Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes
Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice...
Saved in:
Published in | Quarterly journal of the Royal Meteorological Society Vol. 142; no. 694; pp. 387 - 400 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds.
This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed. |
---|---|
AbstractList | Mixed-phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed-phase clouds and increased vertical resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary-layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea-ice surface may also need to be addressed. Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study (ASCOS) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed. Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics. Mixed‐phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phases that is dependent solely on temperature. However, increasingly more complex microphysical parametrizations are being implemented allowing a more physical representation of mixed‐phase clouds. This study uses in situ observations from the Arctic Summer Cloud Ocean Study ( ASCOS ) field campaign in the central Arctic to assess the impact of a change from a diagnostic to a prognostic parametrization of mixed‐phase clouds and increased vertical resolution in the European Centre for Medium‐Range Weather Forecasts ( ECMWF ) Integrated Forecast System ( IFS ). The newer cloud scheme improves the representation of the vertical structure of mixed‐phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation, and a warm and moist bias in the lowest part of the atmosphere remains. Both schemes also fail to capture the transitions from overcast to cloud‐free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, the modelled clouds remain coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary‐layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea‐ice surface may also need to be addressed. |
Author | Forbes, Richard Tjernström, Michael Sedlar, Joseph Sotiropoulou, Georgia |
Author_xml | – sequence: 1 givenname: Georgia surname: Sotiropoulou fullname: Sotiropoulou, Georgia organization: Bolin Centre for Climate Research, Stockholm University – sequence: 2 givenname: Joseph surname: Sedlar fullname: Sedlar, Joseph organization: Bolin Centre for Climate Research, Stockholm University – sequence: 3 givenname: Richard surname: Forbes fullname: Forbes, Richard organization: European Centre for Medium‐Range Weather Forecasts – sequence: 4 givenname: Michael surname: Tjernström fullname: Tjernström, Michael organization: Bolin Centre for Climate Research, Stockholm University |
BookMark | eNp10E1Lw0AQBuBFKlir-BcWPHiQ1MnmYzfeSmn9oCKiord1s5nQhCTb7iZK_fWmxqunOczzzsB7TEaNaZCQMx-mPgC72pZTFkfigIz9kHNPcHgfkTFAEHkJQHJEjp0rASDijI_Jx3NX12jpzOq20FRXpsscLRrarpEu5g9vS5obi1q5ltYmw-qaqobip6o61RamoSYfQnSjrKqxtcX3sHB6jTW6E3KYq8rh6d-ckNfl4mV-660eb-7ms5WnA8GFlyiR6jDN4gjTiAVp7HOAXKAKkEUhhDrlecoVxBHEgmHGRcy0n_Qwy5KIYzAh58PdjTXbDl0rS9PZpn8pfR6zIAx5kPTqYlDaGucs5nJji1rZnfRB7uuT21Lu6-vl5SC_igp3_zH5dP-rfwAnnnGC |
Cites_doi | 10.1002/qj.828 10.1175/MWR-D-13-00325.1 10.1175/1520-0442(2004)0172.0.CO;2 10.1175/JCLI-D-11-00186.1 10.1175/2010JAMC2467.1 10.1175/1520-0493(1993)121,3040:ROCILS.2.0.CO;2 10.5194/acp-14-2605-2014 10.1029/2012GL051000 10.5194/acp-12-6863-2012 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 10.5194/acp-11-165-2011 10.1029/2000JD000055 10.1175/JAMC-D-14-0065.1 10.1007/s10584-011-0101-1 10.1002/qj.713 10.1029/2007GL032043 10.1002/qj.49710444110 10.1175/BAMS-85-9-1305 10.1029/2008JD010440 10.1002/grl.50768 10.1175/2008JCLI2521 10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2 10.5194/acp-14-3461-2014 10.1175/JAM2297.1 10.5194/acp-13-7441-2013 10.5194/acp-14-2823-2014 10.1029/2000JC000705 10.1175/JAS4035.1 10.5194/acp-12-3419-2012 10.1175/2007JAS2479.1 10.5194/acp-13-9379-2013 10.1038/NGEO1332 10.5194/acp-14-12573-2014 10.1029/2004EO030001 10.1175/BAMS-88-4-541 10.5194/acp-14-427-2014 10.1002/qj.49711046603 10.1007/s10546-004-7954-z 10.1007/s00382-010-0937-5 10.1175/2008JAMC1845.1 10.1002/grl.50190-2013 10.1175/1520-0469(2002)059<0769:AEOCEA>2.0.CO;2 10.1016/S0169-8095(98)00098-2 |
ContentType | Journal Article |
Copyright | 2015 Royal Meteorological Society 2016 Royal Meteorological Society |
Copyright_xml | – notice: 2015 Royal Meteorological Society – notice: 2016 Royal Meteorological Society |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/qj.2658 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1477-870X |
EndPage | 400 |
ExternalDocumentID | 3941748411 10_1002_qj_2658 QJ2658 |
Genre | article |
GrantInformation_xml | – fundername: DAMOCLES – fundername: EU 6th Framework Program – fundername: Knut and Alice Wallenberg Foundation – fundername: Bert Bolin Center for Climate Research – fundername: Office of Naval Research – fundername: Swedish National Research Council |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMNL AAYXX ACRPL CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c3878-9a8bc4bd65eb523b61700f8ea3e25404cb7fb7a0650682ed7862c193b6dd957e3 |
IEDL.DBID | DR2 |
ISSN | 0035-9009 |
IngestDate | Thu Oct 10 16:40:09 EDT 2024 Fri Dec 06 01:56:24 EST 2024 Sat Aug 24 01:04:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 694 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3878-9a8bc4bd65eb523b61700f8ea3e25404cb7fb7a0650682ed7862c193b6dd957e3 |
PQID | 1762344739 |
PQPubID | 1016432 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1762344739 crossref_primary_10_1002_qj_2658 wiley_primary_10_1002_qj_2658_QJ2658 |
PublicationCentury | 2000 |
PublicationDate | January 2016 Part A |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 Part A |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Reading |
PublicationTitle | Quarterly journal of the Royal Meteorological Society |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2011; 137 2009; 22 2004; 85 2002; 59 2013; 40 2005; 117 2011; 11 2012; 39 2011; 37 2012; 12 2007; 34 2009; 114 2005; 44 1993; 121 2001; 106 1984; 110 2012; 110 2013; 13 2002; 83 2004; 17 2011; 50 2008; 47 2002; 107 2014; 14 2008; 65 1999; 51 2014 1978; 104 1977; 34 2007; 64 2012; 25 2007; 88 2014; 142 2012; 5 2014; 53 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 Jeffries MO (e_1_2_6_10_1) 2014 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 5 start-page: 11 year: 2012 end-page: 17 article-title: Resilience of persistent Arctic mixed‐phase clouds publication-title: Nat. Geosci. – volume: 12 start-page: 3419 year: 2012 end-page: 3435 article-title: Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies publication-title: Atmos. Chem. Phys. – volume: 13 start-page: 7441 year: 2013 end-page: 7450 article-title: The thermodynamic state of the Arctic atmosphere observed by AIRS: Comparisons during the record minimum sea ice extents of 2007 and 2012 publication-title: Atmos. Chem. Phys. – volume: 51 start-page: 45 year: 1999 end-page: 75 article-title: Cloud resolving simulations of Arctic stratus. Part II: Transition‐season clouds publication-title: J. Atmos. Res. – volume: 85 start-page: 25 year: 2004 end-page: 36 article-title: Can marine micro‐organisms influence melting of the Arctic pack ice? publication-title: EOS – volume: 14 start-page: 3461 year: 2014 end-page: 3478 article-title: Characteristic nature of vertical motions observed in Arctic mixed‐phase stratocumulus publication-title: Atmos. Chem. Phys. – volume: 34 start-page: 1149 year: 1977 end-page: 1152 article-title: The influence of pollution on the shortwave albedo of clouds publication-title: J. Atmos. Sci. – volume: 107 start-page: 8045 year: 2002 article-title: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget publication-title: J. Geophys. Res. – volume: 22 start-page: 165 year: 2009 end-page: 176 article-title: Arctic sea ice retreat in 2007 follows thinning trend publication-title: J. Clim. – volume: 11 start-page: 165 year: 2011 end-page: 173 article-title: An Arctic CCN‐limited cloud‐aerosol regime publication-title: Atmos. Chem. Phys. – volume: 110 start-page: 783 year: 1984 end-page: 820 article-title: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model publication-title: Q. J. R. Meteorol. Soc. – volume: 83 start-page: 255 year: 2002 end-page: 276 article-title: Surface heat budget of the Arctic Ocean publication-title: Bull. Am. Meteorol. Soc. – volume: 117 start-page: 337 year: 2005 end-page: 381 article-title: Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional‐scale models using data from the SHEBA project publication-title: Boundary‐Layer Meteorol. – volume: 65 start-page: 1304 year: 2008 end-page: 1322 article-title: Vertical motions in Arctic mixed‐phase stratiform clouds publication-title: J. Atmos. Sci. – volume: 106 start-page: 32019 year: 2001 end-page: 32030 article-title: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during SHEBA publication-title: J. Geophys. Res. – volume: 88 start-page: 541 year: 2007 end-page: 550 article-title: Can ice‐nucleating aerosols affect Arctic seasonal climate? publication-title: Bull. Am. Meteorol. Soc. – volume: 13 start-page: 9379 year: 2013 end-page: 9400 article-title: Cloud and boundary layer interactions over the Arctic sea‐ice in late summer publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 12573 year: 2014 end-page: 12592 article-title: The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface publication-title: Atmos. Chem. Phys. – year: 2014 – volume: 44 start-page: 1544 year: 2005 end-page: 1562 article-title: Arctic cloud microphysics retrievals from surface‐based remote sensors at SHEBA publication-title: J. Appl. Meteorol. – volume: 64 start-page: 3372 year: 2007 end-page: 3375 article-title: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed‐phase clouds publication-title: J. Atmos. Sci. – volume: 40 start-page: 720 year: 2013 end-page: 726 article-title: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat publication-title: Geophys. Res. Lett. – volume: 50 start-page: 626 year: 2011 end-page: 644 article-title: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties publication-title: J. Appl. Meteorol. Clim. – volume: 37 start-page: 1643 year: 2011 end-page: 1660 article-title: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing publication-title: Clim. Dyn. – volume: 85 start-page: 1305 year: 2004 end-page: 1321 article-title: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment (AOE‐2001) publication-title: Bull. Am. Meteorol. Soc. – volume: 14 start-page: 2605 year: 2014 end-page: 2624 article-title: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data publication-title: Atmos. Chem. Phys. – volume: 14 start-page: 427 year: 2014 end-page: 445 article-title: Near‐surface meteorology during the Arctic Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models publication-title: Atmos. Chem. Phys. – volume: 114 start-page: D08101 year: 2009 article-title: A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model publication-title: J. Geophys. Res. – volume: 121 start-page: 3040 year: 1993 end-page: 3061 article-title: Representation of clouds in large‐scale models publication-title: Mon. Weather Rev. – volume: 14 start-page: 2823 year: 2014 end-page: 2869 article-title: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design publication-title: Atmos. Chem. Phys. – volume: 142 start-page: 3425 year: 2014 end-page: 3445 article-title: On the representation of high‐latitude boundary layer mixed‐phase cloud in the ECMWF global model publication-title: Mon. Weather Rev. – volume: 59 start-page: 769 year: 2002 end-page: 778 article-title: Aerosol effects on cloud emissivity and surface longwave heating in the Arctic publication-title: J. Atmos. Sci. – volume: 53 start-page: 2775 year: 2014 end-page: 2789 article-title: Implications of limited liquid water path on static mixing within Arctic low‐level clouds publication-title: J. Appl. Meteorol. Clim. – volume: 17 start-page: 616 year: 2004 end-page: 628 article-title: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle publication-title: J. Clim. – volume: 137 start-page: 43 year: 2011 end-page: 57 article-title: Unified treatment of dry convective and stratocumulus‐topped boundary layers in the ECMWF model publication-title: Q. J. R. Meteorol. Soc. – volume: 39 start-page: L06801 year: 2012 article-title: Evidence linking Arctic amplification to extreme weather in mid‐latitudes publication-title: Geophys. Res. Lett. – volume: 40 start-page: 4374 year: 2013 end-page: 4379 article-title: Consequences of poor representation of Arctic sea‐ice albedo and cloud‐radiation interactions in the CMIP5 model ensemble publication-title: Geophys. Res. Lett. – volume: 25 start-page: 2374 year: 2012 end-page: 2393 article-title: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic publication-title: J. Clim. – volume: 137 start-page: 553 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. – volume: 12 start-page: 6863 year: 2012 end-page: 6889 article-title: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS) publication-title: Atmos. Chem. Phys. – volume: 34 start-page: L24501 year: 2007 article-title: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea‐ice loss publication-title: Geophys. Res. Lett. – volume: 110 start-page: 1005 year: 2012 end-page: 1027 article-title: The Arctic's rapidly shrinking sea ice cover: A research synthesis publication-title: Clim. Change – volume: 104 start-page: 677 year: 1978 end-page: 690 article-title: A parameterization scheme for non‐convective condensation including prediction of cloud water content publication-title: Q. J. R. Meteorol. Soc. – volume: 47 start-page: 2405 year: 2008 end-page: 2422 article-title: How well do regional climate models reproduce radiation and clouds in the Arctic? publication-title: J. Appl. Meteorol. Clim. – ident: e_1_2_6_4_1 doi: 10.1002/qj.828 – ident: e_1_2_6_6_1 doi: 10.1175/MWR-D-13-00325.1 – ident: e_1_2_6_27_1 doi: 10.1175/1520-0442(2004)0172.0.CO;2 – ident: e_1_2_6_26_1 doi: 10.1175/JCLI-D-11-00186.1 – ident: e_1_2_6_30_1 doi: 10.1175/2010JAMC2467.1 – ident: e_1_2_6_35_1 doi: 10.1175/1520-0493(1993)121,3040:ROCILS.2.0.CO;2 – ident: e_1_2_6_43_1 doi: 10.5194/acp-14-2605-2014 – ident: e_1_2_6_7_1 doi: 10.1029/2012GL051000 – ident: e_1_2_6_39_1 doi: 10.5194/acp-12-6863-2012 – ident: e_1_2_6_41_1 doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 – ident: e_1_2_6_17_1 doi: 10.5194/acp-11-165-2011 – ident: e_1_2_6_44_1 doi: 10.1029/2000JD000055 – ident: e_1_2_6_23_1 doi: 10.1175/JAMC-D-14-0065.1 – ident: e_1_2_6_33_1 doi: 10.1007/s10584-011-0101-1 – ident: e_1_2_6_12_1 doi: 10.1002/qj.713 – ident: e_1_2_6_16_1 doi: 10.1029/2007GL032043 – ident: e_1_2_6_34_1 doi: 10.1002/qj.49710444110 – ident: e_1_2_6_36_1 doi: 10.1175/BAMS-85-9-1305 – ident: e_1_2_6_20_1 doi: 10.1029/2008JD010440 – ident: e_1_2_6_11_1 doi: 10.1002/grl.50768 – ident: e_1_2_6_15_1 doi: 10.1175/2008JCLI2521 – ident: e_1_2_6_42_1 doi: 10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2 – ident: e_1_2_6_24_1 doi: 10.5194/acp-14-3461-2014 – ident: e_1_2_6_28_1 doi: 10.1175/JAM2297.1 – ident: e_1_2_6_5_1 doi: 10.5194/acp-13-7441-2013 – volume-title: Arctic Report Card 2014 year: 2014 ident: e_1_2_6_10_1 contributor: fullname: Jeffries MO – ident: e_1_2_6_40_1 doi: 10.5194/acp-14-2823-2014 – ident: e_1_2_6_21_1 doi: 10.1029/2000JC000705 – ident: e_1_2_6_13_1 doi: 10.1175/JAS4035.1 – ident: e_1_2_6_2_1 doi: 10.5194/acp-12-3419-2012 – ident: e_1_2_6_29_1 doi: 10.1175/2007JAS2479.1 – ident: e_1_2_6_31_1 doi: 10.5194/acp-13-9379-2013 – ident: e_1_2_6_18_1 doi: 10.1038/NGEO1332 – ident: e_1_2_6_32_1 doi: 10.5194/acp-14-12573-2014 – ident: e_1_2_6_14_1 doi: 10.1029/2004EO030001 – ident: e_1_2_6_22_1 doi: 10.1175/BAMS-88-4-541 – ident: e_1_2_6_3_1 doi: 10.5194/acp-14-427-2014 – ident: e_1_2_6_19_1 doi: 10.1002/qj.49711046603 – ident: e_1_2_6_37_1 doi: 10.1007/s10546-004-7954-z – ident: e_1_2_6_25_1 doi: 10.1007/s00382-010-0937-5 – ident: e_1_2_6_38_1 doi: 10.1175/2008JAMC1845.1 – ident: e_1_2_6_45_1 doi: 10.1002/grl.50190-2013 – ident: e_1_2_6_8_1 doi: 10.1175/1520-0469(2002)059<0769:AEOCEA>2.0.CO;2 – ident: e_1_2_6_9_1 doi: 10.1016/S0169-8095(98)00098-2 |
SSID | ssj0005727 |
Score | 2.4058006 |
Snippet | Mixed‐phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics.... Mixed-phase clouds are an integral part of the Arctic climate system, for precipitation and for their interactions with radiation and thermodynamics.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 387 |
SubjectTerms | Arctic cloud scheme Clouds cloud–surface interactions evaluation IFS model Meteorology mixed‐phase clouds |
Title | Summer Arctic clouds in the ECMWF forecast model: an evaluation of cloud parametrization schemes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.2658 https://www.proquest.com/docview/1762344739 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7OTF3-J0Sg7DW7euTZrWm8yNMZigOBxeatKksLm1bu0u_vW-NJ2dgiCe2tK-EvLz8x7J9yHUZIQ6sS2ZBbgQWYS6zOKECot3CAPAjj1zQm507w3GZDihk61UX0Yf4ivgpkdGMV_rAc5F1q5EQ5ezlgPLJ8y-HZfpzXx3j5VwFGVlslaXWgFghDkuqy3bpd33daiCy21ELdaY_j562ZTObC15a61z0Yo-fgg3_qv4B2ivJE98a7rKIdpRyRGqjwCa01URW8fXuDufAsEWT8foVUfI1Aos9DkqHM3TtczwNMHAjLjXHT33MRCviniW4yKhzg3mCa7kw3EaGyOs9cUXOnWXOfOJwaNWC5WdoHG_99QdWGVCBityffA2A-6LiAjpUSXAgRVazN2OfcVdBX6mTSLBYsG4pj7Pd5Rk4C5FQIjCkzKgTLmnqJakiTpD2GE2kTGTgsMN9-G16jAB3hsRNJZ2UEd40zzhu9HdCI3CshMuZ6GuujpqbJotLAdeFnZgctcihi78oVnU_2_m4cNQX87_9tkF2gVUKoMvDVTLV2t1CTiSi6ui530CUdvbqQ |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbxYNe_G1EUXsg3gZja9fhzSAEFUg0EEk8zHbtEhCGMLj41_u6DlETE-NpW7a3bGvf-nkvfd8iVGSEOpEtmQW4EFqEuszihAqLVwgDwI48UyHX7njNHrnr0342q1LXwhh9iM-Em_aM9H-tHVwnpMsr1dDpsOTA-LmONsDZK3o6183jSjqKsmy5VpdaVQAJUzCrTcuZ4feRaIWXXyE1HWUaO-h5-XxmcslraTEXpfD9h3Tj_15gF21n8ImvTW_ZQ2sq3kf5NnDzZJam1_Elro0GALHp0QF60UkyNQMLXUqFw9FkIRM8iDFgI67X2k8NDNCrQp7McbqmzhXmMV4piONJZIywlhgf69W7TNknhqBajVVyiHqNerfWtLI1GazQ9SHgrHJfhERIjyoBMazQeu525CvuKgg1bRIKFgnGNfh5vqMkg4gpBEgUnpRVypR7hHLxJFbHCDvMJjJiUnDY4T6cVhUmIIAjgkbSruYRXrZP8GakNwIjsuwE02GgP10eFZbtFmS-lwQV-L9rHUMX7lBMG-A38-DhTm9O_nbZBdpsdtutoHXbuT9FW0BOWS6mgHLz2UKdAZ3MxXnaDT8AHrvfyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDFxBfvIvzmofhW7euTZrWN5krOp2oOBy-1KRJYXPr5i4vfnpPms6qIIhPbWlPCbk0v3Po-R-EyoxQJ7ElswAXYotQl1mcUGHxGmEA2IlnMuRat95lmzQ7tPOl1JfRh_gMuOmVkX2v9QIfyaRaiIa-9SoObJ-LaJl4TqBl8y8eCuUoyvJqrS61AuAIky-rTau54feNqKDLr4yabTLhOnqeN8_8W_JamU1FJX7_odz4r_ZvoLUcPfG5mSubaEGlW6jUAmoejrPgOj7F9X4XEDa72kYvOkSmxmChE6lw3B_O5AR3UwzQiBv11lOIAXlVzCdTnFXUOcM8xYV-OB4mxghrgfGBrt1lkj4xuNRqoCY7qB02HuuXVl6RwYpdH9zNgPsiJkJ6VAnwYIVWc7cTX3FXgaNpk1iwRDCusc_zHSUZ-EsxIKLwpAwoU-4uWkqHqdpD2GE2kQmTgsMJ9-G2qjEB7hsRNJF2UEJ4PjzRyAhvREZi2YneepHuuhI6nA9blK-8SVSDr7tWMXThDeWs_38zj-6b-rD_t8dO0MrdRRjdXN1eH6BVwKY8EHOIlqbjmToCNJmK42wSfgCh7d55 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Summer+Arctic+clouds+in+the+ECMWF+forecast+model%3A+an+evaluation+of+cloud+parametrization+schemes&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Sotiropoulou%2C+Georgia&rft.au=Sedlar%2C+Joseph&rft.au=bes%2C+Richard&rft.au=Tjernstrom%2C+Michael&rft.date=2016-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=142&rft.issue=694+Part+A&rft.spage=387&rft_id=info:doi/10.1002%2Fqj.2658&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3941748411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |