Bioinspired Superwetting Open Microfluidics: From Concepts, Phenomena to Applications

Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in man...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 32
Main Authors Si, Yifan, Li, Chuxin, Hu, Jinlian, Zhang, Chengqi, Dong, Zhichao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202301017

Cover

Loading…
Abstract Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research. The processes of development from microfluidics to open microfluidics are combed briefly. The roles of various superwetting systems in open microfluidic technology are introduced and, according to different bionic objects, many typical bioinspired superwetting open microfluidics are summarized. Emerging applications and the development tendency in this field are also highlighted to lead future research.
AbstractList Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research.
Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an emerging interdisciplinary subject of these two fields, bioinspired superwetting open microfluidics is triggering technological revolutions in many disciplines, including rapid medical diagnosis, biochemical analysis, liquid manipulation, 3D printing, etc. However, this new research area has yet to attract extensive attention. So, a timely review is necessary to organize the development process, summarize current achievements, and discuss the challenges or chances for the ongoing scientific trend. In this review, the evolution from closed to open microfluidics is combed first. Then, three typical bioinspired superwetting systems are introduced emphatically. Based on this, the bioinspired superwetting open microfluidics is divided into different categories according to the bionic objects as the focus of this study. Taking natural phenomena as the entry point, the research from the underlying mechanism to the application is systematically discussed and summarized. Several emerging applications are also mentioned. Finally, some views on major problems, existing challenges, and developing trends are briefly put forward in this field to guide future research. The processes of development from microfluidics to open microfluidics are combed briefly. The roles of various superwetting systems in open microfluidic technology are introduced and, according to different bionic objects, many typical bioinspired superwetting open microfluidics are summarized. Emerging applications and the development tendency in this field are also highlighted to lead future research.
Author Zhang, Chengqi
Li, Chuxin
Si, Yifan
Dong, Zhichao
Hu, Jinlian
Author_xml – sequence: 1
  givenname: Yifan
  surname: Si
  fullname: Si, Yifan
  organization: City University of Hong Kong
– sequence: 2
  givenname: Chuxin
  surname: Li
  fullname: Li, Chuxin
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Jinlian
  surname: Hu
  fullname: Hu, Jinlian
  organization: City University of Hong Kong
– sequence: 4
  givenname: Chengqi
  surname: Zhang
  fullname: Zhang, Chengqi
  email: zhangchengqi@buaa.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Zhichao
  orcidid: 0000-0003-0729-5756
  surname: Dong
  fullname: Dong, Zhichao
  email: dongzhichao@mail.ipc.ac.cn
  organization: Weiqiao‐UCAS Science and Technology Park
BookMark eNqFkMFLwzAYxYNMcJtePQe82pmkaZN6m9OpsDFBB95Klqaa0SY1SRn77-2cTBDE0_cd3u893huAnrFGAXCO0QgjRK5EUdYjgkiMMMLsCPRxitMoRoT3Dj9-PQED79eoU7CY9sHyRlttfKOdKuBz2yi3USFo8wYXjTJwrqWzZdXqQkt_DafO1nBijVRN8Jfw6V0ZWysjYLBw3DSVliJoa_wpOC5F5dXZ9x2C5fTuZfIQzRb3j5PxLJIxZyyShKeiYDhJM6wkorxcSRRLjJIsYzyVCq3wStJYJqXKCBE8ExmjKceCYl7iJB6Ci71v4-xHq3zI17Z1povMCaeM4CShrFON9qqui_dOlXnjdC3cNsco302X76bLD9N1AP0FSB2-mgUndPU3lu2xja7U9p-QfHw7nf-wnyn4hUI
CitedBy_id crossref_primary_10_1002_marc_202400932
crossref_primary_10_1002_adma_202402893
crossref_primary_10_1016_j_compositesa_2024_108241
crossref_primary_10_1002_adhm_202401005
crossref_primary_10_1016_j_molliq_2024_125430
crossref_primary_10_1063_5_0197049
crossref_primary_10_3390_coatings15020140
crossref_primary_10_1063_5_0242480
crossref_primary_10_1038_s44286_023_00023_z
crossref_primary_10_1016_j_apmt_2023_101957
crossref_primary_10_1002_smll_202304705
crossref_primary_10_1016_j_jcis_2024_09_201
crossref_primary_10_1016_j_talanta_2025_127683
crossref_primary_10_1002_adfm_202305766
crossref_primary_10_1021_acsnano_4c10344
crossref_primary_10_1063_5_0221736
crossref_primary_10_1002_cjoc_202400618
crossref_primary_10_1680_jsuin_24_00113
crossref_primary_10_3390_nano14231978
crossref_primary_10_1021_acs_langmuir_4c01251
crossref_primary_10_1016_j_cej_2024_151336
crossref_primary_10_1002_smll_202404952
crossref_primary_10_1002_advs_202405641
crossref_primary_10_1016_j_matt_2024_01_009
crossref_primary_10_1021_acsami_4c10213
crossref_primary_10_1063_5_0256422
crossref_primary_10_1016_j_microc_2024_112571
crossref_primary_10_1021_acsami_4c14496
crossref_primary_10_1039_D4CS00673A
crossref_primary_10_1016_j_cis_2025_103442
crossref_primary_10_1016_j_cej_2023_145174
crossref_primary_10_1002_adma_202402527
Cites_doi 10.1039/tf9444000546
10.1002/adma.201301876
10.1002/adfm.201707490
10.1002/adfm.201802317
10.1126/sciadv.aay9919
10.1098/rsta.2009.0022
10.1073/pnas.1908806116
10.1039/C4NR07554D
10.1038/s41563-019-0440-2
10.1126/sciadv.abn1736
10.1021/acsami.7b09717
10.1002/ange.200460333
10.1038/s41586-019-1736-8
10.1039/C4LC01034E
10.1002/VIW.20200183
10.1038/ncomms2253
10.1002/anie.201610821
10.1038/nmat2998
10.1073/pnas.1418541112
10.1016/j.sna.2018.09.070
10.1038/s41467-022-29088-9
10.1073/pnas.0405885101
10.1039/C2SM27032C
10.1073/pnas.1909924117
10.1021/acssensors.2c01827
10.1039/C3LC51248G
10.1073/pnas.2019248118
10.1038/micronano.2016.39
10.1098/rsif.2011.0392
10.1002/adfm.201908066
10.1126/scirobotics.aba4411
10.1021/acsami.5b08596
10.1038/nmat3598
10.1073/pnas.1307122110
10.1021/acs.chemrev.1c00666
10.1126/sciadv.aao3530
10.1021/acs.langmuir.9b03385
10.1016/j.talanta.2011.08.024
10.1002/anie.202202021
10.1002/adfm.201601821
10.1039/B612667G
10.1038/35102108
10.1126/sciadv.aay8305
10.1038/s41586-018-0250-8
10.1242/jeb.029975
10.1021/ar300314s
10.1002/adma.201506089
10.1126/science.1112615
10.1021/ar5000693
10.1021/acssensors.8b00335
10.1021/acs.langmuir.5b01351
10.1021/acsami.6b04668
10.1002/anie.201600224
10.1016/j.bios.2019.03.009
10.1002/adma.202108427
10.1002/adma.201904668
10.1073/pnas.0810903105
10.1039/c3lc00006k
10.1038/s41563-018-0171-9
10.1016/j.watres.2014.12.005
10.1002/anie.201604014
10.1021/acsnano.6b07182
10.1098/rsif.2015.0415
10.1073/pnas.1506874112
10.1016/j.xcrp.2021.100439
10.1038/s41587-020-0466-7
10.1039/D0LC00994F
10.1021/acsnano.8b06023
10.1021/acs.analchem.8b05764
10.1002/adma.201805764
10.1021/acsnano.8b03924
10.1039/C6LC01451H
10.1146/annurev.matsci.38.060407.132434
10.1002/anie.201706665
10.1038/nature05058
10.1021/acsami.9b18957
10.1126/sciadv.aat1659
10.1038/432036a
10.1146/annurev-ento-112408-085338
10.1016/j.nantod.2022.101723
10.1038/nbt.3873
10.1038/s41467-017-01157-4
10.1021/acs.chemrev.7b00024
10.1039/C5LC00276A
10.1021/acsnano.9b05860
10.1039/B917150A
10.1126/sciadv.aav8002
10.1126/science.aba5010
10.1038/natrevmats.2015.3
10.1038/s41598-017-01725-0
10.1039/C9TA04770K
10.1002/adfm.202010634
10.1007/978-0-387-21656-0
10.1021/ac801729t
10.1021/ac503968p
10.1038/s41467-017-00846-4
10.1038/s41586-020-1985-6
10.1038/s41467-019-09042-y
10.1002/anie.201607514
10.1126/sciadv.abb4700
10.1002/adma.200290020
10.1038/nature16956
10.1002/anie.201201798
10.1098/rsif.2018.0229
10.1038/nprot.2016.154
10.1021/acs.chemrev.6b00848
10.1002/adma.201703838
10.1126/sciadv.aao1175
10.1002/chem.201700888
10.1073/pnas.1603387113
10.1021/acs.chemrev.0c01335
10.1021/acs.chemrev.0c00999
10.1126/science.abg7552
10.1002/admi.201901105
10.1021/acsami.6b08117
10.1073/pnas.2011935117
10.1073/pnas.1602451113
10.1038/natrevmats.2017.16
10.1038/nature08729
10.1002/elps.200800563
10.1039/D0NH00376J
10.1039/b807857b
10.1038/s41586-021-03603-2
10.1002/anie.202016154
10.1038/nature13118
10.1021/nn404761q
10.1002/adma.201905682
10.1002/smll.201903931
10.1021/acsnano.7b05826
10.1557/adv.2017.77
10.1098/rsif.2013.0336
10.1021/acscentsci.8b00504
10.1039/C6SM00921B
10.1038/nature10447
10.1016/j.jcis.2010.08.047
10.1039/C9TA01105F
10.1021/acs.langmuir.0c01494
10.1021/acsami.8b15901
10.1126/science.1215416
10.1002/adma.200801782
10.1039/c1nr10773a
10.1002/adfm.201604824
10.1021/la703821h
10.1002/adma.202101005
10.1002/anie.200603817
10.1038/natrevmats.2017.36
10.1002/adma.201003169
10.1073/pnas.2016388117
10.3390/bios6020014
10.1002/smll.202300469
10.1126/science.1250169
10.1039/C3LC51406D
10.1038/nature17189
10.1016/0021-9797(77)90052-2
10.1021/acsnano.8b01800
10.1002/adfm.201906745
10.1002/adma.201905449
10.1039/C9LC00785G
10.1021/ac000064s
10.1038/s41596-020-00417-w
10.1039/D0CS01516D
10.1038/s41586-019-1491-x
10.1126/sciadv.abf6941
10.1039/c004821f
10.1126/science.aac9582
10.1038/nmat1339
10.1007/s004250050096
10.1038/s41467-023-36376-5
10.1002/adfm.202002437
10.1038/s41598-019-39307-x
10.1039/b917112f
10.1021/acs.analchem.6b00633
10.1002/adma.201400262
10.1038/srep22865
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202301017
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202301017
ADFM202301017
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2018YFA0208501
– fundername: National Natural Science Foundation
  funderid: 52173293; 52103331; 22122508
– fundername: Key Research Program of the Chinese Academy of Sciences
  funderid: KJZD‐EW‐M01
– fundername: Young Elite Scientists Sponsorship Program by China Association for Science and Technology
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3877-c286ad715691ec048fbc03c10599786ce0b1bc43c5fe922a89a974681a418f153
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:40:51 EDT 2025
Tue Jul 01 00:30:43 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Jun 11 08:26:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3877-c286ad715691ec048fbc03c10599786ce0b1bc43c5fe922a89a974681a418f153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0729-5756
PQID 2847215547
PQPubID 2045204
PageCount 26
ParticipantIDs proquest_journals_2847215547
crossref_primary_10_1002_adfm_202301017
crossref_citationtrail_10_1002_adfm_202301017
wiley_primary_10_1002_adfm_202301017_ADFM202301017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2019; 91
2002; 14
2011; 477
2018; 283
2020; 20
2015; 70
2019; 11
2019; 10
2019; 13
2008; 38
2020; 16
2010; 463
2014; 26
2019; 18
2008; 105
2020; 13
2011; 353
2013; 9
2010; 22
2018; 3
2018; 4
2015; 87
2020; 578
2014; 14
2019; 29
2008; 24
2018; 30
2013; 110
2007; 3
2006; 442
2009; 367
2001; 414
2019; 7
2018; 28
2019; 9
2019; 6
2019; 5
2019; 31
2010; 39
2000; 72
2020; 38
2014; 47
2020; 36
2009; 212
2020; 32
2021; 50
2011; 3
2016; 13
1997; 202
2016; 6
2018; 17
2016; 1
2016; 2
2004; 432
2022; 3
2020; 30
2023; 48
2022; 7
2015; 112
2022; 8
2017; 56
2022; 13
2005; 4
2011; 85
2019; 575
2021; 373
2018; 12
2016; 28
2021; 60
2016; 26
2016; 8
2018; 15
2019; 572
2010; 55
2017; 7
2017; 8
2021; 21
2017; 2
2013; 25
2017; 3
2015; 31
2008; 8
2011; 10
2015; 349
2021; 121
2008; 4
2017; 9
2017; 117
2012; 51
2022; 122
2020; 6
1944; 5
2020; 5
2021; 31
2021; 33
2013; 10
2013; 13
2013; 12
2017; 35
2021; 118
2016; 113
2019; 116
2005; 309
2021; 595
2012; 335
2014; 8
2016; 88
2004; 101
2015; 12
2015; 15
2021; 7
2021; 6
2023; 14
2009; 21
2021; 2
2013; 46
2023; 15
2017; 27
2017; 23
2004
2015; 7
2016; 55
2021; 16
2014; 507
2009; 30
2004; 116
2012; 3
1977; 59
2023
2022
2017; 17
2018; 559
2022; 61
2017; 11
2017; 12
2016; 531
2020; 117
2016; 532
2007; 46
2014; 344
2012; 9
2019; 132
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
Lewińska I. (e_1_2_9_176_1) 2023
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Zhang Y. (e_1_2_9_141_1) 2020; 13
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
Zhi C. (e_1_2_9_167_1) 2023; 15
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
Wasserfall J. (e_1_2_9_134_1) 2017; 2
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
Chen L. (e_1_2_9_170_1) 2023
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
Liu S. (e_1_2_9_112_1) 2023
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1095
  year: 2019
  publication-title: Nat. Commun.
– volume: 202
  start-page: 1
  year: 1997
  publication-title: Planta
– volume: 3
  start-page: 4685
  year: 2011
  publication-title: Nanoscale
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  year: 2022
  publication-title: View
– volume: 9
  start-page: 720
  year: 2012
  publication-title: J. R. Soc. Interface
– volume: 122
  start-page: 5365
  year: 2022
  publication-title: Chem. Rev.
– volume: 2
  year: 2016
  publication-title: Microsyst. Nanoeng.
– volume: 36
  start-page: 9510
  year: 2020
  publication-title: Langmuir
– volume: 50
  start-page: 5333
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 60
  year: 2021
  publication-title: Angew. Chem.
– volume: 55
  year: 2016
  publication-title: Angew. Chem.
– volume: 132
  start-page: 171
  year: 2019
  publication-title: Biosens. Bioelectron.
– start-page: 253
  year: 2023
  publication-title: Talanta
– year: 2022
  publication-title: Adv. Mater.
– volume: 85
  start-page: 2587
  year: 2011
  publication-title: Talanta
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 2396
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 116
  start-page: 4438
  year: 2004
  publication-title: Angew. Chem.
– volume: 212
  start-page: 2835
  year: 2009
  publication-title: J. Exp. Biol.
– volume: 35
  start-page: 523
  year: 2017
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 2609
  year: 2013
  publication-title: Lab Chip
– volume: 14
  start-page: 860
  year: 2023
  publication-title: Nat. Commun.
– volume: 12
  year: 2015
  publication-title: J. R. Soc. Interface
– volume: 373
  start-page: 1344
  year: 2021
  publication-title: Science
– volume: 23
  year: 2017
  publication-title: Chemistry
– start-page: 161
  year: 2023
  publication-title: Trends Anal. Chem.
– volume: 3
  start-page: 1416
  year: 2018
  publication-title: ACS Sens.
– volume: 4
  start-page: 1102
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 3
  start-page: 178
  year: 2007
  publication-title: Soft Matter
– volume: 5
  year: 2020
  publication-title: Sci. Robot.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1168
  year: 2014
  publication-title: Lab Chip
– volume: 12
  start-page: 5149
  year: 2018
  publication-title: ACS Nano
– volume: 12
  start-page: 529
  year: 2013
  publication-title: Nat. Mater.
– volume: 10
  start-page: 477
  year: 2010
  publication-title: Lab Chip
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 335
  start-page: 690
  year: 2012
  publication-title: Science
– volume: 70
  start-page: 360
  year: 2015
  publication-title: Water Res
– volume: 2
  start-page: 1111
  year: 2017
  publication-title: MRS Adv.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 28
  start-page: 4646
  year: 2016
  publication-title: Adv. Mater.
– volume: 48
  year: 2023
  publication-title: Nano Today
– volume: 373
  start-page: 294
  year: 2021
  publication-title: Science
– volume: 559
  start-page: 77
  year: 2018
  publication-title: Nature
– volume: 3
  start-page: 1247
  year: 2012
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 110
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 572
  start-page: 507
  year: 2019
  publication-title: Nature
– volume: 24
  start-page: 4114
  year: 2008
  publication-title: Langmuir
– volume: 112
  start-page: 4582
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 1800
  year: 2017
  publication-title: Sci. Rep.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  start-page: 5331
  year: 2016
  publication-title: Anal. Chem.
– volume: 16
  start-page: 309
  year: 2021
  publication-title: Nat. Protoc.
– volume: 13
  start-page: 4891
  year: 2020
  publication-title: Environ. Sci.
– volume: 15
  start-page: 60
  year: 2023
  publication-title: Nanomicro Lett.
– volume: 2
  year: 2017
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 353
  start-page: 335
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 1497
  year: 2009
  publication-title: Electrophoresis
– volume: 59
  start-page: 568
  year: 1977
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 5922
  year: 2015
  publication-title: Nanoscale
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 46
  start-page: 1318
  year: 2007
  publication-title: Angew. Chem.
– volume: 6
  start-page: 24
  year: 2021
  publication-title: Nanoscale Horiz.
– volume: 20
  start-page: 35
  year: 2020
  publication-title: Lab Chip
– volume: 117
  start-page: 8447
  year: 2017
  publication-title: Chem. Rev.
– volume: 442
  start-page: 368
  year: 2006
  publication-title: Nature
– year: 2023
  publication-title: Small
– volume: 463
  start-page: 640
  year: 2010
  publication-title: Nature
– volume: 344
  start-page: 70
  year: 2014
  publication-title: Science
– volume: 18
  start-page: 936
  year: 2019
  publication-title: Nat. Mater.
– volume: 122
  start-page: 7061
  year: 2022
  publication-title: Chem. Rev.
– volume: 26
  start-page: 6121
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 9131
  year: 2008
  publication-title: Anal. Chem.
– volume: 21
  start-page: 284
  year: 2021
  publication-title: Lab Chip
– volume: 105
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 760
  year: 2017
  publication-title: ACS Nano
– volume: 10
  year: 2013
  publication-title: J. R. Soc. Interface
– volume: 595
  start-page: 58
  year: 2021
  publication-title: Nature
– volume: 91
  start-page: 5169
  year: 2019
  publication-title: Anal. Chem.
– volume: 113
  start-page: 6143
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 715
  year: 2020
  publication-title: Nat. Biotechnol.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 51
  year: 2012
  publication-title: Angew. Chem.
– volume: 477
  start-page: 443
  year: 2011
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 38
  start-page: 71
  year: 2008
  publication-title: Annu. Rev. Mater. Res.
– volume: 14
  start-page: 1857
  year: 2002
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2942
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 72
  start-page: 4100
  year: 2000
  publication-title: Anal. Chem.
– volume: 13
  start-page: 134
  year: 2016
  publication-title: Soft Matter
– volume: 36
  start-page: 667
  year: 2020
  publication-title: Langmuir
– year: 2004
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 531
  start-page: 78
  year: 2016
  publication-title: Nature
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 10
  start-page: 367
  year: 2011
  publication-title: Nat. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 935
  year: 2018
  publication-title: Nat. Mater.
– volume: 578
  start-page: 392
  year: 2020
  publication-title: Nature
– volume: 309
  start-page: 887
  year: 2005
  publication-title: Science
– volume: 12
  start-page: 932
  year: 2018
  publication-title: ACS Nano
– volume: 14
  start-page: 1538
  year: 2014
  publication-title: Lab Chip
– volume: 432
  start-page: 36
  year: 2004
  publication-title: Nature
– volume: 25
  start-page: 5937
  year: 2013
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2659
  year: 2010
  publication-title: Lab Chip
– volume: 39
  start-page: 3240
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 4507
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 307
  year: 2010
  publication-title: Annu. Rev. Entomol.
– volume: 507
  start-page: 181
  year: 2014
  publication-title: Nature
– volume: 55
  start-page: 4265
  year: 2016
  publication-title: Angew. Chem.
– volume: 22
  start-page: 5521
  year: 2010
  publication-title: Adv. Mater.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 277
  year: 2005
  publication-title: Nat. Mater.
– volume: 101
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 3857
  year: 2022
  publication-title: ACS Sens.
– volume: 9
  start-page: 2817
  year: 2019
  publication-title: Sci. Rep.
– volume: 6
  start-page: 14
  year: 2016
  publication-title: Biosensors
– volume: 56
  year: 2017
  publication-title: Angew. Chem.
– volume: 47
  start-page: 2342
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 546
  year: 1944
  publication-title: Trans. Faraday Soc.
– volume: 56
  start-page: 2296
  year: 2017
  publication-title: Angew. Chem.
– volume: 112
  start-page: 9247
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 1331
  year: 2022
  publication-title: Nat. Commun.
– volume: 15
  start-page: 244
  year: 2015
  publication-title: Lab Chip
– volume: 283
  start-page: 375
  year: 2018
  publication-title: Sens. Actuators, A
– volume: 8
  start-page: 816
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 87
  start-page: 19
  year: 2015
  publication-title: Anal. Chem.
– volume: 414
  start-page: 33
  year: 2001
  publication-title: Nature
– volume: 61
  year: 2022
  publication-title: Angew. Chem.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 7964
  year: 2017
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2232
  year: 2008
  publication-title: Soft Matter
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 21
  start-page: 665
  year: 2009
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2018
  publication-title: J. R. Soc. Interface
– volume: 31
  start-page: 8328
  year: 2015
  publication-title: Langmuir
– volume: 12
  start-page: 9214
  year: 2018
  publication-title: ACS Nano
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 367
  start-page: 1487
  year: 2009
  publication-title: Philos. Trans., A: Math Phys. Eng. Sci.
– volume: 15
  start-page: 2452
  year: 2015
  publication-title: Lab Chip
– volume: 532
  start-page: 85
  year: 2016
  publication-title: Nature
– volume: 349
  start-page: 956
  year: 2015
  publication-title: Science
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 44
  year: 2017
  publication-title: Nat. Protoc.
– volume: 26
  start-page: 5025
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1321
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 9550
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 117
  start-page: 1890
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 1080
  year: 2017
  publication-title: Nat. Commun.
– volume: 17
  start-page: 614
  year: 2017
  publication-title: Lab Chip
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 1772
  year: 2013
  publication-title: Soft Matter
– volume: 575
  start-page: 330
  year: 2019
  publication-title: Nature
– ident: e_1_2_9_84_1
  doi: 10.1039/tf9444000546
– ident: e_1_2_9_117_1
  doi: 10.1002/adma.201301876
– ident: e_1_2_9_110_1
  doi: 10.1002/adfm.201707490
– ident: e_1_2_9_53_1
  doi: 10.1002/adfm.201802317
– ident: e_1_2_9_30_1
  doi: 10.1126/sciadv.aay9919
– ident: e_1_2_9_88_1
  doi: 10.1098/rsta.2009.0022
– start-page: 161
  year: 2023
  ident: e_1_2_9_170_1
  publication-title: Trends Anal. Chem.
– ident: e_1_2_9_155_1
  doi: 10.1073/pnas.1908806116
– ident: e_1_2_9_71_1
  doi: 10.1039/C4NR07554D
– ident: e_1_2_9_130_1
  doi: 10.1038/s41563-019-0440-2
– ident: e_1_2_9_40_1
  doi: 10.1126/sciadv.abn1736
– ident: e_1_2_9_67_1
  doi: 10.1021/acsami.7b09717
– ident: e_1_2_9_79_1
  doi: 10.1002/ange.200460333
– ident: e_1_2_9_156_1
  doi: 10.1038/s41586-019-1736-8
– ident: e_1_2_9_20_1
  doi: 10.1039/C4LC01034E
– ident: e_1_2_9_169_1
  doi: 10.1002/VIW.20200183
– ident: e_1_2_9_93_1
  doi: 10.1038/ncomms2253
– ident: e_1_2_9_175_1
  doi: 10.1002/anie.201610821
– ident: e_1_2_9_149_1
  doi: 10.1038/nmat2998
– ident: e_1_2_9_31_1
  doi: 10.1073/pnas.1418541112
– ident: e_1_2_9_122_1
  doi: 10.1016/j.sna.2018.09.070
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-022-29088-9
– ident: e_1_2_9_95_1
  doi: 10.1073/pnas.0405885101
– ident: e_1_2_9_97_1
  doi: 10.1039/C2SM27032C
– ident: e_1_2_9_164_1
  doi: 10.1073/pnas.1909924117
– ident: e_1_2_9_166_1
  doi: 10.1021/acssensors.2c01827
– ident: e_1_2_9_72_1
  doi: 10.1039/C3LC51248G
– ident: e_1_2_9_34_1
  doi: 10.1073/pnas.2019248118
– ident: e_1_2_9_177_1
  doi: 10.1038/micronano.2016.39
– ident: e_1_2_9_124_1
  doi: 10.1098/rsif.2011.0392
– ident: e_1_2_9_108_1
  doi: 10.1002/adfm.201908066
– ident: e_1_2_9_144_1
  doi: 10.1126/scirobotics.aba4411
– ident: e_1_2_9_142_1
  doi: 10.1021/acsami.5b08596
– ident: e_1_2_9_104_1
  doi: 10.1038/nmat3598
– ident: e_1_2_9_132_1
  doi: 10.1073/pnas.1307122110
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.chemrev.1c00666
– ident: e_1_2_9_38_1
  doi: 10.1126/sciadv.aao3530
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.langmuir.9b03385
– ident: e_1_2_9_62_1
  doi: 10.1016/j.talanta.2011.08.024
– ident: e_1_2_9_180_1
  doi: 10.1002/anie.202202021
– ident: e_1_2_9_73_1
  doi: 10.1002/adfm.201601821
– ident: e_1_2_9_81_1
  doi: 10.1039/B612667G
– ident: e_1_2_9_113_1
  doi: 10.1038/35102108
– ident: e_1_2_9_18_1
  doi: 10.1126/sciadv.aay8305
– ident: e_1_2_9_105_1
  doi: 10.1038/s41586-018-0250-8
– ident: e_1_2_9_129_1
  doi: 10.1242/jeb.029975
– ident: e_1_2_9_15_1
  doi: 10.1021/ar300314s
– ident: e_1_2_9_16_1
  doi: 10.1002/adma.201506089
– ident: e_1_2_9_32_1
  doi: 10.1126/science.1112615
– ident: e_1_2_9_115_1
  doi: 10.1021/ar5000693
– ident: e_1_2_9_70_1
  doi: 10.1021/acssensors.8b00335
– ident: e_1_2_9_151_1
  doi: 10.1021/acs.langmuir.5b01351
– ident: e_1_2_9_83_1
  doi: 10.1021/acsami.6b04668
– ident: e_1_2_9_136_1
  doi: 10.1002/anie.201600224
– ident: e_1_2_9_171_1
  doi: 10.1016/j.bios.2019.03.009
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.202108427
– ident: e_1_2_9_158_1
  doi: 10.1002/adma.201904668
– ident: e_1_2_9_42_1
  doi: 10.1073/pnas.0810903105
– ident: e_1_2_9_63_1
  doi: 10.1039/c3lc00006k
– ident: e_1_2_9_119_1
  doi: 10.1038/s41563-018-0171-9
– ident: e_1_2_9_66_1
  doi: 10.1016/j.watres.2014.12.005
– ident: e_1_2_9_178_1
  doi: 10.1002/anie.201604014
– ident: e_1_2_9_100_1
  doi: 10.1021/acsnano.6b07182
– ident: e_1_2_9_120_1
  doi: 10.1098/rsif.2015.0415
– ident: e_1_2_9_131_1
  doi: 10.1073/pnas.1506874112
– ident: e_1_2_9_138_1
  doi: 10.1016/j.xcrp.2021.100439
– ident: e_1_2_9_145_1
  doi: 10.1038/s41587-020-0466-7
– ident: e_1_2_9_160_1
  doi: 10.1039/D0LC00994F
– ident: e_1_2_9_25_1
  doi: 10.1021/acsnano.8b06023
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.analchem.8b05764
– ident: e_1_2_9_2_1
  doi: 10.1002/adma.201805764
– ident: e_1_2_9_35_1
  doi: 10.1021/acsnano.8b03924
– ident: e_1_2_9_58_1
  doi: 10.1039/C6LC01451H
– ident: e_1_2_9_74_1
  doi: 10.1146/annurev.matsci.38.060407.132434
– ident: e_1_2_9_109_1
  doi: 10.1002/anie.201706665
– ident: e_1_2_9_8_1
  doi: 10.1038/nature05058
– ident: e_1_2_9_150_1
  doi: 10.1021/acsami.9b18957
– ident: e_1_2_9_157_1
  doi: 10.1126/sciadv.aat1659
– ident: e_1_2_9_82_1
  doi: 10.1038/432036a
– ident: e_1_2_9_126_1
  doi: 10.1146/annurev-ento-112408-085338
– ident: e_1_2_9_165_1
  doi: 10.1016/j.nantod.2022.101723
– ident: e_1_2_9_24_1
  doi: 10.1038/nbt.3873
– ident: e_1_2_9_99_1
  doi: 10.1038/s41467-017-01157-4
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.chemrev.7b00024
– ident: e_1_2_9_59_1
  doi: 10.1039/C5LC00276A
– ident: e_1_2_9_147_1
  doi: 10.1021/acsnano.9b05860
– ident: e_1_2_9_65_1
  doi: 10.1039/B917150A
– ident: e_1_2_9_28_1
  doi: 10.1126/sciadv.aav8002
– ident: e_1_2_9_52_1
  doi: 10.1126/science.aba5010
– ident: e_1_2_9_55_1
  doi: 10.1038/natrevmats.2015.3
– ident: e_1_2_9_46_1
  doi: 10.1038/s41598-017-01725-0
– ident: e_1_2_9_98_1
  doi: 10.1039/C9TA04770K
– ident: e_1_2_9_90_1
  doi: 10.1002/adfm.202010634
– ident: e_1_2_9_107_1
  doi: 10.1007/978-0-387-21656-0
– year: 2023
  ident: e_1_2_9_112_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_9_60_1
  doi: 10.1021/ac801729t
– ident: e_1_2_9_41_1
  doi: 10.1021/ac503968p
– ident: e_1_2_9_26_1
  doi: 10.1038/s41467-017-00846-4
– ident: e_1_2_9_139_1
  doi: 10.1038/s41586-020-1985-6
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-019-09042-y
– ident: e_1_2_9_37_1
  doi: 10.1002/anie.201607514
– ident: e_1_2_9_29_1
  doi: 10.1126/sciadv.abb4700
– ident: e_1_2_9_78_1
  doi: 10.1002/adma.200290020
– ident: e_1_2_9_103_1
  doi: 10.1038/nature16956
– ident: e_1_2_9_36_1
  doi: 10.1002/anie.201201798
– ident: e_1_2_9_127_1
  doi: 10.1098/rsif.2018.0229
– ident: e_1_2_9_11_1
  doi: 10.1038/nprot.2016.154
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.chemrev.6b00848
– ident: e_1_2_9_85_1
  doi: 10.1002/adma.201703838
– ident: e_1_2_9_153_1
  doi: 10.1126/sciadv.aao1175
– volume: 2
  year: 2017
  ident: e_1_2_9_134_1
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
– ident: e_1_2_9_173_1
  doi: 10.1002/chem.201700888
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1603387113
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.chemrev.0c01335
– ident: e_1_2_9_163_1
  doi: 10.1021/acs.chemrev.0c00999
– ident: e_1_2_9_123_1
  doi: 10.1126/science.abg7552
– ident: e_1_2_9_48_1
  doi: 10.1002/admi.201901105
– ident: e_1_2_9_64_1
  doi: 10.1021/acsami.6b08117
– ident: e_1_2_9_111_1
  doi: 10.1073/pnas.2011935117
– ident: e_1_2_9_152_1
  doi: 10.1073/pnas.1602451113
– ident: e_1_2_9_1_1
  doi: 10.1038/natrevmats.2017.16
– ident: e_1_2_9_92_1
  doi: 10.1038/nature08729
– ident: e_1_2_9_61_1
  doi: 10.1002/elps.200800563
– ident: e_1_2_9_162_1
  doi: 10.1039/D0NH00376J
– ident: e_1_2_9_76_1
  doi: 10.1039/b807857b
– ident: e_1_2_9_137_1
  doi: 10.1038/s41586-021-03603-2
– ident: e_1_2_9_146_1
  doi: 10.1002/anie.202016154
– ident: e_1_2_9_7_1
  doi: 10.1038/nature13118
– ident: e_1_2_9_133_1
  doi: 10.1021/nn404761q
– ident: e_1_2_9_154_1
  doi: 10.1002/adma.201905682
– ident: e_1_2_9_13_1
  doi: 10.1002/smll.201903931
– ident: e_1_2_9_87_1
  doi: 10.1021/acsnano.7b05826
– ident: e_1_2_9_121_1
  doi: 10.1557/adv.2017.77
– ident: e_1_2_9_125_1
  doi: 10.1098/rsif.2013.0336
– ident: e_1_2_9_50_1
  doi: 10.1021/acscentsci.8b00504
– ident: e_1_2_9_69_1
  doi: 10.1039/C6SM00921B
– ident: e_1_2_9_96_1
  doi: 10.1038/nature10447
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jcis.2010.08.047
– ident: e_1_2_9_148_1
  doi: 10.1039/C9TA01105F
– ident: e_1_2_9_135_1
  doi: 10.1021/acs.langmuir.0c01494
– ident: e_1_2_9_118_1
  doi: 10.1021/acsami.8b15901
– ident: e_1_2_9_22_1
  doi: 10.1126/science.1215416
– ident: e_1_2_9_91_1
  doi: 10.1002/adma.200801782
– ident: e_1_2_9_128_1
  doi: 10.1039/c1nr10773a
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.201604824
– ident: e_1_2_9_80_1
  doi: 10.1021/la703821h
– ident: e_1_2_9_161_1
  doi: 10.1002/adma.202101005
– ident: e_1_2_9_43_1
  doi: 10.1002/anie.200603817
– volume: 13
  start-page: 4891
  year: 2020
  ident: e_1_2_9_141_1
  publication-title: Environ. Sci.
– ident: e_1_2_9_54_1
  doi: 10.1038/natrevmats.2017.36
– ident: e_1_2_9_116_1
  doi: 10.1002/adma.201003169
– ident: e_1_2_9_143_1
  doi: 10.1073/pnas.2016388117
– ident: e_1_2_9_39_1
  doi: 10.3390/bios6020014
– volume: 15
  start-page: 60
  year: 2023
  ident: e_1_2_9_167_1
  publication-title: Nanomicro Lett.
– ident: e_1_2_9_168_1
  doi: 10.1002/smll.202300469
– ident: e_1_2_9_12_1
  doi: 10.1126/science.1250169
– ident: e_1_2_9_47_1
  doi: 10.1039/C3LC51406D
– ident: e_1_2_9_94_1
  doi: 10.1038/nature17189
– ident: e_1_2_9_106_1
  doi: 10.1016/0021-9797(77)90052-2
– ident: e_1_2_9_101_1
  doi: 10.1021/acsnano.8b01800
– start-page: 253
  year: 2023
  ident: e_1_2_9_176_1
  publication-title: Talanta
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.201906745
– ident: e_1_2_9_86_1
  doi: 10.1002/adma.201905449
– ident: e_1_2_9_5_1
  doi: 10.1039/C9LC00785G
– ident: e_1_2_9_45_1
  doi: 10.1021/ac000064s
– ident: e_1_2_9_14_1
  doi: 10.1038/s41596-020-00417-w
– ident: e_1_2_9_140_1
  doi: 10.1039/D0CS01516D
– ident: e_1_2_9_10_1
  doi: 10.1038/s41586-019-1491-x
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.abf6941
– ident: e_1_2_9_56_1
  doi: 10.1039/c004821f
– ident: e_1_2_9_17_1
  doi: 10.1126/science.aac9582
– ident: e_1_2_9_49_1
  doi: 10.1038/nmat1339
– ident: e_1_2_9_77_1
  doi: 10.1007/s004250050096
– ident: e_1_2_9_102_1
  doi: 10.1038/s41467-023-36376-5
– ident: e_1_2_9_159_1
  doi: 10.1002/adfm.202002437
– ident: e_1_2_9_174_1
  doi: 10.1038/s41598-019-39307-x
– ident: e_1_2_9_89_1
  doi: 10.1039/b917112f
– ident: e_1_2_9_172_1
  doi: 10.1021/acs.analchem.6b00633
– ident: e_1_2_9_114_1
  doi: 10.1002/adma.201400262
– ident: e_1_2_9_179_1
  doi: 10.1038/srep22865
SSID ssj0017734
Score 2.5657353
SecondaryResourceType review_article
Snippet Microfluidics and bioinspired superwetting materials, as two crucial branches of scientific research, are entering their golden age of development. As an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bioinspired
Biomimetics
Bionics
Interdisciplinary subjects
liquid manipulation
Materials science
Microfluidics
open microfluidics
superhydrophilic
superhydrophobic
Three dimensional printing
Title Bioinspired Superwetting Open Microfluidics: From Concepts, Phenomena to Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202301017
https://www.proquest.com/docview/2847215547
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78FqdTchC82G1NsjT1NqdDhImog91KPnE4u7GPi3-9ee3WbYIIemtpUtok7-X3kt_7BaGL2DHJnTOBoEYHrEFsIBWhQSx53RHKjZKwNNB55Pdd9tBr9Fay-HN9iGLBDSwj89dg4FJNakvRUGkcZJJ7CA2jyjthIGwBKnou9KPCKMq3lXkIBK-wt1BtrJPaevX1WWkJNVcBazbjtHeQXHxrTjR5r86mqqo_v8k4_udndtH2HI7iZj5-9tCGTffR1opI4QHq3vSH_RQ25K3BL7MREKkzsjQGMgruAKPPDWZ909eTa9weDz9wK8-FnFzhpzebgsaDxNMhbq5slh-ibvvutXUfzA9jCDQVURRoIrg0kQ_34tBqb_dO6TrVAM98IMq1ratQaUYz9hohUsTShypchJKFwnm_eoRK6TC1xwg7w0IjlIgbljEWqZgLwVnsYkqto1SWUbDojETPlcrhwIxBkmsskwSaKymaq4wui_KjXKPjx5KVRd8mc1udJDBBE4BV_jHJOumXtyTN23anuDv5S6VTtAnXOZOwgkrT8cyeeXQzVefZCP4C-KzwXw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgHIADO2Ip4AMSF1Ia23UcbmWpytIKQSv1FnkVFZAi2l74ejJJEwoSQoJjEjtK7Bn7efzmGaHD0DHJnTOeoEZ7rEasJxWhXih51RHKjZIQGmi1ebPLrnu1nE0IuTCZPkQRcAPPSMdrcHAISJ98qoZK4yCVPMHQYFazaA6O9QbfvLgvFKT8IMg2lrkPFC-_l-s2VsnJ1_pf56VPsDkNWdM5p7GMVP61GdXkqTIeqYp-_ybk-K_fWUFLE0SK65kJraIZG6-hxSmdwnXUPesP-jHsyVuDH8avwKVO-dIY-Ci4BaQ-9zzum74enuLG2-AFn2fpkMNjfPdoY5B5kHg0wPWp_fIN1G1cds6b3uQ8Bk9TEQSeJoJLEyQrvtC3OnF9p3SVakBoyVqUa1tVvtKMpgQ2QqQIZbJa4cKXzBcuGVo3USkexHYLYWeYb4QSYc0yxgIVciE4C11IqXWUym3k5b0R6YlYOZyZ8RxlMsskguaKiubaRkdF-ddMpuPHkuW8c6OJuw4jmKMJIKvkMUl76Ze3RPWLRqu42vlLpQM03-y0bqPbq_bNLlqA-xmxsIxKo7ex3UvAzkjtp-b8AQhD9Hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5eQPTBu3iZmgfBF6ttkqWpb3OzeJuIOthbyRWH2g23vfjr7Wm3OgUR9LFtUtokJ-c7yXe-IHQQOSa5c8YT1GiPVYn1pCLUiyT3HaHcKAlLA81bftFiV-1qeyKLv9CHKBfcwDLy-RoMvGfcyadoqDQOMskzCA2jahrNMu4LCL8a96WAVBCGxb4yD4DhFbTHso0-Ofla_6tb-sSak4g1dznxEpLjjy2YJs_Hw4E61u_fdBz_8zfLaHGER3GtGEAraMqmq2hhQqVwDbXOOt1OCjvy1uCHYQ-Y1DlbGgMbBTeB0udehh3T0f1THL91X3G9SIbsH-G7J5uCyIPEgy6uTeyWr6NWfP5Yv_BGpzF4moow9DQRXJowi_eiwOrM8J3SPtWAz7JIlGvrq0BpRnP6GiFSRDKLVbgIJAuEyybWDTSTdlO7ibAzLDBCiahqGWOhirgQnEUuotQ6SuUW8sadkeiRVDmcmPGSFCLLJIHmSsrm2kKHZfleIdLxY8nKuG-TkbH2E_DQBHBV9pjknfTLW5JaI26WV9t_qbSP5u4acXJzeXu9g-bhdsEqrKCZwdvQ7mZIZ6D28sH8AUT18zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Superwetting+Open+Microfluidics%3A+From+Concepts%2C+Phenomena+to+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Si%2C+Yifan&rft.au=Li%2C+Chuxin&rft.au=Hu%2C+Jinlian&rft.au=Zhang%2C+Chengqi&rft.date=2023-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202301017&rft.externalDBID=10.1002%252Fadfm.202301017&rft.externalDocID=ADFM202301017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon