Bioinspired Superwetting Open Microfluidics: From Concepts, Phenomena to Applications
Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in man...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 32 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202301017 |
Cover
Loading…
Abstract | Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research.
The processes of development from microfluidics to open microfluidics are combed briefly. The roles of various superwetting systems in open microfluidic technology are introduced and, according to different bionic objects, many typical bioinspired superwetting open microfluidics are summarized. Emerging applications and the development tendency in this field are also highlighted to lead future research. |
---|---|
AbstractList | Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research. Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research. The processes of development from microfluidics to open microfluidics are combed briefly. The roles of various superwetting systems in open microfluidic technology are introduced and, according to different bionic objects, many typical bioinspired superwetting open microfluidics are summarized. Emerging applications and the development tendency in this field are also highlighted to lead future research. |
Author | Zhang, Chengqi Li, Chuxin Si, Yifan Dong, Zhichao Hu, Jinlian |
Author_xml | – sequence: 1 givenname: Yifan surname: Si fullname: Si, Yifan organization: City University of Hong Kong – sequence: 2 givenname: Chuxin surname: Li fullname: Li, Chuxin organization: University of Science and Technology of China – sequence: 3 givenname: Jinlian surname: Hu fullname: Hu, Jinlian organization: City University of Hong Kong – sequence: 4 givenname: Chengqi surname: Zhang fullname: Zhang, Chengqi email: zhangchengqi@buaa.edu.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Zhichao orcidid: 0000-0003-0729-5756 surname: Dong fullname: Dong, Zhichao email: dongzhichao@mail.ipc.ac.cn organization: Weiqiao‐UCAS Science and Technology Park |
BookMark | eNqFkMFLwzAYxYNMcJtePQe82pmkaZN6m9OpsDFBB95Klqaa0SY1SRn77-2cTBDE0_cd3u893huAnrFGAXCO0QgjRK5EUdYjgkiMMMLsCPRxitMoRoT3Dj9-PQED79eoU7CY9sHyRlttfKOdKuBz2yi3USFo8wYXjTJwrqWzZdXqQkt_DafO1nBijVRN8Jfw6V0ZWysjYLBw3DSVliJoa_wpOC5F5dXZ9x2C5fTuZfIQzRb3j5PxLJIxZyyShKeiYDhJM6wkorxcSRRLjJIsYzyVCq3wStJYJqXKCBE8ExmjKceCYl7iJB6Ci71v4-xHq3zI17Z1povMCaeM4CShrFON9qqui_dOlXnjdC3cNsco302X76bLD9N1AP0FSB2-mgUndPU3lu2xja7U9p-QfHw7nf-wnyn4hUI |
CitedBy_id | crossref_primary_10_1002_marc_202400932 crossref_primary_10_1002_adma_202402893 crossref_primary_10_1016_j_compositesa_2024_108241 crossref_primary_10_1002_adhm_202401005 crossref_primary_10_1016_j_molliq_2024_125430 crossref_primary_10_1063_5_0197049 crossref_primary_10_3390_coatings15020140 crossref_primary_10_1063_5_0242480 crossref_primary_10_1038_s44286_023_00023_z crossref_primary_10_1016_j_apmt_2023_101957 crossref_primary_10_1002_smll_202304705 crossref_primary_10_1016_j_jcis_2024_09_201 crossref_primary_10_1016_j_talanta_2025_127683 crossref_primary_10_1002_adfm_202305766 crossref_primary_10_1021_acsnano_4c10344 crossref_primary_10_1063_5_0221736 crossref_primary_10_1002_cjoc_202400618 crossref_primary_10_1680_jsuin_24_00113 crossref_primary_10_3390_nano14231978 crossref_primary_10_1021_acs_langmuir_4c01251 crossref_primary_10_1016_j_cej_2024_151336 crossref_primary_10_1002_smll_202404952 crossref_primary_10_1002_advs_202405641 crossref_primary_10_1016_j_matt_2024_01_009 crossref_primary_10_1021_acsami_4c10213 crossref_primary_10_1063_5_0256422 crossref_primary_10_1016_j_microc_2024_112571 crossref_primary_10_1021_acsami_4c14496 crossref_primary_10_1039_D4CS00673A crossref_primary_10_1016_j_cis_2025_103442 crossref_primary_10_1016_j_cej_2023_145174 crossref_primary_10_1002_adma_202402527 |
Cites_doi | 10.1039/tf9444000546 10.1002/adma.201301876 10.1002/adfm.201707490 10.1002/adfm.201802317 10.1126/sciadv.aay9919 10.1098/rsta.2009.0022 10.1073/pnas.1908806116 10.1039/C4NR07554D 10.1038/s41563-019-0440-2 10.1126/sciadv.abn1736 10.1021/acsami.7b09717 10.1002/ange.200460333 10.1038/s41586-019-1736-8 10.1039/C4LC01034E 10.1002/VIW.20200183 10.1038/ncomms2253 10.1002/anie.201610821 10.1038/nmat2998 10.1073/pnas.1418541112 10.1016/j.sna.2018.09.070 10.1038/s41467-022-29088-9 10.1073/pnas.0405885101 10.1039/C2SM27032C 10.1073/pnas.1909924117 10.1021/acssensors.2c01827 10.1039/C3LC51248G 10.1073/pnas.2019248118 10.1038/micronano.2016.39 10.1098/rsif.2011.0392 10.1002/adfm.201908066 10.1126/scirobotics.aba4411 10.1021/acsami.5b08596 10.1038/nmat3598 10.1073/pnas.1307122110 10.1021/acs.chemrev.1c00666 10.1126/sciadv.aao3530 10.1021/acs.langmuir.9b03385 10.1016/j.talanta.2011.08.024 10.1002/anie.202202021 10.1002/adfm.201601821 10.1039/B612667G 10.1038/35102108 10.1126/sciadv.aay8305 10.1038/s41586-018-0250-8 10.1242/jeb.029975 10.1021/ar300314s 10.1002/adma.201506089 10.1126/science.1112615 10.1021/ar5000693 10.1021/acssensors.8b00335 10.1021/acs.langmuir.5b01351 10.1021/acsami.6b04668 10.1002/anie.201600224 10.1016/j.bios.2019.03.009 10.1002/adma.202108427 10.1002/adma.201904668 10.1073/pnas.0810903105 10.1039/c3lc00006k 10.1038/s41563-018-0171-9 10.1016/j.watres.2014.12.005 10.1002/anie.201604014 10.1021/acsnano.6b07182 10.1098/rsif.2015.0415 10.1073/pnas.1506874112 10.1016/j.xcrp.2021.100439 10.1038/s41587-020-0466-7 10.1039/D0LC00994F 10.1021/acsnano.8b06023 10.1021/acs.analchem.8b05764 10.1002/adma.201805764 10.1021/acsnano.8b03924 10.1039/C6LC01451H 10.1146/annurev.matsci.38.060407.132434 10.1002/anie.201706665 10.1038/nature05058 10.1021/acsami.9b18957 10.1126/sciadv.aat1659 10.1038/432036a 10.1146/annurev-ento-112408-085338 10.1016/j.nantod.2022.101723 10.1038/nbt.3873 10.1038/s41467-017-01157-4 10.1021/acs.chemrev.7b00024 10.1039/C5LC00276A 10.1021/acsnano.9b05860 10.1039/B917150A 10.1126/sciadv.aav8002 10.1126/science.aba5010 10.1038/natrevmats.2015.3 10.1038/s41598-017-01725-0 10.1039/C9TA04770K 10.1002/adfm.202010634 10.1007/978-0-387-21656-0 10.1021/ac801729t 10.1021/ac503968p 10.1038/s41467-017-00846-4 10.1038/s41586-020-1985-6 10.1038/s41467-019-09042-y 10.1002/anie.201607514 10.1126/sciadv.abb4700 10.1002/adma.200290020 10.1038/nature16956 10.1002/anie.201201798 10.1098/rsif.2018.0229 10.1038/nprot.2016.154 10.1021/acs.chemrev.6b00848 10.1002/adma.201703838 10.1126/sciadv.aao1175 10.1002/chem.201700888 10.1073/pnas.1603387113 10.1021/acs.chemrev.0c01335 10.1021/acs.chemrev.0c00999 10.1126/science.abg7552 10.1002/admi.201901105 10.1021/acsami.6b08117 10.1073/pnas.2011935117 10.1073/pnas.1602451113 10.1038/natrevmats.2017.16 10.1038/nature08729 10.1002/elps.200800563 10.1039/D0NH00376J 10.1039/b807857b 10.1038/s41586-021-03603-2 10.1002/anie.202016154 10.1038/nature13118 10.1021/nn404761q 10.1002/adma.201905682 10.1002/smll.201903931 10.1021/acsnano.7b05826 10.1557/adv.2017.77 10.1098/rsif.2013.0336 10.1021/acscentsci.8b00504 10.1039/C6SM00921B 10.1038/nature10447 10.1016/j.jcis.2010.08.047 10.1039/C9TA01105F 10.1021/acs.langmuir.0c01494 10.1021/acsami.8b15901 10.1126/science.1215416 10.1002/adma.200801782 10.1039/c1nr10773a 10.1002/adfm.201604824 10.1021/la703821h 10.1002/adma.202101005 10.1002/anie.200603817 10.1038/natrevmats.2017.36 10.1002/adma.201003169 10.1073/pnas.2016388117 10.3390/bios6020014 10.1002/smll.202300469 10.1126/science.1250169 10.1039/C3LC51406D 10.1038/nature17189 10.1016/0021-9797(77)90052-2 10.1021/acsnano.8b01800 10.1002/adfm.201906745 10.1002/adma.201905449 10.1039/C9LC00785G 10.1021/ac000064s 10.1038/s41596-020-00417-w 10.1039/D0CS01516D 10.1038/s41586-019-1491-x 10.1126/sciadv.abf6941 10.1039/c004821f 10.1126/science.aac9582 10.1038/nmat1339 10.1007/s004250050096 10.1038/s41467-023-36376-5 10.1002/adfm.202002437 10.1038/s41598-019-39307-x 10.1039/b917112f 10.1021/acs.analchem.6b00633 10.1002/adma.201400262 10.1038/srep22865 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202301017 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202301017 ADFM202301017 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFA0208501 – fundername: National Natural Science Foundation funderid: 52173293; 52103331; 22122508 – fundername: Key Research Program of the Chinese Academy of Sciences funderid: KJZD‐EW‐M01 – fundername: Young Elite Scientists Sponsorship Program by China Association for Science and Technology |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3877-c286ad715691ec048fbc03c10599786ce0b1bc43c5fe922a89a974681a418f153 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:40:51 EDT 2025 Tue Jul 01 00:30:43 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Jun 11 08:26:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3877-c286ad715691ec048fbc03c10599786ce0b1bc43c5fe922a89a974681a418f153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0729-5756 |
PQID | 2847215547 |
PQPubID | 2045204 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2847215547 crossref_primary_10_1002_adfm_202301017 crossref_citationtrail_10_1002_adfm_202301017 wiley_primary_10_1002_adfm_202301017_ADFM202301017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2019; 91 2002; 14 2011; 477 2018; 283 2020; 20 2015; 70 2019; 11 2019; 10 2019; 13 2008; 38 2020; 16 2010; 463 2014; 26 2019; 18 2008; 105 2020; 13 2011; 353 2013; 9 2010; 22 2018; 3 2018; 4 2015; 87 2020; 578 2014; 14 2019; 29 2008; 24 2018; 30 2013; 110 2007; 3 2006; 442 2009; 367 2001; 414 2019; 7 2018; 28 2019; 9 2019; 6 2019; 5 2019; 31 2010; 39 2000; 72 2020; 38 2014; 47 2020; 36 2009; 212 2020; 32 2021; 50 2011; 3 2016; 13 1997; 202 2016; 6 2018; 17 2016; 1 2016; 2 2004; 432 2022; 3 2020; 30 2023; 48 2022; 7 2015; 112 2022; 8 2017; 56 2022; 13 2005; 4 2011; 85 2019; 575 2021; 373 2018; 12 2016; 28 2021; 60 2016; 26 2016; 8 2018; 15 2019; 572 2010; 55 2017; 7 2017; 8 2021; 21 2017; 2 2013; 25 2017; 3 2015; 31 2008; 8 2011; 10 2015; 349 2021; 121 2008; 4 2017; 9 2017; 117 2012; 51 2022; 122 2020; 6 1944; 5 2020; 5 2021; 31 2021; 33 2013; 10 2013; 13 2013; 12 2017; 35 2021; 118 2016; 113 2019; 116 2005; 309 2021; 595 2012; 335 2014; 8 2016; 88 2004; 101 2015; 12 2015; 15 2021; 7 2021; 6 2023; 14 2009; 21 2021; 2 2013; 46 2023; 15 2017; 27 2017; 23 2004 2015; 7 2016; 55 2021; 16 2014; 507 2009; 30 2004; 116 2012; 3 1977; 59 2023 2022 2017; 17 2018; 559 2022; 61 2017; 11 2017; 12 2016; 531 2020; 117 2016; 532 2007; 46 2014; 344 2012; 9 2019; 132 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 Lewińska I. (e_1_2_9_176_1) 2023 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Zhang Y. (e_1_2_9_141_1) 2020; 13 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 Zhi C. (e_1_2_9_167_1) 2023; 15 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 Wasserfall J. (e_1_2_9_134_1) 2017; 2 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 Chen L. (e_1_2_9_170_1) 2023 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 Liu S. (e_1_2_9_112_1) 2023 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1095 year: 2019 publication-title: Nat. Commun. – volume: 202 start-page: 1 year: 1997 publication-title: Planta – volume: 3 start-page: 4685 year: 2011 publication-title: Nanoscale – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 year: 2022 publication-title: View – volume: 9 start-page: 720 year: 2012 publication-title: J. R. Soc. Interface – volume: 122 start-page: 5365 year: 2022 publication-title: Chem. Rev. – volume: 2 year: 2016 publication-title: Microsyst. Nanoeng. – volume: 36 start-page: 9510 year: 2020 publication-title: Langmuir – volume: 50 start-page: 5333 year: 2021 publication-title: Chem. Soc. Rev. – volume: 60 year: 2021 publication-title: Angew. Chem. – volume: 55 year: 2016 publication-title: Angew. Chem. – volume: 132 start-page: 171 year: 2019 publication-title: Biosens. Bioelectron. – start-page: 253 year: 2023 publication-title: Talanta – year: 2022 publication-title: Adv. Mater. – volume: 85 start-page: 2587 year: 2011 publication-title: Talanta – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 2396 year: 2013 publication-title: Acc. Chem. Res. – volume: 116 start-page: 4438 year: 2004 publication-title: Angew. Chem. – volume: 212 start-page: 2835 year: 2009 publication-title: J. Exp. Biol. – volume: 35 start-page: 523 year: 2017 publication-title: Nat. Biotechnol. – volume: 13 start-page: 2609 year: 2013 publication-title: Lab Chip – volume: 14 start-page: 860 year: 2023 publication-title: Nat. Commun. – volume: 12 year: 2015 publication-title: J. R. Soc. Interface – volume: 373 start-page: 1344 year: 2021 publication-title: Science – volume: 23 year: 2017 publication-title: Chemistry – start-page: 161 year: 2023 publication-title: Trends Anal. Chem. – volume: 3 start-page: 1416 year: 2018 publication-title: ACS Sens. – volume: 4 start-page: 1102 year: 2018 publication-title: ACS Cent. Sci. – volume: 3 start-page: 178 year: 2007 publication-title: Soft Matter – volume: 5 year: 2020 publication-title: Sci. Robot. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1168 year: 2014 publication-title: Lab Chip – volume: 12 start-page: 5149 year: 2018 publication-title: ACS Nano – volume: 12 start-page: 529 year: 2013 publication-title: Nat. Mater. – volume: 10 start-page: 477 year: 2010 publication-title: Lab Chip – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 335 start-page: 690 year: 2012 publication-title: Science – volume: 70 start-page: 360 year: 2015 publication-title: Water Res – volume: 2 start-page: 1111 year: 2017 publication-title: MRS Adv. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 28 start-page: 4646 year: 2016 publication-title: Adv. Mater. – volume: 48 year: 2023 publication-title: Nano Today – volume: 373 start-page: 294 year: 2021 publication-title: Science – volume: 559 start-page: 77 year: 2018 publication-title: Nature – volume: 3 start-page: 1247 year: 2012 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 110 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 572 start-page: 507 year: 2019 publication-title: Nature – volume: 24 start-page: 4114 year: 2008 publication-title: Langmuir – volume: 112 start-page: 4582 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1800 year: 2017 publication-title: Sci. Rep. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 start-page: 5331 year: 2016 publication-title: Anal. Chem. – volume: 16 start-page: 309 year: 2021 publication-title: Nat. Protoc. – volume: 13 start-page: 4891 year: 2020 publication-title: Environ. Sci. – volume: 15 start-page: 60 year: 2023 publication-title: Nanomicro Lett. – volume: 2 year: 2017 publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 353 start-page: 335 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 1497 year: 2009 publication-title: Electrophoresis – volume: 59 start-page: 568 year: 1977 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 5922 year: 2015 publication-title: Nanoscale – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 46 start-page: 1318 year: 2007 publication-title: Angew. Chem. – volume: 6 start-page: 24 year: 2021 publication-title: Nanoscale Horiz. – volume: 20 start-page: 35 year: 2020 publication-title: Lab Chip – volume: 117 start-page: 8447 year: 2017 publication-title: Chem. Rev. – volume: 442 start-page: 368 year: 2006 publication-title: Nature – year: 2023 publication-title: Small – volume: 463 start-page: 640 year: 2010 publication-title: Nature – volume: 344 start-page: 70 year: 2014 publication-title: Science – volume: 18 start-page: 936 year: 2019 publication-title: Nat. Mater. – volume: 122 start-page: 7061 year: 2022 publication-title: Chem. Rev. – volume: 26 start-page: 6121 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 9131 year: 2008 publication-title: Anal. Chem. – volume: 21 start-page: 284 year: 2021 publication-title: Lab Chip – volume: 105 year: 2008 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 760 year: 2017 publication-title: ACS Nano – volume: 10 year: 2013 publication-title: J. R. Soc. Interface – volume: 595 start-page: 58 year: 2021 publication-title: Nature – volume: 91 start-page: 5169 year: 2019 publication-title: Anal. Chem. – volume: 113 start-page: 6143 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 715 year: 2020 publication-title: Nat. Biotechnol. – volume: 16 year: 2020 publication-title: Small – volume: 51 year: 2012 publication-title: Angew. Chem. – volume: 477 start-page: 443 year: 2011 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 38 start-page: 71 year: 2008 publication-title: Annu. Rev. Mater. Res. – volume: 14 start-page: 1857 year: 2002 publication-title: Adv. Mater. – volume: 8 start-page: 2942 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 72 start-page: 4100 year: 2000 publication-title: Anal. Chem. – volume: 13 start-page: 134 year: 2016 publication-title: Soft Matter – volume: 36 start-page: 667 year: 2020 publication-title: Langmuir – year: 2004 – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 531 start-page: 78 year: 2016 publication-title: Nature – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 10 start-page: 367 year: 2011 publication-title: Nat. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 935 year: 2018 publication-title: Nat. Mater. – volume: 578 start-page: 392 year: 2020 publication-title: Nature – volume: 309 start-page: 887 year: 2005 publication-title: Science – volume: 12 start-page: 932 year: 2018 publication-title: ACS Nano – volume: 14 start-page: 1538 year: 2014 publication-title: Lab Chip – volume: 432 start-page: 36 year: 2004 publication-title: Nature – volume: 25 start-page: 5937 year: 2013 publication-title: Adv. Mater. – volume: 10 start-page: 2659 year: 2010 publication-title: Lab Chip – volume: 39 start-page: 3240 year: 2010 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 4507 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 307 year: 2010 publication-title: Annu. Rev. Entomol. – volume: 507 start-page: 181 year: 2014 publication-title: Nature – volume: 55 start-page: 4265 year: 2016 publication-title: Angew. Chem. – volume: 22 start-page: 5521 year: 2010 publication-title: Adv. Mater. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 277 year: 2005 publication-title: Nat. Mater. – volume: 101 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 3857 year: 2022 publication-title: ACS Sens. – volume: 9 start-page: 2817 year: 2019 publication-title: Sci. Rep. – volume: 6 start-page: 14 year: 2016 publication-title: Biosensors – volume: 56 year: 2017 publication-title: Angew. Chem. – volume: 47 start-page: 2342 year: 2014 publication-title: Acc. Chem. Res. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 start-page: 546 year: 1944 publication-title: Trans. Faraday Soc. – volume: 56 start-page: 2296 year: 2017 publication-title: Angew. Chem. – volume: 112 start-page: 9247 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 1331 year: 2022 publication-title: Nat. Commun. – volume: 15 start-page: 244 year: 2015 publication-title: Lab Chip – volume: 283 start-page: 375 year: 2018 publication-title: Sens. Actuators, A – volume: 8 start-page: 816 year: 2017 publication-title: Nat. Commun. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 year: 2018 publication-title: ACS Nano – volume: 87 start-page: 19 year: 2015 publication-title: Anal. Chem. – volume: 414 start-page: 33 year: 2001 publication-title: Nature – volume: 61 year: 2022 publication-title: Angew. Chem. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 7964 year: 2017 publication-title: Chem. Rev. – volume: 4 start-page: 2232 year: 2008 publication-title: Soft Matter – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 21 start-page: 665 year: 2009 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2018 publication-title: J. R. Soc. Interface – volume: 31 start-page: 8328 year: 2015 publication-title: Langmuir – volume: 12 start-page: 9214 year: 2018 publication-title: ACS Nano – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 367 start-page: 1487 year: 2009 publication-title: Philos. Trans., A: Math Phys. Eng. Sci. – volume: 15 start-page: 2452 year: 2015 publication-title: Lab Chip – volume: 532 start-page: 85 year: 2016 publication-title: Nature – volume: 349 start-page: 956 year: 2015 publication-title: Science – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 44 year: 2017 publication-title: Nat. Protoc. – volume: 26 start-page: 5025 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 1321 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 9550 year: 2019 publication-title: J. Mater. Chem. A – volume: 117 start-page: 1890 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 1080 year: 2017 publication-title: Nat. Commun. – volume: 17 start-page: 614 year: 2017 publication-title: Lab Chip – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 1772 year: 2013 publication-title: Soft Matter – volume: 575 start-page: 330 year: 2019 publication-title: Nature – ident: e_1_2_9_84_1 doi: 10.1039/tf9444000546 – ident: e_1_2_9_117_1 doi: 10.1002/adma.201301876 – ident: e_1_2_9_110_1 doi: 10.1002/adfm.201707490 – ident: e_1_2_9_53_1 doi: 10.1002/adfm.201802317 – ident: e_1_2_9_30_1 doi: 10.1126/sciadv.aay9919 – ident: e_1_2_9_88_1 doi: 10.1098/rsta.2009.0022 – start-page: 161 year: 2023 ident: e_1_2_9_170_1 publication-title: Trends Anal. Chem. – ident: e_1_2_9_155_1 doi: 10.1073/pnas.1908806116 – ident: e_1_2_9_71_1 doi: 10.1039/C4NR07554D – ident: e_1_2_9_130_1 doi: 10.1038/s41563-019-0440-2 – ident: e_1_2_9_40_1 doi: 10.1126/sciadv.abn1736 – ident: e_1_2_9_67_1 doi: 10.1021/acsami.7b09717 – ident: e_1_2_9_79_1 doi: 10.1002/ange.200460333 – ident: e_1_2_9_156_1 doi: 10.1038/s41586-019-1736-8 – ident: e_1_2_9_20_1 doi: 10.1039/C4LC01034E – ident: e_1_2_9_169_1 doi: 10.1002/VIW.20200183 – ident: e_1_2_9_93_1 doi: 10.1038/ncomms2253 – ident: e_1_2_9_175_1 doi: 10.1002/anie.201610821 – ident: e_1_2_9_149_1 doi: 10.1038/nmat2998 – ident: e_1_2_9_31_1 doi: 10.1073/pnas.1418541112 – ident: e_1_2_9_122_1 doi: 10.1016/j.sna.2018.09.070 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-022-29088-9 – ident: e_1_2_9_95_1 doi: 10.1073/pnas.0405885101 – ident: e_1_2_9_97_1 doi: 10.1039/C2SM27032C – ident: e_1_2_9_164_1 doi: 10.1073/pnas.1909924117 – ident: e_1_2_9_166_1 doi: 10.1021/acssensors.2c01827 – ident: e_1_2_9_72_1 doi: 10.1039/C3LC51248G – ident: e_1_2_9_34_1 doi: 10.1073/pnas.2019248118 – ident: e_1_2_9_177_1 doi: 10.1038/micronano.2016.39 – ident: e_1_2_9_124_1 doi: 10.1098/rsif.2011.0392 – ident: e_1_2_9_108_1 doi: 10.1002/adfm.201908066 – ident: e_1_2_9_144_1 doi: 10.1126/scirobotics.aba4411 – ident: e_1_2_9_142_1 doi: 10.1021/acsami.5b08596 – ident: e_1_2_9_104_1 doi: 10.1038/nmat3598 – ident: e_1_2_9_132_1 doi: 10.1073/pnas.1307122110 – ident: e_1_2_9_4_1 doi: 10.1021/acs.chemrev.1c00666 – ident: e_1_2_9_38_1 doi: 10.1126/sciadv.aao3530 – ident: e_1_2_9_51_1 doi: 10.1021/acs.langmuir.9b03385 – ident: e_1_2_9_62_1 doi: 10.1016/j.talanta.2011.08.024 – ident: e_1_2_9_180_1 doi: 10.1002/anie.202202021 – ident: e_1_2_9_73_1 doi: 10.1002/adfm.201601821 – ident: e_1_2_9_81_1 doi: 10.1039/B612667G – ident: e_1_2_9_113_1 doi: 10.1038/35102108 – ident: e_1_2_9_18_1 doi: 10.1126/sciadv.aay8305 – ident: e_1_2_9_105_1 doi: 10.1038/s41586-018-0250-8 – ident: e_1_2_9_129_1 doi: 10.1242/jeb.029975 – ident: e_1_2_9_15_1 doi: 10.1021/ar300314s – ident: e_1_2_9_16_1 doi: 10.1002/adma.201506089 – ident: e_1_2_9_32_1 doi: 10.1126/science.1112615 – ident: e_1_2_9_115_1 doi: 10.1021/ar5000693 – ident: e_1_2_9_70_1 doi: 10.1021/acssensors.8b00335 – ident: e_1_2_9_151_1 doi: 10.1021/acs.langmuir.5b01351 – ident: e_1_2_9_83_1 doi: 10.1021/acsami.6b04668 – ident: e_1_2_9_136_1 doi: 10.1002/anie.201600224 – ident: e_1_2_9_171_1 doi: 10.1016/j.bios.2019.03.009 – ident: e_1_2_9_9_1 doi: 10.1002/adma.202108427 – ident: e_1_2_9_158_1 doi: 10.1002/adma.201904668 – ident: e_1_2_9_42_1 doi: 10.1073/pnas.0810903105 – ident: e_1_2_9_63_1 doi: 10.1039/c3lc00006k – ident: e_1_2_9_119_1 doi: 10.1038/s41563-018-0171-9 – ident: e_1_2_9_66_1 doi: 10.1016/j.watres.2014.12.005 – ident: e_1_2_9_178_1 doi: 10.1002/anie.201604014 – ident: e_1_2_9_100_1 doi: 10.1021/acsnano.6b07182 – ident: e_1_2_9_120_1 doi: 10.1098/rsif.2015.0415 – ident: e_1_2_9_131_1 doi: 10.1073/pnas.1506874112 – ident: e_1_2_9_138_1 doi: 10.1016/j.xcrp.2021.100439 – ident: e_1_2_9_145_1 doi: 10.1038/s41587-020-0466-7 – ident: e_1_2_9_160_1 doi: 10.1039/D0LC00994F – ident: e_1_2_9_25_1 doi: 10.1021/acsnano.8b06023 – ident: e_1_2_9_68_1 doi: 10.1021/acs.analchem.8b05764 – ident: e_1_2_9_2_1 doi: 10.1002/adma.201805764 – ident: e_1_2_9_35_1 doi: 10.1021/acsnano.8b03924 – ident: e_1_2_9_58_1 doi: 10.1039/C6LC01451H – ident: e_1_2_9_74_1 doi: 10.1146/annurev.matsci.38.060407.132434 – ident: e_1_2_9_109_1 doi: 10.1002/anie.201706665 – ident: e_1_2_9_8_1 doi: 10.1038/nature05058 – ident: e_1_2_9_150_1 doi: 10.1021/acsami.9b18957 – ident: e_1_2_9_157_1 doi: 10.1126/sciadv.aat1659 – ident: e_1_2_9_82_1 doi: 10.1038/432036a – ident: e_1_2_9_126_1 doi: 10.1146/annurev-ento-112408-085338 – ident: e_1_2_9_165_1 doi: 10.1016/j.nantod.2022.101723 – ident: e_1_2_9_24_1 doi: 10.1038/nbt.3873 – ident: e_1_2_9_99_1 doi: 10.1038/s41467-017-01157-4 – ident: e_1_2_9_57_1 doi: 10.1021/acs.chemrev.7b00024 – ident: e_1_2_9_59_1 doi: 10.1039/C5LC00276A – ident: e_1_2_9_147_1 doi: 10.1021/acsnano.9b05860 – ident: e_1_2_9_65_1 doi: 10.1039/B917150A – ident: e_1_2_9_28_1 doi: 10.1126/sciadv.aav8002 – ident: e_1_2_9_52_1 doi: 10.1126/science.aba5010 – ident: e_1_2_9_55_1 doi: 10.1038/natrevmats.2015.3 – ident: e_1_2_9_46_1 doi: 10.1038/s41598-017-01725-0 – ident: e_1_2_9_98_1 doi: 10.1039/C9TA04770K – ident: e_1_2_9_90_1 doi: 10.1002/adfm.202010634 – ident: e_1_2_9_107_1 doi: 10.1007/978-0-387-21656-0 – year: 2023 ident: e_1_2_9_112_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_9_60_1 doi: 10.1021/ac801729t – ident: e_1_2_9_41_1 doi: 10.1021/ac503968p – ident: e_1_2_9_26_1 doi: 10.1038/s41467-017-00846-4 – ident: e_1_2_9_139_1 doi: 10.1038/s41586-020-1985-6 – ident: e_1_2_9_27_1 doi: 10.1038/s41467-019-09042-y – ident: e_1_2_9_37_1 doi: 10.1002/anie.201607514 – ident: e_1_2_9_29_1 doi: 10.1126/sciadv.abb4700 – ident: e_1_2_9_78_1 doi: 10.1002/adma.200290020 – ident: e_1_2_9_103_1 doi: 10.1038/nature16956 – ident: e_1_2_9_36_1 doi: 10.1002/anie.201201798 – ident: e_1_2_9_127_1 doi: 10.1098/rsif.2018.0229 – ident: e_1_2_9_11_1 doi: 10.1038/nprot.2016.154 – ident: e_1_2_9_6_1 doi: 10.1021/acs.chemrev.6b00848 – ident: e_1_2_9_85_1 doi: 10.1002/adma.201703838 – ident: e_1_2_9_153_1 doi: 10.1126/sciadv.aao1175 – volume: 2 year: 2017 ident: e_1_2_9_134_1 publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. – ident: e_1_2_9_173_1 doi: 10.1002/chem.201700888 – ident: e_1_2_9_21_1 doi: 10.1073/pnas.1603387113 – ident: e_1_2_9_44_1 doi: 10.1021/acs.chemrev.0c01335 – ident: e_1_2_9_163_1 doi: 10.1021/acs.chemrev.0c00999 – ident: e_1_2_9_123_1 doi: 10.1126/science.abg7552 – ident: e_1_2_9_48_1 doi: 10.1002/admi.201901105 – ident: e_1_2_9_64_1 doi: 10.1021/acsami.6b08117 – ident: e_1_2_9_111_1 doi: 10.1073/pnas.2011935117 – ident: e_1_2_9_152_1 doi: 10.1073/pnas.1602451113 – ident: e_1_2_9_1_1 doi: 10.1038/natrevmats.2017.16 – ident: e_1_2_9_92_1 doi: 10.1038/nature08729 – ident: e_1_2_9_61_1 doi: 10.1002/elps.200800563 – ident: e_1_2_9_162_1 doi: 10.1039/D0NH00376J – ident: e_1_2_9_76_1 doi: 10.1039/b807857b – ident: e_1_2_9_137_1 doi: 10.1038/s41586-021-03603-2 – ident: e_1_2_9_146_1 doi: 10.1002/anie.202016154 – ident: e_1_2_9_7_1 doi: 10.1038/nature13118 – ident: e_1_2_9_133_1 doi: 10.1021/nn404761q – ident: e_1_2_9_154_1 doi: 10.1002/adma.201905682 – ident: e_1_2_9_13_1 doi: 10.1002/smll.201903931 – ident: e_1_2_9_87_1 doi: 10.1021/acsnano.7b05826 – ident: e_1_2_9_121_1 doi: 10.1557/adv.2017.77 – ident: e_1_2_9_125_1 doi: 10.1098/rsif.2013.0336 – ident: e_1_2_9_50_1 doi: 10.1021/acscentsci.8b00504 – ident: e_1_2_9_69_1 doi: 10.1039/C6SM00921B – ident: e_1_2_9_96_1 doi: 10.1038/nature10447 – ident: e_1_2_9_75_1 doi: 10.1016/j.jcis.2010.08.047 – ident: e_1_2_9_148_1 doi: 10.1039/C9TA01105F – ident: e_1_2_9_135_1 doi: 10.1021/acs.langmuir.0c01494 – ident: e_1_2_9_118_1 doi: 10.1021/acsami.8b15901 – ident: e_1_2_9_22_1 doi: 10.1126/science.1215416 – ident: e_1_2_9_91_1 doi: 10.1002/adma.200801782 – ident: e_1_2_9_128_1 doi: 10.1039/c1nr10773a – ident: e_1_2_9_23_1 doi: 10.1002/adfm.201604824 – ident: e_1_2_9_80_1 doi: 10.1021/la703821h – ident: e_1_2_9_161_1 doi: 10.1002/adma.202101005 – ident: e_1_2_9_43_1 doi: 10.1002/anie.200603817 – volume: 13 start-page: 4891 year: 2020 ident: e_1_2_9_141_1 publication-title: Environ. Sci. – ident: e_1_2_9_54_1 doi: 10.1038/natrevmats.2017.36 – ident: e_1_2_9_116_1 doi: 10.1002/adma.201003169 – ident: e_1_2_9_143_1 doi: 10.1073/pnas.2016388117 – ident: e_1_2_9_39_1 doi: 10.3390/bios6020014 – volume: 15 start-page: 60 year: 2023 ident: e_1_2_9_167_1 publication-title: Nanomicro Lett. – ident: e_1_2_9_168_1 doi: 10.1002/smll.202300469 – ident: e_1_2_9_12_1 doi: 10.1126/science.1250169 – ident: e_1_2_9_47_1 doi: 10.1039/C3LC51406D – ident: e_1_2_9_94_1 doi: 10.1038/nature17189 – ident: e_1_2_9_106_1 doi: 10.1016/0021-9797(77)90052-2 – ident: e_1_2_9_101_1 doi: 10.1021/acsnano.8b01800 – start-page: 253 year: 2023 ident: e_1_2_9_176_1 publication-title: Talanta – ident: e_1_2_9_19_1 doi: 10.1002/adfm.201906745 – ident: e_1_2_9_86_1 doi: 10.1002/adma.201905449 – ident: e_1_2_9_5_1 doi: 10.1039/C9LC00785G – ident: e_1_2_9_45_1 doi: 10.1021/ac000064s – ident: e_1_2_9_14_1 doi: 10.1038/s41596-020-00417-w – ident: e_1_2_9_140_1 doi: 10.1039/D0CS01516D – ident: e_1_2_9_10_1 doi: 10.1038/s41586-019-1491-x – ident: e_1_2_9_33_1 doi: 10.1126/sciadv.abf6941 – ident: e_1_2_9_56_1 doi: 10.1039/c004821f – ident: e_1_2_9_17_1 doi: 10.1126/science.aac9582 – ident: e_1_2_9_49_1 doi: 10.1038/nmat1339 – ident: e_1_2_9_77_1 doi: 10.1007/s004250050096 – ident: e_1_2_9_102_1 doi: 10.1038/s41467-023-36376-5 – ident: e_1_2_9_159_1 doi: 10.1002/adfm.202002437 – ident: e_1_2_9_174_1 doi: 10.1038/s41598-019-39307-x – ident: e_1_2_9_89_1 doi: 10.1039/b917112f – ident: e_1_2_9_172_1 doi: 10.1021/acs.analchem.6b00633 – ident: e_1_2_9_114_1 doi: 10.1002/adma.201400262 – ident: e_1_2_9_179_1 doi: 10.1038/srep22865 |
SSID | ssj0017734 |
Score | 2.5657353 |
SecondaryResourceType | review_article |
Snippet | Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | bioinspired Biomimetics Bionics Interdisciplinary subjects liquid manipulation Materials science Microfluidics open microfluidics superhydrophilic superhydrophobic Three dimensional printing |
Title | Bioinspired Superwetting Open Microfluidics: From Concepts, Phenomena to Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202301017 https://www.proquest.com/docview/2847215547 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78FqdTchC82G1NsjT1NqdDhImog91KPnE4u7GPi3-9ee3WbYIIemtpUtok7-X3kt_7BaGL2DHJnTOBoEYHrEFsIBWhQSx53RHKjZKwNNB55Pdd9tBr9Fay-HN9iGLBDSwj89dg4FJNakvRUGkcZJJ7CA2jyjthIGwBKnou9KPCKMq3lXkIBK-wt1BtrJPaevX1WWkJNVcBazbjtHeQXHxrTjR5r86mqqo_v8k4_udndtH2HI7iZj5-9tCGTffR1opI4QHq3vSH_RQ25K3BL7MREKkzsjQGMgruAKPPDWZ909eTa9weDz9wK8-FnFzhpzebgsaDxNMhbq5slh-ibvvutXUfzA9jCDQVURRoIrg0kQ_34tBqb_dO6TrVAM98IMq1ratQaUYz9hohUsTShypchJKFwnm_eoRK6TC1xwg7w0IjlIgbljEWqZgLwVnsYkqto1SWUbDojETPlcrhwIxBkmsskwSaKymaq4wui_KjXKPjx5KVRd8mc1udJDBBE4BV_jHJOumXtyTN23anuDv5S6VTtAnXOZOwgkrT8cyeeXQzVefZCP4C-KzwXw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO2Ip4AMSF1Ia23UcbmWpytIKQSv1FnkVFZAi2l74ejJJEwoSQoJjEjtK7Bn7efzmGaHD0DHJnTOeoEZ7rEasJxWhXih51RHKjZIQGmi1ebPLrnu1nE0IuTCZPkQRcAPPSMdrcHAISJ98qoZK4yCVPMHQYFazaA6O9QbfvLgvFKT8IMg2lrkPFC-_l-s2VsnJ1_pf56VPsDkNWdM5p7GMVP61GdXkqTIeqYp-_ybk-K_fWUFLE0SK65kJraIZG6-hxSmdwnXUPesP-jHsyVuDH8avwKVO-dIY-Ci4BaQ-9zzum74enuLG2-AFn2fpkMNjfPdoY5B5kHg0wPWp_fIN1G1cds6b3uQ8Bk9TEQSeJoJLEyQrvtC3OnF9p3SVakBoyVqUa1tVvtKMpgQ2QqQIZbJa4cKXzBcuGVo3USkexHYLYWeYb4QSYc0yxgIVciE4C11IqXWUym3k5b0R6YlYOZyZ8RxlMsskguaKiubaRkdF-ddMpuPHkuW8c6OJuw4jmKMJIKvkMUl76Ze3RPWLRqu42vlLpQM03-y0bqPbq_bNLlqA-xmxsIxKo7ex3UvAzkjtp-b8AQhD9Hg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eQPTBu3iZmgfBF6ttkqWpb3OzeJuIOthbyRWH2g23vfjr7Wm3OgUR9LFtUtokJ-c7yXe-IHQQOSa5c8YT1GiPVYn1pCLUiyT3HaHcKAlLA81bftFiV-1qeyKLv9CHKBfcwDLy-RoMvGfcyadoqDQOMskzCA2jahrNMu4LCL8a96WAVBCGxb4yD4DhFbTHso0-Ofla_6tb-sSak4g1dznxEpLjjy2YJs_Hw4E61u_fdBz_8zfLaHGER3GtGEAraMqmq2hhQqVwDbXOOt1OCjvy1uCHYQ-Y1DlbGgMbBTeB0udehh3T0f1THL91X3G9SIbsH-G7J5uCyIPEgy6uTeyWr6NWfP5Yv_BGpzF4moow9DQRXJowi_eiwOrM8J3SPtWAz7JIlGvrq0BpRnP6GiFSRDKLVbgIJAuEyybWDTSTdlO7ibAzLDBCiahqGWOhirgQnEUuotQ6SuUW8sadkeiRVDmcmPGSFCLLJIHmSsrm2kKHZfleIdLxY8nKuG-TkbH2E_DQBHBV9pjknfTLW5JaI26WV9t_qbSP5u4acXJzeXu9g-bhdsEqrKCZwdvQ7mZIZ6D28sH8AUT18zA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Superwetting+Open+Microfluidics%3A+From+Concepts%2C+Phenomena+to+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Si%2C+Yifan&rft.au=Li%2C+Chuxin&rft.au=Hu%2C+Jinlian&rft.au=Zhang%2C+Chengqi&rft.date=2023-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202301017&rft.externalDBID=10.1002%252Fadfm.202301017&rft.externalDocID=ADFM202301017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |