Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes

Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 142; no. 694; pp. 387 - 400
Main Authors Sotiropoulou, Georgia, Sedlar, Joseph, Forbes, Richard, Tjernström, Michael
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed.
AbstractList Mixed-phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed-phase clouds and increased vertical resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary-layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea-ice surface may also need to be addressed.
Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed.
Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study ( ASCOS ) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts ( ECMWF ) Integrated Forecast System ( IFS ). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed.
Author Forbes, Richard
Tjernström, Michael
Sedlar, Joseph
Sotiropoulou, Georgia
Author_xml – sequence: 1
  givenname: Georgia
  surname: Sotiropoulou
  fullname: Sotiropoulou, Georgia
  organization: Bolin Centre for Climate Research, Stockholm University
– sequence: 2
  givenname: Joseph
  surname: Sedlar
  fullname: Sedlar, Joseph
  organization: Bolin Centre for Climate Research, Stockholm University
– sequence: 3
  givenname: Richard
  surname: Forbes
  fullname: Forbes, Richard
  organization: European Centre for Medium‐Range Weather Forecasts
– sequence: 4
  givenname: Michael
  surname: Tjernström
  fullname: Tjernström, Michael
  organization: Bolin Centre for Climate Research, Stockholm University
BookMark eNp10E1Lw0AQBuBFKlir-BcWPHiQ1MnmYzfeSmn9oCKiord1s5nQhCTb7iZK_fWmxqunOczzzsB7TEaNaZCQMx-mPgC72pZTFkfigIz9kHNPcHgfkTFAEHkJQHJEjp0rASDijI_Jx3NX12jpzOq20FRXpsscLRrarpEu5g9vS5obi1q5ltYmw-qaqobip6o61RamoSYfQnSjrKqxtcX3sHB6jTW6E3KYq8rh6d-ckNfl4mV-660eb-7ms5WnA8GFlyiR6jDN4gjTiAVp7HOAXKAKkEUhhDrlecoVxBHEgmHGRcy0n_Qwy5KIYzAh58PdjTXbDl0rS9PZpn8pfR6zIAx5kPTqYlDaGucs5nJji1rZnfRB7uuT21Lu6-vl5SC_igp3_zH5dP-rfwAnnnGC
Cites_doi 10.1002/qj.828
10.1175/MWR-D-13-00325.1
10.1175/1520-0442(2004)0172.0.CO;2
10.1175/JCLI-D-11-00186.1
10.1175/2010JAMC2467.1
10.1175/1520-0493(1993)121,3040:ROCILS.2.0.CO;2
10.5194/acp-14-2605-2014
10.1029/2012GL051000
10.5194/acp-12-6863-2012
10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
10.5194/acp-11-165-2011
10.1029/2000JD000055
10.1175/JAMC-D-14-0065.1
10.1007/s10584-011-0101-1
10.1002/qj.713
10.1029/2007GL032043
10.1002/qj.49710444110
10.1175/BAMS-85-9-1305
10.1029/2008JD010440
10.1002/grl.50768
10.1175/2008JCLI2521
10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2
10.5194/acp-14-3461-2014
10.1175/JAM2297.1
10.5194/acp-13-7441-2013
10.5194/acp-14-2823-2014
10.1029/2000JC000705
10.1175/JAS4035.1
10.5194/acp-12-3419-2012
10.1175/2007JAS2479.1
10.5194/acp-13-9379-2013
10.1038/NGEO1332
10.5194/acp-14-12573-2014
10.1029/2004EO030001
10.1175/BAMS-88-4-541
10.5194/acp-14-427-2014
10.1002/qj.49711046603
10.1007/s10546-004-7954-z
10.1007/s00382-010-0937-5
10.1175/2008JAMC1845.1
10.1002/grl.50190-2013
10.1175/1520-0469(2002)059<0769:AEOCEA>2.0.CO;2
10.1016/S0169-8095(98)00098-2
ContentType Journal Article
Copyright 2015 Royal Meteorological Society
2016 Royal Meteorological Society
Copyright_xml – notice: 2015 Royal Meteorological Society
– notice: 2016 Royal Meteorological Society
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/qj.2658
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 400
ExternalDocumentID 3941748411
10_1002_qj_2658
QJ2658
Genre article
GrantInformation_xml – fundername: DAMOCLES
– fundername: EU 6th Framework Program
– fundername: Knut and Alice Wallenberg Foundation
– fundername: Bert Bolin Center for Climate Research
– fundername: Office of Naval Research
– fundername: Swedish National Research Council
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMNL
AAYXX
ACRPL
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3878-9a8bc4bd65eb523b61700f8ea3e25404cb7fb7a0650682ed7862c193b6dd957e3
IEDL.DBID DR2
ISSN 0035-9009
IngestDate Thu Oct 10 16:40:09 EDT 2024
Fri Dec 06 01:56:24 EST 2024
Sat Aug 24 01:04:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 694
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3878-9a8bc4bd65eb523b61700f8ea3e25404cb7fb7a0650682ed7862c193b6dd957e3
PQID 1762344739
PQPubID 1016432
PageCount 14
ParticipantIDs proquest_journals_1762344739
crossref_primary_10_1002_qj_2658
wiley_primary_10_1002_qj_2658_QJ2658
PublicationCentury 2000
PublicationDate January 2016 Part A
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016 Part A
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2016
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2011; 137
2009; 22
2004; 85
2002; 59
2013; 40
2005; 117
2011; 11
2012; 39
2011; 37
2012; 12
2007; 34
2009; 114
2005; 44
1993; 121
2001; 106
1984; 110
2012; 110
2013; 13
2002; 83
2004; 17
2011; 50
2008; 47
2002; 107
2014; 14
2008; 65
1999; 51
2014
1978; 104
1977; 34
2007; 64
2012; 25
2007; 88
2014; 142
2012; 5
2014; 53
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
Jeffries MO (e_1_2_6_10_1) 2014
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 5
  start-page: 11
  year: 2012
  end-page: 17
  article-title: Resilience of persistent Arctic mixed‐phase clouds
  publication-title: Nat. Geosci.
– volume: 12
  start-page: 3419
  year: 2012
  end-page: 3435
  article-title: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies
  publication-title: Atmos. Chem. Phys.
– volume: 13
  start-page: 7441
  year: 2013
  end-page: 7450
  article-title: The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012
  publication-title: Atmos. Chem. Phys.
– volume: 51
  start-page: 45
  year: 1999
  end-page: 75
  article-title: Cloud resolving simulations of Arctic stratus. Part II: Transition‐season clouds
  publication-title: J. Atmos. Res.
– volume: 85
  start-page: 25
  year: 2004
  end-page: 36
  article-title: Can marine micro‐organisms influence melting of the Arctic pack ice?
  publication-title: EOS
– volume: 14
  start-page: 3461
  year: 2014
  end-page: 3478
  article-title: Characteristic nature of vertical motions observed in Arctic mixed‐phase stratocumulus
  publication-title: Atmos. Chem. Phys.
– volume: 34
  start-page: 1149
  year: 1977
  end-page: 1152
  article-title: The influence of pollution on the shortwave albedo of clouds
  publication-title: J. Atmos. Sci.
– volume: 107
  start-page: 8045
  year: 2002
  article-title: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 165
  year: 2009
  end-page: 176
  article-title: Arctic sea ice retreat in 2007 follows thinning trend
  publication-title: J. Clim.
– volume: 11
  start-page: 165
  year: 2011
  end-page: 173
  article-title: An Arctic CCN‐limited cloud‐aerosol regime
  publication-title: Atmos. Chem. Phys.
– volume: 110
  start-page: 783
  year: 1984
  end-page: 820
  article-title: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 83
  start-page: 255
  year: 2002
  end-page: 276
  article-title: Surface heat budget of the Arctic Ocean
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 117
  start-page: 337
  year: 2005
  end-page: 381
  article-title: Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional‐scale models using data from the SHEBA project
  publication-title: Boundary‐Layer Meteorol.
– volume: 65
  start-page: 1304
  year: 2008
  end-page: 1322
  article-title: Vertical motions in Arctic mixed‐phase stratiform clouds
  publication-title: J. Atmos. Sci.
– volume: 106
  start-page: 32019
  year: 2001
  end-page: 32030
  article-title: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during SHEBA
  publication-title: J. Geophys. Res.
– volume: 88
  start-page: 541
  year: 2007
  end-page: 550
  article-title: Can ice‐nucleating aerosols affect Arctic seasonal climate?
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 13
  start-page: 9379
  year: 2013
  end-page: 9400
  article-title: Cloud and boundary layer interactions over the Arctic sea‐ice in late summer
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 12573
  year: 2014
  end-page: 12592
  article-title: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface
  publication-title: Atmos. Chem. Phys.
– year: 2014
– volume: 44
  start-page: 1544
  year: 2005
  end-page: 1562
  article-title: Arctic cloud microphysics retrievals from surface‐based remote sensors at SHEBA
  publication-title: J. Appl. Meteorol.
– volume: 64
  start-page: 3372
  year: 2007
  end-page: 3375
  article-title: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed‐phase clouds
  publication-title: J. Atmos. Sci.
– volume: 40
  start-page: 720
  year: 2013
  end-page: 726
  article-title: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 626
  year: 2011
  end-page: 644
  article-title: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties
  publication-title: J. Appl. Meteorol. Clim.
– volume: 37
  start-page: 1643
  year: 2011
  end-page: 1660
  article-title: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing
  publication-title: Clim. Dyn.
– volume: 85
  start-page: 1305
  year: 2004
  end-page: 1321
  article-title: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment (AOE‐2001)
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 14
  start-page: 2605
  year: 2014
  end-page: 2624
  article-title: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data
  publication-title: Atmos. Chem. Phys.
– volume: 14
  start-page: 427
  year: 2014
  end-page: 445
  article-title: Near‐surface meteorology during the Arctic Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models
  publication-title: Atmos. Chem. Phys.
– volume: 114
  start-page: D08101
  year: 2009
  article-title: A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model
  publication-title: J. Geophys. Res.
– volume: 121
  start-page: 3040
  year: 1993
  end-page: 3061
  article-title: Representation of clouds in large‐scale models
  publication-title: Mon. Weather Rev.
– volume: 14
  start-page: 2823
  year: 2014
  end-page: 2869
  article-title: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design
  publication-title: Atmos. Chem. Phys.
– volume: 142
  start-page: 3425
  year: 2014
  end-page: 3445
  article-title: On the representation of high‐latitude boundary layer mixed‐phase cloud in the ECMWF global model
  publication-title: Mon. Weather Rev.
– volume: 59
  start-page: 769
  year: 2002
  end-page: 778
  article-title: Aerosol effects on cloud emissivity and surface longwave heating in the Arctic
  publication-title: J. Atmos. Sci.
– volume: 53
  start-page: 2775
  year: 2014
  end-page: 2789
  article-title: Implications of limited liquid water path on static mixing within Arctic low‐level clouds
  publication-title: J. Appl. Meteorol. Clim.
– volume: 17
  start-page: 616
  year: 2004
  end-page: 628
  article-title: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle
  publication-title: J. Clim.
– volume: 137
  start-page: 43
  year: 2011
  end-page: 57
  article-title: Unified treatment of dry convective and stratocumulus‐topped boundary layers in the ECMWF model
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 39
  start-page: L06801
  year: 2012
  article-title: Evidence linking Arctic amplification to extreme weather in mid‐latitudes
  publication-title: Geophys. Res. Lett.
– volume: 40
  start-page: 4374
  year: 2013
  end-page: 4379
  article-title: Consequences of poor representation of Arctic sea‐ice albedo and cloud‐radiation interactions in the CMIP5 model ensemble
  publication-title: Geophys. Res. Lett.
– volume: 25
  start-page: 2374
  year: 2012
  end-page: 2393
  article-title: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic
  publication-title: J. Clim.
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 12
  start-page: 6863
  year: 2012
  end-page: 6889
  article-title: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS)
  publication-title: Atmos. Chem. Phys.
– volume: 34
  start-page: L24501
  year: 2007
  article-title: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea‐ice loss
  publication-title: Geophys. Res. Lett.
– volume: 110
  start-page: 1005
  year: 2012
  end-page: 1027
  article-title: The Arctic's rapidly shrinking sea ice cover: A research synthesis
  publication-title: Clim. Change
– volume: 104
  start-page: 677
  year: 1978
  end-page: 690
  article-title: A parameterization scheme for non‐convective condensation including prediction of cloud water content
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 47
  start-page: 2405
  year: 2008
  end-page: 2422
  article-title: How well do regional climate models reproduce radiation and clouds in the Arctic?
  publication-title: J. Appl. Meteorol. Clim.
– ident: e_1_2_6_4_1
  doi: 10.1002/qj.828
– ident: e_1_2_6_6_1
  doi: 10.1175/MWR-D-13-00325.1
– ident: e_1_2_6_27_1
  doi: 10.1175/1520-0442(2004)0172.0.CO;2
– ident: e_1_2_6_26_1
  doi: 10.1175/JCLI-D-11-00186.1
– ident: e_1_2_6_30_1
  doi: 10.1175/2010JAMC2467.1
– ident: e_1_2_6_35_1
  doi: 10.1175/1520-0493(1993)121,3040:ROCILS.2.0.CO;2
– ident: e_1_2_6_43_1
  doi: 10.5194/acp-14-2605-2014
– ident: e_1_2_6_7_1
  doi: 10.1029/2012GL051000
– ident: e_1_2_6_39_1
  doi: 10.5194/acp-12-6863-2012
– ident: e_1_2_6_41_1
  doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
– ident: e_1_2_6_17_1
  doi: 10.5194/acp-11-165-2011
– ident: e_1_2_6_44_1
  doi: 10.1029/2000JD000055
– ident: e_1_2_6_23_1
  doi: 10.1175/JAMC-D-14-0065.1
– ident: e_1_2_6_33_1
  doi: 10.1007/s10584-011-0101-1
– ident: e_1_2_6_12_1
  doi: 10.1002/qj.713
– ident: e_1_2_6_16_1
  doi: 10.1029/2007GL032043
– ident: e_1_2_6_34_1
  doi: 10.1002/qj.49710444110
– ident: e_1_2_6_36_1
  doi: 10.1175/BAMS-85-9-1305
– ident: e_1_2_6_20_1
  doi: 10.1029/2008JD010440
– ident: e_1_2_6_11_1
  doi: 10.1002/grl.50768
– ident: e_1_2_6_15_1
  doi: 10.1175/2008JCLI2521
– ident: e_1_2_6_42_1
  doi: 10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2
– ident: e_1_2_6_24_1
  doi: 10.5194/acp-14-3461-2014
– ident: e_1_2_6_28_1
  doi: 10.1175/JAM2297.1
– ident: e_1_2_6_5_1
  doi: 10.5194/acp-13-7441-2013
– volume-title: Arctic Report Card 2014
  year: 2014
  ident: e_1_2_6_10_1
  contributor:
    fullname: Jeffries MO
– ident: e_1_2_6_40_1
  doi: 10.5194/acp-14-2823-2014
– ident: e_1_2_6_21_1
  doi: 10.1029/2000JC000705
– ident: e_1_2_6_13_1
  doi: 10.1175/JAS4035.1
– ident: e_1_2_6_2_1
  doi: 10.5194/acp-12-3419-2012
– ident: e_1_2_6_29_1
  doi: 10.1175/2007JAS2479.1
– ident: e_1_2_6_31_1
  doi: 10.5194/acp-13-9379-2013
– ident: e_1_2_6_18_1
  doi: 10.1038/NGEO1332
– ident: e_1_2_6_32_1
  doi: 10.5194/acp-14-12573-2014
– ident: e_1_2_6_14_1
  doi: 10.1029/2004EO030001
– ident: e_1_2_6_22_1
  doi: 10.1175/BAMS-88-4-541
– ident: e_1_2_6_3_1
  doi: 10.5194/acp-14-427-2014
– ident: e_1_2_6_19_1
  doi: 10.1002/qj.49711046603
– ident: e_1_2_6_37_1
  doi: 10.1007/s10546-004-7954-z
– ident: e_1_2_6_25_1
  doi: 10.1007/s00382-010-0937-5
– ident: e_1_2_6_38_1
  doi: 10.1175/2008JAMC1845.1
– ident: e_1_2_6_45_1
  doi: 10.1002/grl.50190-2013
– ident: e_1_2_6_8_1
  doi: 10.1175/1520-0469(2002)059<0769:AEOCEA>2.0.CO;2
– ident: e_1_2_6_9_1
  doi: 10.1016/S0169-8095(98)00098-2
SSID ssj0005727
Score 2.4058006
Snippet Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics....
Mixed-phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 387
SubjectTerms Arctic
cloud scheme
Clouds
cloud–surface interactions
evaluation
IFS model
Meteorology
mixed‐phase clouds
Title Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.2658
https://www.proquest.com/docview/1762344739
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7OTF3-J0Sg7DW7euTZrWm8yNMZigOBxeatKksLm1bu0u_vW-NJ2dgiCe2tK-EvLz8x7J9yHUZIQ6sS2ZBbgQWYS6zOKECot3CAPAjj1zQm507w3GZDihk61UX0Yf4ivgpkdGMV_rAc5F1q5EQ5ezlgPLJ8y-HZfpzXx3j5VwFGVlslaXWgFghDkuqy3bpd33daiCy21ELdaY_j562ZTObC15a61z0Yo-fgg3_qv4B2ivJE98a7rKIdpRyRGqjwCa01URW8fXuDufAsEWT8foVUfI1Aos9DkqHM3TtczwNMHAjLjXHT33MRCviniW4yKhzg3mCa7kw3EaGyOs9cUXOnWXOfOJwaNWC5WdoHG_99QdWGVCBityffA2A-6LiAjpUSXAgRVazN2OfcVdBX6mTSLBYsG4pj7Pd5Rk4C5FQIjCkzKgTLmnqJakiTpD2GE2kTGTgsMN9-G16jAB3hsRNJZ2UEd40zzhu9HdCI3CshMuZ6GuujpqbJotLAdeFnZgctcihi78oVnU_2_m4cNQX87_9tkF2gVUKoMvDVTLV2t1CTiSi6ui530CUdvbqQ
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbxYNe_G1EUXsg3gZja9fhzSAEFUg0EEk8zHbtEhCGMLj41_u6DlETE-NpW7a3bGvf-nkvfd8iVGSEOpEtmQW4EFqEuszihAqLVwgDwI48UyHX7njNHrnr0342q1LXwhh9iM-Em_aM9H-tHVwnpMsr1dDpsOTA-LmONsDZK3o6183jSjqKsmy5VpdaVQAJUzCrTcuZ4feRaIWXXyE1HWUaO-h5-XxmcslraTEXpfD9h3Tj_15gF21n8ImvTW_ZQ2sq3kf5NnDzZJam1_Elro0GALHp0QF60UkyNQMLXUqFw9FkIRM8iDFgI67X2k8NDNCrQp7McbqmzhXmMV4piONJZIywlhgf69W7TNknhqBajVVyiHqNerfWtLI1GazQ9SHgrHJfhERIjyoBMazQeu525CvuKgg1bRIKFgnGNfh5vqMkg4gpBEgUnpRVypR7hHLxJFbHCDvMJjJiUnDY4T6cVhUmIIAjgkbSruYRXrZP8GakNwIjsuwE02GgP10eFZbtFmS-lwQV-L9rHUMX7lBMG-A38-DhTm9O_nbZBdpsdtutoHXbuT9FW0BOWS6mgHLz2UKdAZ3MxXnaDT8AHrvfyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDFxBfvIvzmofhW7euTZrWN5krOp2oOBy-1KRJYXPr5i4vfnpPms6qIIhPbWlPCbk0v3Po-R-EyoxQJ7ElswAXYotQl1mcUGHxGmEA2IlnMuRat95lmzQ7tPOl1JfRh_gMuOmVkX2v9QIfyaRaiIa-9SoObJ-LaJl4TqBl8y8eCuUoyvJqrS61AuAIky-rTau54feNqKDLr4yabTLhOnqeN8_8W_JamU1FJX7_odz4r_ZvoLUcPfG5mSubaEGlW6jUAmoejrPgOj7F9X4XEDa72kYvOkSmxmChE6lw3B_O5AR3UwzQiBv11lOIAXlVzCdTnFXUOcM8xYV-OB4mxghrgfGBrt1lkj4xuNRqoCY7qB02HuuXVl6RwYpdH9zNgPsiJkJ6VAnwYIVWc7cTX3FXgaNpk1iwRDCusc_zHSUZ-EsxIKLwpAwoU-4uWkqHqdpD2GE2kQmTgsMJ9-G2qjEB7hsRNJF2UEJ4PjzRyAhvREZi2YneepHuuhI6nA9blK-8SVSDr7tWMXThDeWs_38zj-6b-rD_t8dO0MrdRRjdXN1eH6BVwKY8EHOIlqbjmToCNJmK42wSfgCh7d55
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Summer+Arctic+clouds+in+the+ECMWF+forecast+model%3A+an+evaluation+of+cloud+parametrization+schemes&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Sotiropoulou%2C+Georgia&rft.au=Sedlar%2C+Joseph&rft.au=bes%2C+Richard&rft.au=Tjernstrom%2C+Michael&rft.date=2016-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=142&rft.issue=694+Part+A&rft.spage=387&rft_id=info:doi/10.1002%2Fqj.2658&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3941748411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon