In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode

Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE)...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 2; no. 5; pp. 714 - 719
Main Authors Barros, Willyam R. P., Ereno, Thaís, Tavares, Ana C., Lanza, Marcos R. V.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag 13.05.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤E≤−1.4 V) for 90 min. The H2O2 concentration reached a maximum value of 3370 mg L−1 at −1.1 V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant kapp=59.7 mg L−1 min−1. A low energy consumption of 8.0 kWh kg−1 was calculated for these electrogeneration conditions. Volt of confidence: Electrogeneration of H2O2 in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant.
AbstractList Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L-1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single-compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2bar. Electrolysis experiments were performed at a constant potential (-0.5≤E≤-1.4V) for 90min. The H2O2 concentration reached a maximum value of 3370mgL-1 at -1.1V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo-zero-order kinetics with an apparent rate constant kapp=59.7mgL-1min-1. A low energy consumption of 8.0 kWh kg-1 was calculated for these electrogeneration conditions.
Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H2O2 electrogeneration process in alkaline medium (KOH 1.0 mol L−1), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N2 or O2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤E≤−1.4 V) for 90 min. The H2O2 concentration reached a maximum value of 3370 mg L−1 at −1.1 V (vs. Ag/AgCl), and H2O2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant kapp=59.7 mg L−1 min−1. A low energy consumption of 8.0 kWh kg−1 was calculated for these electrogeneration conditions. Volt of confidence: Electrogeneration of H2O2 in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant.
Abstract Hydrogen peroxide (H 2 O 2 ) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H 2 O 2 electrogeneration process in alkaline medium (KOH 1.0 mol L −1 ), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single‐compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N 2 or O 2 at a pressure of 0.2 bar. Electrolysis experiments were performed at a constant potential (−0.5≤ E ≤−1.4 V) for 90 min. The H 2 O 2 concentration reached a maximum value of 3370 mg  L −1 at −1.1 V (vs. Ag/AgCl), and H 2 O 2 electrogeneration followed pseudo‐zero‐order kinetics with an apparent rate constant k app =59.7 mg  L −1  min −1 . A low energy consumption of 8.0 kWh kg −1 was calculated for these electrogeneration conditions.
Hydrogen peroxide (H sub(2)O sub(2)) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations. This work describes the H sub(2)O sub(2) electrogeneration process in alkaline medium (KOH 1.0 mol L super(-1)), using an unmodified gas diffusion electrode (GDE) manufactured with Printex 6L carbon. The experiments were performed in a single-compartment electrochemical cell equipped with a GDE as the working electrode, which was fed with N sub(2) or O sub(2) at a pressure of 0.2bar. Electrolysis experiments were performed at a constant potential (-0.5 less than or equal to E less than or equal to -1.4V) for 90min. The H sub(2)O sub(2) concentration reached a maximum value of 3370mgL super(-1) at -1.1V (vs. Ag/AgCl), and H sub(2)O sub(2) electrogeneration followed pseudo-zero-order kinetics with an apparent rate constant k sub(app)=59.7mgL super(-1)min super(-1). A low energy consumption of 8.0 kWh kg super(-1) was calculated for these electrogeneration conditions. Volt of confidence: Electrogeneration of H sub(2)O sub(2) in alkaline medium, using a gas diffusion electrode with unmodified carbon Printex 6L carbon, exhibits low energy consumption and a high kinetic constant.
Author Barros, Willyam R. P.
Ereno, Thaís
Lanza, Marcos R. V.
Tavares, Ana C.
Author_xml – sequence: 1
  givenname: Willyam R. P.
  surname: Barros
  fullname: Barros, Willyam R. P.
– sequence: 2
  givenname: Thaís
  surname: Ereno
  fullname: Ereno, Thaís
– sequence: 3
  givenname: Ana C.
  surname: Tavares
  fullname: Tavares, Ana C.
– sequence: 4
  givenname: Marcos R. V.
  surname: Lanza
  fullname: Lanza, Marcos R. V.
  email: marcoslanza@iqsc.usp.br
BookMark eNqFkUtPQyEQhYnRxOfWNYkbN63AfcGyqbU1aaKJuiZc7qAoBYXeaNf-cak1aty4YhK-M3Nmzj7a9sEDQseUDCkh7EyD00NGaElYyeottMeoqAeE0Xr7V72LjlJ6JIRQSqqC13vo_dLjG7vs8cSBXsagH2BhtXJ4Ch6iWtrgcTB4tupiuAePryGGN9sBth6P3JNy1gMevfQQ-oRvgus_Fe0K98n6e6w8vvOL0FljocNTlfC5NSb_ZehrYgeHaMcol-Do6z1AdxeT2_FsML-aXo5H84EueFMPGpU3Bc2bigjBoeWt0U3dlkBawwyvVEcF1IppYQgTneIdMNqIgnJVlLxVxQE63fR9jiE7Tku5sCkfzim_ti8pJ6TkoqJlRk_-oI-hjz67k7SpirqiomKZGm4oHUNKEYx8jnah4kpSItexyHUs8juWLBAbwat1sPqHluPJfPyj_QBWPJOi
CitedBy_id crossref_primary_10_1016_j_electacta_2017_11_072
crossref_primary_10_1016_j_chemosphere_2023_140171
crossref_primary_10_1016_j_matchemphys_2016_09_014
crossref_primary_10_1016_j_electacta_2022_141067
crossref_primary_10_1016_j_apcatb_2020_119485
crossref_primary_10_1016_j_cej_2021_133280
crossref_primary_10_1016_j_cej_2023_141748
crossref_primary_10_1021_acs_iecr_7b02890
crossref_primary_10_1021_acssuschemeng_8b05000
crossref_primary_10_1016_j_apcatb_2022_121339
crossref_primary_10_1002_jctb_7589
crossref_primary_10_1016_j_ese_2022_100170
crossref_primary_10_1016_j_seppur_2020_117883
crossref_primary_10_1016_j_chemosphere_2019_03_042
crossref_primary_10_1021_acsaem_9b01908
crossref_primary_10_1007_s40201_018_0295_5
crossref_primary_10_1016_j_electacta_2024_143872
crossref_primary_10_1016_j_seppur_2024_126351
crossref_primary_10_1016_j_apcatb_2015_06_048
crossref_primary_10_1038_s41598_018_37919_3
crossref_primary_10_1039_D1QM00918D
crossref_primary_10_1016_j_chemosphere_2021_133353
crossref_primary_10_1016_j_jelechem_2019_04_009
crossref_primary_10_1021_acsomega_0c00266
crossref_primary_10_1016_j_jelechem_2020_114291
crossref_primary_10_1016_j_jelechem_2024_118261
crossref_primary_10_1021_acs_energyfuels_8b01630
crossref_primary_10_1016_j_electacta_2017_07_116
crossref_primary_10_1016_j_jwpe_2020_101377
crossref_primary_10_1080_10916466_2022_2105359
crossref_primary_10_1016_j_jece_2022_107882
crossref_primary_10_20964_2019_09_52
crossref_primary_10_1016_j_elecom_2018_02_012
crossref_primary_10_1021_acs_iecr_7b02563
crossref_primary_10_1002_advs_202100076
crossref_primary_10_1016_j_cep_2018_09_013
crossref_primary_10_1016_j_electacta_2017_08_040
crossref_primary_10_1021_acs_iecr_2c01669
crossref_primary_10_1016_j_jece_2024_112985
crossref_primary_10_1016_j_chemosphere_2019_03_071
crossref_primary_10_1002_cssc_202400491
crossref_primary_10_1016_j_jpowsour_2020_228992
crossref_primary_10_1021_acsaem_9b01445
crossref_primary_10_1134_S1023193521090068
crossref_primary_10_1515_gps_2021_0072
crossref_primary_10_1016_j_jclepro_2018_11_225
crossref_primary_10_1039_C9NA00738E
crossref_primary_10_1016_j_cej_2018_06_122
crossref_primary_10_1016_j_jhazmat_2024_134181
crossref_primary_10_1016_j_electacta_2024_144533
crossref_primary_10_1021_acs_chemrev_7b00542
crossref_primary_10_1016_j_jtice_2021_06_028
crossref_primary_10_1021_acsestwater_2c00160
crossref_primary_10_1016_j_cej_2022_140697
crossref_primary_10_1016_j_jhazmat_2018_05_048
crossref_primary_10_1016_j_seppur_2018_04_021
crossref_primary_10_25130_tjes_31_3_5
crossref_primary_10_1016_j_jelechem_2017_09_010
crossref_primary_10_1016_j_cep_2022_109123
crossref_primary_10_1016_j_cej_2023_146703
crossref_primary_10_1007_s11356_023_30536_2
crossref_primary_10_1016_j_electacta_2023_143337
crossref_primary_10_1016_j_electacta_2019_01_010
crossref_primary_10_1016_j_jwpe_2022_103035
crossref_primary_10_1016_j_elecom_2020_106868
crossref_primary_10_1016_j_jpowsour_2015_12_078
crossref_primary_10_1039_D3CS00461A
crossref_primary_10_1016_j_jece_2022_108024
crossref_primary_10_1016_j_seppur_2022_121704
crossref_primary_10_1039_C6DT04643F
crossref_primary_10_1016_j_chemosphere_2018_10_018
crossref_primary_10_1016_j_jelechem_2021_114978
crossref_primary_10_1016_j_ces_2023_118647
crossref_primary_10_1016_j_jclepro_2023_136242
crossref_primary_10_1016_j_psep_2024_05_092
crossref_primary_10_1016_j_jece_2022_108932
crossref_primary_10_1016_j_cej_2016_10_095
crossref_primary_10_1021_acs_energyfuels_6b02151
crossref_primary_10_1016_j_electacta_2023_142383
crossref_primary_10_1039_D4GC00387J
crossref_primary_10_1016_j_seppur_2021_120299
crossref_primary_10_1016_j_seppur_2021_118493
crossref_primary_10_1016_j_apcatb_2016_01_071
crossref_primary_10_1016_j_cej_2020_124411
crossref_primary_10_1038_s41467_020_15597_y
crossref_primary_10_1021_acsmaterialslett_0c00189
crossref_primary_10_1016_j_jcat_2015_08_027
crossref_primary_10_1016_j_jmst_2023_04_073
crossref_primary_10_1016_j_scitotenv_2020_143459
crossref_primary_10_1134_S1070427217070187
crossref_primary_10_1016_j_cej_2017_08_092
crossref_primary_10_1016_j_electacta_2017_06_085
crossref_primary_10_1016_j_apcatb_2017_01_001
crossref_primary_10_1016_j_jhazmat_2018_10_073
crossref_primary_10_1016_j_aca_2016_04_036
crossref_primary_10_1016_j_seppur_2022_121847
crossref_primary_10_1016_j_electacta_2022_139885
Cites_doi 10.1016/j.electacta.2011.07.069
10.1016/j.cattod.2012.01.040
10.1590/S0100-40422001000200017
10.1149/1.2221614
10.1002/pola.26656
10.1016/0013-4686(67)80007-0
10.1016/j.electacta.2013.04.079
10.1016/S0013-4686(02)00665-5
10.1007/s10800-006-9269-x
10.1016/j.carbon.2013.04.100
10.1252/jcej.18.409
10.1007/BF00249648
10.1149/1.2044186
10.1016/j.apcata.2011.09.030
10.1016/S0360-0564(08)60042-5
10.1252/jcej.18.364
10.1149/1.2423575
10.1023/A:1017588221369
10.1016/j.electacta.2008.07.063
10.1016/j.ijhydene.2010.11.025
10.1016/j.electacta.2009.06.060
10.1016/j.jelechem.2014.02.009
10.1016/j.jelechem.2014.03.007
10.1007/s11244-006-0083-9
10.4152/pea.200602159
10.1016/j.dyepig.2007.01.001
10.1016/j.carbon.2011.03.014
10.1016/j.apcatb.2010.02.033
10.1021/cr900136g
10.1016/j.elecom.2009.07.008
10.1016/S0013-4686(98)00242-4
10.1590/S0103-50532008000400006
10.1016/j.jelechem.2006.10.023
10.1016/j.ccr.2004.11.019
10.1007/BF00241923
10.1016/j.electacta.2008.06.038
10.1016/S0920-5861(98)00025-X
10.1007/s10800-005-0800-2
10.1149/1.1392039
10.3891/acta.chem.scand.53-0745
ContentType Journal Article
Copyright Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201402426
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 719
ExternalDocumentID 3912778071
10_1002_celc_201402426
CELC201402426
Genre article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
– fundername: Fonds de Recherche du Québec‐Nature et Technologies
– fundername: São Paulo Research Foundation
– fundername: FAPESP
  funderid: 2011/06681–4; 2011/00535–6; 2013/06682–6
– fundername: CNPq
– fundername: FRQNT
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3876-7a100ec8750998eb8bfc76b4e0bf2f85ad19e6a2c9f029da8de2179318a348ba3
ISSN 2196-0216
IngestDate Fri Oct 25 03:54:14 EDT 2024
Thu Oct 10 22:42:21 EDT 2024
Fri Aug 23 01:52:08 EDT 2024
Sat Aug 24 01:00:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3876-7a100ec8750998eb8bfc76b4e0bf2f85ad19e6a2c9f029da8de2179318a348ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753651952
PQPubID 2034587
PageCount 6
ParticipantIDs proquest_miscellaneous_1800489514
proquest_journals_1753651952
crossref_primary_10_1002_celc_201402426
wiley_primary_10_1002_celc_201402426_CELC201402426
PublicationCentury 2000
PublicationDate May 13, 2015
PublicationDateYYYYMMDD 2015-05-13
PublicationDate_xml – month: 05
  year: 2015
  text: May 13, 2015
  day: 13
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2015
Publisher WILEY‐VCH Verlag
John Wiley & Sons, Inc
Publisher_xml – name: WILEY‐VCH Verlag
– name: John Wiley & Sons, Inc
References 1965; 12
2007; 601
2014; 719
2006; 38
2013; 104
2013; 61
2008; 19
1993; 140
2008; 76
2008; 54
1999; 146
2011; 56
1992
2011; 36
1998; 41
2001; 24
1998; 44
2007; 37
2009; 11
1985; 18
2002; 48
2009; 54
1991; 23
2006; 24
1965; 112
1967; 12
1995; 25
2013; 51
2005; 249
2012; 193
1996; 41
1999; 53
2014; 722–723
1995; 142
2012; 411
2011; 49
2009; 109
2010; 96
2001; 31
2005; 35
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
Elizardo K. (e_1_2_6_6_2) 1991; 23
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
Kinoshita K. (e_1_2_6_45_2) 1992
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 49
  start-page: 2842
  year: 2011
  end-page: 2851
  publication-title: Carbon
– volume: 41
  start-page: 351
  year: 1998
  end-page: 364
  publication-title: Catal. Today
– volume: 12
  start-page: 287
  year: 1967
  end-page: 297
  publication-title: Electrochim. Acta
– volume: 146
  start-page: 2983
  year: 1999
  end-page: 2989
  publication-title: J. Electrochem. Soc.
– volume: 142
  start-page: 1733
  year: 1995
  end-page: 1741
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 159
  year: 2006
  end-page: 189
  publication-title: Port. Electrochim. Acta
– volume: 18
  start-page: 364
  year: 1985
  end-page: 71
  publication-title: J. Chem. Eng. Jpn.
– volume: 722–723
  start-page: 32
  year: 2014
  end-page: 37
  publication-title: J. Electroanal. Chem.
– volume: 53
  start-page: 745
  year: 1999
  end-page: 750
  publication-title: Acta Chem. Scand.
– volume: 54
  start-page: 6651
  year: 2009
  end-page: 6660
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 469
  year: 1965
  end-page: 471
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 1752
  year: 2009
  end-page: 1755
  publication-title: Electrochem. Commun.
– volume: 25
  start-page: 613
  year: 1995
  end-page: 627
  publication-title: J. Appl. Electrochem.
– volume: 23
  start-page: 106
  year: 1991
  end-page: 109
  publication-title: J. Pollut. Eng.
– volume: 31
  start-page: 877
  year: 2001
  end-page: 882
  publication-title: J. Appl. Electrochem.
– volume: 56
  start-page: 8651
  year: 2011
  end-page: 8656
  publication-title: Electrochim. Acta
– volume: 140
  start-page: 1632
  year: 1993
  end-page: 1637
  publication-title: J. Electrochem. Soc.
– volume: 37
  start-page: 375
  year: 2007
  end-page: 383
  publication-title: J. Appl. Electrochem.
– volume: 54
  start-page: 876
  year: 2008
  end-page: 878
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 236
  year: 2013
  end-page: 244
  publication-title: Carbon
– volume: 36
  start-page: 2258
  year: 2011
  end-page: 2265
  publication-title: Int. J. Hydrogen Energy
– volume: 193
  start-page: 128
  year: 2012
  end-page: 136
  publication-title: Catal. Today
– volume: 25
  start-page: 307
  year: 1995
  end-page: 314
  publication-title: J. Appl. Electrochem.
– volume: 35
  start-page: 413
  year: 2005
  end-page: 419
  publication-title: J. Appl. Electrochem.
– volume: 96
  start-page: 361
  year: 2010
  end-page: 369
  publication-title: Appl. Catal. B
– volume: 104
  start-page: 12
  year: 2013
  end-page: 18
  publication-title: Electrochim. Acta
– volume: 601
  start-page: 63
  year: 2007
  end-page: 67
  publication-title: J. Electroanal. Chem.
– volume: 38
  start-page: 181
  year: 2006
  end-page: 193
  publication-title: Top. Catal.
– volume: 112
  start-page: 469
  year: 1965
  end-page: 471
  publication-title: J. Electrochem. Soc.
– start-page: 4
  year: 1992
– volume: 51
  start-page: 2669
  year: 2013
  end-page: 2676
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 18
  start-page: 409
  year: 1985
  end-page: 14
  publication-title: J. Chem. Eng. Jpn.
– volume: 54
  start-page: 808
  year: 2008
  end-page: 815
  publication-title: Electrochim. Acta
– volume: 411
  start-page: 1
  year: 2012
  end-page: 6
  publication-title: Appl. Catal. A
– volume: 41
  start-page: 253
  year: 1996
  end-page: 334
  publication-title: Adv. Catal.
– volume: 719
  start-page: 127
  year: 2014
  end-page: 132
  publication-title: J. Electroanal. Chem.
– volume: 44
  start-page: 853
  year: 1998
  end-page: 861
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  publication-title: Chem. Rev.
– volume: 249
  start-page: 1944
  year: 2005
  end-page: 1956
  publication-title: Coord. Chem. Rev.
– volume: 76
  start-page: 656
  year: 2008
  end-page: 662
  publication-title: Dyes Pigments
– volume: 24
  start-page: 252
  year: 2001
  end-page: 256
  publication-title: Quím. Nova
– volume: 19
  start-page: 643
  year: 2008
  end-page: 650
  publication-title: J. Braz. Chem. Soc.
– volume: 48
  start-page: 331
  year: 2002
  end-page: 340
  publication-title: Electrochim. Acta
– ident: e_1_2_6_17_2
  doi: 10.1016/j.electacta.2011.07.069
– ident: e_1_2_6_14_2
  doi: 10.1016/j.cattod.2012.01.040
– ident: e_1_2_6_18_2
  doi: 10.1590/S0100-40422001000200017
– ident: e_1_2_6_34_2
  doi: 10.1149/1.2221614
– ident: e_1_2_6_11_2
  doi: 10.1002/pola.26656
– start-page: 4
  volume-title: Electrochemical Oxygen Technology
  year: 1992
  ident: e_1_2_6_45_2
  contributor:
    fullname: Kinoshita K.
– ident: e_1_2_6_52_2
  doi: 10.1016/0013-4686(67)80007-0
– ident: e_1_2_6_35_2
  doi: 10.1016/j.electacta.2013.04.079
– ident: e_1_2_6_46_2
  doi: 10.1016/S0013-4686(02)00665-5
– ident: e_1_2_6_37_2
  doi: 10.1007/s10800-006-9269-x
– ident: e_1_2_6_48_2
  doi: 10.1016/j.carbon.2013.04.100
– ident: e_1_2_6_25_2
  doi: 10.1252/jcej.18.409
– ident: e_1_2_6_12_2
– ident: e_1_2_6_32_2
  doi: 10.1007/BF00249648
– volume: 23
  start-page: 106
  year: 1991
  ident: e_1_2_6_6_2
  publication-title: J. Pollut. Eng.
  contributor:
    fullname: Elizardo K.
– ident: e_1_2_6_39_2
  doi: 10.1149/1.2044186
– ident: e_1_2_6_28_2
  doi: 10.1016/0013-4686(67)80007-0
– ident: e_1_2_6_44_2
  doi: 10.1016/j.apcata.2011.09.030
– ident: e_1_2_6_4_2
  doi: 10.1016/S0360-0564(08)60042-5
– ident: e_1_2_6_24_2
  doi: 10.1252/jcej.18.364
– ident: e_1_2_6_27_2
  doi: 10.1149/1.2423575
– ident: e_1_2_6_8_2
  doi: 10.1023/A:1017588221369
– ident: e_1_2_6_21_2
  doi: 10.1016/j.electacta.2008.07.063
– ident: e_1_2_6_29_2
  doi: 10.1016/j.ijhydene.2010.11.025
– ident: e_1_2_6_20_2
  doi: 10.1016/j.electacta.2009.06.060
– ident: e_1_2_6_50_2
  doi: 10.1016/j.jelechem.2014.02.009
– ident: e_1_2_6_36_2
  doi: 10.1016/j.jelechem.2014.03.007
– ident: e_1_2_6_33_2
– ident: e_1_2_6_3_2
  doi: 10.1007/s11244-006-0083-9
– ident: e_1_2_6_30_2
– ident: e_1_2_6_7_2
  doi: 10.4152/pea.200602159
– ident: e_1_2_6_5_2
– ident: e_1_2_6_9_2
  doi: 10.1016/j.dyepig.2007.01.001
– ident: e_1_2_6_41_2
  doi: 10.1016/j.carbon.2011.03.014
– ident: e_1_2_6_19_2
  doi: 10.1016/j.apcatb.2010.02.033
– ident: e_1_2_6_15_2
– ident: e_1_2_6_47_2
  doi: 10.1021/cr900136g
– ident: e_1_2_6_22_2
  doi: 10.1016/j.elecom.2009.07.008
– ident: e_1_2_6_31_2
  doi: 10.1016/S0013-4686(98)00242-4
– ident: e_1_2_6_49_2
  doi: 10.1590/S0103-50532008000400006
– ident: e_1_2_6_26_2
– ident: e_1_2_6_23_2
– ident: e_1_2_6_51_2
– ident: e_1_2_6_43_2
  doi: 10.1016/j.jelechem.2006.10.023
– ident: e_1_2_6_10_2
  doi: 10.1016/j.ccr.2004.11.019
– ident: e_1_2_6_42_2
  doi: 10.1007/BF00241923
– ident: e_1_2_6_16_2
  doi: 10.1016/j.electacta.2008.06.038
– ident: e_1_2_6_13_2
  doi: 10.1016/S0920-5861(98)00025-X
– ident: e_1_2_6_38_2
  doi: 10.1007/s10800-005-0800-2
– ident: e_1_2_6_40_2
  doi: 10.1149/1.1392039
– ident: e_1_2_6_53_2
  doi: 10.1149/1.2423575
– ident: e_1_2_6_1_2
– ident: e_1_2_6_2_2
  doi: 10.3891/acta.chem.scand.53-0745
SSID ssj0001105386
Score 2.3925319
Snippet Hydrogen peroxide (H2O2) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of concentrations....
Abstract Hydrogen peroxide (H 2 O 2 ) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of...
Hydrogen peroxide (H sub(2)O sub(2)) is an oxidizing agent commonly used for various applications and is available in aqueous solution in a wide range of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 714
SubjectTerms alkaline medium
Aqueous solutions
Carbon
carbon black
Constants
Diffusion
Electrodes
Energy consumption
Gas diffusion
gas diffusion electrode
Hydrogen peroxide
Low energy
oxygen reduction reaction
Title In Situ Electrochemical Generation of Hydrogen Peroxide in Alkaline Aqueous Solution by using an Unmodified Gas Diffusion Electrode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402426
https://www.proquest.com/docview/1753651952
https://search.proquest.com/docview/1800489514
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaq3QNcEE9RWJCRkDhUgSZpEudYlS5dVBYJpauKS2THtraim6z6WNG98n_4jczEcZKyiNclSmPJVj2fZ76xZ8aEvORAwQWPfCeSPMIrzAInzmTgMB0L4eM1cCEmJ384DSezwft5MO90vreilrYb8Tq7_mVeyf9IFb6BXDFL9h8kW3cKH-Ad5AtPkDA8_0rGJ7A2F5ttb2zussls8r-pJW254GQnVwX0gdHuxdeFLMuEDJdfeMkwh2AYMAzW7o8hH92uTeoiMNKLQi400tR3fA36Uestbq_ZEeV-pQMYv2rA12aTdLWqgvkWy-WOX_Q-NVll45UqL__uJee8PLR_W5P8hF9hcpQJu-S9Vo3I_JpXeUZZsYbeztp7F26Ax-4m9dTYlZvBQe0IUFWqQVCpGCZtMjKtzvZa0Axa-jcyGak37IKpM5upJVatBJ8SiUljAe2p_-nH9Hg2nabJeJ7stxqDH7teFLE-liw49ECxgUY9HJ7NPs-aXT2gqz4LbXXQvvdmf8x99tO4NG3HqGQ2yV1yp3JJ6NDg6x7pqPw-uTWyNwE-IN9Ocoo4oz_hjDY4o4WmFmfU4owucmpxRiucUYszKna0xBnlOW1wRgFntMYZrXH2kMyOx8lo4lSXdziZDxbWiTj8fZUxZKQxU4IJnUWhGKi-0J5mAZdurELuZbHue7HkTCoPjYXLuD9ggvuPyEFe5Ooxoa7kvp_FUvtCDzQHDx3cGOkKH8iXktGgS17ZSU0vTY2W1FTj9lKc_rSe_i45snOeVut4nWKt2hCLLHld8qJuhinGozOe49ykLkNTB94IDOaVsvrDSOloPB3Vv578ftyn5HazOo7IwWa1Vc-A627E8wpgPwBN0ayF
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lAuVXmJLQUGCYlT1E2ch3NcLVu2sK2QaBDiYtmxjSLapNqHRM_948xskl16QuKYRImTzxnP5_H4G4B3mii40ZkIMqszLmGWBHlpk0D63BjBZeBS3px8fpHOivjT96TPJuS9MK0-xDbgxpaxGa_ZwDkgfbJTDS3dFWsQ0gyB3cxD2Et4UW8Ae-NvxY9iF2ghBiE2FR_JODnhNkx78cZRdHL_Ifed045x_s1bN47n9BAOOsaI47aLH8MDVz-B_UlfqO0p3J3V-LVarXHalrQpOw0AbCWlGXlsPM5u7aKh3wW_uEXzu7IOqxrHV780Q4FjeodmvcQ-TIbmFjkn_ifqGov6urGVJ7aKH_USP1TerznK1rdo3TMoTqeXk1nQ1VYISkEDYJBp-nxXSiYMuXRGGl9mqYndyPjIy0TbMHepjsrcj6LcamldxLYcSi1iabR4DoO6qd0LwNBqIcrcemF87DVNoIhl2tAI8o3OZvEQ3vegqptWQkO1YsmRYvjVFv4hHPeYq86UloqlRFPWwImG8HZ7mSDmlQ1dMzYqlDwSEVmkxqJNX_2jJTWZzifbo6P_uekN7M8uz-dqfnbx-SU8ovMJZxWE4hgGq8XavSKysjKvu9_xDykR4eY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakNpeqtKH2JbCVELiFLGx83COq2WXpaUICVKhXiw7tlEETdA-pHLuH-_MJtmFExLHJEqcfPZ4Pk_G3zC2r5GCG52KILU6pRJmcZAVNg6kz4wRVAYuoc3JP8-SSR59v4qvHuzib_QhVgE3sozlfE0Gfmf94Vo0tHC3JEGICwTyMi_ZJlINjmN8c_Ar_52v4yxIIMSy4CPaJuXbhkmn3djnh48f8tg3rQnnQ9q69Dvjd-xtSxhh0PTwFnvhqvfs9bCr0_aB_Tup4KKcL2DUVLQpWgkAaBSlCXioPUzu7bTG0QLnblr_La2DsoLB7Y0mJGCA71AvZtBFycDcA6XEX4OuIK_-1Lb0SFbhWM_gqPR-QUG2rkXrPrJ8PLocToK2tEJQCJz_glTj57tCEl_IpDPS-CJNTOT6xnMvY23DzCWaF5nv88xqaR0nUw6lFpE0WnxiG1VduW0GodVCFJn1wvjIa1w_Icm0oRHoGp1Nox476EBVd42Chmq0krki-NUK_h7b6TBXrSXNFCmJJiSBw3vs2-oyQkw_NnRF2KhQ0kSEXBEb48u-eqIlNRydDldHn59z0x57dX40VqcnZz--sDd4OqacglDssI35dOG-IlWZm912NP4H16LhDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Electrochemical+Generation+of+Hydrogen+Peroxide+in+Alkaline+Aqueous+Solution+by+using+an+Unmodified+Gas+Diffusion+Electrode&rft.jtitle=ChemElectroChem&rft.au=Barros%2C+Willyam+R+P&rft.au=Ereno%2C+Tha%C3%ADs&rft.au=Tavares%2C+Ana+C&rft.au=Lanza%2C+Marcos+R+V&rft.date=2015-05-13&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=2&rft.issue=5&rft.spage=714&rft_id=info:doi/10.1002%2Fcelc.201402426&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3912778071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon