Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells

High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by intro...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 47; pp. e2004877 - n/a
Main Authors Liu, Xuping, Wu, Jihuai, Yang, Yuqian, Wang, Deng, Li, Guodong, Wang, Xiaobing, Sun, Weihai, Wei, Yuelin, Huang, Yunfang, Huang, Miaoliang, Fan, Leqing, Lan, Zhang, Lin, Jianming, Ho, Kuo‐Chuan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. A facile and effective additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM) molecules into perovskite (PVK) layer. The synergistic effect of the SM− anions and the Gua+ cations are demonstrated, which effectively reduces the trap density and the recombination in PVK, so that the photovoltaic performance and stability of the perovskite solar cells are improved noticeably.
AbstractList High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.
High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. A facile and effective additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM) molecules into perovskite (PVK) layer. The synergistic effect of the SM− anions and the Gua+ cations are demonstrated, which effectively reduces the trap density and the recombination in PVK, so that the photovoltaic performance and stability of the perovskite solar cells are improved noticeably.
High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH 6 N 3 + , Gua + ; H 2 N−SO 3 − , SM − ) into PVK. The size of Gua + ion is suitable with Pb(BrI) 2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI) 2 . The O and N atoms of SM − can coordinate with Pb 2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.
High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.
Author Fan, Leqing
Huang, Miaoliang
Wang, Xiaobing
Lin, Jianming
Wei, Yuelin
Liu, Xuping
Li, Guodong
Wang, Deng
Wu, Jihuai
Lan, Zhang
Yang, Yuqian
Sun, Weihai
Huang, Yunfang
Ho, Kuo‐Chuan
Author_xml – sequence: 1
  givenname: Xuping
  surname: Liu
  fullname: Liu, Xuping
  organization: Huaqiao University
– sequence: 2
  givenname: Jihuai
  orcidid: 0000-0002-9820-1382
  surname: Wu
  fullname: Wu, Jihuai
  email: jhwu@hqu.edu.cn
  organization: Huaqiao University
– sequence: 3
  givenname: Yuqian
  surname: Yang
  fullname: Yang, Yuqian
  organization: Huaqiao University
– sequence: 4
  givenname: Deng
  surname: Wang
  fullname: Wang, Deng
  organization: Huaqiao University
– sequence: 5
  givenname: Guodong
  surname: Li
  fullname: Li, Guodong
  organization: Huaqiao University
– sequence: 6
  givenname: Xiaobing
  surname: Wang
  fullname: Wang, Xiaobing
  organization: Huaqiao University
– sequence: 7
  givenname: Weihai
  surname: Sun
  fullname: Sun, Weihai
  organization: Huaqiao University
– sequence: 8
  givenname: Yuelin
  surname: Wei
  fullname: Wei, Yuelin
  organization: Huaqiao University
– sequence: 9
  givenname: Yunfang
  surname: Huang
  fullname: Huang, Yunfang
  organization: Huaqiao University
– sequence: 10
  givenname: Miaoliang
  surname: Huang
  fullname: Huang, Miaoliang
  organization: Huaqiao University
– sequence: 11
  givenname: Leqing
  surname: Fan
  fullname: Fan, Leqing
  organization: Huaqiao University
– sequence: 12
  givenname: Zhang
  surname: Lan
  fullname: Lan, Zhang
  organization: Huaqiao University
– sequence: 13
  givenname: Jianming
  surname: Lin
  fullname: Lin, Jianming
  organization: Huaqiao University
– sequence: 14
  givenname: Kuo‐Chuan
  surname: Ho
  fullname: Ho, Kuo‐Chuan
  organization: National Taiwan University
BookMark eNqFkU1rGzEQhkVIIJ_XnAW99GJX0qy1u8fUuEnAJQEn52VWH65SWXIlbYr_fda4pBAoPWlAzyPNzHtOjkMMhpBrzqacMfElb7yfCiYYq5q6PiJnXHKYyEa0x-81Z6fkPOcXxoCLqj4j2xutXXGvhi7C2gVjkgtr2u_oV2eHoIqLAT29HTA4PV7T1eAtbrAYamOid279w-_owlqnnAmFYtB0VbD3hj6aFF_zT1dMpqvoMdG58T5fkhOLPpurP-cFef62eJrfTZYPt_fzm-VEwdj9BBTXuuW8B7AzBr3tpWaAmkNdoW0N8l5b1QgJgLLFGmYMpUBrrRIcuIIL8vnw7jbFX4PJpdu4rMYOMJg45E5UM9lI1syqEf30AX2JQxrn3lOyAg4SxEhND5RKMedkbLdNboNp13HW7QPo9gF07wGMQvVBUK7gfqMlofP_1tqD9tt5s_vPJ93q-3L5130DQvyeeA
CitedBy_id crossref_primary_10_1016_j_jallcom_2021_161352
crossref_primary_10_1002_solr_202100995
crossref_primary_10_1002_smll_202410172
crossref_primary_10_1016_j_apsusc_2022_152670
crossref_primary_10_1016_j_matchemphys_2024_129432
crossref_primary_10_1016_j_mssp_2022_106953
crossref_primary_10_1016_j_jcis_2025_02_176
crossref_primary_10_1021_acsaem_2c00370
crossref_primary_10_1038_s41598_024_78155_2
crossref_primary_10_1016_j_surfin_2023_103700
crossref_primary_10_1016_j_jallcom_2023_172749
crossref_primary_10_1021_acsnano_1c10636
crossref_primary_10_1016_j_cej_2021_134230
crossref_primary_10_1360_SSPMA_2023_0066
crossref_primary_10_1021_acsaem_1c03842
crossref_primary_10_1002_solr_202300151
crossref_primary_10_1021_acs_nanolett_3c01769
crossref_primary_10_1002_adom_202302110
crossref_primary_10_1016_j_orgel_2021_106226
crossref_primary_10_1039_D4TC01479K
crossref_primary_10_1021_acsami_1c16519
crossref_primary_10_1016_j_apsusc_2022_154362
crossref_primary_10_1016_j_jallcom_2022_165725
crossref_primary_10_1016_j_orgel_2023_106797
crossref_primary_10_1016_j_surfin_2024_104784
crossref_primary_10_1016_j_solener_2022_01_002
crossref_primary_10_1016_j_apsusc_2022_154486
crossref_primary_10_1016_j_elecom_2021_107020
crossref_primary_10_1016_j_solmat_2024_112816
crossref_primary_10_1002_adma_202205143
crossref_primary_10_1021_acsaem_1c01142
crossref_primary_10_1021_acsaem_1c03160
crossref_primary_10_1002_solr_202000732
crossref_primary_10_1016_j_solmat_2022_111682
crossref_primary_10_1016_j_physb_2024_416735
crossref_primary_10_1016_j_cej_2022_137851
crossref_primary_10_1039_D2QM01315K
crossref_primary_10_1039_D2NJ01965E
crossref_primary_10_1021_acsaem_2c01144
crossref_primary_10_1016_j_cej_2021_132528
crossref_primary_10_1016_j_jechem_2023_01_061
crossref_primary_10_1021_acsaem_1c01838
crossref_primary_10_1016_j_apsusc_2023_157901
Cites_doi 10.1021/acsenergylett.8b00576
10.1002/aenm.201803024
10.1126/science.aay7044
10.1002/adma.201806095
10.1002/anie.201607397
10.1002/aenm.201902579
10.1002/adma.201904347
10.1021/jacs.0c03860
10.1002/adma.201603808
10.1021/acsami.9b07321
10.1007/s11433-019-9356-1
10.1039/C9TA02916H
10.1002/smll.201907283
10.1002/adfm.202000764
10.1021/jacs.9b09945
10.1126/science.aav7911
10.1002/adma.201805085
10.1016/j.jpowsour.2018.07.093
10.1039/C9TA07657C
10.1038/s41560-017-0054-3
10.1021/jacs.8b00194
10.1002/aenm.201803135
10.1002/adfm.201909254
10.1016/j.nanoen.2016.06.041
10.1002/adma.201706576
10.1038/s41467-019-08843-5
10.1039/C8EE02744G
10.1038/s41560-018-0174-4
10.1021/ja809598r
10.1039/C8TA11925B
10.1126/science.aau5701
10.1021/acsaem.0c00137
10.1021/acs.nanolett.5b04060
10.1039/C8QM00337H
10.1038/s41586-019-1036-3
10.2109/jcersj2.18214
10.1002/adma.201801948
10.1002/adma.201600265
10.1002/adma.202000571
10.1039/C8RA00639C
10.34133/2019/4049793
10.1038/nmat4065
10.1002/aenm.201902256
10.1021/jacs.7b05260
10.1021/jacs.7b10430
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202004877
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202004877
SMLL202004877
Genre article
GrantInformation_xml – fundername: Cultivation Program for Postgraduate in Scientific Research Innovation Ability of Huaqiao University
  funderid: 18011081007
– fundername: National Natural Science Foundation of China
  funderid: U1705256; 51972123; 21771066
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3877-3c1dd911b33f503bfb6d03ad1374af9ea1bdfc82633a69a7350a62afffc2131c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 19:18:29 EDT 2025
Fri Jul 25 12:15:48 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Tue Jul 01 02:10:57 EDT 2025
Wed Jan 22 16:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3877-3c1dd911b33f503bfb6d03ad1374af9ea1bdfc82633a69a7350a62afffc2131c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9820-1382
PQID 2464313632
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2456860854
proquest_journals_2464313632
crossref_primary_10_1002_smll_202004877
crossref_citationtrail_10_1002_smll_202004877
wiley_primary_10_1002_smll_202004877_SMLL202004877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019; 2019
2019; 9
2017; 2
2018; 140
2019; 31
2020; 142
2019; 11
2019; 10
2019; 12
2019; 567
2019; 127
2020; 16
2019; 366
2017; 29
2020; 10
2020; 32
2009; 131
2019; 141
2016; 16
2019; 364
2017; 139
2016; 55
2019; 363
2020; 8
2018; 8
2018; 3
2020; 3
2018; 2
2019; 62
2020; 30
2018; 399
2019
2014; 13
2018; 30
2016; 28
2016; 27
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_37_1
Wang Y. (e_1_2_6_8_1) 2020; 32
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Chen Z. (e_1_2_6_16_1) 2017; 29
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 399
  start-page: 144
  year: 2018
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 459
  year: 2018
  publication-title: Nat. Energy
– volume: 567
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 27
  start-page: 17
  year: 2016
  publication-title: Nano Energy
– volume: 16
  start-page: 1009
  year: 2016
  publication-title: Nano Lett.
– volume: 3
  start-page: 3186
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 140
  start-page: 3850
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 27
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 363
  start-page: 265
  year: 2019
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 364
  start-page: 475
  year: 2019
  publication-title: Science
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1261
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 972
  year: 2017
  publication-title: Nat. Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 13
  start-page: 838
  year: 2014
  publication-title: Nat. Mater.
– volume: 28
  start-page: 5778
  year: 2016
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2239
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 140
  start-page: 1358
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1177
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 127
  start-page: 491
  year: 2019
  publication-title: J. Ceram. Soc. Jpn.
– volume: 10
  start-page: 878
  year: 2019
  publication-title: Nat. Commun.
– volume: 62
  year: 2019
  publication-title: Sci. China: Phys., Mech. Astron.
– year: 2019
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6450
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 366
  start-page: 749
  year: 2019
  publication-title: Science
– ident: e_1_2_6_26_1
  doi: 10.1021/acsenergylett.8b00576
– ident: e_1_2_6_11_1
  doi: 10.1002/aenm.201803024
– ident: e_1_2_6_35_1
  doi: 10.1126/science.aay7044
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201806095
– ident: e_1_2_6_29_1
  doi: 10.1002/anie.201607397
– ident: e_1_2_6_17_1
  doi: 10.1002/aenm.201902579
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201904347
– ident: e_1_2_6_14_1
  doi: 10.1021/jacs.0c03860
– volume: 29
  start-page: 1603808
  year: 2017
  ident: e_1_2_6_16_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adma.201603808
– ident: e_1_2_6_38_1
  doi: 10.1021/acsami.9b07321
– ident: e_1_2_6_4_1
  doi: 10.1007/s11433-019-9356-1
– ident: e_1_2_6_40_1
  doi: 10.1039/C9TA02916H
– ident: e_1_2_6_23_1
  doi: 10.1002/smll.201907283
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.202000764
– ident: e_1_2_6_7_1
  doi: 10.1021/jacs.9b09945
– ident: e_1_2_6_27_1
  doi: 10.1126/science.aav7911
– ident: e_1_2_6_36_1
  doi: 10.1002/adma.201805085
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jpowsour.2018.07.093
– ident: e_1_2_6_18_1
  doi: 10.1039/C9TA07657C
– ident: e_1_2_6_21_1
  doi: 10.1038/s41560-017-0054-3
– ident: e_1_2_6_30_1
  doi: 10.1021/jacs.8b00194
– ident: e_1_2_6_41_1
  doi: 10.1002/aenm.201803135
– ident: e_1_2_6_44_1
  doi: 10.1002/adfm.201909254
– ident: e_1_2_6_33_1
  doi: 10.1016/j.nanoen.2016.06.041
– ident: e_1_2_6_45_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_6_42_1
  doi: 10.1038/s41467-019-08843-5
– volume: 32
  start-page: 202002066
  year: 2020
  ident: e_1_2_6_8_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_6_1
  doi: 10.1039/C8EE02744G
– ident: e_1_2_6_3_1
  doi: 10.1038/s41560-018-0174-4
– ident: e_1_2_6_12_1
  doi: 10.1021/ja809598r
– ident: e_1_2_6_19_1
  doi: 10.1039/C8TA11925B
– ident: e_1_2_6_13_1
– ident: e_1_2_6_31_1
  doi: 10.1126/science.aau5701
– ident: e_1_2_6_24_1
  doi: 10.1021/acsaem.0c00137
– ident: e_1_2_6_20_1
  doi: 10.1021/acs.nanolett.5b04060
– ident: e_1_2_6_39_1
  doi: 10.1039/C8QM00337H
– ident: e_1_2_6_5_1
  doi: 10.1038/s41586-019-1036-3
– ident: e_1_2_6_22_1
  doi: 10.2109/jcersj2.18214
– ident: e_1_2_6_46_1
  doi: 10.1002/adma.201801948
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201600265
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.202000571
– ident: e_1_2_6_25_1
  doi: 10.1039/C8RA00639C
– ident: e_1_2_6_9_1
  doi: 10.34133/2019/4049793
– ident: e_1_2_6_2_1
  doi: 10.1038/nmat4065
– ident: e_1_2_6_1_1
  doi: 10.1002/aenm.201902256
– ident: e_1_2_6_34_1
  doi: 10.1021/jacs.7b05260
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.7b10430
SSID ssj0031247
Score 2.5098662
Snippet High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2004877
SubjectTerms additive engineering
bifunctional molecules
Commercialization
Density
Efficiency
Energy conversion efficiency
guanidine sulfamate
Nanotechnology
perovskite solar cells
Perovskites
Photovoltaic cells
Polyvinyl carbazole
Solar cells
Stability
Sulfur trioxide
Synergistic effect
Title Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202004877
https://www.proquest.com/docview/2464313632
https://www.proquest.com/docview/2456860854
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yJ33wW5xOiSD41K1N-vmoogzZRJyDvZWkSWBYu7FuwvzrvWu3bgoi6Fs_EprmcrnfXS6_EHIJLpcWMOtZAAWk5QoVgUr5yooS1-NGmIgVoezuo9_uuw8Db7C2i7_kh6gCbqgZxXyNCi5k3lqRhuZvKS4doJTDALeTY8IWoqLnij-Kg_EqTlcBm2Uh8daStdFmra_Vv1qlFdRcB6yFxbnfIWLZ1jLR5LU5m8pm8vGNxvE_P7NLthdwlF6X42ePbOhsn2ytkRQekPG1UkWCEV17TOWc3gzRKJaxRApDLRuCHdS0N0uNABysKeBhinkk6ZzeFUwVYOCoyBQFhCtTTZ_0ZPSeY_g4pz10semtTtP8kPTv715u29binAYr4dBaiyeOUjBpSs6NZ3NppK9sLpTDAxekrYUjlUnAj-Fc-JEIuGcLnwljTMIc7iT8iNSyUaaPCbUN82F6Ni54ouBqCoCzMgykCkNXB54xdWIt5RQnCxJzPEsjjUv6ZRZjT8ZVT9bJVVV-XNJ3_FiysRR7vFDjPGYuADYYV5zVyUX1GhQQV1VEpkczLOP5oQ_I1a0TVsj4ly_FvW6nU92d_KXSKdnE63JPZIPUppOZPgNwNJXnhQJ8AgqCB1Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7x42HsgQEbWhljRkLiKZDYiZM-MgYqo0VoBWlvkR3bEiKkiLRI8NfvLmlCQUJI4zGOrTg-n--78_kzwA66XFbhquchFNBeqEwXVUoar5uFkXDKdXkVyh6cyd5l-Ptv1GQT0lmYmh-iDbiRZlTrNSk4BaT3n1hDy5uc9g5IzEkcz8MiXetN9Pm__rQMUgLNV3W_Clotj6i3Gt5Gn-8_b__cLj2BzVnIWtmc40-gm97WqSbXe5Ox3sseXxA5vut3VmB5ikjZQT2FVmHOFmvwcYan8DPcHhhT5RixmWKmH9jPK7KLdTiR4WwrrtAUWjac5E4hFLYMITGjVJL8gR1VZBVo45gqDEOQq3PLzu3d6L6kCHLJhuRls0Ob5-UXuDw-ujjsedOrGrxMYG89kQXG4LqphXCRL7TT0vhCmUDEIQrcqkAbl6ErI4SSXRWLyFeSK-dcxgMRZGIdFopRYb8C8x2XuEK7EJ1R9DYVIlqdxNokSWjjyLkOeI2g0mzKY07XaeRpzcDMUxrJtB3JDuy29W9rBo9Xa242ck-nmlymPETMFggpeAe229eog7Sxogo7mlCdSCYSwWvYAV4J-Y0vpcNBv98-bfxPox_woXcx6Kf9k7PTb7BE5fURyU1YGN9N7HfESmO9VWnDP37ZC3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_8APEezm9uPU8jCD5V2yRN20e_Fj9WEVfBt5I0CYi1u9hdwfvrb9Lu1vVABH1smtA0k5n5zST5BWAHQy4j0ep5CAWUx6VOUKWE9pKMh8xKm9AqlX15JU7v-Pl9eD9xir_mh2gSbk4zKnvtFLyv7f4baWj5lLulAyflOIqmYZYLP3GXNxzfNARSDL1Xdb0KOi3PMW-NaRt9uv--_Xu39IY1JxFr5XLaCyDHna13mjzuDQdqL_v7H4_jd_5mEX6O8Cg5qCfQEkyZYhl-TLAUrkD_QOtqhxGZKCbqlRw-OK9YJxMJzrXiAR2hId1hbiUCYUMQEBO3kSR_JScVVQV6OCILTRDiqtyQa_Pceyld_rgkXRdjkyOT5-Uq3LVPbo9OvdFFDV7GsLceywKt0WoqxmzoM2WV0D6TOmARR3EbGShtMwxkGJMikRELfSmotNZmNGBBxtZgpugV5hcQ31KB9tlyDEUx1pSIZ1UcKR3H3EShtS3wxnJKsxGLubtMI09r_mWaupFMm5FswW5Tv1_zd3xYc2Ms9nSkx2VKOSK2gAlGW7DdvEYNdMsqsjC9oasTilggdOUtoJWMP_lS2r3sdJqn9a802oK56-N22jm7uvgN8664Ph-5ATOD56H5g0BpoDYrXfgHUGcKHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Engineering+by+Bifunctional+Guanidine+Sulfamate+for+Highly+Efficient+and+Stable+Perovskites+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xuping&rft.au=Wu%2C+Jihuai&rft.au=Yang%2C+Yuqian&rft.au=Wang%2C+Deng&rft.date=2020-11-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=47&rft.spage=e2004877&rft_id=info:doi/10.1002%2Fsmll.202004877&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon