Effect of silicon on grain yield of rice under cadmium-stress
Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 ( Lsi1 ), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistan...
Saved in:
Published in | Acta physiologiae plantarum Vol. 38; no. 7; p. 186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 (
Lsi1
), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistance to Cadmium (Cd)-stress of the wild-type (WT) and
Lsi1
-transgenic Lemont rice lines under Cd-stress were examined in an attempt to better understand the mechanism associated with the Si-addition, Cd-stress, and rice physiology. Si-fertilization significantly reduced the Cd-content in rice under Cd-stress. The effect was most significant in the
Lsi1
-overexpression transgenic Lemont rice (Lsi1-OE line) under high Cd-stress. Conversely, Cd in soil lowered the Si-uptake of the plants indicating a significant interaction between the two elements. During the grain-filling period, Cd-stress greatly reduced the chlorophyll content and Pn of the rice resulting in a diminished grain output. However, Lsi1-OE line with a higher chlorophyll content and Pn than either WT or
Lsi1
-RNAi transgenic Lemont rice (Lsi1-RNAi line) maintained a high photo-assimilate transportation for high yield potential. At harvest, Lsi1-OE line contained more Si and less Cd than WT, whereas the Lsi1-RNAi line showed an opposite result. In general, Cd-stress reduced, while Si-fertilization significantly increased, the grain yield on rice. However, no significant difference on the grain yields existed between WT and Lsi1-RNAi line. This might be due to a compensation effect generated by Lsi1-RNAi line. It appeared that Si in the soil, as well as the enhancing or inhibiting
Lsi1
expression and the resistance to Cd-toxicity of the plants, could significantly affect the rice yield making alternations on these factors a plausible approach for production improvement. |
---|---|
AbstractList | Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 (Lsi1), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistance to Cadmium (Cd)-stress of the wild-type (WT) and Lsi1-transgenic Lemont rice lines under Cd-stress were examined in an attempt to better understand the mechanism associated with the Si-addition, Cd-stress, and rice physiology. Si-fertilization significantly reduced the Cd-content in rice under Cd-stress. The effect was most significant in the Lsi1-overexpression transgenic Lemont rice (Lsi1-OE line) under high Cd-stress. Conversely, Cd in soil lowered the Si-uptake of the plants indicating a significant interaction between the two elements. During the grain-filling period, Cd-stress greatly reduced the chlorophyll content and Pn of the rice resulting in a diminished grain output. However, Lsi1-OE line with a higher chlorophyll content and Pn than either WT or Lsi1-RNAi transgenic Lemont rice (Lsi1-RNAi line) maintained a high photo-assimilate transportation for high yield potential. At harvest, Lsi1-OE line contained more Si and less Cd than WT, whereas the Lsi1-RNAi line showed an opposite result. In general, Cd-stress reduced, while Si-fertilization significantly increased, the grain yield on rice. However, no significant difference on the grain yields existed between WT and Lsi1-RNAi line. This might be due to a compensation effect generated by Lsi1-RNAi line. It appeared that Si in the soil, as well as the enhancing or inhibiting Lsi1 expression and the resistance to Cd-toxicity of the plants, could significantly affect the rice yield making alternations on these factors a plausible approach for production improvement. Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 ( Lsi1 ), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistance to Cadmium (Cd)-stress of the wild-type (WT) and Lsi1 -transgenic Lemont rice lines under Cd-stress were examined in an attempt to better understand the mechanism associated with the Si-addition, Cd-stress, and rice physiology. Si-fertilization significantly reduced the Cd-content in rice under Cd-stress. The effect was most significant in the Lsi1 -overexpression transgenic Lemont rice (Lsi1-OE line) under high Cd-stress. Conversely, Cd in soil lowered the Si-uptake of the plants indicating a significant interaction between the two elements. During the grain-filling period, Cd-stress greatly reduced the chlorophyll content and Pn of the rice resulting in a diminished grain output. However, Lsi1-OE line with a higher chlorophyll content and Pn than either WT or Lsi1 -RNAi transgenic Lemont rice (Lsi1-RNAi line) maintained a high photo-assimilate transportation for high yield potential. At harvest, Lsi1-OE line contained more Si and less Cd than WT, whereas the Lsi1-RNAi line showed an opposite result. In general, Cd-stress reduced, while Si-fertilization significantly increased, the grain yield on rice. However, no significant difference on the grain yields existed between WT and Lsi1-RNAi line. This might be due to a compensation effect generated by Lsi1-RNAi line. It appeared that Si in the soil, as well as the enhancing or inhibiting Lsi1 expression and the resistance to Cd-toxicity of the plants, could significantly affect the rice yield making alternations on these factors a plausible approach for production improvement. |
ArticleNumber | 186 |
Author | Lin, Hongmei He, Jianyu Fang, Changxun Lin, Weiwei Lin, Ruiyu Li, Yingzhe Lin, Wenxiong |
Author_xml | – sequence: 1 givenname: Hongmei surname: Lin fullname: Lin, Hongmei organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 2 givenname: Changxun surname: Fang fullname: Fang, Changxun organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 3 givenname: Yingzhe surname: Li fullname: Li, Yingzhe organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 4 givenname: Weiwei surname: Lin fullname: Lin, Weiwei organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 5 givenname: Jianyu surname: He fullname: He, Jianyu organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Crop Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 6 givenname: Ruiyu surname: Lin fullname: Lin, Ruiyu email: lrylin2004@163.com organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University – sequence: 7 givenname: Wenxiong surname: Lin fullname: Lin, Wenxiong email: lwx@fafu.edu.cn organization: Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University |
BookMark | eNp9kD1rwzAQhkVJoUnaH9DNYxe1OsmW5KFDCekHBLq0s5Dlc1Cw5VSyh_z7OrhTh8DBHdz7HNyzIovQByTkHtgjMKaeEoASmjKQlINSVF-RJWgJFKTMF2TJQChaaA03ZJXSgbFCFFIuyfO2adANWd9kybfe9SGbah-tD9nJY1ufN9E7zMZQY8ycrTs_djQNEVO6JdeNbRPe_fU1-X7dfm3e6e7z7WPzsqNOaDVQyLEUnNUlyKrmwhZWMceVVaXUsgREJkqpKu6mKS8qRM4EFJUunKgtF1ysycN89xj7nxHTYDqfHLatDdiPyXDGGOQ6z_Mpquaoi31KERvj_GAH34dheqo1wMxZmJmFmUmYOQszeiLhH3mMvrPxdJHhM5OmbNhjNId-jGFycQH6BRUJfcg |
CitedBy_id | crossref_primary_10_15740_HAS_AU_12_TECHSEAR_3_2017_883_887 crossref_primary_10_3389_fpls_2022_773815 crossref_primary_10_1016_j_scitotenv_2019_05_471 crossref_primary_10_3390_ijerph15102193 crossref_primary_10_1007_s10725_018_0417_1 crossref_primary_10_1016_j_plaphy_2019_10_027 crossref_primary_10_1093_jxb_erx364 crossref_primary_10_2134_agronj2019_04_0304 crossref_primary_10_1007_s42729_023_01525_8 crossref_primary_10_1016_j_chemosphere_2019_125128 crossref_primary_10_1016_j_plaphy_2022_04_018 crossref_primary_10_1016_j_scitotenv_2019_135096 crossref_primary_10_1038_s41598_024_63737_x crossref_primary_10_1007_s10653_024_02120_1 crossref_primary_10_1016_j_ecoenv_2021_112119 crossref_primary_10_1016_j_jhazmat_2023_131860 crossref_primary_10_1111_ppl_13310 crossref_primary_10_1016_j_plantsci_2017_06_002 |
Cites_doi | 10.1016/j.scitotenv.2005.05.003 10.1146/annurev.arplant.50.1.641 10.1007/s10535-010-0054-7 10.1007/978-0-387-21510-5 10.1016/j.scienta.2009.10.013 10.1007/s11356-014-3525-0 10.1007/s11356-015-5351-4 10.1007/s11738-012-1167-8 10.1104/pp.109.151035 10.1038/nature04590 10.1111/ppl.12178 10.1016/j.jhazmat.2006.09.057 10.1111/j.1469-8137.2012.04299.x 10.1007/s10725-012-9781-4 10.1104/pp.104.047365 10.1007/BF00024497 10.2302/kjm.26.63 10.1016/S0045-6535(02)00232-1 10.1016/j.envexpbot.2007.10.024 10.1186/1471-2229-14-13 10.1007/s11104-008-9571-y 10.1007/s11104-004-3920-2 10.1016/j.ecoenv.2013.07.006 10.1111/nph.12494 10.1007/s00425-007-0610-3 10.1016/S1001-0742(08)62078-1 10.1016/S0045-6535(03)00484-3 10.1016/j.jhazmat.2009.06.143 10.1023/A:1017938809311 10.1080/01904160009382110 10.1007/s11356-013-1811-x 10.1016/j.chemosphere.2004.09.034 10.1007/s10725-014-9973-1 10.1104/pp.107.102236 10.1111/nph.13276 10.1007/s11104-008-9659-4 10.1080/00103624.2014.956936 10.1016/j.jplph.2005.11.010 10.2135/cropsci2004.5010 10.1007/s10725-011-9569-y 10.1007/s10725-010-9447-z 10.1016/S0378-4290(98)00137-3 |
ContentType | Journal Article |
Copyright | Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016 |
Copyright_xml | – notice: Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2016 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1007/s11738-016-2177-8 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany |
EISSN | 1861-1664 |
EndPage | 186 |
ExternalDocumentID | 10_1007_s11738_016_2177_8 |
GrantInformation_xml | – fundername: the National Research Foundation for the Doctoral Program of Higher Education of China grantid: 20133515130001 – fundername: the National Natural Science Foundation of China grantid: 31271670 – fundername: the National Natural Science Foundation of China grantid: 31300336 |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40E 5GY 5VS 67N 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P2P PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Y2W YLTOR Z45 Z7U Z7V Z7W Z7Y ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c387t-14e9320d916bd23a5a70c27a7968691ee03967b2cee045bee20315b85c3da2323 |
IEDL.DBID | U2A |
ISSN | 0137-5881 |
IngestDate | Fri Jul 11 15:43:57 EDT 2025 Tue Jul 01 04:36:24 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Feb 21 02:34:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Cadmium ) Silicon Photosynthesis Grain yield Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-14e9320d916bd23a5a70c27a7968691ee03967b2cee045bee20315b85c3da2323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000148444 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2000148444 crossref_citationtrail_10_1007_s11738_016_2177_8 crossref_primary_10_1007_s11738_016_2177_8 springer_journals_10_1007_s11738_016_2177_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160700 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 7 year: 2016 text: 20160700 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Acta physiologiae plantarum |
PublicationTitleAbbrev | Acta Physiol Plant |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | LiuJLiangJLiKZhangZYuBLuXYangJZhuQCorrelations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stressChemosphere200352146714731:CAS:528:DC%2BD3sXlsVWksbs%3D10.1016/S0045-6535(03)00484-312867177 MaJFTamaiKYamajiNMitaniNKonishiSKatsuharaMIshiguroMMurataYYanoMA silicon transporter in riceNature20064406886911:CAS:528:DC%2BD28XivFWgurw%3D10.1038/nature0459016572174 MalčovskáSMDučaiováZMaslaňákováIBačkorMEffect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excessWater Air Soil Poll2014225111 LiuJQianMCaiGYangJZhuQUptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grainJ Hazard Mater20071434434471:CAS:528:DC%2BD2sXktFyjtbY%3D10.1016/j.jhazmat.2006.09.05717079078 RizwanMMeunierJDDavidianJCPokrovskyOSBovetNKellerCSilicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponicsEnviron Sci Pollut Res2015231414142710.1007/s11356-015-5351-4 TamaiKMaJFReexamination of silicon effects on rice growth and production under field conditions using a low silicon mutantPlant Soil200830721271:CAS:528:DC%2BD1cXlsV2ktLw%3D10.1007/s11104-008-9571-y ChenSLKaoCHCd induced changes in proline level and peroxidase activity in roots of rice seedlingsPlant Growth Regul19951767711:CAS:528:DyaK2MXnslCitLk%3D MoussaHEl-GamalSEffect of salicylic acid pretreatment on cadmium toxicity in wheatBiol Plantarum2010543153201:CAS:528:DC%2BC3cXkslakur8%3D10.1007/s10535-010-0054-7 EpsteinESiliconAnnu Rev Plant Physiol Plant Mol Biol1999506416641:CAS:528:DyaK1MXkt1yktro%3D10.1146/annurev.arplant.50.1.64115012222 ChristyALPorterCACanopy photosynthesis and yield in soybean. Photosynthesis-applications to food and agriculture1982New YorkAcademic Press FujimakiSSuzuiNIshiokaNSKawachiNItoSChinoMS-iNakamuraTracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plantPlant Physiol2010152179618061:CAS:528:DC%2BC3cXmsVans70%3D10.1104/pp.109.151035201729652850040 PingLXingxiangWZhangTDongmeiZYuanqiuHEffects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soilJ Environ Sci20082044945510.1016/S1001-0742(08)62078-1 ShiGCaiQLiuCWuLSilicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymesPlant Growth Regul20106145521:CAS:528:DC%2BC3cXktVWku7Y%3D10.1007/s10725-010-9447-z CaoFCaiYLiuLZhangMHeXZhangGWuFDifferences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypesPlant Growth Regul2015757157231:CAS:528:DC%2BC2cXhsV2msr3J10.1007/s10725-014-9973-1 SongALiZZhangJXueGFanFLiangYSilicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacityJ Hazard Mater200917274831:CAS:528:DC%2BD1MXht1CgtbfM10.1016/j.jhazmat.2009.06.14319616891 LiuJMaJHeCWLiXLZhangWJXuFSLinYJWangLJInhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of siliconNew Phytol20132006916991:CAS:528:DC%2BC3sXhs1eltbbE10.1111/nph.1249424102436 DetmannKCAraújoWLMartinsSCSanglardLMReisJVDetmannERodriguesFÁNunes-NesiAFernieARDaMattaFMSilicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in riceNew Phytol20121967527621:CAS:528:DC%2BC38XhsVKrt7jE10.1111/j.1469-8137.2012.04299.x22994889 LukačováZŠvubováRKohanováJLuxASilicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier developmentPlant Growth Regul2013708910310.1007/s10725-012-9781-4 GregerMLöfstedtMComparison of uptake and distribution of cadmium in different cultivars of bread and durum wheatCrop Sci2004445015071:CAS:528:DC%2BD2cXislKlurc%3D10.2135/cropsci2004.5010 McLaughlinMJParkerDRClarkeJMMetals and micronutrients-food safety issuesField Crop Res19996014316310.1016/S0378-4290(98)00137-3 MaJFMitaniNNagaoSKonishiSTamaiKIwashitaTYanoMCharacterization of the silicon uptake system and molecular mapping of the silicon transporter gene in ricePlant Physiol2004136328432891:CAS:528:DC%2BD2cXovVymsLo%3D10.1104/pp.104.04736515448199523387 NwugoCCHuertaAJEffects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmiumPlant Soil200831173861:CAS:528:DC%2BD1cXhtVyju77F10.1007/s11104-008-9659-4 KimYHKhanALKimDHLeeSYKimKMWaqasMJungHYShinJHKimJGLeeIJSilicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormonesBMC Plant Biol2014141310.1186/1471-2229-14-13244058873893592 LeeSKimYYLeeYAnGRice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux proteinPlant Physiol20071458318421:CAS:528:DC%2BD2sXhtlemsrnK10.1104/pp.107.102236178272662048805 DiasMCMonteiroCMoutinho-PereiraJCorreiaCGonçalvesBSantosCCadmium toxicity affects photosynthesis and plant growth at different levelsActa Physiol Plant201335128112891:CAS:528:DC%2BC3sXpvFalu7c%3D10.1007/s11738-012-1167-8 MaJCaiHHeCZhangWWangLA hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cellsNew Phytol2015206106310741:CAS:528:DC%2BC2MXmsFaksrs%3D10.1111/nph.1327625645894 HuHZhangJWangHLiRPanFWuJFengYYingYLiuQEffect of silicate supplementation on the alleviation of arsenite toxicity in 93-11 (Oryza sativa L. indica)Environ Sci Pollut R201320857985891:CAS:528:DC%2BC3sXhvVGntbjO10.1007/s11356-013-1811-x FangCXWangQSYuYLiQMZhangHLWuXCChenTLinWXSuppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiationPlant Growth Regul2011651101:CAS:528:DC%2BC3MXhtFeksLrP10.1007/s10725-011-9569-y Tuan AnhTPopovaLPFunctions and toxicity of cadmium in plants: recent advances and future prospectsTurk J Bot201337113 BaiZZhaoJZhuYOn the ecological rehabilitation of mined areasJ Nat Resour1999192428(in Chinese with English abstract) BybordiAInfluence of exogenous application of silicon and potassium on physiological responses, yield, and yield components of salt-stressed wheatCommun Soil Sci Plan2015461091221:CAS:528:DC%2BC2cXitVGlsLfN10.1080/00103624.2014.956936 ChengWDYaoHGZhangGPTangMLDominyPEffect of cadmium on growth and nutrition metabolism in riceSci Agric Sin2005385285371:CAS:528:DC%2BD28XmtFalt7Y%3D(in Chinese with English abstract) LiangYCWongJWeiLSilicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soilChemosphere2005584754831:CAS:528:DC%2BD2cXhtFGiurnF10.1016/j.chemosphere.2004.09.03415620739 ShiXHZhangCCWangHZhangFSEffect of Si on the distribution of Cd in rice seedlingsPlant Soil200527253601:CAS:528:DC%2BD2MXks1ekur4%3D10.1007/s11104-004-3920-2 MaJFTakahashiESoil, fertilizer, and plant silicon research in Japan2002AmsterdamElsevier Science7310610.1016/B978-044451166-9/50006-3 WangSWangFGaoSFoliar application with nano-silicon alleviates Cd toxicity in rice seedlingsEnviron Sci Pollut R2014222837284510.1007/s11356-014-3525-0 ZhangCCWangLJNieQZhangWXZhangFSLong-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.)Environ Exp Bot2008623003071:CAS:528:DC%2BD1cXivVyjs78%3D10.1016/j.envexpbot.2007.10.024 LiMEcological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practiceSci Total Environ200635738531:CAS:528:DC%2BD28XhvVWgtrw%3D10.1016/j.scitotenv.2005.05.00315992864 IwaoSCadmium, lead, copper and zinc in food, feces and organs of humans-Interrelations hips in food and feces and interactions in the liver and the renal cortexKeio J Med19772663781:CAS:528:DyaE1cXksFChtrk%3D10.2302/kjm.26.63609185 VermaSDubeyRSEffect of cadmium on soluble sugars and enzymes of their metabolism in riceBiol Plantarum2001441171231:CAS:528:DC%2BD3MXjtFygs7Y%3D10.1023/A:1017938809311 SanglardLMMartinsSCDetmannKCSilvaPELavinskyAOSilvaMMDetmannEAraújoWLDaMattaFMSilicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesisPhysiol Plantarum20141523553661:CAS:528:DC%2BC2cXhsFCjtL%2FP10.1111/ppl.12178 FengJShiQWangXWeiMYangFXuHSilicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus LSci Hortic-Amsterdam20101235215301:CAS:528:DC%2BC3cXnsV2jtg%3D%3D10.1016/j.scienta.2009.10.013 WangLJWangYHChenQCaoWDLiMZhangFSSilicon induced cadmium tolerance of rice seedlingsJ Plant Nutr200023139714061:CAS:528:DC%2BD3cXns1Shur0%3D10.1080/01904160009382110 WongMEcological restoration of mine degraded soils, with emphasis on metal contaminated soilsChemosphere2003507757801:CAS:528:DC%2BD38XptlCrsrk%3D10.1016/S0045-6535(02)00232-112688490 AdrianoDCTrace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals20012New YorkSpringer10.1007/978-0-387-21510-5 ChenFWuFDongJVinczeEZhangGWangFHuangYWeiKCadmium translocation and accumulation in developing barley grainsPlanta20072272232321:CAS:528:DC%2BD2sXhtlyku73N10.1007/s00425-007-0610-317713783 ClemensSEvolution and function of phytochelatin synthasesJ Plant Physiol20061633193321:CAS:528:DC%2BD28XislSmtb4%3D10.1016/j.jplph.2005.11.01016384624 FarooqMAAliSHameedAIshaqueWMahmoodKIqbalZAlleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cottonEcotox Environ Safe2013962422491:CAS:528:DC%2BC3sXht1SjsbjO10.1016/j.ecoenv.2013.07.006 JF Ma (2177_CR28) 2002 Z Lukačová (2177_CR27) 2013; 70 CC Nwugo (2177_CR35) 2008; 311 H Hu (2177_CR18) 2013; 20 L Ping (2177_CR36) 2008; 20 F Cao (2177_CR4) 2015; 75 S Lee (2177_CR21) 2007; 145 E Epstein (2177_CR12) 1999; 50 H Moussa (2177_CR34) 2010; 54 WD Cheng (2177_CR7) 2005; 38 F Chen (2177_CR6) 2007; 227 M Greger (2177_CR17) 2004; 44 DC Adriano (2177_CR1) 2001 J Feng (2177_CR15) 2010; 123 J Ma (2177_CR31) 2015; 206 LJ Wang (2177_CR45) 2000; 23 YC Liang (2177_CR23) 2005; 58 J Liu (2177_CR26) 2013; 200 S Fujimaki (2177_CR16) 2010; 152 YH Kim (2177_CR20) 2014; 14 S Clemens (2177_CR9) 2006; 163 S Verma (2177_CR44) 2001; 44 MA Farooq (2177_CR14) 2013; 96 XH Shi (2177_CR39) 2005; 272 CC Zhang (2177_CR48) 2008; 62 M Li (2177_CR22) 2006; 357 CX Fang (2177_CR13) 2011; 65 J Liu (2177_CR25) 2007; 143 JF Ma (2177_CR30) 2006; 440 SL Chen (2177_CR5) 1995; 17 SM Malčovská (2177_CR32) 2014; 225 G Shi (2177_CR40) 2010; 61 A Bybordi (2177_CR3) 2015; 46 S Wang (2177_CR46) 2014; 22 Z Bai (2177_CR2) 1999; 19 KC Detmann (2177_CR10) 2012; 196 JF Ma (2177_CR29) 2004; 136 AL Christy (2177_CR8) 1982 LM Sanglard (2177_CR38) 2014; 152 M Rizwan (2177_CR37) 2015; 23 T Tuan Anh (2177_CR43) 2013; 37 J Liu (2177_CR24) 2003; 52 MC Dias (2177_CR11) 2013; 35 M Wong (2177_CR47) 2003; 50 A Song (2177_CR41) 2009; 172 K Tamai (2177_CR42) 2008; 307 MJ McLaughlin (2177_CR33) 1999; 60 S Iwao (2177_CR19) 1977; 26 |
References_xml | – reference: MaJFTamaiKYamajiNMitaniNKonishiSKatsuharaMIshiguroMMurataYYanoMA silicon transporter in riceNature20064406886911:CAS:528:DC%2BD28XivFWgurw%3D10.1038/nature0459016572174 – reference: IwaoSCadmium, lead, copper and zinc in food, feces and organs of humans-Interrelations hips in food and feces and interactions in the liver and the renal cortexKeio J Med19772663781:CAS:528:DyaE1cXksFChtrk%3D10.2302/kjm.26.63609185 – reference: MaJCaiHHeCZhangWWangLA hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cellsNew Phytol2015206106310741:CAS:528:DC%2BC2MXmsFaksrs%3D10.1111/nph.1327625645894 – reference: DiasMCMonteiroCMoutinho-PereiraJCorreiaCGonçalvesBSantosCCadmium toxicity affects photosynthesis and plant growth at different levelsActa Physiol Plant201335128112891:CAS:528:DC%2BC3sXpvFalu7c%3D10.1007/s11738-012-1167-8 – reference: ChengWDYaoHGZhangGPTangMLDominyPEffect of cadmium on growth and nutrition metabolism in riceSci Agric Sin2005385285371:CAS:528:DC%2BD28XmtFalt7Y%3D(in Chinese with English abstract) – reference: ShiGCaiQLiuCWuLSilicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymesPlant Growth Regul20106145521:CAS:528:DC%2BC3cXktVWku7Y%3D10.1007/s10725-010-9447-z – reference: FangCXWangQSYuYLiQMZhangHLWuXCChenTLinWXSuppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiationPlant Growth Regul2011651101:CAS:528:DC%2BC3MXhtFeksLrP10.1007/s10725-011-9569-y – reference: McLaughlinMJParkerDRClarkeJMMetals and micronutrients-food safety issuesField Crop Res19996014316310.1016/S0378-4290(98)00137-3 – reference: LiuJMaJHeCWLiXLZhangWJXuFSLinYJWangLJInhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of siliconNew Phytol20132006916991:CAS:528:DC%2BC3sXhs1eltbbE10.1111/nph.1249424102436 – reference: WongMEcological restoration of mine degraded soils, with emphasis on metal contaminated soilsChemosphere2003507757801:CAS:528:DC%2BD38XptlCrsrk%3D10.1016/S0045-6535(02)00232-112688490 – reference: TamaiKMaJFReexamination of silicon effects on rice growth and production under field conditions using a low silicon mutantPlant Soil200830721271:CAS:528:DC%2BD1cXlsV2ktLw%3D10.1007/s11104-008-9571-y – reference: KimYHKhanALKimDHLeeSYKimKMWaqasMJungHYShinJHKimJGLeeIJSilicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormonesBMC Plant Biol2014141310.1186/1471-2229-14-13244058873893592 – reference: RizwanMMeunierJDDavidianJCPokrovskyOSBovetNKellerCSilicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponicsEnviron Sci Pollut Res2015231414142710.1007/s11356-015-5351-4 – reference: GregerMLöfstedtMComparison of uptake and distribution of cadmium in different cultivars of bread and durum wheatCrop Sci2004445015071:CAS:528:DC%2BD2cXislKlurc%3D10.2135/cropsci2004.5010 – reference: WangSWangFGaoSFoliar application with nano-silicon alleviates Cd toxicity in rice seedlingsEnviron Sci Pollut R2014222837284510.1007/s11356-014-3525-0 – reference: LiuJLiangJLiKZhangZYuBLuXYangJZhuQCorrelations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stressChemosphere200352146714731:CAS:528:DC%2BD3sXlsVWksbs%3D10.1016/S0045-6535(03)00484-312867177 – reference: ShiXHZhangCCWangHZhangFSEffect of Si on the distribution of Cd in rice seedlingsPlant Soil200527253601:CAS:528:DC%2BD2MXks1ekur4%3D10.1007/s11104-004-3920-2 – reference: LiangYCWongJWeiLSilicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soilChemosphere2005584754831:CAS:528:DC%2BD2cXhtFGiurnF10.1016/j.chemosphere.2004.09.03415620739 – reference: LiMEcological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practiceSci Total Environ200635738531:CAS:528:DC%2BD28XhvVWgtrw%3D10.1016/j.scitotenv.2005.05.00315992864 – reference: MaJFMitaniNNagaoSKonishiSTamaiKIwashitaTYanoMCharacterization of the silicon uptake system and molecular mapping of the silicon transporter gene in ricePlant Physiol2004136328432891:CAS:528:DC%2BD2cXovVymsLo%3D10.1104/pp.104.04736515448199523387 – reference: MoussaHEl-GamalSEffect of salicylic acid pretreatment on cadmium toxicity in wheatBiol Plantarum2010543153201:CAS:528:DC%2BC3cXkslakur8%3D10.1007/s10535-010-0054-7 – reference: LukačováZŠvubováRKohanováJLuxASilicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier developmentPlant Growth Regul2013708910310.1007/s10725-012-9781-4 – reference: BaiZZhaoJZhuYOn the ecological rehabilitation of mined areasJ Nat Resour1999192428(in Chinese with English abstract) – reference: ChristyALPorterCACanopy photosynthesis and yield in soybean. Photosynthesis-applications to food and agriculture1982New YorkAcademic Press – reference: ChenFWuFDongJVinczeEZhangGWangFHuangYWeiKCadmium translocation and accumulation in developing barley grainsPlanta20072272232321:CAS:528:DC%2BD2sXhtlyku73N10.1007/s00425-007-0610-317713783 – reference: LeeSKimYYLeeYAnGRice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux proteinPlant Physiol20071458318421:CAS:528:DC%2BD2sXhtlemsrnK10.1104/pp.107.102236178272662048805 – reference: ChenSLKaoCHCd induced changes in proline level and peroxidase activity in roots of rice seedlingsPlant Growth Regul19951767711:CAS:528:DyaK2MXnslCitLk%3D – reference: FarooqMAAliSHameedAIshaqueWMahmoodKIqbalZAlleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cottonEcotox Environ Safe2013962422491:CAS:528:DC%2BC3sXht1SjsbjO10.1016/j.ecoenv.2013.07.006 – reference: VermaSDubeyRSEffect of cadmium on soluble sugars and enzymes of their metabolism in riceBiol Plantarum2001441171231:CAS:528:DC%2BD3MXjtFygs7Y%3D10.1023/A:1017938809311 – reference: ClemensSEvolution and function of phytochelatin synthasesJ Plant Physiol20061633193321:CAS:528:DC%2BD28XislSmtb4%3D10.1016/j.jplph.2005.11.01016384624 – reference: LiuJQianMCaiGYangJZhuQUptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grainJ Hazard Mater20071434434471:CAS:528:DC%2BD2sXktFyjtbY%3D10.1016/j.jhazmat.2006.09.05717079078 – reference: NwugoCCHuertaAJEffects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmiumPlant Soil200831173861:CAS:528:DC%2BD1cXhtVyju77F10.1007/s11104-008-9659-4 – reference: ZhangCCWangLJNieQZhangWXZhangFSLong-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.)Environ Exp Bot2008623003071:CAS:528:DC%2BD1cXivVyjs78%3D10.1016/j.envexpbot.2007.10.024 – reference: SongALiZZhangJXueGFanFLiangYSilicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacityJ Hazard Mater200917274831:CAS:528:DC%2BD1MXht1CgtbfM10.1016/j.jhazmat.2009.06.14319616891 – reference: MaJFTakahashiESoil, fertilizer, and plant silicon research in Japan2002AmsterdamElsevier Science7310610.1016/B978-044451166-9/50006-3 – reference: PingLXingxiangWZhangTDongmeiZYuanqiuHEffects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soilJ Environ Sci20082044945510.1016/S1001-0742(08)62078-1 – reference: WangLJWangYHChenQCaoWDLiMZhangFSSilicon induced cadmium tolerance of rice seedlingsJ Plant Nutr200023139714061:CAS:528:DC%2BD3cXns1Shur0%3D10.1080/01904160009382110 – reference: BybordiAInfluence of exogenous application of silicon and potassium on physiological responses, yield, and yield components of salt-stressed wheatCommun Soil Sci Plan2015461091221:CAS:528:DC%2BC2cXitVGlsLfN10.1080/00103624.2014.956936 – reference: DetmannKCAraújoWLMartinsSCSanglardLMReisJVDetmannERodriguesFÁNunes-NesiAFernieARDaMattaFMSilicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in riceNew Phytol20121967527621:CAS:528:DC%2BC38XhsVKrt7jE10.1111/j.1469-8137.2012.04299.x22994889 – reference: SanglardLMMartinsSCDetmannKCSilvaPELavinskyAOSilvaMMDetmannEAraújoWLDaMattaFMSilicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesisPhysiol Plantarum20141523553661:CAS:528:DC%2BC2cXhsFCjtL%2FP10.1111/ppl.12178 – reference: MalčovskáSMDučaiováZMaslaňákováIBačkorMEffect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excessWater Air Soil Poll2014225111 – reference: Tuan AnhTPopovaLPFunctions and toxicity of cadmium in plants: recent advances and future prospectsTurk J Bot201337113 – reference: HuHZhangJWangHLiRPanFWuJFengYYingYLiuQEffect of silicate supplementation on the alleviation of arsenite toxicity in 93-11 (Oryza sativa L. indica)Environ Sci Pollut R201320857985891:CAS:528:DC%2BC3sXhvVGntbjO10.1007/s11356-013-1811-x – reference: FujimakiSSuzuiNIshiokaNSKawachiNItoSChinoMS-iNakamuraTracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plantPlant Physiol2010152179618061:CAS:528:DC%2BC3cXmsVans70%3D10.1104/pp.109.151035201729652850040 – reference: EpsteinESiliconAnnu Rev Plant Physiol Plant Mol Biol1999506416641:CAS:528:DyaK1MXkt1yktro%3D10.1146/annurev.arplant.50.1.64115012222 – reference: CaoFCaiYLiuLZhangMHeXZhangGWuFDifferences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypesPlant Growth Regul2015757157231:CAS:528:DC%2BC2cXhsV2msr3J10.1007/s10725-014-9973-1 – reference: AdrianoDCTrace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals20012New YorkSpringer10.1007/978-0-387-21510-5 – reference: FengJShiQWangXWeiMYangFXuHSilicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus LSci Hortic-Amsterdam20101235215301:CAS:528:DC%2BC3cXnsV2jtg%3D%3D10.1016/j.scienta.2009.10.013 – volume: 357 start-page: 38 year: 2006 ident: 2177_CR22 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2005.05.003 – volume: 50 start-page: 641 year: 1999 ident: 2177_CR12 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.50.1.641 – volume: 54 start-page: 315 year: 2010 ident: 2177_CR34 publication-title: Biol Plantarum doi: 10.1007/s10535-010-0054-7 – volume-title: Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals year: 2001 ident: 2177_CR1 doi: 10.1007/978-0-387-21510-5 – volume: 123 start-page: 521 year: 2010 ident: 2177_CR15 publication-title: Sci Hortic-Amsterdam doi: 10.1016/j.scienta.2009.10.013 – volume: 37 start-page: 1 year: 2013 ident: 2177_CR43 publication-title: Turk J Bot – volume: 22 start-page: 2837 year: 2014 ident: 2177_CR46 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-014-3525-0 – volume: 23 start-page: 1414 year: 2015 ident: 2177_CR37 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-5351-4 – volume: 35 start-page: 1281 year: 2013 ident: 2177_CR11 publication-title: Acta Physiol Plant doi: 10.1007/s11738-012-1167-8 – volume: 152 start-page: 1796 year: 2010 ident: 2177_CR16 publication-title: Plant Physiol doi: 10.1104/pp.109.151035 – volume-title: Canopy photosynthesis and yield in soybean. Photosynthesis-applications to food and agriculture year: 1982 ident: 2177_CR8 – volume: 440 start-page: 688 year: 2006 ident: 2177_CR30 publication-title: Nature doi: 10.1038/nature04590 – volume: 152 start-page: 355 year: 2014 ident: 2177_CR38 publication-title: Physiol Plantarum doi: 10.1111/ppl.12178 – volume: 143 start-page: 443 year: 2007 ident: 2177_CR25 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2006.09.057 – volume: 196 start-page: 752 year: 2012 ident: 2177_CR10 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04299.x – volume: 70 start-page: 89 year: 2013 ident: 2177_CR27 publication-title: Plant Growth Regul doi: 10.1007/s10725-012-9781-4 – volume: 136 start-page: 3284 year: 2004 ident: 2177_CR29 publication-title: Plant Physiol doi: 10.1104/pp.104.047365 – volume: 17 start-page: 67 year: 1995 ident: 2177_CR5 publication-title: Plant Growth Regul doi: 10.1007/BF00024497 – volume: 26 start-page: 63 year: 1977 ident: 2177_CR19 publication-title: Keio J Med doi: 10.2302/kjm.26.63 – volume: 50 start-page: 775 year: 2003 ident: 2177_CR47 publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00232-1 – volume: 62 start-page: 300 year: 2008 ident: 2177_CR48 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2007.10.024 – volume: 14 start-page: 13 year: 2014 ident: 2177_CR20 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-13 – volume: 307 start-page: 21 year: 2008 ident: 2177_CR42 publication-title: Plant Soil doi: 10.1007/s11104-008-9571-y – volume: 272 start-page: 53 year: 2005 ident: 2177_CR39 publication-title: Plant Soil doi: 10.1007/s11104-004-3920-2 – volume: 96 start-page: 242 year: 2013 ident: 2177_CR14 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2013.07.006 – volume: 19 start-page: 24 year: 1999 ident: 2177_CR2 publication-title: J Nat Resour – start-page: 73 volume-title: Soil, fertilizer, and plant silicon research in Japan year: 2002 ident: 2177_CR28 – volume: 200 start-page: 691 year: 2013 ident: 2177_CR26 publication-title: New Phytol doi: 10.1111/nph.12494 – volume: 227 start-page: 223 year: 2007 ident: 2177_CR6 publication-title: Planta doi: 10.1007/s00425-007-0610-3 – volume: 20 start-page: 449 year: 2008 ident: 2177_CR36 publication-title: J Environ Sci doi: 10.1016/S1001-0742(08)62078-1 – volume: 52 start-page: 1467 year: 2003 ident: 2177_CR24 publication-title: Chemosphere doi: 10.1016/S0045-6535(03)00484-3 – volume: 225 start-page: 1 year: 2014 ident: 2177_CR32 publication-title: Water Air Soil Poll – volume: 172 start-page: 74 year: 2009 ident: 2177_CR41 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.06.143 – volume: 38 start-page: 528 year: 2005 ident: 2177_CR7 publication-title: Sci Agric Sin – volume: 44 start-page: 117 year: 2001 ident: 2177_CR44 publication-title: Biol Plantarum doi: 10.1023/A:1017938809311 – volume: 23 start-page: 1397 year: 2000 ident: 2177_CR45 publication-title: J Plant Nutr doi: 10.1080/01904160009382110 – volume: 20 start-page: 8579 year: 2013 ident: 2177_CR18 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-013-1811-x – volume: 58 start-page: 475 year: 2005 ident: 2177_CR23 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.09.034 – volume: 75 start-page: 715 year: 2015 ident: 2177_CR4 publication-title: Plant Growth Regul doi: 10.1007/s10725-014-9973-1 – volume: 145 start-page: 831 year: 2007 ident: 2177_CR21 publication-title: Plant Physiol doi: 10.1104/pp.107.102236 – volume: 206 start-page: 1063 year: 2015 ident: 2177_CR31 publication-title: New Phytol doi: 10.1111/nph.13276 – volume: 311 start-page: 73 year: 2008 ident: 2177_CR35 publication-title: Plant Soil doi: 10.1007/s11104-008-9659-4 – volume: 46 start-page: 109 year: 2015 ident: 2177_CR3 publication-title: Commun Soil Sci Plan doi: 10.1080/00103624.2014.956936 – volume: 163 start-page: 319 year: 2006 ident: 2177_CR9 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2005.11.010 – volume: 44 start-page: 501 year: 2004 ident: 2177_CR17 publication-title: Crop Sci doi: 10.2135/cropsci2004.5010 – volume: 65 start-page: 1 year: 2011 ident: 2177_CR13 publication-title: Plant Growth Regul doi: 10.1007/s10725-011-9569-y – volume: 61 start-page: 45 year: 2010 ident: 2177_CR40 publication-title: Plant Growth Regul doi: 10.1007/s10725-010-9447-z – volume: 60 start-page: 143 year: 1999 ident: 2177_CR33 publication-title: Field Crop Res doi: 10.1016/S0378-4290(98)00137-3 |
SSID | ssj0053566 |
Score | 2.1720874 |
Snippet | Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the... Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 186 |
SubjectTerms | Agriculture Biomedical and Life Sciences cadmium chlorophyll filling period gene overexpression genes genetically modified organisms grain yield Life Sciences Original Article photosynthesis Plant Anatomy/Development Plant Biochemistry Plant Genetics and Genomics Plant Pathology Plant Physiology rice silicon soil transportation |
Title | Effect of silicon on grain yield of rice under cadmium-stress |
URI | https://link.springer.com/article/10.1007/s11738-016-2177-8 https://www.proquest.com/docview/2000148444 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5o60EPolWxLiWCJ2UgycxkOUZpLYqeLNRTSCaTUmgTadpD_73vZbEoKgi5hMzM4a3f5G0A16g_3FOxZHYiBBOCo85JpViqvVQJh6NboGrk5xdnOBKPYzmu67iLJtu9CUmWlnpT7Ga5nBKvHIYwGk3rNrQlXd1RiEd20JhfyWUVoLS4y6TnWU0o86cjvjqjDcL8FhQtfc3gAPZrkGgEFVcPYUtnHdgLJou6UYbuwM5djrBufQR1_2EjT41iOkO-ZgY-E5r8YKwpPY2-UOcgg8rFFoaKkvl0NWdVkcgxjAb91_shq2ciMMU9d8ksoRFxmQmiujixeSQj11S2G7m-4zm-pbXJfceNbfR9CNZirW0a4xAj_XkSIXriJ9DK8kyfgiGRWDr1BV6OfZFyL1I6NRPtcI0vQvIumA1xQlU3DKe5FbNw0-qY6BlSkhjRM_S6cPO55b3qlvHX4quG4iHKNAUqokznq4JGY9KPTiFEF24bVoS1chW_n3j2r9XnsGuTKJS5txfQWi5W-hIRxjLuQTt4eHvq90rJ-gCeJMW5 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CupBtCrWZwRPykKS3U02xyqWqm1PLfQWks1GCm0iTXvov3emTSyKCkIuIZs9zGPnS-abGYBb9B-udCyZmwjBhODoc1JrlhqVauFxDAtUjdztee2BeBnKYVnHXVRs9yoluTyp18Vujs-JeOUxhNF4tG7CFmIBRTyugdusjl_J5SpB6XCfSaWcKpX50xZfg9EaYX5Lii5jTesA9kuQaDVXWj2EDZPVYa_5Ni0bZZg6bD_kCOsWR1D2H7by1CpGY9RrZuH1RpMfrAXR0-gJdQ6yqFxsaukomYzmE7YqEjmGQeup_9hm5UwEprnyZ8wRBhGXnSCqixOXRzLybe36kR94ygscY2weeH7sYuxDsBYb49IYhxjlz5MI0RM_gVqWZ-YULInCMmkg8OM4EClXkTapnRiPG7wRkjfAroQT6rJhOM2tGIfrVsckz5BIYiTPUDXg7vOV91W3jL8W31QSD9GmKVERZSafFzQak350CiEacF-pIiydq_h9x7N_rb6GnXa_2wk7z73Xc9h1ySyWPNwLqM2mc3OJaGMWXy2t6wPeq8cY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60iuhBtCrWZwRPymKS3c3jWB-lvooHC72FZLMphTYpbXrov3emSSyKCkIuIZs9zGPnS2bmG4BL9B_uqUgyOxaCCcHR56RSLNFeooTDMSxQN_Jrx2l3xVNP9so5p9Oq2r1KSRY9DcTSlOY34zi5WTa-WS6nIiyHIaTGY3YV1vA0tsisu3azOooll0Wy0uIuk55nVWnNn7b4GpiWaPNbgnQRd1o7sF0CRqNZaHgXVnRah61mf1KSZug6rN9mCPHme1ByERtZYkwHQ9RxauDVpykQxpxK1egJsQgZ1Do2MVQYjwazESsaRvah23p4v2uzcj4CU9xzc2YJjejLjBHhRbHNQxm6prLd0PUdz_EtrU3uO25kYxxE4BZpbdNIhwh1weMQkRQ_gFqapfoQDInC0okv8EPZFwn3QqUTM9YO13gjJG-AWQknUCV5OM2wGAZL2mOSZ0AFYyTPwGvA1ecr44I546_FF5XEA7RvSlqEqc5mUxqTST89hRANuK5UEZSONv19x6N_rT6Hjbf7VvDy2Hk-hk2brGJRknsCtXwy06cIPPLobGFcH8rIy1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+silicon+on+grain+yield+of+rice+under+cadmium-stress&rft.jtitle=Acta+physiologiae+plantarum&rft.au=Lin%2C+Hongmei&rft.au=Fang%2C+Changxun&rft.au=Li%2C+Yingzhe&rft.au=Lin%2C+Weiwei&rft.date=2016-07-01&rft.issn=0137-5881&rft.volume=38&rft.issue=7+p.186-186&rft.spage=186&rft.epage=186&rft_id=info:doi/10.1007%2Fs11738-016-2177-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0137-5881&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0137-5881&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0137-5881&client=summon |