Solar‐Induced Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure

Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 47; no. 15
Main Authors Marrs, J. K., Reblin, J. S., Logan, B. A., Allen, D. W., Reinmann, A. B., Bombard, D. M., Tabachnik, D., Hutyra, L. R.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models. Plain Language Summary Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care. Key Points Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning
AbstractList Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models. Plain Language Summary Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care. Key Points Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning
Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models.
Abstract Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models. Plain Language Summary Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care. Key Points Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning
Author Reinmann, A. B.
Bombard, D. M.
Logan, B. A.
Allen, D. W.
Hutyra, L. R.
Marrs, J. K.
Tabachnik, D.
Reblin, J. S.
Author_xml – sequence: 1
  givenname: J. K.
  orcidid: 0000-0001-5908-3582
  surname: Marrs
  fullname: Marrs, J. K.
  email: jmarrs@bu.edu
  organization: Boston University
– sequence: 2
  givenname: J. S.
  surname: Reblin
  fullname: Reblin, J. S.
  organization: Bowdoin College
– sequence: 3
  givenname: B. A.
  surname: Logan
  fullname: Logan, B. A.
  organization: Bowdoin College
– sequence: 4
  givenname: D. W.
  surname: Allen
  fullname: Allen, D. W.
  organization: National Institute of Standards and Technology
– sequence: 5
  givenname: A. B.
  surname: Reinmann
  fullname: Reinmann, A. B.
  organization: Hunter College
– sequence: 6
  givenname: D. M.
  surname: Bombard
  fullname: Bombard, D. M.
  organization: Bowdoin College
– sequence: 7
  givenname: D.
  surname: Tabachnik
  fullname: Tabachnik, D.
  organization: Bowdoin College
– sequence: 8
  givenname: L. R.
  surname: Hutyra
  fullname: Hutyra, L. R.
  organization: Boston University
BookMark eNp9kNFKwzAYhYMouE3vfICAt1b_JG2TXI7q5qCouHld0jZ1nVmzJS1jdz6Cz-iTWJmCV16d_xw-zg9niI4b22iELghcE6DyhgKFaQqCyyg-QgMiwzAQAPwYDQBkf1Men6Kh9ysAYMDIAG3n1ij3-f4xa8qu0CWemM467QvdFBrfWu3xg23xwqniDT8tbWv9vmmXuq0LnCiX2waPva_XtVFt3ZuJNcbu6uYV_xbOW7tWrTI4MdZ3Tp-hk0oZr89_dIReJneL5D5IH6ezZJwGBROcB2Ee54IKGWtVVoWmogQpKxZRQqtcR5wKUkEuYuCliEnEBOGyz1gpVSQ4YWyELg-9G2e3nfZttrKda_qXGQ0ZlUzSKOypqwNVOOu901W2cfVauX1GIPseNfs7ao_TA76rjd7_y2bT5zQGwTj7Am2QetE
CitedBy_id crossref_primary_10_1016_j_agrformet_2023_109814
crossref_primary_10_1016_j_rse_2021_112413
crossref_primary_10_34133_remotesensing_0085
crossref_primary_10_1525_elementa_2023_00102
crossref_primary_10_1029_2020JG006082
crossref_primary_10_1016_j_agrformet_2021_108522
crossref_primary_10_1088_2515_7620_ad0b29
crossref_primary_10_1093_aobpla_plad039
crossref_primary_10_1016_j_agrformet_2022_109019
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_1111_gcb_17151
crossref_primary_10_1016_j_agrformet_2022_109063
crossref_primary_10_5194_bg_18_6579_2021
crossref_primary_10_1029_2021JG006588
crossref_primary_10_1029_2023JG007703
crossref_primary_10_1016_j_ecolind_2021_107949
crossref_primary_10_1016_j_rse_2024_114150
crossref_primary_10_3390_agronomy14020364
crossref_primary_10_1016_j_rse_2022_113383
crossref_primary_10_1088_1748_9326_ac3b16
crossref_primary_10_3389_ffgc_2023_1157340
crossref_primary_10_1016_j_rse_2022_113104
crossref_primary_10_1016_j_agrformet_2022_109180
crossref_primary_10_1016_j_scitotenv_2024_172725
crossref_primary_10_1038_s41467_022_28652_7
crossref_primary_10_1093_aobpla_plad069
crossref_primary_10_1016_j_rse_2023_113733
crossref_primary_10_3390_su15021095
crossref_primary_10_1029_2020GL091247
crossref_primary_10_1016_j_agrformet_2023_109591
crossref_primary_10_1029_2021RG000736
crossref_primary_10_3390_plants12193365
crossref_primary_10_5194_bg_20_1473_2023
crossref_primary_10_1029_2021MS002747
crossref_primary_10_3389_ffgc_2021_695269
crossref_primary_10_1021_acsearthspacechem_1c00260
crossref_primary_10_3390_app14020771
crossref_primary_10_1016_j_rse_2021_112555
crossref_primary_10_1016_j_jag_2024_103821
crossref_primary_10_1016_j_agrformet_2022_108905
crossref_primary_10_1016_j_agrformet_2022_108904
crossref_primary_10_1038_s41477_021_00952_8
crossref_primary_10_1111_gcb_16646
crossref_primary_10_1111_nph_17247
crossref_primary_10_1016_j_agrformet_2022_108980
crossref_primary_10_1016_j_scitotenv_2022_154681
crossref_primary_10_5194_essd_14_1513_2022
crossref_primary_10_1016_j_rse_2024_114295
crossref_primary_10_1038_s41477_021_00980_4
crossref_primary_10_3390_agronomy13020337
crossref_primary_10_1029_2020GL091098
crossref_primary_10_1016_j_scitotenv_2023_162591
crossref_primary_10_32615_ps_2021_055
crossref_primary_10_1029_2022JG007352
crossref_primary_10_1016_j_rse_2020_112196
crossref_primary_10_3390_rs13122363
crossref_primary_10_1016_j_rse_2021_112672
crossref_primary_10_1016_j_rse_2022_112950
crossref_primary_10_1016_j_rse_2022_113445
crossref_primary_10_1088_1748_9326_aca5a0
crossref_primary_10_1093_biosci_biad116
crossref_primary_10_1093_jxb_erac388
crossref_primary_10_1093_jxb_erad356
crossref_primary_10_1111_nph_18045
crossref_primary_10_1016_j_rse_2021_112748
crossref_primary_10_3390_app112210821
crossref_primary_10_1016_j_rse_2023_113879
crossref_primary_10_3390_rs15010067
crossref_primary_10_5194_gmd_14_3633_2021
crossref_primary_10_1088_1748_9326_ad07b4
crossref_primary_10_1029_2023JG007742
crossref_primary_10_1016_j_rse_2023_113919
crossref_primary_10_3390_rs14102439
crossref_primary_10_3390_rs13163143
crossref_primary_10_1016_j_agrformet_2022_109033
crossref_primary_10_1186_s13007_023_01001_5
crossref_primary_10_1016_j_scitotenv_2023_166386
crossref_primary_10_3390_rs13142824
crossref_primary_10_1111_geb_13561
crossref_primary_10_1016_j_agrformet_2022_109070
crossref_primary_10_5194_bg_19_477_2022
Cites_doi 10.1002/2015GL063201
10.1111/pce.13754
10.1071/FP07113
10.1073/pnas.1900278116
10.1038/s41598-018-32602-z
10.1016/j.rse.2015.06.008
10.1007/BF01516164
10.1002/2015RG000483
10.1016/j.rse.2018.02.016
10.1111/nph.14662
10.1002/2014GL062943
10.1139/cjb-2016-0254
10.1046/j.1365-3040.2001.00660.x
10.1111/j.1469-8137.2006.01835.x
10.1007/s004420050728
10.1007/PL00013823
10.1002/2016GL070775
10.1126/science.1201609
10.1111/nph.15796
10.1002/2016JG003580
10.1111/gcb.14565
10.1016/j.rse.2009.05.003
10.5194/essd-10-405-2018
10.1016/j.rse.2014.11.012
10.1111/gcb.14427
10.1002/eap.2101
10.1111/gcb.13590
10.1007/s11120-008-9292-3
10.1016/0034-4257(92)90059-S
10.18637/jss.v067.i01
10.1093/jexbot/51.345.659
10.1093/jxb/eru191
10.1016/j.rse.2017.12.009
10.1029/2019GL082459
10.1007/BF00195320
10.1109/TIM.1975.4314448
10.1016/j.rse.2016.04.027
10.1117/12.2520457
10.1146/annurev.arplant.59.032607.092759
10.1016/j.rse.2015.06.002
10.1016/j.rse.2007.08.004
10.2307/2401901
10.1038/s41598-017-03818-2
10.1093/oxfordjournals.pcp.a029394
10.1029/2020GL087858
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2020GL087956
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2020GL087956
GRL60837
Genre article
GrantInformation_xml – fundername: National Institute of Standards and Technology
  funderid: 70NANB17H030
– fundername: U.S. Department of Agriculture NIFA
  funderid: 2017‐67003‐26487
– fundername: USDA | National Institute of Food and Agriculture (NIFA)
  funderid: 2017‐67003‐26487
– fundername: DOC | National Institute of Standards and Technology (NIST)
  funderid: 70NANB17H030
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3877-4b6b82896eadfce28d099f35212fbe57281f0b8607d8615381792813d9a587133
ISSN 0094-8276
IngestDate Sun Oct 27 04:31:18 EDT 2024
Thu Sep 12 17:39:53 EDT 2024
Sat Aug 24 01:40:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3877-4b6b82896eadfce28d099f35212fbe57281f0b8607d8615381792813d9a587133
ORCID 0000-0001-5908-3582
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1029/2020gl087956
PQID 2432939254
PQPubID 54723
PageCount 11
ParticipantIDs proquest_journals_2432939254
crossref_primary_10_1029_2020GL087956
wiley_primary_10_1029_2020GL087956_GRL60837
PublicationCentury 2000
PublicationDate 16 August 2020
PublicationDateYYYYMMDD 2020-08-16
PublicationDate_xml – month: 08
  year: 2020
  text: 16 August 2020
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
1931; 19
2011; 333
1972; 9
2018; 205
1992; 186
2020; 241
2015; 53
2015; 166
2017; 44
2017; 23
2008; 59
2000; 51
2019; 223
2009; 113
2018; 209
2006; 172
2003
2008; 96
1998; 116
2016; 182
2001; 24
2007; 34
2017; 215
2014; 65
2018; 24
2017; 95
2015; 67
1998; 39
2018; 8
2020
2015; 158
2015; 42
2019; 46
2019; 25
1975; 24
2019
2019; 116
2018
2020; 47
2015
2013
2008; 112
2017; 122
1999; 118
2018; 10
1992; 41
e_1_2_8_28_1
Helm L. T. (e_1_2_8_15_1) 2020
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Sabater N. (e_1_2_8_38_1) 2018; 10
Fox J. (e_1_2_8_12_1) 2019
R Studio Team (e_1_2_8_36_1) 2015
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
Maier S. W. (e_1_2_8_25_1) 2003
e_1_2_8_19_1
e_1_2_8_13_1
Dechant B. (e_1_2_8_8_1) 2020; 241
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 24
  start-page: 306
  issue: 4
  year: 1975
  end-page: 313
  article-title: The Fraunhofer line discriminator MKII‐an airborne instrument for precise and standardized ecological luminescence measurement
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 44
  start-page: 533
  year: 2017
  end-page: 541
  article-title: Multiscale analyses of solar‐induced florescence and gross primary production
  publication-title: Geophysical Research Letters
– volume: 8
  issue: 1
  year: 2018
  article-title: Sun‐induced fluorescence and gross primary productivity during a heat wave
  publication-title: Scientific Reports
– volume: 116
  start-page: 11640
  issue: 24
  year: 2019
  end-page: 11645
  article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar‐induced fluorescence
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  issue: 4
  year: 2019
  article-title: Solar‐induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes
  publication-title: Global Change Biology
– volume: 205
  start-page: 276
  year: 2018
  end-page: 289
  article-title: On the relationship between sub‐daily instantaneous and daily total gross primary production: Implications for interpreting satellite‐based SIF retrievals
  publication-title: Remote Sensing of Environment
– volume: 95
  start-page: 295
  year: 2017
  end-page: 305
  article-title: Needle properties of host white spruce ( [Moench] Voss) experiencing eastern dwarf mistletoe ( Peck) infections of differing severity
  publication-title: Botany
– volume: 41
  start-page: 35
  year: 1992
  end-page: 44
  article-title: A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency
  publication-title: Remote Sensing of Environment
– volume: 51
  start-page: 659
  issue: 345
  year: 2000
  end-page: 668
  article-title: Chlorophyll fluorescence—A practical guide
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 163
  year: 2015
  end-page: 177
  article-title: The 2010 Russian drought impact on satellite measurements of solar‐induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances
  publication-title: Remote Sensing of Environment
– volume: 186
  start-page: 390
  issue: 3
  year: 1992
  end-page: 398
  article-title: Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight
  publication-title: Planta
– volume: 96
  start-page: 173
  issue: 2
  year: 2008
  end-page: 179
  article-title: A new monitoring PAM fluorometer (MONI‐PAM) to study the short‐ and long‐term acclimation of photosystem II in field conditions
  publication-title: Photosynthesis Research
– volume: 42
  start-page: 1632
  year: 2015
  end-page: 1639
  article-title: Red and far red Sun‐induced chlorophyll fluorescence as a measure of plant photosynthesis
  publication-title: Geophysical Research Letters
– volume: 166
  start-page: 8
  year: 2015
  end-page: 21
  article-title: Global sensitivity analysis of the SCOPE model: What drives simulated canopy‐leaving sun‐induced fluorescence?
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 2037
  issue: 10
  year: 2009
  end-page: 2051
  article-title: Remote sensing of solar‐induced chlorophyll fluorescence: Review of methods and applications
  publication-title: Remote Sensing of Environment
– year: 2018
– year: 2020
  article-title: Solar‐induced chlorophyll fluorescence and short‐term photosynthetic response to drought
  publication-title: Ecological Applications
– volume: 42
  start-page: 2977
  year: 2015
  end-page: 2987
  article-title: Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest
  publication-title: Geophysical Research Letters
– volume: 59
  start-page: 89
  year: 2008
  end-page: 113
  article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo
  publication-title: Annual Review of Plant Biology
– volume: 23
  start-page: 2874
  issue: 7
  year: 2017
  end-page: 2886
  article-title: Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest
  publication-title: Global Change Biology
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 8
  article-title: Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon‐climate feedback predictions
  publication-title: Scientific Reports
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– year: 2019
– start-page: 1637
  issue: February
  year: 2020
  end-page: 1654
  article-title: Dynamics of sun‐induced chlorophyll fluorescence and reflectance to detect stress‐induced variations in canopy photosynthesis
  publication-title: Plant, Cell & Environment
– year: 2015
– volume: 209
  start-page: 808
  year: 2018
  end-page: 823
  article-title: Overview of solar‐induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory‐2: Retrieval, cross‐mission comparison, and global monitoring for GPP
  publication-title: Remote Sensing of Environment
– volume: 24
  start-page: 5017
  issue: 11
  year: 2018
  end-page: 5020
  article-title: Angle matters: Bidirectional effects impact the slope of relationship between gross primary productivity and sun‐induced chlorophyll fluorescence from orbiting carbon Observatory‐2 across biomes
  publication-title: Global Change Biology
– volume: 223
  start-page: 1179
  issue: 3
  year: 2019
  end-page: 1191
  article-title: Sun‐induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions
  publication-title: New Phytologist
– volume: 19
  start-page: 964
  issue: 48
  year: 1931
  article-title: Neue Versuche zur Kohlensäureassimilation
  publication-title: Naturwissenschaften
– volume: 158
  start-page: 169
  year: 2015
  end-page: 179
  article-title: Bidirectional sun‐induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties—A bottom‐up approach
  publication-title: Remote Sensing of Environment
– volume: 24
  start-page: 113
  issue: 1
  year: 2001
  end-page: 121
  article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine
  publication-title: Plant, Cell and Environment
– volume: 65
  start-page: 4065
  issue: 15
  year: 2014
  end-page: 4095
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges
  publication-title: Journal of Experimental Botany
– volume: 34
  start-page: 853
  year: 2007
  end-page: 859
  article-title: Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions
  publication-title: Functional Plant Biology
– volume: 116
  start-page: 9
  issue: 1–2
  year: 1998
  end-page: 17
  article-title: Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments
  publication-title: Oecologia
– volume: 10
  start-page: 405
  issue: 1
  year: 2018
  end-page: 448
  article-title: Global carbon budget 2017
  publication-title: Earth System Science Data
– volume: 10
  start-page: 1
  issue: 1551
  year: 2018
  end-page: 29
  article-title: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy‐leaving sun‐induced chlorophyll fluorescence
  publication-title: Remote Sensing
– volume: 9
  start-page: 747
  issue: 3
  year: 1972
  end-page: 766
  article-title: Solar radiation and productivity in tropical ecosystems
  publication-title: Journal of Applied Ecology
– volume: 122
  start-page: 716
  year: 2017
  end-page: 733
  article-title: Effect of environmental conditions on the relationship between solar‐induced fluorescence and gross primary productivity at an OzFlux grassland site
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 46
  start-page: 4278
  year: 2019
  end-page: 4287
  article-title: Evidence for edge enhancements of soil respiration in temperate forests
  publication-title: Geophysical Research Letters
– volume: 333
  start-page: 988
  issue: 6045
  year: 2011
  end-page: 993
  article-title: A large and persistent carbon sink in the world's forests
  publication-title: Science
– volume: 47
  start-page: 1
  year: 2020
  end-page: 9
  article-title: On the functional relationship between fluorescence and photochemical yields in complex evergreen needleleaf canopies
  publication-title: Geophysical Research Letters
– volume: 241
  issue: June 2019
  year: 2020
  article-title: Canopy structure explains the relationship between photosynthesis and Sun‐induced chlorophyll fluorescence in crops
  publication-title: Remote Sensing of Environment
– volume: 215
  start-page: 1594
  issue: 4
  year: 2017
  end-page: 1608
  article-title: Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence
  publication-title: New Phytologist
– volume: 53
  start-page: 785
  year: 2015
  end-page: 818
  article-title: Spatiotemporal patterns of terrestrial gross primary production: A review
  publication-title: Reviews of Geophysics
– volume: 172
  start-page: 11
  issue: 1
  year: 2006
  end-page: 21
  article-title: Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation
  publication-title: New Phytologist
– volume: 118
  start-page: 277
  issue: 3
  year: 1999
  end-page: 287
  article-title: The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress
  publication-title: Oecologia
– volume: 112
  start-page: 1633
  issue: 4
  year: 2008
  end-page: 1646
  article-title: A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS
  publication-title: Remote Sensing of Environment
– volume: 182
  start-page: 72
  year: 2016
  end-page: 89
  article-title: Spatially downscaling sun‐induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity
  publication-title: Remote Sensing of Environment
– volume: 39
  start-page: 474
  issue: 5
  year: 1998
  end-page: 482
  article-title: Survey of thermal energy dissipation and pigment composition in sun and shade leaves
  publication-title: Plant and Cell Physiology
– start-page: 209
  year: 2003
  end-page: 222
– year: 2013
– ident: e_1_2_8_50_1
  doi: 10.1002/2015GL063201
– ident: e_1_2_8_31_1
  doi: 10.1111/pce.13754
– ident: e_1_2_8_20_1
  doi: 10.1071/FP07113
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.1900278116
– ident: e_1_2_8_46_1
  doi: 10.1038/s41598-018-32602-z
– volume-title: An R companion to applied regression
  year: 2019
  ident: e_1_2_8_12_1
  contributor:
    fullname: Fox J.
– ident: e_1_2_8_51_1
  doi: 10.1016/j.rse.2015.06.008
– ident: e_1_2_8_18_1
  doi: 10.1007/BF01516164
– ident: e_1_2_8_3_1
  doi: 10.1002/2015RG000483
– ident: e_1_2_8_41_1
  doi: 10.1016/j.rse.2018.02.016
– ident: e_1_2_8_23_1
  doi: 10.1111/nph.14662
– volume: 10
  start-page: 1
  issue: 1551
  year: 2018
  ident: e_1_2_8_38_1
  article-title: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy‐leaving sun‐induced chlorophyll fluorescence
  publication-title: Remote Sensing
  contributor:
    fullname: Sabater N.
– ident: e_1_2_8_37_1
  doi: 10.1002/2014GL062943
– ident: e_1_2_8_7_1
  doi: 10.1139/cjb-2016-0254
– ident: e_1_2_8_16_1
  doi: 10.1046/j.1365-3040.2001.00660.x
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1469-8137.2006.01835.x
– ident: e_1_2_8_43_1
  doi: 10.1007/s004420050728
– ident: e_1_2_8_21_1
  doi: 10.1007/PL00013823
– ident: e_1_2_8_47_1
  doi: 10.1002/2016GL070775
– volume-title: RStudio: Integrated development for R
  year: 2015
  ident: e_1_2_8_36_1
  contributor:
    fullname: R Studio Team
– ident: e_1_2_8_53_1
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1201609
– ident: e_1_2_8_14_1
  doi: 10.1111/nph.15796
– ident: e_1_2_8_44_1
  doi: 10.1002/2016JG003580
– ident: e_1_2_8_6_1
– ident: e_1_2_8_48_1
  doi: 10.1111/gcb.14565
– ident: e_1_2_8_28_1
  doi: 10.1016/j.rse.2009.05.003
– ident: e_1_2_8_19_1
  doi: 10.5194/essd-10-405-2018
– ident: e_1_2_8_42_1
  doi: 10.1016/j.rse.2014.11.012
– ident: e_1_2_8_54_1
  doi: 10.1111/gcb.14427
– start-page: e02101
  year: 2020
  ident: e_1_2_8_15_1
  article-title: Solar‐induced chlorophyll fluorescence and short‐term photosynthetic response to drought
  publication-title: Ecological Applications
  doi: 10.1002/eap.2101
  contributor:
    fullname: Helm L. T.
– ident: e_1_2_8_49_1
  doi: 10.1111/gcb.13590
– ident: e_1_2_8_33_1
  doi: 10.1007/s11120-008-9292-3
– ident: e_1_2_8_13_1
  doi: 10.1016/0034-4257(92)90059-S
– ident: e_1_2_8_5_1
  doi: 10.18637/jss.v067.i01
– volume: 241
  issue: 2019
  year: 2020
  ident: e_1_2_8_8_1
  article-title: Canopy structure explains the relationship between photosynthesis and Sun‐induced chlorophyll fluorescence in crops
  publication-title: Remote Sensing of Environment
  contributor:
    fullname: Dechant B.
– ident: e_1_2_8_27_1
  doi: 10.1093/jexbot/51.345.659
– ident: e_1_2_8_34_1
  doi: 10.1093/jxb/eru191
– start-page: 209
  volume-title: Digital imaging and spectral techniques: Applications to precision agriculture and crop physiology
  year: 2003
  ident: e_1_2_8_25_1
  contributor:
    fullname: Maier S. W.
– ident: e_1_2_8_52_1
  doi: 10.1016/j.rse.2017.12.009
– ident: e_1_2_8_40_1
  doi: 10.1029/2019GL082459
– ident: e_1_2_8_2_1
  doi: 10.1007/BF00195320
– ident: e_1_2_8_35_1
– ident: e_1_2_8_32_1
  doi: 10.1109/TIM.1975.4314448
– ident: e_1_2_8_11_1
  doi: 10.1016/j.rse.2016.04.027
– ident: e_1_2_8_26_1
  doi: 10.1117/12.2520457
– ident: e_1_2_8_4_1
  doi: 10.1146/annurev.arplant.59.032607.092759
– ident: e_1_2_8_45_1
  doi: 10.1016/j.rse.2015.06.002
– ident: e_1_2_8_39_1
  doi: 10.1016/j.rse.2007.08.004
– ident: e_1_2_8_29_1
  doi: 10.2307/2401901
– ident: e_1_2_8_17_1
  doi: 10.1038/s41598-017-03818-2
– ident: e_1_2_8_9_1
  doi: 10.1093/oxfordjournals.pcp.a029394
– ident: e_1_2_8_24_1
  doi: 10.1029/2020GL087858
SSID ssj0003031
Score 2.626463
Snippet Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity...
Abstract Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Assimilation
Atmospheric models
Balances (scales)
Biological assimilation
Branches
Carbon
Carbon cycle
Carbon dioxide
Carbon dioxide exchange
Carbon fixation
Carbon uptake
Chlorophyll
Chlorophyll content
Chlorophylls
Conductance
Deciduous trees
ecophysiology
Fluorescence
Gas exchange
Gases
Heat exchange
Leaves
Light
Photosynthesis
Plant cells
Primary production
Productivity
Pulse amplitude
remote sensing
Resistance
Satellite tracking
Satellites
solar‐induced fluorescence
Stomata
Stomatal conductance
Uptake
Title Solar‐Induced Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087956
https://www.proquest.com/docview/2432939254
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyRe0PgShYH8AE9RQkicxH4shXYaHUJ0hYmXKHGcbaKLtzYVGk-Iv4C_kb-E80eyDFVo8JJGJ_lS-X4-39n3gdAzSqhfxrAARSyESwrCXeaXocu42o_UuX-mbnT338W7c7J3GB32ej86UUvrOvf4t415Jf8jVaCBXFWW7D9ItmUKBHgH-cITJAzPa8l4pvzSNlxBdeFQt_njxVoudZUmWLOvpQBNJmtVxZx_cd4fy1quLiow-1Sl1lG2zEH8IKOT0xMTFeeMARnyqwkkMAxntTzVTUZGC7myFUgag3Yi5Fkjals46NhZ6Byh1lrfz5amEdue57z12iseFZ9eWfKsJU_lkTmTfeU5w5Y6VB1ftH70nE9e96gi0IFyJpOyUb-MuDRIbO1ro3EZAZpvWt82KtkU4WygF21U9X6gKqWqz0ymvmqZvqGi9h87XRt_qG_eA5Z2R99AWwH8Rn20Nfw4_zxv93PY5E3fRfvnbfoEjH_RHX_VsLn0Vro-jzZaDrbRbett4KGBzh3UE9VddHOiuzlfwJuO_-Wre-hcQ-nX959W5rgLIqxAhAFEWIMIXwURNiDCXRDhFkS4YdiACFsQ3Ufz8ZuD0a5ru3G4PKRJ4pI8zpV7HoPuKbkIaAHORRmq3O8yF1ES0Jeln9PYTwqqvAgKqh5oYcGyiKqjkAeoX8lKPESYZYJwP-JFGHNS0pgCQ9iVwXtgRcYyNkDPm6lMz0zRlXSTyAZop5nn1C7LVRqQEExYFkRkgBw993_lkU4-TGPwQ5JH1_zoY3TrEts7qF8v1-IJGKZ1_tQi5zd_BogL
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwEB5B0QouCNhFlF8fltMq2pA4jn1EhbawpUJAV4hLlDiOQEAMbRDixiPwjDwJM0kK5YLELYrsOYzn55vxeAbgt-TSzQQqoBHGODzl2lFu5jtKkz-ivH9MN7pHfdEd8MPz4Lyec0pvYar-EO8JN9KM0l6TglNCuu42QE0yMWx3Oz2XpmWLaZgJqKVeA2Z2_w8uBu_GGC10NTRPcUd6oahr35HC38n9n73SB9ScBKylx2kvwHwNFdludbaLMGXyJfjRKUfxPuFXWbypRz_h_pTi09fnF5rDoU3K2jcPdlj2adKG7VkzYn1bMHRL-podX9rCjp5yBH5Il7XiYWJzhqd0dXtV1cWxNsqGfUSfxsYETwt7S3ke1rqxlFL8BYP2_lmr69SjFBztyzB0eCISiq0ECk6mjSdTRIaZTw93s8QEoSd3MjeRwg1TSRBQop7iPz9VcSApjl2GRm5zswJMxYZrN9CpLzTPpJBIEE0qQj-VxipWTdgeszK6qzpmROVNt6eiSZY3YX3M56jWm1HkcR_xh8KotQl_St5_SSPqnPQEgshw9Vurt2C2e3bUi3oH_X9rMEdrKE28I9ahUQwfzAbijCLZrGXpDcMuyck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54CMQF8RTjmQOcUEVpszQ5ToNuwJgmYAhxqdo0FYitga0I7cZP4DfyS7DbDsYFiVtVJT44fnx2HJuQfcGEnXBQQM21tljMlCXtxLWkQn-Eef8Qb3Qv27zZZed31bsy4YZvYYr-EN8JN9SM3F6jgj_HSdlsAHtkQtRuN1o2Dsvm02QWgAaD4Gu2dtu9737bYjDQxcw8ySzheLwsfQcKR5P7fzulH6Q5iVdzh-MvkcUSKdJacbTLZEqnK2SukU_iHcFXXruphqvk5RrD08_3DxzDoXRM_d6rGeRtmpSmJ0YPadtkFLySeqKdB5OZ4SgF3Ad0aT0cRCalcEiP_ceiLI76IBrmDVwaHRO8zkwf0zy03jOYUVwjXf_0pt60ykkKlnKF51ks4hGGVhzkJlHaETEAw8TFd7tJpKueI44TOxLc9mKBCFCAmsI_N5ZhVWAYu05mUpPqDUJlqJmyqyp2uWKJ4AIIgkUF5CfjUIayQg7GrAyei4YZQX7R7chgkuUVsj3mc1CqzTBwmAvwQ0LQWiGHOe__pBE0rlocMKS3-a_Ve2S-c-IHrbP2xRZZwCWYJD7m22QmG7zqHUAZWbRbitIXq17I8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar%E2%80%90Induced+Fluorescence+Does+Not+Track+Photosynthetic+Carbon+Assimilation+Following+Induced+Stomatal+Closure&rft.jtitle=Geophysical+research+letters&rft.au=Marrs%2C+J.+K.&rft.au=Reblin%2C+J.+S.&rft.au=Logan%2C+B.+A.&rft.au=Allen%2C+D.+W.&rft.date=2020-08-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=15&rft_id=info:doi/10.1029%2F2020GL087956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020GL087956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon