A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells
Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 50; pp. 22714 - 22720 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
07.12.2020
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o‐4TBC‐2F formed planar backbones, while m‐4TBC‐2F displayed a twisted backbone. Additionally, the o‐4TBC‐2F film showed a markedly red‐shifted absorption after thermal annealing, which indicated the formation of J‐aggregates. For fabrication of organic solar cells (OSCs), PBDB‐T was used as a donor and blended with the two acceptors. The o‐4TBC‐2F‐based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o‐4TBC‐2F gave a PCE of 10.26 %, which was much higher than those based on m‐4TBC‐2F at 2.63 %, and it is one of the highest reported PCE values for fully non‐fused ring electron acceptors.
Two fully non‐fused acceptors are precisely designed and easily prepared. The side chain encapsulation can induce a planar molecular backbone conformation, endowing the acceptor with broad light absorption. Thermal annealing promotes molecular rearrangement to form J‐aggregates with even broader absorption and higher absorption coefficient. A PCE over 10 % is one of the highest PCE for fully non‐fused ring acceptors. |
---|---|
AbstractList | Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors. Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors. Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o‐4TBC‐2F formed planar backbones, while m‐4TBC‐2F displayed a twisted backbone. Additionally, the o‐4TBC‐2F film showed a markedly red‐shifted absorption after thermal annealing, which indicated the formation of J‐aggregates. For fabrication of organic solar cells (OSCs), PBDB‐T was used as a donor and blended with the two acceptors. The o‐4TBC‐2F‐based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o‐4TBC‐2F gave a PCE of 10.26 %, which was much higher than those based on m‐4TBC‐2F at 2.63 %, and it is one of the highest reported PCE values for fully non‐fused ring electron acceptors. Two fully non‐fused acceptors are precisely designed and easily prepared. The side chain encapsulation can induce a planar molecular backbone conformation, endowing the acceptor with broad light absorption. Thermal annealing promotes molecular rearrangement to form J‐aggregates with even broader absorption and higher absorption coefficient. A PCE over 10 % is one of the highest PCE for fully non‐fused ring acceptors. |
Author | Zhou, Yuanyuan Liu, Yahui Bo, Zhishan Yang, Jianming Tang, Zheng Chen, Ya‐Nan Liu, Feng Wang, Yunzhi Wang, Jing Bao, Qinye Li, Miao Zhang, Ming |
Author_xml | – sequence: 1 givenname: Ya‐Nan surname: Chen fullname: Chen, Ya‐Nan organization: Qingdao University – sequence: 2 givenname: Miao surname: Li fullname: Li, Miao organization: Beijing Normal University – sequence: 3 givenname: Yunzhi surname: Wang fullname: Wang, Yunzhi organization: Beijing Normal University – sequence: 4 givenname: Jing surname: Wang fullname: Wang, Jing organization: Donghua University – sequence: 5 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: Shanghai Jiao Tong University – sequence: 6 givenname: Yuanyuan surname: Zhou fullname: Zhou, Yuanyuan organization: Beijing Normal University – sequence: 7 givenname: Jianming surname: Yang fullname: Yang, Jianming organization: East China Normal University – sequence: 8 givenname: Yahui surname: Liu fullname: Liu, Yahui email: lyh1991a@163.com organization: Qingdao University – sequence: 9 givenname: Feng surname: Liu fullname: Liu, Feng organization: Shanghai Jiao Tong University – sequence: 10 givenname: Zheng surname: Tang fullname: Tang, Zheng organization: Donghua University – sequence: 11 givenname: Qinye surname: Bao fullname: Bao, Qinye organization: East China Normal University – sequence: 12 givenname: Zhishan orcidid: 0000-0003-0126-7957 surname: Bo fullname: Bo, Zhishan email: zsbo@bnu.edu.cn organization: Beijing Normal University |
BookMark | eNqNkstu1DAUhiNURC-wZW2JDRLK4EtiO8sQtXSkaqgKrC3HcYqLxx7sRGV2PALPyJNwRjOAVAnBykfy9x3_PjqnxVGIwRbFc4IXBGP6WgdnFxRTTLCs-aPihNSUlEwIdgR1xVgpZE2Oi9Oc74CXEvMnxTGjknNGxUnxtUUXs_dbtIrhx7fv45ztgG5cuEWtMXYzxYTu3fQJXXsddEJvtPncQwKkw4BWVidwljeo7XNMm8nFgEYwLt0tGDZBvdbBWHQd_XZtE3ofPTTprPf5afF41D7bZ4fzrPh4cf6huyyv3r1ddu1VaZgUvBSiYZwMBBsG6QnBw4BF31dEcC6JrChc6IFRLUVdjXy0DecYs0pWbNS2GdlZ8XLfd5Pil9nmSa1dNpBABxvnrGjFGk4pDAPQFw_QuzinAOmA4rXAjFcSKLmn7m0fx2ychR-qTXJrnbYKY1yLuq4FpMCYdG7Su7F0cQ4TqK_-XwW62tMmxZyTHZU5dJuSdl4RrHYroHYroH6vAGiLB9qvB_4qNIdUztvtP2jVrpbnf9yfDUDBtw |
CitedBy_id | crossref_primary_10_1002_smtd_202401511 crossref_primary_10_1016_j_cej_2024_150579 crossref_primary_10_1016_j_dyepig_2023_111808 crossref_primary_10_1002_cjoc_202200673 crossref_primary_10_1002_cjoc_202000666 crossref_primary_10_1002_cjoc_202400692 crossref_primary_10_1039_D4CC06017B crossref_primary_10_1002_ange_202316495 crossref_primary_10_1002_smll_202305631 crossref_primary_10_1016_j_dyepig_2022_110680 crossref_primary_10_1002_ange_202102622 crossref_primary_10_1016_j_nanoen_2022_107463 crossref_primary_10_1016_j_cej_2024_149584 crossref_primary_10_1002_agt2_469 crossref_primary_10_1016_j_orgel_2021_106131 crossref_primary_10_1002_marc_202401037 crossref_primary_10_1016_j_nxmate_2025_100595 crossref_primary_10_1002_anie_202100390 crossref_primary_10_1016_j_cej_2022_137375 crossref_primary_10_1039_D2TA00564F crossref_primary_10_1002_ange_202412854 crossref_primary_10_1021_acsami_4c05564 crossref_primary_10_1002_solr_202300342 crossref_primary_10_1016_j_chemphys_2021_111162 crossref_primary_10_1002_agt2_111 crossref_primary_10_1016_j_orgel_2022_106512 crossref_primary_10_1016_j_esci_2023_100171 crossref_primary_10_1016_j_cej_2023_145131 crossref_primary_10_1002_ange_202406272 crossref_primary_10_1021_acsami_3c01194 crossref_primary_10_1002_smll_202201209 crossref_primary_10_1002_adma_202307292 crossref_primary_10_1002_inf2_12595 crossref_primary_10_1002_ange_202302538 crossref_primary_10_1039_D4TC01176G crossref_primary_10_1021_acs_chemmater_3c00384 crossref_primary_10_1021_acsami_2c22292 crossref_primary_10_1039_D1QM00026H crossref_primary_10_1016_j_dyepig_2024_112175 crossref_primary_10_1016_j_mtener_2021_100938 crossref_primary_10_1039_D1NJ01978C crossref_primary_10_1002_pol_20210947 crossref_primary_10_1039_D2TC01237E crossref_primary_10_1002_anie_202104766 crossref_primary_10_1002_anie_202302538 crossref_primary_10_1016_j_cej_2022_136509 crossref_primary_10_1016_j_jechem_2022_03_030 crossref_primary_10_1039_D3CS00233K crossref_primary_10_1002_ange_202416751 crossref_primary_10_1002_anie_202214931 crossref_primary_10_1002_smll_202304996 crossref_primary_10_1007_s11426_021_1159_y crossref_primary_10_1016_j_orgel_2022_106562 crossref_primary_10_1016_j_orgel_2021_106282 crossref_primary_10_1002_adfm_202108861 crossref_primary_10_1002_smll_202104451 crossref_primary_10_1002_solr_202300891 crossref_primary_10_1002_cjoc_202300521 crossref_primary_10_1002_marc_202200530 crossref_primary_10_1038_s41560_024_01564_0 crossref_primary_10_1002_solr_202300095 crossref_primary_10_1039_D2TA08367A crossref_primary_10_1021_acsami_0c16389 crossref_primary_10_1039_D4EE02027H crossref_primary_10_1016_j_cej_2023_142743 crossref_primary_10_1039_D2TC01077A crossref_primary_10_1016_j_cej_2023_141659 crossref_primary_10_1002_adma_202310362 crossref_primary_10_1002_ange_202214088 crossref_primary_10_1039_D1QM01420J crossref_primary_10_1039_D3TA07296G crossref_primary_10_1007_s10854_022_09705_5 crossref_primary_10_1039_D3TA00372H crossref_primary_10_1002_cjoc_202200579 crossref_primary_10_1002_aenm_202102596 crossref_primary_10_1016_j_cej_2021_131473 crossref_primary_10_1021_acsaem_3c02429 crossref_primary_10_1002_aenm_202102591 crossref_primary_10_1016_j_dyepig_2022_110785 crossref_primary_10_1039_D2NJ04513C crossref_primary_10_1002_anie_202209021 crossref_primary_10_1002_agt2_281 crossref_primary_10_1039_D2TC02289C crossref_primary_10_1002_cjoc_202300542 crossref_primary_10_1016_j_matre_2021_100059 crossref_primary_10_1002_adma_202301671 crossref_primary_10_1016_j_cej_2023_144472 crossref_primary_10_1002_cssc_202200034 crossref_primary_10_1002_anie_202412854 crossref_primary_10_1002_adfm_202300202 crossref_primary_10_1016_j_cej_2021_130397 crossref_primary_10_1016_j_dyepig_2024_112415 crossref_primary_10_1016_j_dyepig_2021_109387 crossref_primary_10_1039_D2EE01256A crossref_primary_10_1016_j_dyepig_2021_109824 crossref_primary_10_1021_acsenergylett_3c00664 crossref_primary_10_1002_aenm_202303756 crossref_primary_10_1007_s11426_022_1449_4 crossref_primary_10_1016_j_jpap_2022_100129 crossref_primary_10_1021_acsami_2c09323 crossref_primary_10_1002_anie_202407355 crossref_primary_10_1039_D1EE01832A crossref_primary_10_1039_D2TA02604J crossref_primary_10_1021_acs_chemmater_1c02426 crossref_primary_10_1002_smtd_202200007 crossref_primary_10_1039_D4EE00764F crossref_primary_10_1002_asia_202101147 crossref_primary_10_1002_ange_202104766 crossref_primary_10_1002_anie_202416751 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1021_acsami_1c09597 crossref_primary_10_1002_anie_202101867 crossref_primary_10_1021_acsaem_0c02719 crossref_primary_10_1021_acs_accounts_3c00813 crossref_primary_10_1016_j_jechem_2024_01_026 crossref_primary_10_1039_D3EE00908D crossref_primary_10_1021_acsami_1c20813 crossref_primary_10_1002_smll_202405525 crossref_primary_10_1016_j_dyepig_2021_109560 crossref_primary_10_1039_D1TC05550J crossref_primary_10_1002_ange_202100390 crossref_primary_10_1039_D1TC01746B crossref_primary_10_1002_ange_202209021 crossref_primary_10_1002_aenm_202304063 crossref_primary_10_1016_j_dyepig_2022_110178 crossref_primary_10_1002_aenm_202003570 crossref_primary_10_1016_j_jphotochemrev_2025_100690 crossref_primary_10_1039_D3TC00625E crossref_primary_10_2139_ssrn_4011672 crossref_primary_10_1002_adfm_202315476 crossref_primary_10_1016_j_xcrp_2022_101169 crossref_primary_10_1021_acsami_2c04530 crossref_primary_10_1039_D1TA09392D crossref_primary_10_1002_adfm_202421765 crossref_primary_10_1016_j_cclet_2022_107968 crossref_primary_10_1039_D1QM01622A crossref_primary_10_1002_adma_202108090 crossref_primary_10_1016_j_cej_2022_141006 crossref_primary_10_1016_j_dyepig_2022_111033 crossref_primary_10_1002_anie_202214088 crossref_primary_10_1002_adfm_202301866 crossref_primary_10_1039_D2NJ01108E crossref_primary_10_1360_TB_2024_0449 crossref_primary_10_1021_acsaem_2c02489 crossref_primary_10_1002_smll_202203454 crossref_primary_10_1021_acsami_3c01487 crossref_primary_10_1016_j_cej_2021_131828 crossref_primary_10_1039_D0TA12288B crossref_primary_10_1002_chem_202402928 crossref_primary_10_1002_agt2_46 crossref_primary_10_1002_solr_202100806 crossref_primary_10_1002_anie_202406272 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1002_anie_202316495 crossref_primary_10_1021_acs_accounts_4c00592 crossref_primary_10_1002_ente_202100912 crossref_primary_10_1021_acsmaterialslett_4c00287 crossref_primary_10_1039_D2IM00037G crossref_primary_10_1002_aenm_202300329 crossref_primary_10_1002_cjoc_202100323 crossref_primary_10_1007_s42452_022_05128_3 crossref_primary_10_1002_anie_202102622 crossref_primary_10_1039_D0CC07086F crossref_primary_10_2139_ssrn_4161087 crossref_primary_10_1016_j_cej_2024_151806 crossref_primary_10_1002_anie_202219245 crossref_primary_10_1016_j_dyepig_2025_112667 crossref_primary_10_1016_j_cej_2022_135384 crossref_primary_10_1016_j_cej_2022_136472 crossref_primary_10_1021_acs_macromol_4c00195 crossref_primary_10_1021_acsomega_0c04495 crossref_primary_10_1007_s40843_023_2867_6 crossref_primary_10_1007_s10118_022_2750_0 crossref_primary_10_1039_D1TC00579K crossref_primary_10_1016_j_joule_2021_06_020 crossref_primary_10_1002_ange_202214931 crossref_primary_10_2139_ssrn_4093862 crossref_primary_10_1039_D1EE02320A crossref_primary_10_1016_j_synthmet_2024_117574 crossref_primary_10_1021_acsaem_3c02238 crossref_primary_10_1002_marc_202100828 crossref_primary_10_1021_acsapm_4c02826 crossref_primary_10_1002_ange_202407355 crossref_primary_10_1002_anie_202209454 crossref_primary_10_1016_j_cej_2022_134987 crossref_primary_10_1016_j_dyepig_2023_111563 crossref_primary_10_1021_acsami_1c06299 crossref_primary_10_1021_acsami_2c01190 crossref_primary_10_1002_adma_202302005 crossref_primary_10_1039_D1MA00954K crossref_primary_10_1021_acsaem_3c03231 crossref_primary_10_1021_acsami_1c11412 crossref_primary_10_1021_acs_jpclett_2c01281 crossref_primary_10_1016_j_trechm_2022_06_007 crossref_primary_10_1007_s13391_022_00378_0 crossref_primary_10_1002_adma_202300629 crossref_primary_10_1038_s41467_021_25394_w crossref_primary_10_1007_s11426_022_1502_3 crossref_primary_10_1016_j_cej_2021_132298 crossref_primary_10_1039_D1TC04224F crossref_primary_10_1002_ange_202209454 crossref_primary_10_1002_ange_202219245 crossref_primary_10_3390_molecules30020344 crossref_primary_10_1007_s00339_021_04735_y crossref_primary_10_1016_j_surfin_2022_102185 crossref_primary_10_1016_j_nanoen_2023_108661 crossref_primary_10_1088_2399_7532_abf337 crossref_primary_10_1002_cssc_202100689 crossref_primary_10_1039_D5EE00294J crossref_primary_10_1002_adma_202401370 crossref_primary_10_1002_adfm_202101742 crossref_primary_10_1016_j_synthmet_2021_116922 crossref_primary_10_1021_acs_jpclett_4c00153 crossref_primary_10_1002_ange_202101867 crossref_primary_10_1021_acs_macromol_2c02184 crossref_primary_10_1039_D3NJ05159E |
Cites_doi | 10.1021/acsami.9b18076 10.1038/natrevmats.2018.3 10.1016/j.orgel.2019.05.004 10.1038/nmat4797 10.1002/adma.201802888 10.1039/C8TA09370A 10.1016/j.nanoen.2020.105032 10.3866/PKU.WHXB201805091 10.1016/j.orgel.2018.04.005 10.1002/adma.201908205 10.1039/C9TC01520E 10.1039/D0TA03703F 10.1002/adma.201504417 10.1038/nenergy.2016.89 10.1038/s41467-019-08508-3 10.1021/acs.jpclett.9b01222 10.1002/aenm.201800204 10.1007/s11426-019-9478-2 10.1002/aenm.201700855 10.1038/s41467-019-11001-6 10.1021/acs.chemmater.8b01319 10.1038/s41467-019-10098-z 10.1002/anie.201610944 10.1021/acs.macromol.0c00469 10.1016/j.scib.2020.01.001 10.1021/acs.chemrev.7b00535 10.1002/adma.201705209 10.1002/adma.202000645 10.1002/adma.201004301 10.1021/jacs.7b00566 10.1038/s41566-018-0104-9 10.1021/ja402371f 10.1039/C7SE00601B 10.1039/C7TC01310H 10.1021/acsami.0c05172 10.1002/ange.201610944 10.1016/j.joule.2017.09.020 10.1021/ja710815a 10.1146/annurev-physchem-040513-103639 10.1039/C5TC01205H 10.1016/j.isci.2019.06.033 10.1039/D0EE00862A 10.1002/adma.201705208 10.1002/adma.201404317 10.1021/acsami.8b15923 10.1039/c8ta09370a 10.1039/d0ee00862a 10.1039/c5tc01205h 10.1038/NMAT4797 10.1039/c7se00601b 10.1002/adfm.201705927 10.1039/d0ta03703f 10.1039/c7tc01310h 10.1039/c9tc01520e 10.1038/NENERGY.2016.89 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202010856 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Web of Science ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 22720 |
ExternalDocumentID | 000575557600001 10_1002_anie_202010856 ANIE202010856 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51933001, 21734009 and 21421003 – fundername: DOE, Office of Science; United States Department of Energy (DOE) – fundername: DOE, Office of Basic Energy Sciences; United States Department of Energy (DOE) – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 51933001; 21734009; 21421003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3876-779361d10c3028110dd07bb41766818420c3ad32a8754f6fe9660034843fae9f3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 220 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000575557600001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:12:14 EDT 2025 Fri Jul 25 10:49:35 EDT 2025 Wed Jul 09 20:26:38 EDT 2025 Fri Aug 29 16:15:59 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 01:17:47 EDT 2025 Wed Jan 22 16:33:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | organic solar cells DESIGN STRATEGY PACKING fully nonfused acceptors ELECTRON-ACCEPTOR J-aggregation BULK-HETEROJUNCTION ORGANIC PHOTOVOLTAICS electron acceptors |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3876-779361d10c3028110dd07bb41766818420c3ad32a8754f6fe9660034843fae9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0126-7957 0000-0003-0036-2362 0000-0003-4156-2803 0000-0002-3533-1526 |
PMID | 32866327 |
PQID | 2465703648 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2465703648 crossref_citationtrail_10_1002_anie_202010856 crossref_primary_10_1002_anie_202010856 proquest_miscellaneous_2439622327 webofscience_primary_000575557600001 wiley_primary_10_1002_anie_202010856_ANIE202010856 webofscience_primary_000575557600001CitationCount |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 7, 2020 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: December 7, 2020 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2017; 7 2019; 71 2015; 3 2019; 10 2019; 35 2019; 17 2020; 12 2020; 32 2017 2017; 56 129 2017; 139 2014; 65 2018; 6 2018; 8 2018; 3 2015; 27 2018; 2 2016; 1 2019; 62 2020; 53 2020; 75 2018; 118 2020 2017; 16 2013; 135 2018; 30 2011; 23 2020; 65 2018; 12 2016; 28 2018; 10 2008; 130 2018; 58 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_47_1 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_56_2 e_1_2_6_14_3 e_1_2_6_37_1 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 Sun, YM (WOS:000289211600016) 2011; 23 Lin, YZ (WOS:000350057400002) 2015; 27 Li, XJ (WOS:000457291300007) 2019; 10 Li, TY (WOS:000471079400007) 2019; 10 Yao, HF (WOS:000397307600040) 2017; 56 Takase, M (WOS:000319856700036) 2013; 135 Vandewal, K (WOS:000426712600002) 2018; 2 Xia, T (WOS:000470762900005) 2019; 62 Zhang, ZQ (WOS:000447761900011) 2019; 35 Dai, SX (WOS:000525934300001) 2020; 32 Mai, JQ (WOS:000442206400026) 2018; 30 Fei, ZP (WOS:000425449300018) 2018; 30 Letizia, JA (WOS:000257902500028) 2008; 130 Zhang, XN (WOS:000561847400008) 2020; 75 Yang, LS (WOS:000425448200026) 2018; 28 Huang, H (WOS:000474732500011) 2019; 10 Han, GC (WOS:000402115100003) 2017; 5 Guo, XW (WOS:000469838800010) 2019; 71 Cui, Y (WOS:000522060400001) 2020; 32 Liu, YH (WOS:000396185700013) 2017; 139 Cheng, P (WOS:000426153800012) 2018; 12 Spano, FC (WOS:000336426700021) 2014; 65 Nikolis, VC (WOS:000414711100011) 2017; 7 Zhang, GY (WOS:000430156100006) 2018; 118 Peng, WH (WOS:000452482900033) 2018; 6 Li, SX (WOS:000424485100025) 2018; 30 Liu, QS (WOS:000517774500006) 2020; 65 Zhu, C (WOS:000566904600011) 2020; 13 Zhang, X (WOS:000537677300012) 2020; 53 Feng, SY (WOS:000510532000048) 2020; 12 Li, XX (WOS:000432557000020) 2018; 58 Qu, JF (WOS:000451496000064) 2018; 10 Liu, J (WOS:000394175200001) 2016; 1 Yao, H (000575557600001.38) 2017; 129 Lai, HJ (WOS:000477767700026) 2019; 17 Yan, D (WOS:000452679100016) 2018; 8 Ran, NA (WOS:000370192200020) 2016; 28 Zhao, QQ (WOS:000358733400023) 2015; 3 Yan, CQ (WOS:000427559200007) 2018; 3 Menke, SM (WOS:000425303800008) 2018; 2 Chen, HJ (WOS:000472579700007) 2019; 7 Liu, YH (WOS:000438653300015) 2018; 30 Ma, LJ (WOS:000529202100061) 2020; 12 Li, DH (WOS:000560225400017) 2020; 8 Baran, D (WOS:000394601600020) 2017; 16 |
References_xml | – volume: 12 start-page: 18777 year: 2020 end-page: 18784 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 8183 year: 2015 end-page: 8192 publication-title: J. Mater. Chem. C – volume: 2 start-page: 538 year: 2018 end-page: 544 publication-title: Sustainable Energy Fuels – volume: 23 start-page: 1679 year: 2011 end-page: 1683 publication-title: Adv. Mater. – year: 2020 publication-title: Energy Environ. Sci. – volume: 10 start-page: 39992 year: 2018 end-page: 40000 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 24267 year: 2018 end-page: 24276 publication-title: J. Mater. Chem. A – volume: 17 start-page: 302 year: 2019 end-page: 314 publication-title: iScience – volume: 16 start-page: 363 year: 2017 end-page: 369 publication-title: Nat. Mater. – volume: 12 start-page: 131 year: 2018 end-page: 142 publication-title: Nat. Photonics – volume: 10 start-page: 2152 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 25 year: 2018 end-page: 35 publication-title: Joule – volume: 12 start-page: 4638 year: 2020 end-page: 4648 publication-title: ACS Appl. Mater. Interfaces – year: 2020 publication-title: J. Mater. Chem. A – volume: 65 start-page: 477 year: 2014 end-page: 500 publication-title: Annu. Rev. Phys. Chem. – volume: 135 start-page: 8031 year: 2013 end-page: 8040 publication-title: J. Am. Chem. Soc. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 27 start-page: 1170 year: 2015 end-page: 1174 publication-title: Adv. Mater. – volume: 58 start-page: 133 year: 2018 end-page: 138 publication-title: Org. Electron. – volume: 30 start-page: 4307 year: 2018 end-page: 4312 publication-title: Chem. Mater. – volume: 139 start-page: 3356 year: 2017 end-page: 3359 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2684 year: 2019 end-page: 2691 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 18003 year: 2018 publication-title: Nat. Rev. Mater. – volume: 56 129 start-page: 3045 3091 year: 2017 2017 end-page: 3049 3095 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 71 start-page: 65 year: 2019 end-page: 71 publication-title: Org. Electron. – volume: 28 start-page: 1482 year: 2016 end-page: 1488 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 53 start-page: 3747 year: 2020 end-page: 3755 publication-title: Macromolecules – volume: 10 start-page: 519 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 3038 year: 2019 publication-title: Nat. Commun. – volume: 130 start-page: 9679 year: 2008 end-page: 9694 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 3447 year: 2018 end-page: 3507 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 35 start-page: 394 year: 2019 end-page: 400 publication-title: Acta Phys. Chim. Sin. – volume: 62 start-page: 662 year: 2019 end-page: 668 publication-title: Sci. China Chem. – volume: 1 start-page: 16089 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 7249 year: 2019 end-page: 7258 publication-title: J. Mater. Chem. C – volume: 65 start-page: 272 year: 2020 end-page: 275 publication-title: Sci. Bull. – volume: 5 start-page: 4852 year: 2017 end-page: 4857 publication-title: J. Mater. Chem. C – ident: e_1_2_6_28_2 doi: 10.1021/acsami.9b18076 – ident: e_1_2_6_6_2 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_6_46_1 doi: 10.1016/j.orgel.2019.05.004 – ident: e_1_2_6_25_2 doi: 10.1038/nmat4797 – ident: e_1_2_6_37_1 – ident: e_1_2_6_53_1 – ident: e_1_2_6_19_2 doi: 10.1002/adma.201802888 – ident: e_1_2_6_34_2 doi: 10.1039/C8TA09370A – ident: e_1_2_6_56_2 doi: 10.1016/j.nanoen.2020.105032 – ident: e_1_2_6_4_1 – ident: e_1_2_6_36_2 doi: 10.3866/PKU.WHXB201805091 – ident: e_1_2_6_33_2 doi: 10.1016/j.orgel.2018.04.005 – ident: e_1_2_6_8_2 doi: 10.1002/adma.201908205 – ident: e_1_2_6_38_2 doi: 10.1039/C9TC01520E – ident: e_1_2_6_13_2 doi: 10.1039/D0TA03703F – ident: e_1_2_6_54_2 doi: 10.1002/adma.201504417 – ident: e_1_2_6_49_1 doi: 10.1038/nenergy.2016.89 – ident: e_1_2_6_26_2 doi: 10.1038/s41467-019-08508-3 – ident: e_1_2_6_51_2 doi: 10.1021/acs.jpclett.9b01222 – ident: e_1_2_6_16_2 doi: 10.1002/aenm.201800204 – ident: e_1_2_6_50_1 – ident: e_1_2_6_57_1 doi: 10.1007/s11426-019-9478-2 – ident: e_1_2_6_48_1 doi: 10.1002/aenm.201700855 – ident: e_1_2_6_30_2 doi: 10.1038/s41467-019-11001-6 – ident: e_1_2_6_15_1 – ident: e_1_2_6_18_2 doi: 10.1021/acs.chemmater.8b01319 – ident: e_1_2_6_35_2 doi: 10.1038/s41467-019-10098-z – ident: e_1_2_6_12_1 – ident: e_1_2_6_14_2 doi: 10.1002/anie.201610944 – ident: e_1_2_6_23_2 doi: 10.1021/acs.macromol.0c00469 – ident: e_1_2_6_20_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_9_2 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_6_3_2 doi: 10.1021/acs.chemrev.7b00535 – ident: e_1_2_6_11_1 doi: 10.1002/adma.201705209 – ident: e_1_2_6_22_2 doi: 10.1002/adma.202000645 – ident: e_1_2_6_45_1 doi: 10.1002/adma.201004301 – ident: e_1_2_6_29_2 doi: 10.1021/jacs.7b00566 – ident: e_1_2_6_2_2 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_6_40_2 doi: 10.1021/ja402371f – ident: e_1_2_6_47_1 doi: 10.1039/C7SE00601B – ident: e_1_2_6_7_1 – ident: e_1_2_6_17_2 doi: 10.1039/C7TC01310H – ident: e_1_2_6_55_2 doi: 10.1021/acsami.0c05172 – ident: e_1_2_6_14_3 doi: 10.1002/ange.201610944 – ident: e_1_2_6_52_2 doi: 10.1016/j.joule.2017.09.020 – ident: e_1_2_6_41_1 – ident: e_1_2_6_39_2 doi: 10.1021/ja710815a – ident: e_1_2_6_27_1 – ident: e_1_2_6_24_1 – ident: e_1_2_6_42_2 doi: 10.1146/annurev-physchem-040513-103639 – ident: e_1_2_6_43_2 doi: 10.1039/C5TC01205H – ident: e_1_2_6_21_2 doi: 10.1016/j.isci.2019.06.033 – ident: e_1_2_6_32_1 – ident: e_1_2_6_10_2 doi: 10.1039/D0EE00862A – ident: e_1_2_6_31_2 doi: 10.1002/adma.201705208 – ident: e_1_2_6_5_2 doi: 10.1002/adma.201404317 – ident: e_1_2_6_44_1 doi: 10.1021/acsami.8b15923 – volume: 65 start-page: 477 year: 2014 ident: WOS:000336426700021 article-title: H- and J-Aggregate Behavior in Polymeric Semiconductors publication-title: ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 65 doi: 10.1146/annurev-physchem-040513-103639 – volume: 2 start-page: 25 year: 2018 ident: WOS:000425303800008 article-title: Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime publication-title: JOULE doi: 10.1016/j.joule.2017.09.020 – volume: 6 start-page: 24267 year: 2018 ident: WOS:000452482900033 article-title: Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c8ta09370a – volume: 13 start-page: 2459 year: 2020 ident: WOS:000566904600011 article-title: Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/d0ee00862a – volume: 75 start-page: ARTN 105032 year: 2020 ident: WOS:000561847400008 article-title: On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels publication-title: NANO ENERGY doi: 10.1016/j.nanoen.2020.105032 – volume: 71 start-page: 65 year: 2019 ident: WOS:000469838800010 article-title: Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells publication-title: ORGANIC ELECTRONICS doi: 10.1016/j.orgel.2019.05.004 – volume: 53 start-page: 3747 year: 2020 ident: WOS:000537677300012 article-title: Modulation of J-Aggregation of Nonfullerene Acceptors toward Near-Infrared Absorption and Enhanced Efficiency publication-title: MACROMOLECULES doi: 10.1021/acs.macromol.0c00469 – volume: 118 start-page: 3447 year: 2018 ident: WOS:000430156100006 article-title: Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00535 – volume: 3 start-page: 8183 year: 2015 ident: WOS:000358733400023 article-title: Balancing the H- and J-aggregation in DTS(PTTh2)(2)/PC70BM to yield a high photovoltaic efficiency publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c5tc01205h – volume: 8 start-page: ARTN 1800204 year: 2018 ident: WOS:000452679100016 article-title: Fused-Ring Nonfullerene Acceptor Forming Interpenetrating J-Architecture for Fullerene-Free Polymer Solar Cells publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201800204 – volume: 17 start-page: 302 year: 2019 ident: WOS:000477767700026 article-title: Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion publication-title: ISCIENCE doi: 10.1016/j.isci.2019.06.033 – volume: 16 start-page: 363 year: 2017 ident: WOS:000394601600020 article-title: Reducing the effciency-stability-cost gap of organic photovoltaics with highly effcient and stable small molecule acceptor ternary solar cells publication-title: NATURE MATERIALS doi: 10.1038/NMAT4797 – volume: 10 start-page: 2684 year: 2019 ident: WOS:000471079400007 article-title: Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.9b01222 – volume: 135 start-page: 8031 year: 2013 ident: WOS:000319856700036 article-title: Pyrrole-Fused Azacoronene Family: The Influence of Replacement with Dialkoxybenzenes on the Optical and Electronic Properties in Neutral and Oxidized States publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja402371f – volume: 2 start-page: 538 year: 2018 ident: WOS:000426712600002 article-title: How to determine optical gaps and voltage losses in organic photovoltaic materials publication-title: SUSTAINABLE ENERGY & FUELS doi: 10.1039/c7se00601b – volume: 130 start-page: 9679 year: 2008 ident: WOS:000257902500028 article-title: n-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja710815a – volume: 10 start-page: 39992 year: 2018 ident: WOS:000451496000064 article-title: Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.8b15923 – volume: 28 start-page: ARTN 1705927 year: 2018 ident: WOS:000425448200026 article-title: Molecular Consideration for Small Molecular Acceptors Based on Ladder-Type Dipyran: Influences of O-Functionalization and pi-Bridges publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201705927 – volume: 7 start-page: ARTN 1700855 year: 2017 ident: WOS:000414711100011 article-title: Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201700855 – volume: 139 start-page: 3356 year: 2017 ident: WOS:000396185700013 article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b00566 – volume: 8 start-page: 15607 year: 2020 ident: WOS:000560225400017 article-title: Aggregation of non-fullerene acceptors in organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d0ta03703f – volume: 65 start-page: 272 year: 2020 ident: WOS:000517774500006 article-title: 18% Efficiency organic solar cells publication-title: SCIENCE BULLETIN doi: 10.1016/j.scib.2020.01.001 – volume: 27 start-page: 1170 year: 2015 ident: WOS:000350057400002 article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201404317 – volume: 32 start-page: ARTN 2000645 year: 2020 ident: WOS:000525934300001 article-title: High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202000645 – volume: 32 start-page: ARTN 1908205 year: 2020 ident: WOS:000522060400001 article-title: Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201908205 – volume: 58 start-page: 133 year: 2018 ident: WOS:000432557000020 article-title: Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor publication-title: ORGANIC ELECTRONICS doi: 10.1016/j.orgel.2018.04.005 – volume: 62 start-page: 662 year: 2019 ident: WOS:000470762900005 article-title: Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-019-9478-2 – volume: 30 start-page: ARTN 1705208 year: 2018 ident: WOS:000424485100025 article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705208 – volume: 12 start-page: 4638 year: 2020 ident: WOS:000510532000048 article-title: Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.9b18076 – volume: 30 start-page: 4307 year: 2018 ident: WOS:000438653300015 article-title: Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.8b01319 – volume: 30 start-page: ARTN 1705209 year: 2018 ident: WOS:000425449300018 article-title: An Alkylated Indacenodithieno[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705209 – volume: 10 start-page: ARTN 519 year: 2019 ident: WOS:000457291300007 article-title: Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-08508-3 – volume: 129 start-page: 3091 year: 2017 ident: 000575557600001.38 article-title: andPhotovoltaic Characterization of a small molecular acceptor with an ultra-narrow band gap publication-title: Angew Chem – volume: 3 start-page: ARTN 18003 year: 2018 ident: WOS:000427559200007 article-title: Non-fullerene acceptors for organic solar cells publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2018.3 – volume: 28 start-page: 1482 year: 2016 ident: WOS:000370192200020 article-title: Harvesting the Full Potential of Photons with Organic Solar Cells publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201504417 – volume: 23 start-page: 1679 year: 2011 ident: WOS:000289211600016 article-title: Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201004301 – volume: 5 start-page: 4852 year: 2017 ident: WOS:000402115100003 article-title: Terminal pi-pi stacking determines three-dimensional molecular packing and isotropic charge transport in an A-pi-A electron acceptor for non-fullerene organic solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c7tc01310h – volume: 35 start-page: 394 year: 2019 ident: WOS:000447761900011 article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells publication-title: ACTA PHYSICO-CHIMICA SINICA doi: 10.3866/PKU.WHXB201805091 – volume: 56 start-page: 3045 year: 2017 ident: WOS:000397307600040 article-title: Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201610944 – volume: 7 start-page: 7249 year: 2019 ident: WOS:000472579700007 article-title: Improving the photovoltaic performance by employing alkyl chains perpendicular to the pi-conjugated plane of an organic dye in dye-sensitized solar cells publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c9tc01520e – volume: 10 start-page: ARTN 3038 year: 2019 ident: WOS:000474732500011 article-title: Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-11001-6 – volume: 12 start-page: 131 year: 2018 ident: WOS:000426153800012 article-title: Next-generation organic photovoltaics based on non-fullerene acceptors publication-title: NATURE PHOTONICS doi: 10.1038/s41566-018-0104-9 – volume: 1 start-page: ARTN 16089 year: 2016 ident: WOS:000394175200001 article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force publication-title: NATURE ENERGY doi: 10.1038/NENERGY.2016.89 – volume: 30 start-page: ARTN 1802888 year: 2018 ident: WOS:000442206400026 article-title: Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201802888 – volume: 12 start-page: 18777 year: 2020 ident: WOS:000529202100061 article-title: High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c05172 |
SSID | ssj0028806 |
Score | 2.672633 |
Snippet | Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory.... Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory.... |
Source | Web of Science |
SourceID | proquest webofscience crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22714 |
SubjectTerms | Absorption Backbone Chemistry Chemistry, Multidisciplinary electron acceptors Energy charge Energy conversion efficiency Energy dissipation Energy loss Fabrication fully nonfused acceptors J-aggregation organic solar cells Photovoltaic cells Physical Sciences Polymers Science & Technology Solar cells |
Title | A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010856 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000575557600001 https://www.proquest.com/docview/2465703648 https://www.proquest.com/docview/2439622327 |
Volume | 59 |
WOS | 000575557600001 |
WOSCitedRecordID | wos000575557600001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3DhjQgUNEiVOKVNbOexx7Bq1SKxqhYq9Rb5eemSVMmuRDnxE_iN_BJm8touEgLBLZFtJbZn7G_smW8YO3DCGG6zOLQyj0IKhQzz2JkwNp7ywho9kxQ7_GGRnl7I95fJ5a0o_p4fYjpwI83o1mtScKXboy1pKEVgo31Ht7l5Qpzb5LBFqGg58UdxFM4-vEiIkLLQj6yNET_abb67K22h5s5mtItfuw3o5AFT46_3fidXh5u1PjRff2F1_J--PWT3B3QKRS9Oj9gdVz1md-djUrgn7EsBZLTewKKufnz77jets7DE7Q8KQw4ydQN0sguUC0k18E6ZK11XDlRlYYFKhW3OllDotm66tQoQMwP5msD5NoIBzuvVzWfXwEeyu2HuVqv2Kbs4Of40Pw2H5A2hEbjCImqfiTS2cWQEzgOCDGujTGtJhJQIEiTHAmUFV2gwSZ96RzShkZC5FF65mRfP2F6FP_icAXGKxSnaRR7xjsx8buNEW-IqtCZ2ngcsHCevNAOzOSXYWJU9JzMvaTzLaTwD9naqf91zevy25v4oC-Wg223JZdrRlsk8YG-mYpwHumpRlas3VEfMUkRePAvYwW0Zmj5IYDlLkoQuRhEqBCz-m2rzoXtEWLAOGO-E6A-dKIvF2fH09uJfGr1k9-i5c-PJ9tneutm4VwjG1vp1p3A_AUZ7KX4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_lFdCixSESe39u76JwcOIW2V0NaqQiv1Zuzd9aXBrpxEEE48Aq_Cq_AIPAkz_gtBQiCkHjjaXtv7Nzvf7M58A7BjhFJcB66tZejYFApph65Rtqsyygur0p6k2OGTyB-eyzcX3sUafG1jYWp-iG7DjSSjWq9JwGlDem_JGkoh2Gjg0XFu6PmNX-WRWXxAq236arSPQ_yC88ODs8HQbhIL2Eqg9COi7Anf1a6jBKpXVIBaO0GaSiJLRAUmOT5ItOAJgnmZ-ZkhCktHyFCKLDG9TOB3b8BNSiNOdP37446xiqM41AFNQtiU977liXT43mp9V_XgEtyuqL9VxFypvMM78K3trNrT5XJ3Pkt31adfeCT_q968C7cbAM76tcTcgzWT34eNQZv37gF87DOyyxcsKvLvn79k86nRbIwanvUV-QAVJaPNa0bpnpKSvU7UZVrkhiW5ZhG2B98ZjVk_nRZltRwzNAsYudOw02WQBjstJov3pmRvaWuBDcxkMn0I59fS8EewnmMFN4ERbZrro-mXIaSTQRZq10s10TFq5ZqMW2C3syVWDXk75RCZxDXtNI9p_OJu_Cx42ZW_qmlLfltyu518cbN8TWMu_YqZTYYWPO8e4zjQaVKSm2JOZUTPR3DJAwt2fp603Q_JHgg8z6OzX0RDFrh_U2zQNI84GWYW8GrW_qERcT8aHXRXW__y0jPYGJ6dHMfHo-joMdyi-5XXUrAN67Nybp4g9pylTytpZ_DuugXiB5wpgtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hGBAkYq4pQ2sZ2fPXAIu111KUSrhUq9pYntXLok1f4IlhOPwKPwKrwCT8JM_pZFQiCkHjgmtpM49ni-sWe-Adg1QimuA9fWMnRsCoW0Q9co21U55YVVWU9S7PCb2D88lq9OvJMt-NrGwtT8EN2GG0lGtV6TgJ_rfH9NGkoR2Gjf0Wlu6PmNW-WRWX1Ao23-YjTAEX7G-fDgXf_QbvIK2Eqg8COg7Anf1a6jBGpX1H9aO0GWSeJKRP0lORakWvAUsbzM_dwQg6UjZChFnppeLvC5l-Cy9J0eJYsYTDrCKo7SUMczCWFT2vuWJtLh-5vfu6kG19h2Q_ttAuZK4w1vwLf2X9WOLmd7y0W2pz79QiP5P_3Mm3C9gd8squXlFmyZ4jZc7bdZ7-7Ax4iRVb5icVl8__wlX86NZhPU7yxS5AFUzhhtXTNK9pTO2MtUnWVlYVhaaBZjf7DNaMKibF7OqsWYoVHAyJmGjdchGmxcTlfvzYy9pY0F1jfT6fwuHF9Ix-_BdoEfeB8Ykaa5Php-OQI6GeShdr1MExmjVq7JuQV2O1kS1VC3UwaRaVKTTvOExi_pxs-C513985q05Lc1d9q5lzSL1zzh0q942WRowdOuGMeBzpLSwpRLqiN6PkJLHliw-_Oc7V5I1kDgeR6d_CIWssD9m2r9pnvEyLCwgFeT9g-dSKJ4dNBdPfiXRk_gyngwTF6P4qOHcI1uVy5LwQ5sL2ZL8wiB5yJ7XMk6g9OLlocfYsKBgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Non-fused+Ring+Acceptor+with+Planar+Backbone+and+Near-IR+Absorption+for+High+Performance+Polymer+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Ya-Nan&rft.au=Li%2C+Miao&rft.au=Wang%2C+Yunzhi&rft.au=Wang%2C+Jing&rft.date=2020-12-07&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=50&rft.spage=22714&rft_id=info:doi/10.1002%2Fanie.202010856&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |