Antineoplastic Drug‐Free Anticancer Strategy Enabled by Host‐Defense‐Peptides‐Mimicking Synthetic Polypeptides

An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug‐resistant and highly metastatic tumor cells. Detailed mechani...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 36; pp. e2001108 - n/a
Main Authors Shen, Wei, Zhang, Yu, Wan, Pengqi, An, Lin, Zhang, Peng, Xiao, Chunsheng, Chen, Xuesi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug‐resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane‐lytic mechanism. Moreover, a pH‐sensitive zwitterionic derivative of ACPP (DA‐ACPP) is prepared for in vivo application. DA‐ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA‐ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16‐F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs‐mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug‐free synthetic polymers for cancer therapy. An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is proposed. The synthetic anticancer polypeptides (ACPP) exhibit broad‐spectrum anticancer activity through an HDPs‐like membrane‐lytic mechanism. Modification of ACPP with 2,3‐dimethylmaleic anhydride (DA) generates a pH‐sensitive zwitterionic derivative, DA‐ACPP, with improved biocompatibility, which can selectively lyse tumors in vivo after being activated in acidic tumor microenvironment.
AbstractList An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug‐resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane‐lytic mechanism. Moreover, a pH‐sensitive zwitterionic derivative of ACPP (DA‐ACPP) is prepared for in vivo application. DA‐ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA‐ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16‐F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs‐mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug‐free synthetic polymers for cancer therapy. An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is proposed. The synthetic anticancer polypeptides (ACPP) exhibit broad‐spectrum anticancer activity through an HDPs‐like membrane‐lytic mechanism. Modification of ACPP with 2,3‐dimethylmaleic anhydride (DA) generates a pH‐sensitive zwitterionic derivative, DA‐ACPP, with improved biocompatibility, which can selectively lyse tumors in vivo after being activated in acidic tumor microenvironment.
Abstract An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug‐resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane‐lytic mechanism. Moreover, a pH‐sensitive zwitterionic derivative of ACPP (DA‐ACPP) is prepared for in vivo application. DA‐ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA‐ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16‐F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs‐mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug‐free synthetic polymers for cancer therapy.
An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug‐resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane‐lytic mechanism. Moreover, a pH‐sensitive zwitterionic derivative of ACPP (DA‐ACPP) is prepared for in vivo application. DA‐ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA‐ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16‐F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs‐mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug‐free synthetic polymers for cancer therapy.
Author Chen, Xuesi
Zhang, Peng
An, Lin
Zhang, Yu
Shen, Wei
Wan, Pengqi
Xiao, Chunsheng
Author_xml – sequence: 1
  givenname: Wei
  surname: Shen
  fullname: Shen, Wei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Pengqi
  surname: Wan
  fullname: Wan, Pengqi
  organization: Northeast Normal University
– sequence: 4
  givenname: Lin
  surname: An
  fullname: An, Lin
  organization: Jilin University
– sequence: 5
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Jilin Biomedical Polymers Engineering Laboratory
– sequence: 6
  givenname: Chunsheng
  surname: Xiao
  fullname: Xiao, Chunsheng
  email: xiaocs@ciac.ac.cn
  organization: Jilin Biomedical Polymers Engineering Laboratory
– sequence: 7
  givenname: Xuesi
  orcidid: 0000-0003-3542-9256
  surname: Chen
  fullname: Chen, Xuesi
  email: xschen@ciac.ac.cn
  organization: Jilin Biomedical Polymers Engineering Laboratory
BookMark eNqFkU1Lw0AQhhepYK1ePQe8eEmdbD73WPphhRYL1XPYbKZ1a7KJu6mSmz_B3-gvcUOLghdPMzDPO8w77znpqUohIVceDD0Aesvzkg8pUADPg-SE9L2Qem4ALOyRPjA_dFkUJGfk3JgdALAIoj55G6lGKqzqgptGCmei99uvj8-ZRnS6keBKoHbWjeYNbltnqnhWYO5krTOvTGPRCW5QGbTdCutG5mhsu5SlFC9SbZ11q5pn7FavqqKtj8gFOd3wwuDlsQ7I02z6OJ67i4e7-_Fo4Qo_iRMXfUSMaS4wjrl1FXLkMYSCRp0VGjNgQZKhz3jmU2CMxpDkQSJEwKmIssgfkJvD3lpXr3s0TVpKI7AouPW8NykNaBT6ceiHFr3-g-6qvVb2OksFEEFif2ip4YESujJG4yattSy5blMP0i6GtIsh_YnBCthB8C4LbP-h09FkOfrVfgOYE5Iu
CitedBy_id crossref_primary_10_1016_j_jconrel_2022_08_005
crossref_primary_10_1021_acsami_0c15781
crossref_primary_10_1021_acsami_1c14024
crossref_primary_10_1063_5_0197742
crossref_primary_10_1039_D1TB02037D
crossref_primary_10_3390_pharmaceutics15041307
crossref_primary_10_1016_j_ijpharm_2020_120184
crossref_primary_10_1002_ange_202213000
crossref_primary_10_1007_s40843_022_2409_4
crossref_primary_10_1002_adhm_202201560
crossref_primary_10_1002_adhm_202203386
crossref_primary_10_1002_advs_202105506
crossref_primary_10_1039_D0RA09408K
crossref_primary_10_1002_mabi_202200105
crossref_primary_10_1002_smll_202401845
crossref_primary_10_1039_D3SC05504C
crossref_primary_10_1002_adfm_202214369
crossref_primary_10_1021_acsbiomaterials_2c00181
crossref_primary_10_1021_acsami_1c16293
crossref_primary_10_1016_j_pmatsci_2022_101015
crossref_primary_10_1021_acs_biomac_4c00024
crossref_primary_10_1039_D2BM01892F
crossref_primary_10_1021_acsbiomaterials_1c01527
crossref_primary_10_1016_j_cossms_2023_101104
crossref_primary_10_1016_j_biomaterials_2021_120913
crossref_primary_10_1021_acsnano_2c01014
crossref_primary_10_1002_advs_202102741
crossref_primary_10_1002_cjoc_202200850
crossref_primary_10_1002_adma_202105063
crossref_primary_10_1021_jacs_3c01156
crossref_primary_10_1016_j_mtbio_2022_100524
crossref_primary_10_1016_j_cej_2023_142698
crossref_primary_10_1021_acsami_2c00373
crossref_primary_10_1016_j_addr_2023_114725
crossref_primary_10_1039_D2TB02749F
crossref_primary_10_1038_s41467_022_32053_1
crossref_primary_10_1016_j_bioactmat_2022_02_001
crossref_primary_10_1021_acsnano_3c03450
crossref_primary_10_1039_D1NA00857A
crossref_primary_10_1016_j_nantod_2021_101127
crossref_primary_10_1002_adma_202210986
crossref_primary_10_1016_j_ijpharm_2023_123398
crossref_primary_10_1039_D1TB00378J
crossref_primary_10_1021_jacs_2c00452
crossref_primary_10_1002_mabi_202100171
crossref_primary_10_1002_smll_202205165
crossref_primary_10_1039_D3BM01099F
crossref_primary_10_1002_adhm_202001974
crossref_primary_10_1016_j_colsurfb_2022_112456
crossref_primary_10_1038_s41565_022_01085_5
crossref_primary_10_1016_j_matdes_2022_111303
crossref_primary_10_1039_D3BM01779F
crossref_primary_10_20517_cs_2023_50
crossref_primary_10_1039_D1CC04053G
crossref_primary_10_1016_j_bioactmat_2021_02_038
crossref_primary_10_1016_j_pmatsci_2021_100919
crossref_primary_10_1002_pi_6342
crossref_primary_10_1021_acs_jmedchem_2c00287
crossref_primary_10_1002_smtd_202300204
crossref_primary_10_6023_A21120602
crossref_primary_10_1007_s12274_023_5839_z
crossref_primary_10_1016_j_bioactmat_2023_08_007
crossref_primary_10_1016_j_apsb_2021_07_014
crossref_primary_10_1016_j_biomaterials_2021_121024
crossref_primary_10_1016_j_actbio_2024_04_044
crossref_primary_10_1002_anie_202213000
crossref_primary_10_1016_j_biomaterials_2022_121488
crossref_primary_10_1002_adhm_202200268
Cites_doi 10.1002/adfm.201202850
10.1186/1471-2490-8-5
10.1080/15384101.2015.1093710
10.1021/acs.accounts.8b00195
10.1002/adhm.201400418
10.1016/j.jconrel.2004.11.006
10.1016/j.bbamem.2016.09.021
10.1038/415389a
10.1038/s41467-018-03325-6
10.1126/science.1203543
10.1038/s41573-018-0005-0
10.1021/ja025678o
10.1021/ja210569f
10.1016/j.coph.2006.04.006
10.1016/j.toxlet.2015.09.006
10.1002/adma.200901407
10.1038/nrmicro2095
10.1038/s41551-017-0057
10.1073/pnas.1710408114
10.1038/nrc3599
10.1038/nrc1958
10.1016/j.chemphyslip.2011.09.004
10.1038/nrd1088
10.1021/acsami.9b13492
10.1038/s41586-019-1167-6
10.1038/s41586-019-1730-1
10.1039/C6MD00376A
10.3322/caac.21235
10.1016/j.mce.2005.12.056
10.1158/0008-5472.CAN-04-4402
10.1002/anie.201706071
10.1002/adma.201906799
10.1021/cr990402t
10.1021/acs.nanolett.9b05265
10.1007/BF00685612
10.1002/med.20252
10.1038/nnano.2016.72
10.1038/s41551-017-0130-9
10.1016/j.cocis.2009.02.004
10.1007/978-981-13-3588-4_9
10.1021/ja200079a
10.1038/nbt1267
10.1016/S0022-1759(00)00233-7
10.1038/nrurol.2016.273
10.1016/j.biomaterials.2019.01.036
10.1002/adhm.201800354
10.1002/adma.201202296
10.1002/anie.200502113
10.1021/jacs.7b11468
10.1073/pnas.0908401107
10.1073/pnas.88.9.3792
10.1038/nrmicro1098
10.1016/0300-483X(95)03156-A
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202001108
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202001108
ADMA202001108
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51773196; 51573184; 51520105004; 51833010
– fundername: National Key Research and Development Program of China
  funderid: 2016YFC1100701
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2017266
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3878-e3eee72dce77a1105aea705c2696482790948be39ab320992708d48cc4a2c6b63
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 05:57:07 EDT 2024
Thu Oct 10 19:26:35 EDT 2024
Thu Sep 26 16:08:47 EDT 2024
Sat Aug 24 01:05:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3878-e3eee72dce77a1105aea705c2696482790948be39ab320992708d48cc4a2c6b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3542-9256
PQID 2440608093
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2426537535
proquest_journals_2440608093
crossref_primary_10_1002_adma_202001108
wiley_primary_10_1002_adma_202001108_ADMA202001108
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2018 2019 2013 2018; 3 140 199 23 9
1991 2016 2007; 88 1858 260‐262
2006 2003 2006 2019 2020; 45 2 6 18 20
1993 2005 2008 2015; 32 102 8 239
2019; 569
2005 2010 2017; 65 107 1
2011; 133
2011; 331
2014; 64
2010; 22
2009; 14
2016 2006; 7 6
2013 2019 2017; 13 575 14
2002 2006; 415 24
2017 2017; 114 56
2015 2001; 14 61
2002; 124
2019
1995; 104
2013 2019; 33 11
2018; 51
2000; 100
2000; 243
2017 2020 2016; 1 32 11
2012; 24
2005 2009 2018 2012; 3 7 7 134
2011; 164
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_27_1
e_1_2_4_27_3
e_1_2_4_27_2
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_3_5
e_1_2_4_7_1
e_1_2_4_3_4
e_1_2_4_5_2
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_9_3
e_1_2_4_9_2
e_1_2_4_10_1
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_12_4
e_1_2_4_16_1
e_1_2_4_12_5
e_1_2_4_18_1
e_1_2_4_20_1
Fabris C. (e_1_2_4_14_2) 2001; 61
e_1_2_4_22_2
e_1_2_4_22_1
e_1_2_4_22_4
e_1_2_4_22_3
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_2_3
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_6_4
e_1_2_4_6_3
e_1_2_4_8_1
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_15_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 33 11
  start-page: 190
  year: 2013 2019
  publication-title: Med. Res. Rev. ACS Appl. Mater. Interfaces
– volume: 104
  start-page: 129
  year: 1995
  publication-title: Toxicology
– volume: 45 2 6 18 20
  start-page: 1198 347 688 273 2514
  year: 2006 2003 2006 2019 2020
  publication-title: Angew. Chem., Int. Ed. Nat. Rev. Drug Discovery Nat. Rev. Cancer Nat. Rev. Drug Discovery Nano Lett.
– volume: 13 575 14
  start-page: 714 299 230
  year: 2013 2019 2017
  publication-title: Nat. Rev. Cancer Nature Nat. Rev. Urol.
– volume: 7 6
  start-page: 2232 468
  year: 2016 2006
  publication-title: MedChemComm Curr. Opin. Pharmacol.
– volume: 114 56
  year: 2017 2017
  publication-title: Proc. Natl. Acad. Sci. USA Angew. Chem., Int. Ed.
– volume: 243
  start-page: 167
  year: 2000
  publication-title: J. Immunol. Methods
– start-page: 131
  year: 2019
– volume: 24
  start-page: 5476
  year: 2012
  publication-title: Adv. Mater.
– volume: 32 102 8 239
  start-page: 109 583 5 90
  year: 1993 2005 2008 2015
  publication-title: Cancer Chemother. Pharmacol. J. Controlled Release BMC Urol.. Toxicol. Lett.
– volume: 331
  start-page: 1559
  year: 2011
  publication-title: Science
– volume: 88 1858 260‐262
  start-page: 3792 3195 183
  year: 1991 2016 2007
  publication-title: Proc. Natl. Acad. Sci. USA Biochim. Biophys. Acta, Biomembr. Mol. Cell. Endocrinol.
– volume: 65 107 1
  start-page: 8079 3966 745
  year: 2005 2010 2017
  publication-title: Cancer Res. Proc. Natl. Acad. Sci. USA Nat. Biomed. Eng.
– volume: 1 32 11
  start-page: 0057 724
  year: 2017 2020 2016
  publication-title: Nat. Biomed. Eng. Adv. Mater. Nat. Nanotechnol.
– volume: 164
  start-page: 766
  year: 2011
  publication-title: Chem. Phys. Lipids
– volume: 100
  start-page: 1973
  year: 2000
  publication-title: Chem. Rev.
– volume: 415 24
  start-page: 389 1551
  year: 2002 2006
  publication-title: Nature Nat. Biotechnol.
– volume: 14
  start-page: 349
  year: 2009
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 569
  start-page: 236
  year: 2019
  publication-title: Nature
– volume: 51
  start-page: 2848
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 124
  start-page: 6950
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 3 7 7 134
  start-page: 238 245 6210
  year: 2005 2009 2018 2012
  publication-title: Nat. Rev. Microbiol. Nat. Rev. Microbiol. Adv. Healthcare Mater. J. Am. Chem. Soc.
– volume: 14 61
  start-page: 3506 7495
  year: 2015 2001
  publication-title: Cell Cycle Cancer Res.
– volume: 64
  start-page: 252
  year: 2014
  publication-title: Ca‐Cancer J. Clin.
– volume: 3 140 199 23 9
  start-page: 1969 4244 76 3682 917
  year: 2014 2018 2019 2013 2018
  publication-title: Adv. Healthcare Mater. J. Am. Chem. Soc. Biomaterials Adv. Funct. Mater. Nat. Commun.
– volume: 133
  start-page: 6720
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 920
  year: 2010
  publication-title: Adv. Mater.
– ident: e_1_2_4_12_4
  doi: 10.1002/adfm.201202850
– ident: e_1_2_4_22_3
  doi: 10.1186/1471-2490-8-5
– ident: e_1_2_4_14_1
  doi: 10.1080/15384101.2015.1093710
– ident: e_1_2_4_24_1
  doi: 10.1021/acs.accounts.8b00195
– ident: e_1_2_4_12_1
  doi: 10.1002/adhm.201400418
– ident: e_1_2_4_22_2
  doi: 10.1016/j.jconrel.2004.11.006
– ident: e_1_2_4_9_2
  doi: 10.1016/j.bbamem.2016.09.021
– ident: e_1_2_4_5_1
  doi: 10.1038/415389a
– ident: e_1_2_4_12_5
  doi: 10.1038/s41467-018-03325-6
– ident: e_1_2_4_26_1
  doi: 10.1126/science.1203543
– ident: e_1_2_4_3_4
  doi: 10.1038/s41573-018-0005-0
– ident: e_1_2_4_16_1
  doi: 10.1021/ja025678o
– ident: e_1_2_4_6_4
  doi: 10.1021/ja210569f
– ident: e_1_2_4_11_2
  doi: 10.1016/j.coph.2006.04.006
– ident: e_1_2_4_22_4
  doi: 10.1016/j.toxlet.2015.09.006
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.200901407
– ident: e_1_2_4_6_2
  doi: 10.1038/nrmicro2095
– ident: e_1_2_4_27_1
  doi: 10.1038/s41551-017-0057
– ident: e_1_2_4_13_1
  doi: 10.1073/pnas.1710408114
– ident: e_1_2_4_2_1
  doi: 10.1038/nrc3599
– ident: e_1_2_4_3_3
  doi: 10.1038/nrc1958
– ident: e_1_2_4_8_1
  doi: 10.1016/j.chemphyslip.2011.09.004
– ident: e_1_2_4_3_2
  doi: 10.1038/nrd1088
– ident: e_1_2_4_7_2
  doi: 10.1021/acsami.9b13492
– ident: e_1_2_4_21_1
  doi: 10.1038/s41586-019-1167-6
– ident: e_1_2_4_2_2
  doi: 10.1038/s41586-019-1730-1
– ident: e_1_2_4_11_1
  doi: 10.1039/C6MD00376A
– ident: e_1_2_4_1_1
  doi: 10.3322/caac.21235
– ident: e_1_2_4_9_3
  doi: 10.1016/j.mce.2005.12.056
– ident: e_1_2_4_4_1
  doi: 10.1158/0008-5472.CAN-04-4402
– ident: e_1_2_4_13_2
  doi: 10.1002/anie.201706071
– ident: e_1_2_4_27_2
  doi: 10.1002/adma.201906799
– ident: e_1_2_4_15_1
  doi: 10.1021/cr990402t
– ident: e_1_2_4_3_5
  doi: 10.1021/acs.nanolett.9b05265
– ident: e_1_2_4_22_1
  doi: 10.1007/BF00685612
– ident: e_1_2_4_7_1
  doi: 10.1002/med.20252
– ident: e_1_2_4_27_3
  doi: 10.1038/nnano.2016.72
– ident: e_1_2_4_4_3
  doi: 10.1038/s41551-017-0130-9
– ident: e_1_2_4_18_1
  doi: 10.1016/j.cocis.2009.02.004
– ident: e_1_2_4_10_1
  doi: 10.1007/978-981-13-3588-4_9
– ident: e_1_2_4_19_1
  doi: 10.1021/ja200079a
– ident: e_1_2_4_5_2
  doi: 10.1038/nbt1267
– volume: 61
  start-page: 7495
  year: 2001
  ident: e_1_2_4_14_2
  publication-title: Cancer Res.
  contributor:
    fullname: Fabris C.
– ident: e_1_2_4_20_1
  doi: 10.1016/S0022-1759(00)00233-7
– ident: e_1_2_4_2_3
  doi: 10.1038/nrurol.2016.273
– ident: e_1_2_4_12_3
  doi: 10.1016/j.biomaterials.2019.01.036
– ident: e_1_2_4_6_3
  doi: 10.1002/adhm.201800354
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201202296
– ident: e_1_2_4_3_1
  doi: 10.1002/anie.200502113
– ident: e_1_2_4_12_2
  doi: 10.1021/jacs.7b11468
– ident: e_1_2_4_4_2
  doi: 10.1073/pnas.0908401107
– ident: e_1_2_4_9_1
  doi: 10.1073/pnas.88.9.3792
– ident: e_1_2_4_6_1
  doi: 10.1038/nrmicro1098
– ident: e_1_2_4_17_1
  doi: 10.1016/0300-483X(95)03156-A
SSID ssj0009606
Score 2.6129313
Snippet An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide exhibits...
Abstract An antineoplastic drug‐free anticancer strategy enabled by host defense peptides (HDPs)‐mimicking synthetic polypeptides is reported. The polypeptide...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage e2001108
SubjectTerms anticancer
Anticancer properties
Cancer
Materials science
membrane‐lytic strategies
Metastasis
Necrosis
Peptides
pH‐sensitivity
polymer therapeutics
Polypeptides
Tumors
Title Antineoplastic Drug‐Free Anticancer Strategy Enabled by Host‐Defense‐Peptides‐Mimicking Synthetic Polypeptides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001108
https://www.proquest.com/docview/2440608093
https://search.proquest.com/docview/2426537535
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xWqVCIKntWuyu9kei20pQqWoBW9Lkp2VorbSh1BP_gR_o7_EmWyfXgS9Zcljk8nMzkx25gtjZ75KUUlk0pMZpeSgjvbKYag9q2KLDoXSyt1a0ryJGu3g-iF8WMjiz_EhZgduJBnue00Crs2gNAcN1anDDRIO9YyyfS-lopiu6u0cP4rMcwe2J3EKURBPURt9UVruvqyV5qbmosHqNE59k-npXPNAk6eL0dBc2PcfMI7_WcwW25iYo7yS8882W4HuDltfACncZW8VukyCAs01YTrzan_0-PXxWe8DcKqyxDd9PoG5HfOay8ZKuRnzRm8wxKZVyNBZBiy1KIYmhQEWm52XjqVzen437qIVSkO3es_oFudN9li7Xru_aniT2xo8K2N0RUECgBKpBaU0riLUoJUfWhER5YUqoyMZG5BlbSTl6wrlx2kQWxtoYSMTyX222u114YDxQGfKxoScgw6cEYGOkZsyY7LQBABSFtj5dLeS1xyUI8nhl0VClExmlCyw4nQzk4lwDhK0aPwILeUyDnQ6q0axon8lGgk6ojYiCiX6cmGBCbdzv7wpqVSbldnT4V86HbE1KucRbEW2OuyP4BhNnqE5cWz9Dd3I_CQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619AAcSqFUbEuLkSpxCkR2EnuPK5bVtmURoiBxi2xnglBht9qfSsuJR-gz9kk642x2oRckekvin9jjmcyMM_4G4HOsC1ISpYpUyUdySEdHzTS1kdfGk0OhrQ5ZS3onWfci-XqZ1tGEfBamwoeYb7ixZITvNQs4b0gfLFBDbRGAg2SAPTMv4RXJvOLsDe2zBYIUG-gBbk_RILLE1LiNsTx43P6xXloYmw9N1qBzOmvg6tFWoSY_9idjt-_v_gFy_K_pvIHXM4tUtCoWWocX2N-A1Qc4hW_hV4vzSXCsuWVYZ9EeTq7-3P_uDBEFF3lmnaGYId1OxVE4kFUINxXdwWhMVdtYkr-MdHXKYTQFjuiyd3177XmrXnyf9skQ5a5PBzfkGVdVNuGic3R-2I1mCRsirwx5o6gQUcvCo9aWZpFatDpOvcyY9FI3yZc0DlXTOsVHdqWOTZEY7xMrfeYy9Q6W-oM-boFIbKm9YfAc8uGcTKwhhiqdK1OXICrVgL16ufKfFS5HXiEwy5wpmc8p2YDtejXzmXyOcjJq4oyM5SZ1tDsvJsni3yWWCDrhOjJLFblzaQNkWLon3pS32r3W_O79cxrtwHL3vHecH385-fYBVvh5FdC2DUvj4QQ_kgU0dp8Cj_8FjDUASw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB20KVAkh64p4jZtWaBAT3IEUhLpoxHHcBcHRtsAvgkkNQqMJrbhpYB7yifkG_slmaG8pZcA6U0SF5HDGc0binwE-BjrgpxEqSJV8pYc8tFRI01t5LXxFFBoq8OpJd3TrHOWfOmn_a1d_BU_xHrCjS0jfK_ZwMdFebQhDbVF4A2SgfXMPIRHSUbwl2HR9w2BFOPzwLanqA1ZYla0jbE8ul3-tlvaYM1txBpcTvsp2FVjq5Umv-rzmav7P__wOP5Pb57BkyUeFc1KgZ7DAxy-gL0tlsKX8LvJp0nwSnPLpM6iNZmf_726bk8QBSd5VpyJWPLcLsRJ2I5VCLcQndF0RllbWFK0jHTV40U0BU7psju4HHieqBc_FkOCoVx1b3RBcXGVZR_O2ic_jzvR8riGyCtDsSgqRNSy8Ki1pV6kFq2OUy8zlrzUDYokjUPVsE7xhl2pY1MkxvvESp-5TL2CneFoiAcgEltqb5g6hyI4JxNrSJ1K58rUJYhK1eDTarTyccXKkVf8yzJnSeZrSdbgcDWY-dI6pzlBmjgjqNygij6sk8mu-GeJJYHOOY_MUkXBXFoDGUbujjflzVa3ub57fZ9C7-Fxr9XOv30-_foGdvlxtZrtEHZmkzm-Jfgzc--Cht8Akoj-6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antineoplastic+Drug-Free+Anticancer+Strategy+Enabled+by+Host-Defense-Peptides-Mimicking+Synthetic+Polypeptides&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shen%2C+Wei&rft.au=Zhang%2C+Yu&rft.au=Wan%2C+Pengqi&rft.au=An%2C+Lin&rft.date=2020-09-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=36&rft.spage=e2001108&rft.epage=e2001108&rft_id=info:doi/10.1002%2Fadma.202001108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon