In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode
Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE)...
Saved in:
Published in | ChemElectroChem Vol. 2; no. 5; pp. 714 - 719 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag
13.05.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤E≤−1.4 V) for 90 min. The H2O2 concentration reached a maximum value of 3370 mg L−1 at −1.1 V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant kapp=59.7 mg L−1 min−1. A low energy consumption of 8.0 kWh kg−1 was calculated for these electrogeneration conditions.
Volt of confidence: Electrogeneration of H2O2 in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant. |
---|---|
AbstractList | Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L-1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single-compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2bar. Electrolysis experiments were performed at a constant potential (-0.5≤E≤-1.4V) for 90min. The H2O2 concentration reached a maximum value of 3370mgL-1 at -1.1V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo-zero-order kinetics with an apparent rate constant kapp=59.7mgL-1min-1. A low energy consumption of 8.0 kWh kg-1 was calculated for these electrogeneration conditions. Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤E≤−1.4 V) for 90 min. The H2O2 concentration reached a maximum value of 3370 mg L−1 at −1.1 V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant kapp=59.7 mg L−1 min−1. A low energy consumption of 8.0 kWh kg−1 was calculated for these electrogeneration conditions. Volt of confidence: Electrogeneration of H2O2 in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant. Abstract Hydrogen peroxide (H 2 O 2 ) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H 2 O 2 electrogeneration process in alkaline medium (KOH 1.0 mol L −1 ), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N 2 or O 2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤ E ≤−1.4 V) for 90 min. The H 2 O 2 concentration reached a maximum value of 3370 mg L −1 at −1.1 V (vs. Ag/AgCl), and H 2 O 2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant k app =59.7 mg L −1 min −1 . A low energy consumption of 8.0 kWh kg −1 was calculated for these electrogeneration conditions. Hydrogen peroxide (H sub(2)O sub(2)) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H sub(2)O sub(2) electrogeneration process in alkaline medium (KOH 1.0 mol L super(-1)), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single-compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N sub(2) or O sub(2) at a pressure of 0.2bar. Electrolysis experiments were performed at a constant potential (-0.5 less than or equal to E less than or equal to -1.4V) for 90min. The H sub(2)O sub(2) concentration reached a maximum value of 3370mgL super(-1) at -1.1V (vs. Ag/AgCl), and H sub(2)O sub(2) electrogeneration followed pseudo-zero-order kinetics with an apparent rate constant k sub(app)=59.7mgL super(-1)min super(-1). A low energy consumption of 8.0 kWh kg super(-1) was calculated for these electrogeneration conditions. Volt of confidence: Electrogeneration of H sub(2)O sub(2) in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant. |
Author | Barros, Willyam R. P. Ereno, Thaís Lanza, Marcos R. V. Tavares, Ana C. |
Author_xml | – sequence: 1 givenname: Willyam R. P. surname: Barros fullname: Barros, Willyam R. P. – sequence: 2 givenname: Thaís surname: Ereno fullname: Ereno, Thaís – sequence: 3 givenname: Ana C. surname: Tavares fullname: Tavares, Ana C. – sequence: 4 givenname: Marcos R. V. surname: Lanza fullname: Lanza, Marcos R. V. email: marcoslanza@iqsc.usp.br |
BookMark | eNqFkUtPQyEQhYnRxOfWNYkbN63AfcGyqbU1aaKJuiZc7qAoBYXeaNf-cak1aty4YhK-M3Nmzj7a9sEDQseUDCkh7EyD00NGaElYyeottMeoqAeE0Xr7V72LjlJ6JIRQSqqC13vo_dLjG7vs8cSBXsagH2BhtXJ4Ch6iWtrgcTB4tupiuAePryGGN9sBth6P3JNy1gMevfQQ-oRvgus_Fe0K98n6e6w8vvOL0FljocNTlfC5NSb_ZehrYgeHaMcol-Do6z1AdxeT2_FsML-aXo5H84EueFMPGpU3Bc2bigjBoeWt0U3dlkBawwyvVEcF1IppYQgTneIdMNqIgnJVlLxVxQE63fR9jiE7Tku5sCkfzim_ti8pJ6TkoqJlRk_-oI-hjz67k7SpirqiomKZGm4oHUNKEYx8jnah4kpSItexyHUs8juWLBAbwat1sPqHluPJfPyj_QBWPJOi |
CitedBy_id | crossref_primary_10_1016_j_electacta_2017_11_072 crossref_primary_10_1016_j_chemosphere_2023_140171 crossref_primary_10_1016_j_matchemphys_2016_09_014 crossref_primary_10_1016_j_electacta_2022_141067 crossref_primary_10_1016_j_apcatb_2020_119485 crossref_primary_10_1016_j_cej_2021_133280 crossref_primary_10_1016_j_cej_2023_141748 crossref_primary_10_1021_acs_iecr_7b02890 crossref_primary_10_1021_acssuschemeng_8b05000 crossref_primary_10_1016_j_apcatb_2022_121339 crossref_primary_10_1002_jctb_7589 crossref_primary_10_1016_j_ese_2022_100170 crossref_primary_10_1016_j_seppur_2020_117883 crossref_primary_10_1016_j_chemosphere_2019_03_042 crossref_primary_10_1021_acsaem_9b01908 crossref_primary_10_1007_s40201_018_0295_5 crossref_primary_10_1016_j_electacta_2024_143872 crossref_primary_10_1016_j_seppur_2024_126351 crossref_primary_10_1016_j_apcatb_2015_06_048 crossref_primary_10_1038_s41598_018_37919_3 crossref_primary_10_1039_D1QM00918D crossref_primary_10_1016_j_chemosphere_2021_133353 crossref_primary_10_1016_j_jelechem_2019_04_009 crossref_primary_10_1021_acsomega_0c00266 crossref_primary_10_1016_j_jelechem_2020_114291 crossref_primary_10_1016_j_jelechem_2024_118261 crossref_primary_10_1021_acs_energyfuels_8b01630 crossref_primary_10_1016_j_electacta_2017_07_116 crossref_primary_10_1016_j_jwpe_2020_101377 crossref_primary_10_1080_10916466_2022_2105359 crossref_primary_10_1016_j_jece_2022_107882 crossref_primary_10_20964_2019_09_52 crossref_primary_10_1016_j_elecom_2018_02_012 crossref_primary_10_1021_acs_iecr_7b02563 crossref_primary_10_1002_advs_202100076 crossref_primary_10_1016_j_cep_2018_09_013 crossref_primary_10_1016_j_electacta_2017_08_040 crossref_primary_10_1021_acs_iecr_2c01669 crossref_primary_10_1016_j_jece_2024_112985 crossref_primary_10_1016_j_chemosphere_2019_03_071 crossref_primary_10_1002_cssc_202400491 crossref_primary_10_1016_j_jpowsour_2020_228992 crossref_primary_10_1021_acsaem_9b01445 crossref_primary_10_1134_S1023193521090068 crossref_primary_10_1515_gps_2021_0072 crossref_primary_10_1016_j_jclepro_2018_11_225 crossref_primary_10_1039_C9NA00738E crossref_primary_10_1016_j_cej_2018_06_122 crossref_primary_10_1016_j_jhazmat_2024_134181 crossref_primary_10_1016_j_electacta_2024_144533 crossref_primary_10_1021_acs_chemrev_7b00542 crossref_primary_10_1016_j_jtice_2021_06_028 crossref_primary_10_1021_acsestwater_2c00160 crossref_primary_10_1016_j_cej_2022_140697 crossref_primary_10_1016_j_jhazmat_2018_05_048 crossref_primary_10_1016_j_seppur_2018_04_021 crossref_primary_10_25130_tjes_31_3_5 crossref_primary_10_1016_j_jelechem_2017_09_010 crossref_primary_10_1016_j_cep_2022_109123 crossref_primary_10_1016_j_cej_2023_146703 crossref_primary_10_1007_s11356_023_30536_2 crossref_primary_10_1016_j_electacta_2023_143337 crossref_primary_10_1016_j_electacta_2019_01_010 crossref_primary_10_1016_j_jwpe_2022_103035 crossref_primary_10_1016_j_elecom_2020_106868 crossref_primary_10_1016_j_jpowsour_2015_12_078 crossref_primary_10_1039_D3CS00461A crossref_primary_10_1016_j_jece_2022_108024 crossref_primary_10_1016_j_seppur_2022_121704 crossref_primary_10_1039_C6DT04643F crossref_primary_10_1016_j_chemosphere_2018_10_018 crossref_primary_10_1016_j_jelechem_2021_114978 crossref_primary_10_1016_j_ces_2023_118647 crossref_primary_10_1016_j_jclepro_2023_136242 crossref_primary_10_1016_j_psep_2024_05_092 crossref_primary_10_1016_j_jece_2022_108932 crossref_primary_10_1016_j_cej_2016_10_095 crossref_primary_10_1021_acs_energyfuels_6b02151 crossref_primary_10_1016_j_electacta_2023_142383 crossref_primary_10_1039_D4GC00387J crossref_primary_10_1016_j_seppur_2021_120299 crossref_primary_10_1016_j_seppur_2021_118493 crossref_primary_10_1016_j_apcatb_2016_01_071 crossref_primary_10_1016_j_cej_2020_124411 crossref_primary_10_1038_s41467_020_15597_y crossref_primary_10_1021_acsmaterialslett_0c00189 crossref_primary_10_1016_j_jcat_2015_08_027 crossref_primary_10_1016_j_jmst_2023_04_073 crossref_primary_10_1016_j_scitotenv_2020_143459 crossref_primary_10_1134_S1070427217070187 crossref_primary_10_1016_j_cej_2017_08_092 crossref_primary_10_1016_j_electacta_2017_06_085 crossref_primary_10_1016_j_apcatb_2017_01_001 crossref_primary_10_1016_j_jhazmat_2018_10_073 crossref_primary_10_1016_j_aca_2016_04_036 crossref_primary_10_1016_j_seppur_2022_121847 crossref_primary_10_1016_j_electacta_2022_139885 |
Cites_doi | 10.1016/j.electacta.2011.07.069 10.1016/j.cattod.2012.01.040 10.1590/S0100-40422001000200017 10.1149/1.2221614 10.1002/pola.26656 10.1016/0013-4686(67)80007-0 10.1016/j.electacta.2013.04.079 10.1016/S0013-4686(02)00665-5 10.1007/s10800-006-9269-x 10.1016/j.carbon.2013.04.100 10.1252/jcej.18.409 10.1007/BF00249648 10.1149/1.2044186 10.1016/j.apcata.2011.09.030 10.1016/S0360-0564(08)60042-5 10.1252/jcej.18.364 10.1149/1.2423575 10.1023/A:1017588221369 10.1016/j.electacta.2008.07.063 10.1016/j.ijhydene.2010.11.025 10.1016/j.electacta.2009.06.060 10.1016/j.jelechem.2014.02.009 10.1016/j.jelechem.2014.03.007 10.1007/s11244-006-0083-9 10.4152/pea.200602159 10.1016/j.dyepig.2007.01.001 10.1016/j.carbon.2011.03.014 10.1016/j.apcatb.2010.02.033 10.1021/cr900136g 10.1016/j.elecom.2009.07.008 10.1016/S0013-4686(98)00242-4 10.1590/S0103-50532008000400006 10.1016/j.jelechem.2006.10.023 10.1016/j.ccr.2004.11.019 10.1007/BF00241923 10.1016/j.electacta.2008.06.038 10.1016/S0920-5861(98)00025-X 10.1007/s10800-005-0800-2 10.1149/1.1392039 10.3891/acta.chem.scand.53-0745 |
ContentType | Journal Article |
Copyright | Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.201402426 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 719 |
ExternalDocumentID | 3912778071 10_1002_celc_201402426 CELC201402426 |
Genre | article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico – fundername: Fonds de Recherche du Québec‐Nature et Technologies – fundername: São Paulo Research Foundation – fundername: FAPESP funderid: 2011/06681–4; 2011/00535–6; 2013/06682–6 – fundername: CNPq – fundername: FRQNT |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3876-7a100ec8750998eb8bfc76b4e0bf2f85ad19e6a2c9f029da8de2179318a348ba3 |
ISSN | 2196-0216 |
IngestDate | Fri Oct 25 03:54:14 EDT 2024 Thu Oct 10 22:42:21 EDT 2024 Fri Aug 23 01:52:08 EDT 2024 Sat Aug 24 01:00:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3876-7a100ec8750998eb8bfc76b4e0bf2f85ad19e6a2c9f029da8de2179318a348ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1753651952 |
PQPubID | 2034587 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1800489514 proquest_journals_1753651952 crossref_primary_10_1002_celc_201402426 wiley_primary_10_1002_celc_201402426_CELC201402426 |
PublicationCentury | 2000 |
PublicationDate | May 13, 2015 |
PublicationDateYYYYMMDD | 2015-05-13 |
PublicationDate_xml | – month: 05 year: 2015 text: May 13, 2015 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2015 |
Publisher | WILEY‐VCH Verlag John Wiley & Sons, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag – name: John Wiley & Sons, Inc |
References | 1965; 12 2007; 601 2014; 719 2006; 38 2013; 104 2013; 61 2008; 19 1993; 140 2008; 76 2008; 54 1999; 146 2011; 56 1992 2011; 36 1998; 41 2001; 24 1998; 44 2007; 37 2009; 11 1985; 18 2002; 48 2009; 54 1991; 23 2006; 24 1965; 112 1967; 12 1995; 25 2013; 51 2005; 249 2012; 193 1996; 41 1999; 53 2014; 722–723 1995; 142 2012; 411 2011; 49 2009; 109 2010; 96 2001; 31 2005; 35 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 Elizardo K. (e_1_2_6_6_2) 1991; 23 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 Kinoshita K. (e_1_2_6_45_2) 1992 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 49 start-page: 2842 year: 2011 end-page: 2851 publication-title: Carbon – volume: 41 start-page: 351 year: 1998 end-page: 364 publication-title: Catal. Today – volume: 12 start-page: 287 year: 1967 end-page: 297 publication-title: Electrochim. Acta – volume: 146 start-page: 2983 year: 1999 end-page: 2989 publication-title: J. Electrochem. Soc. – volume: 142 start-page: 1733 year: 1995 end-page: 1741 publication-title: J. Electrochem. Soc. – volume: 24 start-page: 159 year: 2006 end-page: 189 publication-title: Port. Electrochim. Acta – volume: 18 start-page: 364 year: 1985 end-page: 71 publication-title: J. Chem. Eng. Jpn. – volume: 722–723 start-page: 32 year: 2014 end-page: 37 publication-title: J. Electroanal. Chem. – volume: 53 start-page: 745 year: 1999 end-page: 750 publication-title: Acta Chem. Scand. – volume: 54 start-page: 6651 year: 2009 end-page: 6660 publication-title: Electrochim. Acta – volume: 12 start-page: 469 year: 1965 end-page: 471 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 1752 year: 2009 end-page: 1755 publication-title: Electrochem. Commun. – volume: 25 start-page: 613 year: 1995 end-page: 627 publication-title: J. Appl. Electrochem. – volume: 23 start-page: 106 year: 1991 end-page: 109 publication-title: J. Pollut. Eng. – volume: 31 start-page: 877 year: 2001 end-page: 882 publication-title: J. Appl. Electrochem. – volume: 56 start-page: 8651 year: 2011 end-page: 8656 publication-title: Electrochim. Acta – volume: 140 start-page: 1632 year: 1993 end-page: 1637 publication-title: J. Electrochem. Soc. – volume: 37 start-page: 375 year: 2007 end-page: 383 publication-title: J. Appl. Electrochem. – volume: 54 start-page: 876 year: 2008 end-page: 878 publication-title: Electrochim. Acta – volume: 61 start-page: 236 year: 2013 end-page: 244 publication-title: Carbon – volume: 36 start-page: 2258 year: 2011 end-page: 2265 publication-title: Int. J. Hydrogen Energy – volume: 193 start-page: 128 year: 2012 end-page: 136 publication-title: Catal. Today – volume: 25 start-page: 307 year: 1995 end-page: 314 publication-title: J. Appl. Electrochem. – volume: 35 start-page: 413 year: 2005 end-page: 419 publication-title: J. Appl. Electrochem. – volume: 96 start-page: 361 year: 2010 end-page: 369 publication-title: Appl. Catal. B – volume: 104 start-page: 12 year: 2013 end-page: 18 publication-title: Electrochim. Acta – volume: 601 start-page: 63 year: 2007 end-page: 67 publication-title: J. Electroanal. Chem. – volume: 38 start-page: 181 year: 2006 end-page: 193 publication-title: Top. Catal. – volume: 112 start-page: 469 year: 1965 end-page: 471 publication-title: J. Electrochem. Soc. – start-page: 4 year: 1992 – volume: 51 start-page: 2669 year: 2013 end-page: 2676 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 18 start-page: 409 year: 1985 end-page: 14 publication-title: J. Chem. Eng. Jpn. – volume: 54 start-page: 808 year: 2008 end-page: 815 publication-title: Electrochim. Acta – volume: 411 start-page: 1 year: 2012 end-page: 6 publication-title: Appl. Catal. A – volume: 41 start-page: 253 year: 1996 end-page: 334 publication-title: Adv. Catal. – volume: 719 start-page: 127 year: 2014 end-page: 132 publication-title: J. Electroanal. Chem. – volume: 44 start-page: 853 year: 1998 end-page: 861 publication-title: Electrochim. Acta – volume: 109 start-page: 6570 year: 2009 end-page: 6631 publication-title: Chem. Rev. – volume: 249 start-page: 1944 year: 2005 end-page: 1956 publication-title: Coord. Chem. Rev. – volume: 76 start-page: 656 year: 2008 end-page: 662 publication-title: Dyes Pigments – volume: 24 start-page: 252 year: 2001 end-page: 256 publication-title: Quím. Nova – volume: 19 start-page: 643 year: 2008 end-page: 650 publication-title: J. Braz. Chem. Soc. – volume: 48 start-page: 331 year: 2002 end-page: 340 publication-title: Electrochim. Acta – ident: e_1_2_6_17_2 doi: 10.1016/j.electacta.2011.07.069 – ident: e_1_2_6_14_2 doi: 10.1016/j.cattod.2012.01.040 – ident: e_1_2_6_18_2 doi: 10.1590/S0100-40422001000200017 – ident: e_1_2_6_34_2 doi: 10.1149/1.2221614 – ident: e_1_2_6_11_2 doi: 10.1002/pola.26656 – start-page: 4 volume-title: Electrochemical Oxygen Technology year: 1992 ident: e_1_2_6_45_2 contributor: fullname: Kinoshita K. – ident: e_1_2_6_52_2 doi: 10.1016/0013-4686(67)80007-0 – ident: e_1_2_6_35_2 doi: 10.1016/j.electacta.2013.04.079 – ident: e_1_2_6_46_2 doi: 10.1016/S0013-4686(02)00665-5 – ident: e_1_2_6_37_2 doi: 10.1007/s10800-006-9269-x – ident: e_1_2_6_48_2 doi: 10.1016/j.carbon.2013.04.100 – ident: e_1_2_6_25_2 doi: 10.1252/jcej.18.409 – ident: e_1_2_6_12_2 – ident: e_1_2_6_32_2 doi: 10.1007/BF00249648 – volume: 23 start-page: 106 year: 1991 ident: e_1_2_6_6_2 publication-title: J. Pollut. Eng. contributor: fullname: Elizardo K. – ident: e_1_2_6_39_2 doi: 10.1149/1.2044186 – ident: e_1_2_6_28_2 doi: 10.1016/0013-4686(67)80007-0 – ident: e_1_2_6_44_2 doi: 10.1016/j.apcata.2011.09.030 – ident: e_1_2_6_4_2 doi: 10.1016/S0360-0564(08)60042-5 – ident: e_1_2_6_24_2 doi: 10.1252/jcej.18.364 – ident: e_1_2_6_27_2 doi: 10.1149/1.2423575 – ident: e_1_2_6_8_2 doi: 10.1023/A:1017588221369 – ident: e_1_2_6_21_2 doi: 10.1016/j.electacta.2008.07.063 – ident: e_1_2_6_29_2 doi: 10.1016/j.ijhydene.2010.11.025 – ident: e_1_2_6_20_2 doi: 10.1016/j.electacta.2009.06.060 – ident: e_1_2_6_50_2 doi: 10.1016/j.jelechem.2014.02.009 – ident: e_1_2_6_36_2 doi: 10.1016/j.jelechem.2014.03.007 – ident: e_1_2_6_33_2 – ident: e_1_2_6_3_2 doi: 10.1007/s11244-006-0083-9 – ident: e_1_2_6_30_2 – ident: e_1_2_6_7_2 doi: 10.4152/pea.200602159 – ident: e_1_2_6_5_2 – ident: e_1_2_6_9_2 doi: 10.1016/j.dyepig.2007.01.001 – ident: e_1_2_6_41_2 doi: 10.1016/j.carbon.2011.03.014 – ident: e_1_2_6_19_2 doi: 10.1016/j.apcatb.2010.02.033 – ident: e_1_2_6_15_2 – ident: e_1_2_6_47_2 doi: 10.1021/cr900136g – ident: e_1_2_6_22_2 doi: 10.1016/j.elecom.2009.07.008 – ident: e_1_2_6_31_2 doi: 10.1016/S0013-4686(98)00242-4 – ident: e_1_2_6_49_2 doi: 10.1590/S0103-50532008000400006 – ident: e_1_2_6_26_2 – ident: e_1_2_6_23_2 – ident: e_1_2_6_51_2 – ident: e_1_2_6_43_2 doi: 10.1016/j.jelechem.2006.10.023 – ident: e_1_2_6_10_2 doi: 10.1016/j.ccr.2004.11.019 – ident: e_1_2_6_42_2 doi: 10.1007/BF00241923 – ident: e_1_2_6_16_2 doi: 10.1016/j.electacta.2008.06.038 – ident: e_1_2_6_13_2 doi: 10.1016/S0920-5861(98)00025-X – ident: e_1_2_6_38_2 doi: 10.1007/s10800-005-0800-2 – ident: e_1_2_6_40_2 doi: 10.1149/1.1392039 – ident: e_1_2_6_53_2 doi: 10.1149/1.2423575 – ident: e_1_2_6_1_2 – ident: e_1_2_6_2_2 doi: 10.3891/acta.chem.scand.53-0745 |
SSID | ssj0001105386 |
Score | 2.3925319 |
Snippet | Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations.... Abstract Hydrogen peroxide (H 2 O 2 ) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of... Hydrogen peroxide (H sub(2)O sub(2)) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 714 |
SubjectTerms | alkaline medium Aqueous solutions Carbon carbon black Constants Diffusion Electrodes Energy consumption Gas diffusion gas diffusion electrode Hydrogen peroxide Low energy oxygen reduction reaction |
Title | In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402426 https://www.proquest.com/docview/1753651952 https://search.proquest.com/docview/1800489514 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq3QNcEE9RWJCRkDhUgSZpEudYlS5dVBYJpauKS2THtraim6z6WNG98n_4jczEcZKyiNclSmPJVj2fZ76xZ8aEvORAwQWPfCeSPMIrzAInzmTgMB0L4eM1cCEmJ384DSezwft5MO90vreilrYb8Tq7_mVeyf9IFb6BXDFL9h8kW3cKH-Ad5AtPkDA8_0rGJ7A2F5ttb2zussls8r-pJW254GQnVwX0gdHuxdeFLMuEDJdfeMkwh2AYMAzW7o8hH92uTeoiMNKLQi400tR3fA36Uestbq_ZEeV-pQMYv2rA12aTdLWqgvkWy-WOX_Q-NVll45UqL__uJee8PLR_W5P8hF9hcpQJu-S9Vo3I_JpXeUZZsYbeztp7F26Ax-4m9dTYlZvBQe0IUFWqQVCpGCZtMjKtzvZa0Axa-jcyGak37IKpM5upJVatBJ8SiUljAe2p_-nH9Hg2nabJeJ7stxqDH7teFLE-liw49ECxgUY9HJ7NPs-aXT2gqz4LbXXQvvdmf8x99tO4NG3HqGQ2yV1yp3JJ6NDg6x7pqPw-uTWyNwE-IN9Ocoo4oz_hjDY4o4WmFmfU4owucmpxRiucUYszKna0xBnlOW1wRgFntMYZrXH2kMyOx8lo4lSXdziZDxbWiTj8fZUxZKQxU4IJnUWhGKi-0J5mAZdurELuZbHue7HkTCoPjYXLuD9ggvuPyEFe5Ooxoa7kvp_FUvtCDzQHDx3cGOkKH8iXktGgS17ZSU0vTY2W1FTj9lKc_rSe_i45snOeVut4nWKt2hCLLHld8qJuhinGozOe49ykLkNTB94IDOaVsvrDSOloPB3Vv578ftyn5HazOo7IwWa1Vc-A627E8wpgPwBN0ayF |
link.rule.ids | 315,783,787,27936,27937,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lAuVXmJLQUGCYlT1E2ch3NcLVu2sK2QaBDiYtmxjSLapNqHRM_948xskl16QuKYRImTzxnP5_H4G4B3mii40ZkIMqszLmGWBHlpk0D63BjBZeBS3px8fpHOivjT96TPJuS9MK0-xDbgxpaxGa_ZwDkgfbJTDS3dFWsQ0gyB3cxD2Et4UW8Ae-NvxY9iF2ghBiE2FR_JODnhNkx78cZRdHL_Ifed045x_s1bN47n9BAOOsaI47aLH8MDVz-B_UlfqO0p3J3V-LVarXHalrQpOw0AbCWlGXlsPM5u7aKh3wW_uEXzu7IOqxrHV780Q4FjeodmvcQ-TIbmFjkn_ifqGov6urGVJ7aKH_USP1TerznK1rdo3TMoTqeXk1nQ1VYISkEDYJBp-nxXSiYMuXRGGl9mqYndyPjIy0TbMHepjsrcj6LcamldxLYcSi1iabR4DoO6qd0LwNBqIcrcemF87DVNoIhl2tAI8o3OZvEQ3vegqptWQkO1YsmRYvjVFv4hHPeYq86UloqlRFPWwImG8HZ7mSDmlQ1dMzYqlDwSEVmkxqJNX_2jJTWZzifbo6P_uekN7M8uz-dqfnbx-SU8ovMJZxWE4hgGq8XavSKysjKvu9_xDykR4eY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakNpeqtKH2JbCVELiFLGx83COq2WXpaUICVKhXiw7tlEETdA-pHLuH-_MJtmFExLHJEqcfPZ4Pk_G3zC2r5GCG52KILU6pRJmcZAVNg6kz4wRVAYuoc3JP8-SSR59v4qvHuzib_QhVgE3sozlfE0Gfmf94Vo0tHC3JEGICwTyMi_ZJlINjmN8c_Ar_52v4yxIIMSy4CPaJuXbhkmn3djnh48f8tg3rQnnQ9q69Dvjd-xtSxhh0PTwFnvhqvfs9bCr0_aB_Tup4KKcL2DUVLQpWgkAaBSlCXioPUzu7bTG0QLnblr_La2DsoLB7Y0mJGCA71AvZtBFycDcA6XEX4OuIK_-1Lb0SFbhWM_gqPR-QUG2rkXrPrJ8PLocToK2tEJQCJz_glTj57tCEl_IpDPS-CJNTOT6xnMvY23DzCWaF5nv88xqaR0nUw6lFpE0WnxiG1VduW0GodVCFJn1wvjIa1w_Icm0oRHoGp1Nox476EBVd42Chmq0krki-NUK_h7b6TBXrSXNFCmJJiSBw3vs2-oyQkw_NnRF2KhQ0kSEXBEb48u-eqIlNRydDldHn59z0x57dX40VqcnZz--sDd4OqacglDssI35dOG-IlWZm912NP4H16LhDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Electrochemical+Generation+of+Hydrogen+Peroxide+in+Alkaline+Aqueous+Solution+by+using+an+Unmodified+Gas+Diffusion+Electrode&rft.jtitle=ChemElectroChem&rft.au=Barros%2C+Willyam+R+P&rft.au=Ereno%2C+Tha%C3%ADs&rft.au=Tavares%2C+Ana+C&rft.au=Lanza%2C+Marcos+R+V&rft.date=2015-05-13&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=2&rft.issue=5&rft.spage=714&rft_id=info:doi/10.1002%2Fcelc.201402426&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3912778071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |