 crossref_primary_10_1007_s13237_019_00274_3 crossref_primary_10_1289_ehp_1510437 crossref_primary_10_1016_j_taap_2017_11_015 crossref_primary_10_18632_oncotarget_15106 crossref_primary_10_1016_j_tox_2020_152409 crossref_primary_10_1111_cea_13476 crossref_primary_10_1016_j_jpsychires_2024_03_014 crossref_primary_10_37349_ec_2023_00012 crossref_primary_10_1016_j_envres_2022_112717 crossref_primary_10_1016_j_envpol_2021_118279 crossref_primary_10_1038_srep27733 crossref_primary_10_3390_ijms151222374 crossref_primary_10_1289_EHP12956 crossref_primary_10_1038_s42003_021_02316_6 crossref_primary_10_1155_2015_123484 crossref_primary_10_1186_s13148_019_0659_4 crossref_primary_10_1038_s41585_022_00708_9 crossref_primary_10_1016_j_toxlet_2018_03_021 crossref_primary_10_1093_carcin_bgv031 crossref_primary_10_1038_srep41474 crossref_primary_10_1007_s00204_020_02941_w crossref_primary_10_1146_annurev_publhealth_040617_014629 crossref_primary_10_1371_journal_pcbi_1012768 |
Cites_doi | 10.1021/tx1004419 10.1186/gb-2011-12-1-r10 10.4161/epi.26798 10.1007/s00204-013-1146-x 10.1016/j.molcel.2012.06.019 10.1289/ehp.1205925 10.1093/hmg/ddp353 10.1093/nar/gki624 10.4161/epi.28153 10.1289/ehp.8534 10.1289/ehp.1104173 10.1093/ije/dyr237 10.1038/nrg3230 10.1002/em.21842 10.1289/ehp.1205412 10.1093/bioinformatics/bts680 10.1093/bioinformatics/19.2.185 10.1101/gr.119867.110 10.1093/toxsci/kfj030 10.1002/jat.1649 10.1016/j.mad.2012.05.003 10.1371/journal.pone.0068737 10.1093/toxsci/kfq225 10.1038/nature10960 10.1002/ijc.10968 10.1186/1471-2164-14-293 10.1093/toxsci/kfh055 10.1093/toxsci/kft267 10.1038/nbt.1533 |
ContentType | Journal Article |
Copyright | The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
Copyright_xml | – notice: The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/toxsci/kfu210 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0929 |
EndPage | 106 |
ExternalDocumentID | PMC4274382 25304211 10_1093_toxsci_kfu210 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01ES019315 – fundername: NIEHS NIH HHS grantid: T32 ES007126 – fundername: NIEHS NIH HHS grantid: P42 ES005948 – fundername: NIEHS NIH HHS grantid: T32ES007018 – fundername: NIEHS NIH HHS grantid: P30 ES010126 – fundername: NIEHS NIH HHS grantid: P30ES010126 – fundername: NIEHS NIH HHS grantid: P42ES005948 |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 123 18M 1~5 29Q 2WC 4.4 48X 4G. 53G 5RE 5VS 5WA 5WD 7-5 70D A8Z AABZA AACZT AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYWO AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AGINJ AGKEF AGORE AGQXC AGSYK AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EDH EE~ EJD EMOBN F5P F9B FDB FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HW0 HZ~ I-F IOX JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NOYVH NQ- NU- NVLIB O-L O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OPAEJ OWPYF P2P PAFKI PEELM Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO SV3 TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~02 ~91 --K 1B1 AACTN AAEDT AALRI AAQXK AAWDT AAXUO ABIME ABMAC ABNGD ABQTQ ABWVN ACFRR ACRPL ACUKT ADMUD ADNMO AEHUL ANFBD AQDSO ASPBG ATTQO AVWKF AZFZN CAG CGR COF CUY CVF DM4 ECM EIF ELUNK FEDTE FGOYB FIRID HVGLF IHE LG5 M49 NPM NTWIH O0~ OHT O~Y PB- R2- RIG RNI RPZ RZO SSZ UHS XPP YCJ ZGI ZMT ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c387t-184e62d955c995545c9848ffae1fb85a52a9f7402e4e4d65293a17d3fbe2667f3 |
ISSN | 1096-6080 1096-0929 |
IngestDate | Thu Aug 21 18:03:24 EDT 2025 Fri Jul 11 17:01:37 EDT 2025 Thu Apr 03 07:02:26 EDT 2025 Tue Jul 01 02:57:34 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DNA methylation prenatal exposure arsenic epigenetics gene expression |
Language | English |
License | The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-184e62d955c995545c9848ffae1fb85a52a9f7402e4e4d65293a17d3fbe2667f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/toxsci/article-pdf/143/1/97/16687666/kfu210.pdf |
PMID | 25304211 |
PQID | 1640483406 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4274382 proquest_miscellaneous_1640483406 pubmed_primary_25304211 crossref_citationtrail_10_1093_toxsci_kfu210 crossref_primary_10_1093_toxsci_kfu210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Toxicological sciences |
PublicationTitleAlternate | Toxicol Sci |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20170508181353_kfu210-B26) 2014; 55 ( key 20170508181353_kfu210-B10) 2012; 133 ( key 20170508181353_kfu210-B23) 2004; 77 ( key 20170508181353_kfu210-B20) 2013; 121 ( key 20170508181353_kfu210-B31) 2012; 484 ( key 20170508181353_kfu210-B8) 2003; 19 ( key 20170508181353_kfu210-B11) 2012; 22 ( key 20170508181353_kfu210-B6) 2012; 47 ( key 20170508181353_kfu210-B33) 2009; 18 ( key 20170508181353_kfu210-B18) 2012; 120 WHO ( key 20170508181353_kfu210-B34) 2006 ( key 20170508181353_kfu210-B19) 2014; 9 ( key 20170508181353_kfu210-B30) 2011; 24 ( key 20170508181353_kfu210-B7) 2010; 117 ( key 20170508181353_kfu210-B27) 2014; 138 ( key 20170508181353_kfu210-B24) 2006; 27 ( key 20170508181353_kfu210-B17) 2012; 120 ( key 20170508181353_kfu210-B14) 2005; 33 ATSDR ( key 20170508181353_kfu210-B2) 2007 ( key 20170508181353_kfu210-B12) 2007; 3 ( key 20170508181353_kfu210-B28) 2014; 9 ( key 20170508181353_kfu210-B3) 2014; 29 ( key 20170508181353_kfu210-B13) 2014; 88 ( key 20170508181353_kfu210-B35) 2013; 8 ( key 20170508181353_kfu210-B1) 2003; 104 ( key 20170508181353_kfu210-B15) 2011; 31 ( key 20170508181353_kfu210-B32) 2013; 29 ( key 20170508181353_kfu210-B4) 2009; 27 ( key 20170508181353_kfu210-B16) 2012; 13 ( key 20170508181353_kfu210-B5) 2011; 12 ( key 20170508181353_kfu210-B25) 2013; 14 ( key 20170508181353_kfu210-B29) 2000; 60 ( key 20170508181353_kfu210-B22) 2006; 114 ( key 20170508181353_kfu210-B21) 2012; 41 ( key 20170508181353_kfu210-B9) 2006; 89 |
References_xml | – volume: 24 start-page: 165 year: 2011 ident: key 20170508181353_kfu210-B30 article-title: Epigenetic changes in individuals with arsenicosis publication-title: Chem. Res. Toxicol. doi: 10.1021/tx1004419 – volume: 12 start-page: R10 year: 2011 ident: key 20170508181353_kfu210-B5 article-title: DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines publication-title: Genome Biol. doi: 10.1186/gb-2011-12-1-r10 – volume: 9 start-page: 212 year: 2014 ident: key 20170508181353_kfu210-B28 article-title: Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs publication-title: Epigenetics doi: 10.4161/epi.26798 – volume-title: World Health Organization. Guidelines for Drinking Water Quality. First addendum to 3rd addition, Volume 1 year: 2006 ident: key 20170508181353_kfu210-B34 – volume: 88 start-page: 275 year: 2014 ident: key 20170508181353_kfu210-B13 article-title: Differential methylation of the arsenic (III) methyltransferase promoter according to arsenic exposure publication-title: Arch. Toxicol. doi: 10.1007/s00204-013-1146-x – volume: 47 start-page: 633 year: 2012 ident: key 20170508181353_kfu210-B6 article-title: DNA methylation dynamics during in vivo differentiation of blood and skin stem cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.019 – volume: 27 start-page: 112 year: 2006 ident: key 20170508181353_kfu210-B24 article-title: Carcinogen exposure and gene promoter hypermethylation in bladder cancer publication-title: Carcinogenesis – volume: 121 start-page: 971 year: 2013 ident: key 20170508181353_kfu210-B20 article-title: Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205925 – volume: 18 start-page: 4046 year: 2009 ident: key 20170508181353_kfu210-B33 article-title: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp353 – volume: 33 start-page: 3154 year: 2005 ident: key 20170508181353_kfu210-B14 article-title: oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki624 – volume: 9 start-page: 774 year: 2014 ident: key 20170508181353_kfu210-B19 article-title: Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood publication-title: Epigenetics doi: 10.4161/epi.28153 – volume-title: Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic year: 2007 ident: key 20170508181353_kfu210-B2 – volume: 3 start-page: 2180 year: 2007 ident: key 20170508181353_kfu210-B12 article-title: Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers publication-title: PLoS Genet. – volume: 114 start-page: 404 year: 2006 ident: key 20170508181353_kfu210-B22 article-title: Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8534 – volume: 60 start-page: 3445 year: 2000 ident: key 20170508181353_kfu210-B29 article-title: Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation publication-title: Cancer Res. – volume: 120 start-page: 1061 year: 2012 ident: key 20170508181353_kfu210-B18 article-title: Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104173 – volume: 41 start-page: 188 year: 2012 ident: key 20170508181353_kfu210-B21 article-title: DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyr237 – volume: 13 start-page: 484 year: 2012 ident: key 20170508181353_kfu210-B16 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3230 – volume: 55 start-page: 196 year: 2014 ident: key 20170508181353_kfu210-B26 article-title: Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.21842 – volume: 29 start-page: 9 year: 2014 ident: key 20170508181353_kfu210-B3 article-title: Long-term health consequences of prenatal arsenic exposure: links to the genome and the epigenome publication-title: Rev. Environ. Health – volume: 120 start-page: 1425 year: 2012 ident: key 20170508181353_kfu210-B17 article-title: 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205412 – volume: 29 start-page: 189 year: 2013 ident: key 20170508181353_kfu210-B32 article-title: A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts680 – volume: 19 start-page: 185 year: 2003 ident: key 20170508181353_kfu210-B8 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 – volume: 22 start-page: 407 year: 2012 ident: key 20170508181353_kfu210-B11 article-title: A DNA methylation fingerprint of 1628 human samples publication-title: Genome Res. doi: 10.1101/gr.119867.110 – volume: 89 start-page: 431 year: 2006 ident: key 20170508181353_kfu210-B9 article-title: DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfj030 – volume: 31 start-page: 95 year: 2011 ident: key 20170508181353_kfu210-B15 article-title: Arsenic: toxicity, oxidative stress and human disease publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1649 – volume: 133 start-page: 435 year: 2012 ident: key 20170508181353_kfu210-B10 article-title: Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2012.05.003 – volume: 8 start-page: e68737 year: 2013 ident: key 20170508181353_kfu210-B35 article-title: Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver publication-title: PloS One doi: 10.1371/journal.pone.0068737 – volume: 117 start-page: 404 year: 2010 ident: key 20170508181353_kfu210-B7 article-title: Genome-wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfq225 – volume: 484 start-page: 339 year: 2012 ident: key 20170508181353_kfu210-B31 article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo publication-title: Nature doi: 10.1038/nature10960 – volume: 104 start-page: 263 year: 2003 ident: key 20170508181353_kfu210-B1 article-title: Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water publication-title: Int. J. Cancer doi: 10.1002/ijc.10968 – volume: 14 start-page: 293 year: 2013 ident: key 20170508181353_kfu210-B25 article-title: A data-driven approach to preprocessing Illumina 450K methylation array data publication-title: BMC Genomics doi: 10.1186/1471-2164-14-293 – volume: 77 start-page: 249 year: 2004 ident: key 20170508181353_kfu210-B23 article-title: Toxicogenomic analysis of aberrant gene expression in liver tumors and nontumorous livers of adult mice exposed in utero to inorganic arsenic publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfh055 – volume: 138 start-page: 36 year: 2014 ident: key 20170508181353_kfu210-B27 article-title: Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kft267 – volume: 27 start-page: 361 year: 2009 ident: key 20170508181353_kfu210-B4 article-title: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1533 |
SSID | ssj0011609 |
Score | 2.5200803 |
Snippet | Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 97 |
SubjectTerms | 5' Untranslated Regions 5-Methylcytosine - blood Arsenic - adverse effects Arsenic Poisoning - blood Arsenic Poisoning - genetics Arsenic-Induced Changes in Epigenome from Newborn Cord Blood Cephalometry Cohort Studies CpG Islands DNA Methylation - drug effects Epigenesis, Genetic - drug effects Epigenomics - methods Exons Female Fetal Blood - cytology Gene Expression Regulation, Developmental - drug effects Gestational Age Head - growth & development Humans Infant, Newborn Leukocytes - chemistry Leukocytes - drug effects Maternal Exposure - adverse effects Mexico Pregnancy Pregnancy Outcome Prenatal Exposure Delayed Effects Risk Assessment RNA, Messenger - metabolism Water Pollutants, Chemical - adverse effects |
Title | Prenatal Arsenic Exposure and the Epigenome: Identifying Sites of 5-methylcytosine Alterations that Predict Functional Changes in Gene Expression in Newborn Cord Blood and Subsequent Birth Outcomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25304211 https://www.proquest.com/docview/1640483406 https://pubmed.ncbi.nlm.nih.gov/PMC4274382 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9pAEF4lqVRVqqomveilqVTlhZhg44u-kZQoPdIilUh5Q4u927glNgIjQf9f_1dnd9YHpJHavBhkjBe8883OzH4zw9hbEcrAEbJthZEI0EGxuRWi1rNQ9QmPSxk5ocpGPvvin567Hy-8i63t3RpraZGPW9Gvv-aV3GZW8RzOq8qS_Y-ZLW-KJ_A9zi8ecYbx-E9zPJiJVHf_6M3mQnWy6S-n2bzYElAmZX-qq7Be6Qx0SsqlxKZvSU7lZj1LNZFeTaJVnikOfLM30YWWNUEuv-S5YmnESZQ3T3AJNJFDyknQVFpVt1qNS3xazZtExYmSpbIJZ3HzSDHjiSCKOkoTt_PmUaJ2i74ucnwqhsRoDORhtkyiUiGb9bni42c_KAGNMuOrTarvJHkq25s3-60qbiTK1iOfk3kVfOCJidUrNslslTZ7rXr8w_Y24h835FXWVDo6aZbfpn5RLVGda3dNrKVYB6he1JrAk1YnBrGxD2xdIeH60kNlufJsiY8G3_yUC4cIuzVBnF5pSXQ8FUQyi8x6te_B2bHrBGp3dpvdcdD1UV053n_4VO6M2b6mLZX_ytSNxdEPaexDGllVuTbDrJtc1_yoTTpwzb4aPmQPjGMEPZLyXbYl0j1298xQP_bY_oCKrK8OYFjlDM4PYB8GVfn11R67T5FooAS7R-x3gRIwKIECJYBSCYgSKFHyDmoYAY0RyCRsYgRqGAGFETAYgQojYDACSQoKI1BhRJ0yGAGFEdAY0b-mwghojECBkcfs_KQ_PD61TPMSK-qEQW7ZoSt8J-56XtTFg4svoRtKyYUtx6HHPYd3ZeC2HeEKN_Y9NLu5HcQdORZoMwey84TtpFkqnjFAD8kPo7YT8zhypce7ouvarhOjrc_DNvca7KCY31FkKvurBjOTETFMOiOSjBFJRoPtl5dPqaTNTRe-KYRlhIuO2knkqcgW85Htu6oVBToDDfaUhKe8VSF1DRasiVV5gSpov_5JmlzqwvZG8p_f-psv2L1KRbxkO_lsIV6h05CPX2sU_QFuGCdG |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prenatal+Arsenic+Exposure+and+the+Epigenome%3A+Identifying+Sites+of+5-methylcytosine+Alterations+that+Predict+Functional+Changes+in+Gene+Expression+in+Newborn+Cord+Blood+and+Subsequent+Birth+Outcomes&rft.jtitle=Toxicological+sciences&rft.au=Rojas%2C+Daniel&rft.au=Rager%2C+Julia+E.&rft.au=Smeester%2C+Lisa&rft.au=Bailey%2C+Kathryn+A.&rft.date=2015-01-01&rft.pub=Oxford+University+Press&rft.issn=1096-6080&rft.eissn=1096-0929&rft.volume=143&rft.issue=1&rft.spage=97&rft.epage=106&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfu210&rft_id=info%3Apmid%2F25304211&rft.externalDocID=PMC4274382 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon |