Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells
High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by intro...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 47; pp. e2004877 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.
A facile and effective additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM) molecules into perovskite (PVK) layer. The synergistic effect of the SM− anions and the Gua+ cations are demonstrated, which effectively reduces the trap density and the recombination in PVK, so that the photovoltaic performance and stability of the perovskite solar cells are improved noticeably. |
---|---|
AbstractList | High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive.High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6 N3 + , Gua+ ; H2 N-SO3 - , SM- ) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low-dimensional PVK when mixed with Pb(BrI)2 . The O and N atoms of SM- can coordinate with Pb2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. A facile and effective additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM) molecules into perovskite (PVK) layer. The synergistic effect of the SM− anions and the Gua+ cations are demonstrated, which effectively reduces the trap density and the recombination in PVK, so that the photovoltaic performance and stability of the perovskite solar cells are improved noticeably. High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH 6 N 3 + , Gua + ; H 2 N−SO 3 − , SM − ) into PVK. The size of Gua + ion is suitable with Pb(BrI) 2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI) 2 . The O and N atoms of SM − can coordinate with Pb 2+ . The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density and internal nonradiative recombination of perovskite (PVK) limit its development. In this work, a facile additive strategy is devised by introducing bifunctional guanidine sulfamate (GuaSM; CH6N3+, Gua+; H2N−SO3−, SM−) into PVK. The size of Gua+ ion is suitable with Pb(BrI)2 cavity relatively, so it can participate in the formation of low‐dimensional PVK when mixed with Pb(BrI)2. The O and N atoms of SM− can coordinate with Pb2+. The synergistic effect of the anions and cations effectively reduces the trap density and the recombination in PVK, so that it can improve the efficiency and stability of PSCs. At an optimal concentration of GuaSM (2 mol%), the PSC presents a champion power conversion efficiency of 21.66% and a remarkably improved stability and hysteresis. The results provide a novel strategy for highly efficient and stable PSCs by bifunctional additive. |
Author | Fan, Leqing Huang, Miaoliang Wang, Xiaobing Lin, Jianming Wei, Yuelin Liu, Xuping Li, Guodong Wang, Deng Wu, Jihuai Lan, Zhang Yang, Yuqian Sun, Weihai Huang, Yunfang Ho, Kuo‐Chuan |
Author_xml | – sequence: 1 givenname: Xuping surname: Liu fullname: Liu, Xuping organization: Huaqiao University – sequence: 2 givenname: Jihuai orcidid: 0000-0002-9820-1382 surname: Wu fullname: Wu, Jihuai email: jhwu@hqu.edu.cn organization: Huaqiao University – sequence: 3 givenname: Yuqian surname: Yang fullname: Yang, Yuqian organization: Huaqiao University – sequence: 4 givenname: Deng surname: Wang fullname: Wang, Deng organization: Huaqiao University – sequence: 5 givenname: Guodong surname: Li fullname: Li, Guodong organization: Huaqiao University – sequence: 6 givenname: Xiaobing surname: Wang fullname: Wang, Xiaobing organization: Huaqiao University – sequence: 7 givenname: Weihai surname: Sun fullname: Sun, Weihai organization: Huaqiao University – sequence: 8 givenname: Yuelin surname: Wei fullname: Wei, Yuelin organization: Huaqiao University – sequence: 9 givenname: Yunfang surname: Huang fullname: Huang, Yunfang organization: Huaqiao University – sequence: 10 givenname: Miaoliang surname: Huang fullname: Huang, Miaoliang organization: Huaqiao University – sequence: 11 givenname: Leqing surname: Fan fullname: Fan, Leqing organization: Huaqiao University – sequence: 12 givenname: Zhang surname: Lan fullname: Lan, Zhang organization: Huaqiao University – sequence: 13 givenname: Jianming surname: Lin fullname: Lin, Jianming organization: Huaqiao University – sequence: 14 givenname: Kuo‐Chuan surname: Ho fullname: Ho, Kuo‐Chuan organization: National Taiwan University |
BookMark | eNqFkU1rGzEQhkVIIJ_XnAW99GJX0qy1u8fUuEnAJQEn52VWH65SWXIlbYr_fda4pBAoPWlAzyPNzHtOjkMMhpBrzqacMfElb7yfCiYYq5q6PiJnXHKYyEa0x-81Z6fkPOcXxoCLqj4j2xutXXGvhi7C2gVjkgtr2u_oV2eHoIqLAT29HTA4PV7T1eAtbrAYamOid279w-_owlqnnAmFYtB0VbD3hj6aFF_zT1dMpqvoMdG58T5fkhOLPpurP-cFef62eJrfTZYPt_fzm-VEwdj9BBTXuuW8B7AzBr3tpWaAmkNdoW0N8l5b1QgJgLLFGmYMpUBrrRIcuIIL8vnw7jbFX4PJpdu4rMYOMJg45E5UM9lI1syqEf30AX2JQxrn3lOyAg4SxEhND5RKMedkbLdNboNp13HW7QPo9gF07wGMQvVBUK7gfqMlofP_1tqD9tt5s_vPJ93q-3L5130DQvyeeA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_161352 crossref_primary_10_1002_solr_202100995 crossref_primary_10_1002_smll_202410172 crossref_primary_10_1016_j_apsusc_2022_152670 crossref_primary_10_1016_j_matchemphys_2024_129432 crossref_primary_10_1016_j_mssp_2022_106953 crossref_primary_10_1016_j_jcis_2025_02_176 crossref_primary_10_1021_acsaem_2c00370 crossref_primary_10_1038_s41598_024_78155_2 crossref_primary_10_1016_j_surfin_2023_103700 crossref_primary_10_1016_j_jallcom_2023_172749 crossref_primary_10_1021_acsnano_1c10636 crossref_primary_10_1016_j_cej_2021_134230 crossref_primary_10_1360_SSPMA_2023_0066 crossref_primary_10_1021_acsaem_1c03842 crossref_primary_10_1002_solr_202300151 crossref_primary_10_1021_acs_nanolett_3c01769 crossref_primary_10_1002_adom_202302110 crossref_primary_10_1016_j_orgel_2021_106226 crossref_primary_10_1039_D4TC01479K crossref_primary_10_1021_acsami_1c16519 crossref_primary_10_1016_j_apsusc_2022_154362 crossref_primary_10_1016_j_jallcom_2022_165725 crossref_primary_10_1016_j_orgel_2023_106797 crossref_primary_10_1016_j_surfin_2024_104784 crossref_primary_10_1016_j_solener_2022_01_002 crossref_primary_10_1016_j_apsusc_2022_154486 crossref_primary_10_1016_j_elecom_2021_107020 crossref_primary_10_1016_j_solmat_2024_112816 crossref_primary_10_1002_adma_202205143 crossref_primary_10_1021_acsaem_1c01142 crossref_primary_10_1021_acsaem_1c03160 crossref_primary_10_1002_solr_202000732 crossref_primary_10_1016_j_solmat_2022_111682 crossref_primary_10_1016_j_physb_2024_416735 crossref_primary_10_1016_j_cej_2022_137851 crossref_primary_10_1039_D2QM01315K crossref_primary_10_1039_D2NJ01965E crossref_primary_10_1021_acsaem_2c01144 crossref_primary_10_1016_j_cej_2021_132528 crossref_primary_10_1016_j_jechem_2023_01_061 crossref_primary_10_1021_acsaem_1c01838 crossref_primary_10_1016_j_apsusc_2023_157901 |
Cites_doi | 10.1021/acsenergylett.8b00576 10.1002/aenm.201803024 10.1126/science.aay7044 10.1002/adma.201806095 10.1002/anie.201607397 10.1002/aenm.201902579 10.1002/adma.201904347 10.1021/jacs.0c03860 10.1002/adma.201603808 10.1021/acsami.9b07321 10.1007/s11433-019-9356-1 10.1039/C9TA02916H 10.1002/smll.201907283 10.1002/adfm.202000764 10.1021/jacs.9b09945 10.1126/science.aav7911 10.1002/adma.201805085 10.1016/j.jpowsour.2018.07.093 10.1039/C9TA07657C 10.1038/s41560-017-0054-3 10.1021/jacs.8b00194 10.1002/aenm.201803135 10.1002/adfm.201909254 10.1016/j.nanoen.2016.06.041 10.1002/adma.201706576 10.1038/s41467-019-08843-5 10.1039/C8EE02744G 10.1038/s41560-018-0174-4 10.1021/ja809598r 10.1039/C8TA11925B 10.1126/science.aau5701 10.1021/acsaem.0c00137 10.1021/acs.nanolett.5b04060 10.1039/C8QM00337H 10.1038/s41586-019-1036-3 10.2109/jcersj2.18214 10.1002/adma.201801948 10.1002/adma.201600265 10.1002/adma.202000571 10.1039/C8RA00639C 10.34133/2019/4049793 10.1038/nmat4065 10.1002/aenm.201902256 10.1021/jacs.7b05260 10.1021/jacs.7b10430 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202004877 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202004877 SMLL202004877 |
Genre | article |
GrantInformation_xml | – fundername: Cultivation Program for Postgraduate in Scientific Research Innovation Ability of Huaqiao University funderid: 18011081007 – fundername: National Natural Science Foundation of China funderid: U1705256; 51972123; 21771066 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3877-3c1dd911b33f503bfb6d03ad1374af9ea1bdfc82633a69a7350a62afffc2131c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 19:18:29 EDT 2025 Fri Jul 25 12:15:48 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 02:10:57 EDT 2025 Wed Jan 22 16:31:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3877-3c1dd911b33f503bfb6d03ad1374af9ea1bdfc82633a69a7350a62afffc2131c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9820-1382 |
PQID | 2464313632 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2456860854 proquest_journals_2464313632 crossref_primary_10_1002_smll_202004877 crossref_citationtrail_10_1002_smll_202004877 wiley_primary_10_1002_smll_202004877_SMLL202004877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019; 2019 2019; 9 2017; 2 2018; 140 2019; 31 2020; 142 2019; 11 2019; 10 2019; 12 2019; 567 2019; 127 2020; 16 2019; 366 2017; 29 2020; 10 2020; 32 2009; 131 2019; 141 2016; 16 2019; 364 2017; 139 2016; 55 2019; 363 2020; 8 2018; 8 2018; 3 2020; 3 2018; 2 2019; 62 2020; 30 2018; 399 2019 2014; 13 2018; 30 2016; 28 2016; 27 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_37_1 Wang Y. (e_1_2_6_8_1) 2020; 32 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Chen Z. (e_1_2_6_16_1) 2017; 29 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 399 start-page: 144 year: 2018 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 29 year: 2017 publication-title: Adv. Funct. Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 start-page: 459 year: 2018 publication-title: Nat. Energy – volume: 567 start-page: 511 year: 2019 publication-title: Nature – volume: 27 start-page: 17 year: 2016 publication-title: Nano Energy – volume: 16 start-page: 1009 year: 2016 publication-title: Nano Lett. – volume: 3 start-page: 3186 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 140 start-page: 3850 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 27 year: 2020 publication-title: J. Mater. Chem. A – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 363 start-page: 265 year: 2019 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1261 year: 2018 publication-title: ACS Energy Lett. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 972 year: 2017 publication-title: Nat. Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2019 year: 2019 publication-title: Research – volume: 13 start-page: 838 year: 2014 publication-title: Nat. Mater. – volume: 28 start-page: 5778 year: 2016 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2239 year: 2018 publication-title: Mater. Chem. Front. – volume: 140 start-page: 1358 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1177 year: 2019 publication-title: Energy Environ. Sci. – volume: 127 start-page: 491 year: 2019 publication-title: J. Ceram. Soc. Jpn. – volume: 10 start-page: 878 year: 2019 publication-title: Nat. Commun. – volume: 62 year: 2019 publication-title: Sci. China: Phys., Mech. Astron. – year: 2019 – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6450 year: 2019 publication-title: J. Mater. Chem. A – volume: 366 start-page: 749 year: 2019 publication-title: Science – ident: e_1_2_6_26_1 doi: 10.1021/acsenergylett.8b00576 – ident: e_1_2_6_11_1 doi: 10.1002/aenm.201803024 – ident: e_1_2_6_35_1 doi: 10.1126/science.aay7044 – ident: e_1_2_6_37_1 doi: 10.1002/adma.201806095 – ident: e_1_2_6_29_1 doi: 10.1002/anie.201607397 – ident: e_1_2_6_17_1 doi: 10.1002/aenm.201902579 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201904347 – ident: e_1_2_6_14_1 doi: 10.1021/jacs.0c03860 – volume: 29 start-page: 1603808 year: 2017 ident: e_1_2_6_16_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adma.201603808 – ident: e_1_2_6_38_1 doi: 10.1021/acsami.9b07321 – ident: e_1_2_6_4_1 doi: 10.1007/s11433-019-9356-1 – ident: e_1_2_6_40_1 doi: 10.1039/C9TA02916H – ident: e_1_2_6_23_1 doi: 10.1002/smll.201907283 – ident: e_1_2_6_10_1 doi: 10.1002/adfm.202000764 – ident: e_1_2_6_7_1 doi: 10.1021/jacs.9b09945 – ident: e_1_2_6_27_1 doi: 10.1126/science.aav7911 – ident: e_1_2_6_36_1 doi: 10.1002/adma.201805085 – ident: e_1_2_6_43_1 doi: 10.1016/j.jpowsour.2018.07.093 – ident: e_1_2_6_18_1 doi: 10.1039/C9TA07657C – ident: e_1_2_6_21_1 doi: 10.1038/s41560-017-0054-3 – ident: e_1_2_6_30_1 doi: 10.1021/jacs.8b00194 – ident: e_1_2_6_41_1 doi: 10.1002/aenm.201803135 – ident: e_1_2_6_44_1 doi: 10.1002/adfm.201909254 – ident: e_1_2_6_33_1 doi: 10.1016/j.nanoen.2016.06.041 – ident: e_1_2_6_45_1 doi: 10.1002/adma.201706576 – ident: e_1_2_6_42_1 doi: 10.1038/s41467-019-08843-5 – volume: 32 start-page: 202002066 year: 2020 ident: e_1_2_6_8_1 publication-title: Adv. Mater. – ident: e_1_2_6_6_1 doi: 10.1039/C8EE02744G – ident: e_1_2_6_3_1 doi: 10.1038/s41560-018-0174-4 – ident: e_1_2_6_12_1 doi: 10.1021/ja809598r – ident: e_1_2_6_19_1 doi: 10.1039/C8TA11925B – ident: e_1_2_6_13_1 – ident: e_1_2_6_31_1 doi: 10.1126/science.aau5701 – ident: e_1_2_6_24_1 doi: 10.1021/acsaem.0c00137 – ident: e_1_2_6_20_1 doi: 10.1021/acs.nanolett.5b04060 – ident: e_1_2_6_39_1 doi: 10.1039/C8QM00337H – ident: e_1_2_6_5_1 doi: 10.1038/s41586-019-1036-3 – ident: e_1_2_6_22_1 doi: 10.2109/jcersj2.18214 – ident: e_1_2_6_46_1 doi: 10.1002/adma.201801948 – ident: e_1_2_6_15_1 doi: 10.1002/adma.201600265 – ident: e_1_2_6_28_1 doi: 10.1002/adma.202000571 – ident: e_1_2_6_25_1 doi: 10.1039/C8RA00639C – ident: e_1_2_6_9_1 doi: 10.34133/2019/4049793 – ident: e_1_2_6_2_1 doi: 10.1038/nmat4065 – ident: e_1_2_6_1_1 doi: 10.1002/aenm.201902256 – ident: e_1_2_6_34_1 doi: 10.1021/jacs.7b05260 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.7b10430 |
SSID | ssj0031247 |
Score | 2.5098662 |
Snippet | High efficiency and good stability are the challenges for perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high defect density... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2004877 |
SubjectTerms | additive engineering bifunctional molecules Commercialization Density Efficiency Energy conversion efficiency guanidine sulfamate Nanotechnology perovskite solar cells Perovskites Photovoltaic cells Polyvinyl carbazole Solar cells Stability Sulfur trioxide Synergistic effect |
Title | Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202004877 https://www.proquest.com/docview/2464313632 https://www.proquest.com/docview/2456860854 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yJ33wW5xOiSD41K1N-vmoogzZRJyDvZWkSWBYu7FuwvzrvWu3bgoi6Fs_EprmcrnfXS6_EHIJLpcWMOtZAAWk5QoVgUr5yooS1-NGmIgVoezuo9_uuw8Db7C2i7_kh6gCbqgZxXyNCi5k3lqRhuZvKS4doJTDALeTY8IWoqLnij-Kg_EqTlcBm2Uh8daStdFmra_Vv1qlFdRcB6yFxbnfIWLZ1jLR5LU5m8pm8vGNxvE_P7NLthdwlF6X42ePbOhsn2ytkRQekPG1UkWCEV17TOWc3gzRKJaxRApDLRuCHdS0N0uNABysKeBhinkk6ZzeFUwVYOCoyBQFhCtTTZ_0ZPSeY_g4pz10semtTtP8kPTv715u29binAYr4dBaiyeOUjBpSs6NZ3NppK9sLpTDAxekrYUjlUnAj-Fc-JEIuGcLnwljTMIc7iT8iNSyUaaPCbUN82F6Ni54ouBqCoCzMgykCkNXB54xdWIt5RQnCxJzPEsjjUv6ZRZjT8ZVT9bJVVV-XNJ3_FiysRR7vFDjPGYuADYYV5zVyUX1GhQQV1VEpkczLOP5oQ_I1a0TVsj4ly_FvW6nU92d_KXSKdnE63JPZIPUppOZPgNwNJXnhQJ8AgqCB1Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7x42HsgQEbWhljRkLiKZDYiZM-MgYqo0VoBWlvkR3bEiKkiLRI8NfvLmlCQUJI4zGOrTg-n--78_kzwA66XFbhquchFNBeqEwXVUoar5uFkXDKdXkVyh6cyd5l-Ptv1GQT0lmYmh-iDbiRZlTrNSk4BaT3n1hDy5uc9g5IzEkcz8MiXetN9Pm__rQMUgLNV3W_Clotj6i3Gt5Gn-8_b__cLj2BzVnIWtmc40-gm97WqSbXe5Ox3sseXxA5vut3VmB5ikjZQT2FVmHOFmvwcYan8DPcHhhT5RixmWKmH9jPK7KLdTiR4WwrrtAUWjac5E4hFLYMITGjVJL8gR1VZBVo45gqDEOQq3PLzu3d6L6kCHLJhuRls0Ob5-UXuDw-ujjsedOrGrxMYG89kQXG4LqphXCRL7TT0vhCmUDEIQrcqkAbl6ErI4SSXRWLyFeSK-dcxgMRZGIdFopRYb8C8x2XuEK7EJ1R9DYVIlqdxNokSWjjyLkOeI2g0mzKY07XaeRpzcDMUxrJtB3JDuy29W9rBo9Xa242ck-nmlymPETMFggpeAe229eog7Sxogo7mlCdSCYSwWvYAV4J-Y0vpcNBv98-bfxPox_woXcx6Kf9k7PTb7BE5fURyU1YGN9N7HfESmO9VWnDP37ZC3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_8APEezm9uPU8jCD5V2yRN20e_Fj9WEVfBt5I0CYi1u9hdwfvrb9Lu1vVABH1smtA0k5n5zST5BWAHQy4j0ep5CAWUx6VOUKWE9pKMh8xKm9AqlX15JU7v-Pl9eD9xir_mh2gSbk4zKnvtFLyv7f4baWj5lLulAyflOIqmYZYLP3GXNxzfNARSDL1Xdb0KOi3PMW-NaRt9uv--_Xu39IY1JxFr5XLaCyDHna13mjzuDQdqL_v7H4_jd_5mEX6O8Cg5qCfQEkyZYhl-TLAUrkD_QOtqhxGZKCbqlRw-OK9YJxMJzrXiAR2hId1hbiUCYUMQEBO3kSR_JScVVQV6OCILTRDiqtyQa_Pceyld_rgkXRdjkyOT5-Uq3LVPbo9OvdFFDV7GsLceywKt0WoqxmzoM2WV0D6TOmARR3EbGShtMwxkGJMikRELfSmotNZmNGBBxtZgpugV5hcQ31KB9tlyDEUx1pSIZ1UcKR3H3EShtS3wxnJKsxGLubtMI09r_mWaupFMm5FswW5Tv1_zd3xYc2Ms9nSkx2VKOSK2gAlGW7DdvEYNdMsqsjC9oasTilggdOUtoJWMP_lS2r3sdJqn9a802oK56-N22jm7uvgN8664Ph-5ATOD56H5g0BpoDYrXfgHUGcKHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Engineering+by+Bifunctional+Guanidine+Sulfamate+for+Highly+Efficient+and+Stable+Perovskites+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xuping&rft.au=Wu%2C+Jihuai&rft.au=Yang%2C+Yuqian&rft.au=Wang%2C+Deng&rft.date=2020-11-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=47&rft.spage=e2004877&rft_id=info:doi/10.1002%2Fsmll.202004877&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |