Solar‐Induced Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure
Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling...
Saved in:
Published in | Geophysical research letters Vol. 47; no. 15 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models.
Plain Language Summary
Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care.
Key Points
Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure
Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation
The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning |
---|---|
AbstractList | Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models.
Plain Language Summary
Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care.
Key Points
Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure
Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation
The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models. Abstract Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity (GPP). The promise of the SIF signal as a proxy for photosynthesis with a strong relationship to GPP has been widely cited in carbon cycling studies. However, chlorophyll fluorescence originates from dynamic energy partitioning at the leaf level and does not exhibit a uniformly linear relationship with photosynthesis at finer scales. We induced stomatal closure in deciduous woody tree branches and measured SIF at a proximal scale, alongside leaf‐level gas exchange, pulse amplitude modulated (PAM) fluorescence, and leaf pigment content. We found no change in SIF or steady‐state PAM fluorescence, despite clear reductions in stomatal conductance, carbon assimilation, and light‐use efficiency in treated leaves. These findings suggest that equating SIF and photosynthesis is an oversimplification that may undermine the utility of SIF as a biophysical parameter in GPP models. Plain Language Summary Earth's vegetation plays a key role in storing carbon that would otherwise reside in the atmosphere. Recently, there has been increasing interest in measuring fluorescent light emitted by the chlorophyll in plant cells in order to track carbon uptake. Satellite fluorescence measurements show a strong, direct relationship with primary productivity. However, leaf‐level chlorophyll fluorescence studies have yielded insights into the origin of this signal as one of several pathways by which plants consume excess absorbed light. At finer scales, fluorescence emission may become inversely related to photosynthetic rate, due to the additional role of heat dissipation as an alternative pathway for plants to partition energy. To investigate the contradiction between measurements across scales, we experimentally manipulated tree branches, inhibiting photosynthesis by closing the stomata through which plants exchange water and carbon dioxide gases. We observed significant reductions in leaf‐level gas exchange in treated branches but found no similar change in fluorescence measured at the leaf level or from a proximal tower. While fluorescence offers physiological insights, we suggest that the close relationship with primary productivity at the satellite scale could result from a shared driver, such as chlorophyll content and that fluorescence data should be interpreted with care. Key Points Leaf‐level chlorophyll fluorescence does not exhibit a significant relationship with photosynthesis after inducing stomatal closure Remote fluorescence data provide insight into the light reactions of photosynthesis, but do not directly track carbon assimilation The link between fluorescence and primary productivity may result from shared drivers, such as chlorophyll content or energy partitioning |
Author | Reinmann, A. B. Bombard, D. M. Logan, B. A. Allen, D. W. Hutyra, L. R. Marrs, J. K. Tabachnik, D. Reblin, J. S. |
Author_xml | – sequence: 1 givenname: J. K. orcidid: 0000-0001-5908-3582 surname: Marrs fullname: Marrs, J. K. email: jmarrs@bu.edu organization: Boston University – sequence: 2 givenname: J. S. surname: Reblin fullname: Reblin, J. S. organization: Bowdoin College – sequence: 3 givenname: B. A. surname: Logan fullname: Logan, B. A. organization: Bowdoin College – sequence: 4 givenname: D. W. surname: Allen fullname: Allen, D. W. organization: National Institute of Standards and Technology – sequence: 5 givenname: A. B. surname: Reinmann fullname: Reinmann, A. B. organization: Hunter College – sequence: 6 givenname: D. M. surname: Bombard fullname: Bombard, D. M. organization: Bowdoin College – sequence: 7 givenname: D. surname: Tabachnik fullname: Tabachnik, D. organization: Bowdoin College – sequence: 8 givenname: L. R. surname: Hutyra fullname: Hutyra, L. R. organization: Boston University |
BookMark | eNp9kNFKwzAYhYMouE3vfICAt1b_JG2TXI7q5qCouHld0jZ1nVmzJS1jdz6Cz-iTWJmCV16d_xw-zg9niI4b22iELghcE6DyhgKFaQqCyyg-QgMiwzAQAPwYDQBkf1Men6Kh9ysAYMDIAG3n1ij3-f4xa8qu0CWemM467QvdFBrfWu3xg23xwqniDT8tbWv9vmmXuq0LnCiX2waPva_XtVFt3ZuJNcbu6uYV_xbOW7tWrTI4MdZ3Tp-hk0oZr89_dIReJneL5D5IH6ezZJwGBROcB2Ee54IKGWtVVoWmogQpKxZRQqtcR5wKUkEuYuCliEnEBOGyz1gpVSQ4YWyELg-9G2e3nfZttrKda_qXGQ0ZlUzSKOypqwNVOOu901W2cfVauX1GIPseNfs7ao_TA76rjd7_y2bT5zQGwTj7Am2QetE |
CitedBy_id | crossref_primary_10_1016_j_agrformet_2023_109814 crossref_primary_10_1016_j_rse_2021_112413 crossref_primary_10_34133_remotesensing_0085 crossref_primary_10_1525_elementa_2023_00102 crossref_primary_10_1029_2020JG006082 crossref_primary_10_1016_j_agrformet_2021_108522 crossref_primary_10_1088_2515_7620_ad0b29 crossref_primary_10_1093_aobpla_plad039 crossref_primary_10_1016_j_agrformet_2022_109019 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_1111_gcb_17151 crossref_primary_10_1016_j_agrformet_2022_109063 crossref_primary_10_5194_bg_18_6579_2021 crossref_primary_10_1029_2021JG006588 crossref_primary_10_1029_2023JG007703 crossref_primary_10_1016_j_ecolind_2021_107949 crossref_primary_10_1016_j_rse_2024_114150 crossref_primary_10_3390_agronomy14020364 crossref_primary_10_1016_j_rse_2022_113383 crossref_primary_10_1088_1748_9326_ac3b16 crossref_primary_10_3389_ffgc_2023_1157340 crossref_primary_10_1016_j_rse_2022_113104 crossref_primary_10_1016_j_agrformet_2022_109180 crossref_primary_10_1016_j_scitotenv_2024_172725 crossref_primary_10_1038_s41467_022_28652_7 crossref_primary_10_1093_aobpla_plad069 crossref_primary_10_1016_j_rse_2023_113733 crossref_primary_10_3390_su15021095 crossref_primary_10_1029_2020GL091247 crossref_primary_10_1016_j_agrformet_2023_109591 crossref_primary_10_1029_2021RG000736 crossref_primary_10_3390_plants12193365 crossref_primary_10_5194_bg_20_1473_2023 crossref_primary_10_1029_2021MS002747 crossref_primary_10_3389_ffgc_2021_695269 crossref_primary_10_1021_acsearthspacechem_1c00260 crossref_primary_10_3390_app14020771 crossref_primary_10_1016_j_rse_2021_112555 crossref_primary_10_1016_j_jag_2024_103821 crossref_primary_10_1016_j_agrformet_2022_108905 crossref_primary_10_1016_j_agrformet_2022_108904 crossref_primary_10_1038_s41477_021_00952_8 crossref_primary_10_1111_gcb_16646 crossref_primary_10_1111_nph_17247 crossref_primary_10_1016_j_agrformet_2022_108980 crossref_primary_10_1016_j_scitotenv_2022_154681 crossref_primary_10_5194_essd_14_1513_2022 crossref_primary_10_1016_j_rse_2024_114295 crossref_primary_10_1038_s41477_021_00980_4 crossref_primary_10_3390_agronomy13020337 crossref_primary_10_1029_2020GL091098 crossref_primary_10_1016_j_scitotenv_2023_162591 crossref_primary_10_32615_ps_2021_055 crossref_primary_10_1029_2022JG007352 crossref_primary_10_1016_j_rse_2020_112196 crossref_primary_10_3390_rs13122363 crossref_primary_10_1016_j_rse_2021_112672 crossref_primary_10_1016_j_rse_2022_112950 crossref_primary_10_1016_j_rse_2022_113445 crossref_primary_10_1088_1748_9326_aca5a0 crossref_primary_10_1093_biosci_biad116 crossref_primary_10_1093_jxb_erac388 crossref_primary_10_1093_jxb_erad356 crossref_primary_10_1111_nph_18045 crossref_primary_10_1016_j_rse_2021_112748 crossref_primary_10_3390_app112210821 crossref_primary_10_1016_j_rse_2023_113879 crossref_primary_10_3390_rs15010067 crossref_primary_10_5194_gmd_14_3633_2021 crossref_primary_10_1088_1748_9326_ad07b4 crossref_primary_10_1029_2023JG007742 crossref_primary_10_1016_j_rse_2023_113919 crossref_primary_10_3390_rs14102439 crossref_primary_10_3390_rs13163143 crossref_primary_10_1016_j_agrformet_2022_109033 crossref_primary_10_1186_s13007_023_01001_5 crossref_primary_10_1016_j_scitotenv_2023_166386 crossref_primary_10_3390_rs13142824 crossref_primary_10_1111_geb_13561 crossref_primary_10_1016_j_agrformet_2022_109070 crossref_primary_10_5194_bg_19_477_2022 |
Cites_doi | 10.1002/2015GL063201 10.1111/pce.13754 10.1071/FP07113 10.1073/pnas.1900278116 10.1038/s41598-018-32602-z 10.1016/j.rse.2015.06.008 10.1007/BF01516164 10.1002/2015RG000483 10.1016/j.rse.2018.02.016 10.1111/nph.14662 10.1002/2014GL062943 10.1139/cjb-2016-0254 10.1046/j.1365-3040.2001.00660.x 10.1111/j.1469-8137.2006.01835.x 10.1007/s004420050728 10.1007/PL00013823 10.1002/2016GL070775 10.1126/science.1201609 10.1111/nph.15796 10.1002/2016JG003580 10.1111/gcb.14565 10.1016/j.rse.2009.05.003 10.5194/essd-10-405-2018 10.1016/j.rse.2014.11.012 10.1111/gcb.14427 10.1002/eap.2101 10.1111/gcb.13590 10.1007/s11120-008-9292-3 10.1016/0034-4257(92)90059-S 10.18637/jss.v067.i01 10.1093/jexbot/51.345.659 10.1093/jxb/eru191 10.1016/j.rse.2017.12.009 10.1029/2019GL082459 10.1007/BF00195320 10.1109/TIM.1975.4314448 10.1016/j.rse.2016.04.027 10.1117/12.2520457 10.1146/annurev.arplant.59.032607.092759 10.1016/j.rse.2015.06.002 10.1016/j.rse.2007.08.004 10.2307/2401901 10.1038/s41598-017-03818-2 10.1093/oxfordjournals.pcp.a029394 10.1029/2020GL087858 |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2020GL087956 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020GL087956 GRL60837 |
Genre | article |
GrantInformation_xml | – fundername: National Institute of Standards and Technology funderid: 70NANB17H030 – fundername: U.S. Department of Agriculture NIFA funderid: 2017‐67003‐26487 – fundername: USDA | National Institute of Food and Agriculture (NIFA) funderid: 2017‐67003‐26487 – fundername: DOC | National Institute of Standards and Technology (NIST) funderid: 70NANB17H030 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION PYCSY 7TG 7TN 8FD ALXUD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3877-4b6b82896eadfce28d099f35212fbe57281f0b8607d8615381792813d9a587133 |
ISSN | 0094-8276 |
IngestDate | Sun Oct 27 04:31:18 EDT 2024 Thu Sep 12 17:39:53 EDT 2024 Sat Aug 24 01:40:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3877-4b6b82896eadfce28d099f35212fbe57281f0b8607d8615381792813d9a587133 |
ORCID | 0000-0001-5908-3582 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1029/2020gl087956 |
PQID | 2432939254 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2432939254 crossref_primary_10_1029_2020GL087956 wiley_primary_10_1029_2020GL087956_GRL60837 |
PublicationCentury | 2000 |
PublicationDate | 16 August 2020 |
PublicationDateYYYYMMDD | 2020-08-16 |
PublicationDate_xml | – month: 08 year: 2020 text: 16 August 2020 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 1931; 19 2011; 333 1972; 9 2018; 205 1992; 186 2020; 241 2015; 53 2015; 166 2017; 44 2017; 23 2008; 59 2000; 51 2019; 223 2009; 113 2018; 209 2006; 172 2003 2008; 96 1998; 116 2016; 182 2001; 24 2007; 34 2017; 215 2014; 65 2018; 24 2017; 95 2015; 67 1998; 39 2018; 8 2020 2015; 158 2015; 42 2019; 46 2019; 25 1975; 24 2019 2019; 116 2018 2020; 47 2015 2013 2008; 112 2017; 122 1999; 118 2018; 10 1992; 41 e_1_2_8_28_1 Helm L. T. (e_1_2_8_15_1) 2020 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Sabater N. (e_1_2_8_38_1) 2018; 10 Fox J. (e_1_2_8_12_1) 2019 R Studio Team (e_1_2_8_36_1) 2015 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 Maier S. W. (e_1_2_8_25_1) 2003 e_1_2_8_19_1 e_1_2_8_13_1 Dechant B. (e_1_2_8_8_1) 2020; 241 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 24 start-page: 306 issue: 4 year: 1975 end-page: 313 article-title: The Fraunhofer line discriminator MKII‐an airborne instrument for precise and standardized ecological luminescence measurement publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 44 start-page: 533 year: 2017 end-page: 541 article-title: Multiscale analyses of solar‐induced florescence and gross primary production publication-title: Geophysical Research Letters – volume: 8 issue: 1 year: 2018 article-title: Sun‐induced fluorescence and gross primary productivity during a heat wave publication-title: Scientific Reports – volume: 116 start-page: 11640 issue: 24 year: 2019 end-page: 11645 article-title: Mechanistic evidence for tracking the seasonality of photosynthesis with solar‐induced fluorescence publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 25 issue: 4 year: 2019 article-title: Solar‐induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes publication-title: Global Change Biology – volume: 205 start-page: 276 year: 2018 end-page: 289 article-title: On the relationship between sub‐daily instantaneous and daily total gross primary production: Implications for interpreting satellite‐based SIF retrievals publication-title: Remote Sensing of Environment – volume: 95 start-page: 295 year: 2017 end-page: 305 article-title: Needle properties of host white spruce ( [Moench] Voss) experiencing eastern dwarf mistletoe ( Peck) infections of differing severity publication-title: Botany – volume: 41 start-page: 35 year: 1992 end-page: 44 article-title: A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency publication-title: Remote Sensing of Environment – volume: 51 start-page: 659 issue: 345 year: 2000 end-page: 668 article-title: Chlorophyll fluorescence—A practical guide publication-title: Journal of Experimental Botany – volume: 166 start-page: 163 year: 2015 end-page: 177 article-title: The 2010 Russian drought impact on satellite measurements of solar‐induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances publication-title: Remote Sensing of Environment – volume: 186 start-page: 390 issue: 3 year: 1992 end-page: 398 article-title: Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight publication-title: Planta – volume: 96 start-page: 173 issue: 2 year: 2008 end-page: 179 article-title: A new monitoring PAM fluorometer (MONI‐PAM) to study the short‐ and long‐term acclimation of photosystem II in field conditions publication-title: Photosynthesis Research – volume: 42 start-page: 1632 year: 2015 end-page: 1639 article-title: Red and far red Sun‐induced chlorophyll fluorescence as a measure of plant photosynthesis publication-title: Geophysical Research Letters – volume: 166 start-page: 8 year: 2015 end-page: 21 article-title: Global sensitivity analysis of the SCOPE model: What drives simulated canopy‐leaving sun‐induced fluorescence? publication-title: Remote Sensing of Environment – volume: 113 start-page: 2037 issue: 10 year: 2009 end-page: 2051 article-title: Remote sensing of solar‐induced chlorophyll fluorescence: Review of methods and applications publication-title: Remote Sensing of Environment – year: 2018 – year: 2020 article-title: Solar‐induced chlorophyll fluorescence and short‐term photosynthetic response to drought publication-title: Ecological Applications – volume: 42 start-page: 2977 year: 2015 end-page: 2987 article-title: Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest publication-title: Geophysical Research Letters – volume: 59 start-page: 89 year: 2008 end-page: 113 article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo publication-title: Annual Review of Plant Biology – volume: 23 start-page: 2874 issue: 7 year: 2017 end-page: 2886 article-title: Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest publication-title: Global Change Biology – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 8 article-title: Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon‐climate feedback predictions publication-title: Scientific Reports – volume: 67 start-page: 1 issue: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – year: 2019 – start-page: 1637 issue: February year: 2020 end-page: 1654 article-title: Dynamics of sun‐induced chlorophyll fluorescence and reflectance to detect stress‐induced variations in canopy photosynthesis publication-title: Plant, Cell & Environment – year: 2015 – volume: 209 start-page: 808 year: 2018 end-page: 823 article-title: Overview of solar‐induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory‐2: Retrieval, cross‐mission comparison, and global monitoring for GPP publication-title: Remote Sensing of Environment – volume: 24 start-page: 5017 issue: 11 year: 2018 end-page: 5020 article-title: Angle matters: Bidirectional effects impact the slope of relationship between gross primary productivity and sun‐induced chlorophyll fluorescence from orbiting carbon Observatory‐2 across biomes publication-title: Global Change Biology – volume: 223 start-page: 1179 issue: 3 year: 2019 end-page: 1191 article-title: Sun‐induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions publication-title: New Phytologist – volume: 19 start-page: 964 issue: 48 year: 1931 article-title: Neue Versuche zur Kohlensäureassimilation publication-title: Naturwissenschaften – volume: 158 start-page: 169 year: 2015 end-page: 179 article-title: Bidirectional sun‐induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties—A bottom‐up approach publication-title: Remote Sensing of Environment – volume: 24 start-page: 113 issue: 1 year: 2001 end-page: 121 article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine publication-title: Plant, Cell and Environment – volume: 65 start-page: 4065 issue: 15 year: 2014 end-page: 4095 article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges publication-title: Journal of Experimental Botany – volume: 34 start-page: 853 year: 2007 end-page: 859 article-title: Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions publication-title: Functional Plant Biology – volume: 116 start-page: 9 issue: 1–2 year: 1998 end-page: 17 article-title: Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments publication-title: Oecologia – volume: 10 start-page: 405 issue: 1 year: 2018 end-page: 448 article-title: Global carbon budget 2017 publication-title: Earth System Science Data – volume: 10 start-page: 1 issue: 1551 year: 2018 end-page: 29 article-title: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy‐leaving sun‐induced chlorophyll fluorescence publication-title: Remote Sensing – volume: 9 start-page: 747 issue: 3 year: 1972 end-page: 766 article-title: Solar radiation and productivity in tropical ecosystems publication-title: Journal of Applied Ecology – volume: 122 start-page: 716 year: 2017 end-page: 733 article-title: Effect of environmental conditions on the relationship between solar‐induced fluorescence and gross primary productivity at an OzFlux grassland site publication-title: Journal of Geophysical Research: Biogeosciences – volume: 46 start-page: 4278 year: 2019 end-page: 4287 article-title: Evidence for edge enhancements of soil respiration in temperate forests publication-title: Geophysical Research Letters – volume: 333 start-page: 988 issue: 6045 year: 2011 end-page: 993 article-title: A large and persistent carbon sink in the world's forests publication-title: Science – volume: 47 start-page: 1 year: 2020 end-page: 9 article-title: On the functional relationship between fluorescence and photochemical yields in complex evergreen needleleaf canopies publication-title: Geophysical Research Letters – volume: 241 issue: June 2019 year: 2020 article-title: Canopy structure explains the relationship between photosynthesis and Sun‐induced chlorophyll fluorescence in crops publication-title: Remote Sensing of Environment – volume: 215 start-page: 1594 issue: 4 year: 2017 end-page: 1608 article-title: Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence publication-title: New Phytologist – volume: 53 start-page: 785 year: 2015 end-page: 818 article-title: Spatiotemporal patterns of terrestrial gross primary production: A review publication-title: Reviews of Geophysics – volume: 172 start-page: 11 issue: 1 year: 2006 end-page: 21 article-title: Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation publication-title: New Phytologist – volume: 118 start-page: 277 issue: 3 year: 1999 end-page: 287 article-title: The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress publication-title: Oecologia – volume: 112 start-page: 1633 issue: 4 year: 2008 end-page: 1646 article-title: A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS publication-title: Remote Sensing of Environment – volume: 182 start-page: 72 year: 2016 end-page: 89 article-title: Spatially downscaling sun‐induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity publication-title: Remote Sensing of Environment – volume: 39 start-page: 474 issue: 5 year: 1998 end-page: 482 article-title: Survey of thermal energy dissipation and pigment composition in sun and shade leaves publication-title: Plant and Cell Physiology – start-page: 209 year: 2003 end-page: 222 – year: 2013 – ident: e_1_2_8_50_1 doi: 10.1002/2015GL063201 – ident: e_1_2_8_31_1 doi: 10.1111/pce.13754 – ident: e_1_2_8_20_1 doi: 10.1071/FP07113 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.1900278116 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-018-32602-z – volume-title: An R companion to applied regression year: 2019 ident: e_1_2_8_12_1 contributor: fullname: Fox J. – ident: e_1_2_8_51_1 doi: 10.1016/j.rse.2015.06.008 – ident: e_1_2_8_18_1 doi: 10.1007/BF01516164 – ident: e_1_2_8_3_1 doi: 10.1002/2015RG000483 – ident: e_1_2_8_41_1 doi: 10.1016/j.rse.2018.02.016 – ident: e_1_2_8_23_1 doi: 10.1111/nph.14662 – volume: 10 start-page: 1 issue: 1551 year: 2018 ident: e_1_2_8_38_1 article-title: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy‐leaving sun‐induced chlorophyll fluorescence publication-title: Remote Sensing contributor: fullname: Sabater N. – ident: e_1_2_8_37_1 doi: 10.1002/2014GL062943 – ident: e_1_2_8_7_1 doi: 10.1139/cjb-2016-0254 – ident: e_1_2_8_16_1 doi: 10.1046/j.1365-3040.2001.00660.x – ident: e_1_2_8_10_1 doi: 10.1111/j.1469-8137.2006.01835.x – ident: e_1_2_8_43_1 doi: 10.1007/s004420050728 – ident: e_1_2_8_21_1 doi: 10.1007/PL00013823 – ident: e_1_2_8_47_1 doi: 10.1002/2016GL070775 – volume-title: RStudio: Integrated development for R year: 2015 ident: e_1_2_8_36_1 contributor: fullname: R Studio Team – ident: e_1_2_8_53_1 – ident: e_1_2_8_30_1 doi: 10.1126/science.1201609 – ident: e_1_2_8_14_1 doi: 10.1111/nph.15796 – ident: e_1_2_8_44_1 doi: 10.1002/2016JG003580 – ident: e_1_2_8_6_1 – ident: e_1_2_8_48_1 doi: 10.1111/gcb.14565 – ident: e_1_2_8_28_1 doi: 10.1016/j.rse.2009.05.003 – ident: e_1_2_8_19_1 doi: 10.5194/essd-10-405-2018 – ident: e_1_2_8_42_1 doi: 10.1016/j.rse.2014.11.012 – ident: e_1_2_8_54_1 doi: 10.1111/gcb.14427 – start-page: e02101 year: 2020 ident: e_1_2_8_15_1 article-title: Solar‐induced chlorophyll fluorescence and short‐term photosynthetic response to drought publication-title: Ecological Applications doi: 10.1002/eap.2101 contributor: fullname: Helm L. T. – ident: e_1_2_8_49_1 doi: 10.1111/gcb.13590 – ident: e_1_2_8_33_1 doi: 10.1007/s11120-008-9292-3 – ident: e_1_2_8_13_1 doi: 10.1016/0034-4257(92)90059-S – ident: e_1_2_8_5_1 doi: 10.18637/jss.v067.i01 – volume: 241 issue: 2019 year: 2020 ident: e_1_2_8_8_1 article-title: Canopy structure explains the relationship between photosynthesis and Sun‐induced chlorophyll fluorescence in crops publication-title: Remote Sensing of Environment contributor: fullname: Dechant B. – ident: e_1_2_8_27_1 doi: 10.1093/jexbot/51.345.659 – ident: e_1_2_8_34_1 doi: 10.1093/jxb/eru191 – start-page: 209 volume-title: Digital imaging and spectral techniques: Applications to precision agriculture and crop physiology year: 2003 ident: e_1_2_8_25_1 contributor: fullname: Maier S. W. – ident: e_1_2_8_52_1 doi: 10.1016/j.rse.2017.12.009 – ident: e_1_2_8_40_1 doi: 10.1029/2019GL082459 – ident: e_1_2_8_2_1 doi: 10.1007/BF00195320 – ident: e_1_2_8_35_1 – ident: e_1_2_8_32_1 doi: 10.1109/TIM.1975.4314448 – ident: e_1_2_8_11_1 doi: 10.1016/j.rse.2016.04.027 – ident: e_1_2_8_26_1 doi: 10.1117/12.2520457 – ident: e_1_2_8_4_1 doi: 10.1146/annurev.arplant.59.032607.092759 – ident: e_1_2_8_45_1 doi: 10.1016/j.rse.2015.06.002 – ident: e_1_2_8_39_1 doi: 10.1016/j.rse.2007.08.004 – ident: e_1_2_8_29_1 doi: 10.2307/2401901 – ident: e_1_2_8_17_1 doi: 10.1038/s41598-017-03818-2 – ident: e_1_2_8_9_1 doi: 10.1093/oxfordjournals.pcp.a029394 – ident: e_1_2_8_24_1 doi: 10.1029/2020GL087858 |
SSID | ssj0003031 |
Score | 2.626463 |
Snippet | Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary productivity... Abstract Since 2006, six satellites measuring solar‐induced chlorophyll fluorescence (SIF) have been launched to better constrain terrestrial gross primary... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Assimilation Atmospheric models Balances (scales) Biological assimilation Branches Carbon Carbon cycle Carbon dioxide Carbon dioxide exchange Carbon fixation Carbon uptake Chlorophyll Chlorophyll content Chlorophylls Conductance Deciduous trees ecophysiology Fluorescence Gas exchange Gases Heat exchange Leaves Light Photosynthesis Plant cells Primary production Productivity Pulse amplitude remote sensing Resistance Satellite tracking Satellites solar‐induced fluorescence Stomata Stomatal conductance Uptake |
Title | Solar‐Induced Fluorescence Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal Closure |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087956 https://www.proquest.com/docview/2432939254 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyRe0PgShYH8AE9RQkicxH4shXYaHUJ0hYmXKHGcbaKLtzYVGk-Iv4C_kb-E80eyDFVo8JJGJ_lS-X4-39n3gdAzSqhfxrAARSyESwrCXeaXocu42o_UuX-mbnT338W7c7J3GB32ej86UUvrOvf4t415Jf8jVaCBXFWW7D9ItmUKBHgH-cITJAzPa8l4pvzSNlxBdeFQt_njxVoudZUmWLOvpQBNJmtVxZx_cd4fy1quLiow-1Sl1lG2zEH8IKOT0xMTFeeMARnyqwkkMAxntTzVTUZGC7myFUgag3Yi5Fkjals46NhZ6Byh1lrfz5amEdue57z12iseFZ9eWfKsJU_lkTmTfeU5w5Y6VB1ftH70nE9e96gi0IFyJpOyUb-MuDRIbO1ro3EZAZpvWt82KtkU4WygF21U9X6gKqWqz0ymvmqZvqGi9h87XRt_qG_eA5Z2R99AWwH8Rn20Nfw4_zxv93PY5E3fRfvnbfoEjH_RHX_VsLn0Vro-jzZaDrbRbett4KGBzh3UE9VddHOiuzlfwJuO_-Wre-hcQ-nX959W5rgLIqxAhAFEWIMIXwURNiDCXRDhFkS4YdiACFsQ3Ufz8ZuD0a5ru3G4PKRJ4pI8zpV7HoPuKbkIaAHORRmq3O8yF1ES0Jeln9PYTwqqvAgKqh5oYcGyiKqjkAeoX8lKPESYZYJwP-JFGHNS0pgCQ9iVwXtgRcYyNkDPm6lMz0zRlXSTyAZop5nn1C7LVRqQEExYFkRkgBw993_lkU4-TGPwQ5JH1_zoY3TrEts7qF8v1-IJGKZ1_tQi5zd_BogL |
link.rule.ids | 315,786,790,27955,27956,50847,50956 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwEB5B0QouCNhFlF8fltMq2pA4jn1EhbawpUJAV4hLlDiOQEAMbRDixiPwjDwJM0kK5YLELYrsOYzn55vxeAbgt-TSzQQqoBHGODzl2lFu5jtKkz-ivH9MN7pHfdEd8MPz4Lyec0pvYar-EO8JN9KM0l6TglNCuu42QE0yMWx3Oz2XpmWLaZgJqKVeA2Z2_w8uBu_GGC10NTRPcUd6oahr35HC38n9n73SB9ScBKylx2kvwHwNFdludbaLMGXyJfjRKUfxPuFXWbypRz_h_pTi09fnF5rDoU3K2jcPdlj2adKG7VkzYn1bMHRL-podX9rCjp5yBH5Il7XiYWJzhqd0dXtV1cWxNsqGfUSfxsYETwt7S3ke1rqxlFL8BYP2_lmr69SjFBztyzB0eCISiq0ECk6mjSdTRIaZTw93s8QEoSd3MjeRwg1TSRBQop7iPz9VcSApjl2GRm5zswJMxYZrN9CpLzTPpJBIEE0qQj-VxipWTdgeszK6qzpmROVNt6eiSZY3YX3M56jWm1HkcR_xh8KotQl_St5_SSPqnPQEgshw9Vurt2C2e3bUi3oH_X9rMEdrKE28I9ahUQwfzAbijCLZrGXpDcMuyck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54CMQF8RTjmQOcUEVpszQ5ToNuwJgmYAhxqdo0FYitga0I7cZP4DfyS7DbDsYFiVtVJT44fnx2HJuQfcGEnXBQQM21tljMlCXtxLWkQn-Eef8Qb3Qv27zZZed31bsy4YZvYYr-EN8JN9SM3F6jgj_HSdlsAHtkQtRuN1o2Dsvm02QWgAaD4Gu2dtu9737bYjDQxcw8ySzheLwsfQcKR5P7fzulH6Q5iVdzh-MvkcUSKdJacbTLZEqnK2SukU_iHcFXXruphqvk5RrD08_3DxzDoXRM_d6rGeRtmpSmJ0YPadtkFLySeqKdB5OZ4SgF3Ad0aT0cRCalcEiP_ceiLI76IBrmDVwaHRO8zkwf0zy03jOYUVwjXf_0pt60ykkKlnKF51ks4hGGVhzkJlHaETEAw8TFd7tJpKueI44TOxLc9mKBCFCAmsI_N5ZhVWAYu05mUpPqDUJlqJmyqyp2uWKJ4AIIgkUF5CfjUIayQg7GrAyei4YZQX7R7chgkuUVsj3mc1CqzTBwmAvwQ0LQWiGHOe__pBE0rlocMKS3-a_Ve2S-c-IHrbP2xRZZwCWYJD7m22QmG7zqHUAZWbRbitIXq17I8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar%E2%80%90Induced+Fluorescence+Does+Not+Track+Photosynthetic+Carbon+Assimilation+Following+Induced+Stomatal+Closure&rft.jtitle=Geophysical+research+letters&rft.au=Marrs%2C+J.+K.&rft.au=Reblin%2C+J.+S.&rft.au=Logan%2C+B.+A.&rft.au=Allen%2C+D.+W.&rft.date=2020-08-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=15&rft_id=info:doi/10.1029%2F2020GL087956&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2020GL087956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |