A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells

Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 50; pp. 22714 - 22720
Main Authors Chen, Ya‐Nan, Li, Miao, Wang, Yunzhi, Wang, Jing, Zhang, Ming, Zhou, Yuanyuan, Yang, Jianming, Liu, Yahui, Liu, Feng, Tang, Zheng, Bao, Qinye, Bo, Zhishan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 07.12.2020
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o‐4TBC‐2F formed planar backbones, while m‐4TBC‐2F displayed a twisted backbone. Additionally, the o‐4TBC‐2F film showed a markedly red‐shifted absorption after thermal annealing, which indicated the formation of J‐aggregates. For fabrication of organic solar cells (OSCs), PBDB‐T was used as a donor and blended with the two acceptors. The o‐4TBC‐2F‐based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o‐4TBC‐2F gave a PCE of 10.26 %, which was much higher than those based on m‐4TBC‐2F at 2.63 %, and it is one of the highest reported PCE values for fully non‐fused ring electron acceptors. Two fully non‐fused acceptors are precisely designed and easily prepared. The side chain encapsulation can induce a planar molecular backbone conformation, endowing the acceptor with broad light absorption. Thermal annealing promotes molecular rearrangement to form J‐aggregates with even broader absorption and higher absorption coefficient. A PCE over 10 % is one of the highest PCE for fully non‐fused ring acceptors.
AbstractList Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.
Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory. Here, two fully non‐fused ring acceptors, o‐4TBC‐2F and m‐4TBC‐2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o‐4TBC‐2F formed planar backbones, while m‐4TBC‐2F displayed a twisted backbone. Additionally, the o‐4TBC‐2F film showed a markedly red‐shifted absorption after thermal annealing, which indicated the formation of J‐aggregates. For fabrication of organic solar cells (OSCs), PBDB‐T was used as a donor and blended with the two acceptors. The o‐4TBC‐2F‐based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o‐4TBC‐2F gave a PCE of 10.26 %, which was much higher than those based on m‐4TBC‐2F at 2.63 %, and it is one of the highest reported PCE values for fully non‐fused ring electron acceptors. Two fully non‐fused acceptors are precisely designed and easily prepared. The side chain encapsulation can induce a planar molecular backbone conformation, endowing the acceptor with broad light absorption. Thermal annealing promotes molecular rearrangement to form J‐aggregates with even broader absorption and higher absorption coefficient. A PCE over 10 % is one of the highest PCE for fully non‐fused ring acceptors.
Author Zhou, Yuanyuan
Liu, Yahui
Bo, Zhishan
Yang, Jianming
Tang, Zheng
Chen, Ya‐Nan
Liu, Feng
Wang, Yunzhi
Wang, Jing
Bao, Qinye
Li, Miao
Zhang, Ming
Author_xml – sequence: 1
  givenname: Ya‐Nan
  surname: Chen
  fullname: Chen, Ya‐Nan
  organization: Qingdao University
– sequence: 2
  givenname: Miao
  surname: Li
  fullname: Li, Miao
  organization: Beijing Normal University
– sequence: 3
  givenname: Yunzhi
  surname: Wang
  fullname: Wang, Yunzhi
  organization: Beijing Normal University
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Donghua University
– sequence: 5
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Yuanyuan
  surname: Zhou
  fullname: Zhou, Yuanyuan
  organization: Beijing Normal University
– sequence: 7
  givenname: Jianming
  surname: Yang
  fullname: Yang, Jianming
  organization: East China Normal University
– sequence: 8
  givenname: Yahui
  surname: Liu
  fullname: Liu, Yahui
  email: lyh1991a@163.com
  organization: Qingdao University
– sequence: 9
  givenname: Feng
  surname: Liu
  fullname: Liu, Feng
  organization: Shanghai Jiao Tong University
– sequence: 10
  givenname: Zheng
  surname: Tang
  fullname: Tang, Zheng
  organization: Donghua University
– sequence: 11
  givenname: Qinye
  surname: Bao
  fullname: Bao, Qinye
  organization: East China Normal University
– sequence: 12
  givenname: Zhishan
  orcidid: 0000-0003-0126-7957
  surname: Bo
  fullname: Bo, Zhishan
  email: zsbo@bnu.edu.cn
  organization: Beijing Normal University
BookMark eNqNkstu1DAUhiNURC-wZW2JDRLK4EtiO8sQtXSkaqgKrC3HcYqLxx7sRGV2PALPyJNwRjOAVAnBykfy9x3_PjqnxVGIwRbFc4IXBGP6WgdnFxRTTLCs-aPihNSUlEwIdgR1xVgpZE2Oi9Oc74CXEvMnxTGjknNGxUnxtUUXs_dbtIrhx7fv45ztgG5cuEWtMXYzxYTu3fQJXXsddEJvtPncQwKkw4BWVidwljeo7XNMm8nFgEYwLt0tGDZBvdbBWHQd_XZtE3ofPTTprPf5afF41D7bZ4fzrPh4cf6huyyv3r1ddu1VaZgUvBSiYZwMBBsG6QnBw4BF31dEcC6JrChc6IFRLUVdjXy0DecYs0pWbNS2GdlZ8XLfd5Pil9nmSa1dNpBABxvnrGjFGk4pDAPQFw_QuzinAOmA4rXAjFcSKLmn7m0fx2ychR-qTXJrnbYKY1yLuq4FpMCYdG7Su7F0cQ4TqK_-XwW62tMmxZyTHZU5dJuSdl4RrHYroHYroH6vAGiLB9qvB_4qNIdUztvtP2jVrpbnf9yfDUDBtw
CitedBy_id crossref_primary_10_1002_smtd_202401511
crossref_primary_10_1016_j_cej_2024_150579
crossref_primary_10_1016_j_dyepig_2023_111808
crossref_primary_10_1002_cjoc_202200673
crossref_primary_10_1002_cjoc_202000666
crossref_primary_10_1002_cjoc_202400692
crossref_primary_10_1039_D4CC06017B
crossref_primary_10_1002_ange_202316495
crossref_primary_10_1002_smll_202305631
crossref_primary_10_1016_j_dyepig_2022_110680
crossref_primary_10_1002_ange_202102622
crossref_primary_10_1016_j_nanoen_2022_107463
crossref_primary_10_1016_j_cej_2024_149584
crossref_primary_10_1002_agt2_469
crossref_primary_10_1016_j_orgel_2021_106131
crossref_primary_10_1002_marc_202401037
crossref_primary_10_1016_j_nxmate_2025_100595
crossref_primary_10_1002_anie_202100390
crossref_primary_10_1016_j_cej_2022_137375
crossref_primary_10_1039_D2TA00564F
crossref_primary_10_1002_ange_202412854
crossref_primary_10_1021_acsami_4c05564
crossref_primary_10_1002_solr_202300342
crossref_primary_10_1016_j_chemphys_2021_111162
crossref_primary_10_1002_agt2_111
crossref_primary_10_1016_j_orgel_2022_106512
crossref_primary_10_1016_j_esci_2023_100171
crossref_primary_10_1016_j_cej_2023_145131
crossref_primary_10_1002_ange_202406272
crossref_primary_10_1021_acsami_3c01194
crossref_primary_10_1002_smll_202201209
crossref_primary_10_1002_adma_202307292
crossref_primary_10_1002_inf2_12595
crossref_primary_10_1002_ange_202302538
crossref_primary_10_1039_D4TC01176G
crossref_primary_10_1021_acs_chemmater_3c00384
crossref_primary_10_1021_acsami_2c22292
crossref_primary_10_1039_D1QM00026H
crossref_primary_10_1016_j_dyepig_2024_112175
crossref_primary_10_1016_j_mtener_2021_100938
crossref_primary_10_1039_D1NJ01978C
crossref_primary_10_1002_pol_20210947
crossref_primary_10_1039_D2TC01237E
crossref_primary_10_1002_anie_202104766
crossref_primary_10_1002_anie_202302538
crossref_primary_10_1016_j_cej_2022_136509
crossref_primary_10_1016_j_jechem_2022_03_030
crossref_primary_10_1039_D3CS00233K
crossref_primary_10_1002_ange_202416751
crossref_primary_10_1002_anie_202214931
crossref_primary_10_1002_smll_202304996
crossref_primary_10_1007_s11426_021_1159_y
crossref_primary_10_1016_j_orgel_2022_106562
crossref_primary_10_1016_j_orgel_2021_106282
crossref_primary_10_1002_adfm_202108861
crossref_primary_10_1002_smll_202104451
crossref_primary_10_1002_solr_202300891
crossref_primary_10_1002_cjoc_202300521
crossref_primary_10_1002_marc_202200530
crossref_primary_10_1038_s41560_024_01564_0
crossref_primary_10_1002_solr_202300095
crossref_primary_10_1039_D2TA08367A
crossref_primary_10_1021_acsami_0c16389
crossref_primary_10_1039_D4EE02027H
crossref_primary_10_1016_j_cej_2023_142743
crossref_primary_10_1039_D2TC01077A
crossref_primary_10_1016_j_cej_2023_141659
crossref_primary_10_1002_adma_202310362
crossref_primary_10_1002_ange_202214088
crossref_primary_10_1039_D1QM01420J
crossref_primary_10_1039_D3TA07296G
crossref_primary_10_1007_s10854_022_09705_5
crossref_primary_10_1039_D3TA00372H
crossref_primary_10_1002_cjoc_202200579
crossref_primary_10_1002_aenm_202102596
crossref_primary_10_1016_j_cej_2021_131473
crossref_primary_10_1021_acsaem_3c02429
crossref_primary_10_1002_aenm_202102591
crossref_primary_10_1016_j_dyepig_2022_110785
crossref_primary_10_1039_D2NJ04513C
crossref_primary_10_1002_anie_202209021
crossref_primary_10_1002_agt2_281
crossref_primary_10_1039_D2TC02289C
crossref_primary_10_1002_cjoc_202300542
crossref_primary_10_1016_j_matre_2021_100059
crossref_primary_10_1002_adma_202301671
crossref_primary_10_1016_j_cej_2023_144472
crossref_primary_10_1002_cssc_202200034
crossref_primary_10_1002_anie_202412854
crossref_primary_10_1002_adfm_202300202
crossref_primary_10_1016_j_cej_2021_130397
crossref_primary_10_1016_j_dyepig_2024_112415
crossref_primary_10_1016_j_dyepig_2021_109387
crossref_primary_10_1039_D2EE01256A
crossref_primary_10_1016_j_dyepig_2021_109824
crossref_primary_10_1021_acsenergylett_3c00664
crossref_primary_10_1002_aenm_202303756
crossref_primary_10_1007_s11426_022_1449_4
crossref_primary_10_1016_j_jpap_2022_100129
crossref_primary_10_1021_acsami_2c09323
crossref_primary_10_1002_anie_202407355
crossref_primary_10_1039_D1EE01832A
crossref_primary_10_1039_D2TA02604J
crossref_primary_10_1021_acs_chemmater_1c02426
crossref_primary_10_1002_smtd_202200007
crossref_primary_10_1039_D4EE00764F
crossref_primary_10_1002_asia_202101147
crossref_primary_10_1002_ange_202104766
crossref_primary_10_1002_anie_202416751
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1021_acsami_1c09597
crossref_primary_10_1002_anie_202101867
crossref_primary_10_1021_acsaem_0c02719
crossref_primary_10_1021_acs_accounts_3c00813
crossref_primary_10_1016_j_jechem_2024_01_026
crossref_primary_10_1039_D3EE00908D
crossref_primary_10_1021_acsami_1c20813
crossref_primary_10_1002_smll_202405525
crossref_primary_10_1016_j_dyepig_2021_109560
crossref_primary_10_1039_D1TC05550J
crossref_primary_10_1002_ange_202100390
crossref_primary_10_1039_D1TC01746B
crossref_primary_10_1002_ange_202209021
crossref_primary_10_1002_aenm_202304063
crossref_primary_10_1016_j_dyepig_2022_110178
crossref_primary_10_1002_aenm_202003570
crossref_primary_10_1016_j_jphotochemrev_2025_100690
crossref_primary_10_1039_D3TC00625E
crossref_primary_10_2139_ssrn_4011672
crossref_primary_10_1002_adfm_202315476
crossref_primary_10_1016_j_xcrp_2022_101169
crossref_primary_10_1021_acsami_2c04530
crossref_primary_10_1039_D1TA09392D
crossref_primary_10_1002_adfm_202421765
crossref_primary_10_1016_j_cclet_2022_107968
crossref_primary_10_1039_D1QM01622A
crossref_primary_10_1002_adma_202108090
crossref_primary_10_1016_j_cej_2022_141006
crossref_primary_10_1016_j_dyepig_2022_111033
crossref_primary_10_1002_anie_202214088
crossref_primary_10_1002_adfm_202301866
crossref_primary_10_1039_D2NJ01108E
crossref_primary_10_1360_TB_2024_0449
crossref_primary_10_1021_acsaem_2c02489
crossref_primary_10_1002_smll_202203454
crossref_primary_10_1021_acsami_3c01487
crossref_primary_10_1016_j_cej_2021_131828
crossref_primary_10_1039_D0TA12288B
crossref_primary_10_1002_chem_202402928
crossref_primary_10_1002_agt2_46
crossref_primary_10_1002_solr_202100806
crossref_primary_10_1002_anie_202406272
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1002_anie_202316495
crossref_primary_10_1021_acs_accounts_4c00592
crossref_primary_10_1002_ente_202100912
crossref_primary_10_1021_acsmaterialslett_4c00287
crossref_primary_10_1039_D2IM00037G
crossref_primary_10_1002_aenm_202300329
crossref_primary_10_1002_cjoc_202100323
crossref_primary_10_1007_s42452_022_05128_3
crossref_primary_10_1002_anie_202102622
crossref_primary_10_1039_D0CC07086F
crossref_primary_10_2139_ssrn_4161087
crossref_primary_10_1016_j_cej_2024_151806
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1016_j_dyepig_2025_112667
crossref_primary_10_1016_j_cej_2022_135384
crossref_primary_10_1016_j_cej_2022_136472
crossref_primary_10_1021_acs_macromol_4c00195
crossref_primary_10_1021_acsomega_0c04495
crossref_primary_10_1007_s40843_023_2867_6
crossref_primary_10_1007_s10118_022_2750_0
crossref_primary_10_1039_D1TC00579K
crossref_primary_10_1016_j_joule_2021_06_020
crossref_primary_10_1002_ange_202214931
crossref_primary_10_2139_ssrn_4093862
crossref_primary_10_1039_D1EE02320A
crossref_primary_10_1016_j_synthmet_2024_117574
crossref_primary_10_1021_acsaem_3c02238
crossref_primary_10_1002_marc_202100828
crossref_primary_10_1021_acsapm_4c02826
crossref_primary_10_1002_ange_202407355
crossref_primary_10_1002_anie_202209454
crossref_primary_10_1016_j_cej_2022_134987
crossref_primary_10_1016_j_dyepig_2023_111563
crossref_primary_10_1021_acsami_1c06299
crossref_primary_10_1021_acsami_2c01190
crossref_primary_10_1002_adma_202302005
crossref_primary_10_1039_D1MA00954K
crossref_primary_10_1021_acsaem_3c03231
crossref_primary_10_1021_acsami_1c11412
crossref_primary_10_1021_acs_jpclett_2c01281
crossref_primary_10_1016_j_trechm_2022_06_007
crossref_primary_10_1007_s13391_022_00378_0
crossref_primary_10_1002_adma_202300629
crossref_primary_10_1038_s41467_021_25394_w
crossref_primary_10_1007_s11426_022_1502_3
crossref_primary_10_1016_j_cej_2021_132298
crossref_primary_10_1039_D1TC04224F
crossref_primary_10_1002_ange_202209454
crossref_primary_10_1002_ange_202219245
crossref_primary_10_3390_molecules30020344
crossref_primary_10_1007_s00339_021_04735_y
crossref_primary_10_1016_j_surfin_2022_102185
crossref_primary_10_1016_j_nanoen_2023_108661
crossref_primary_10_1088_2399_7532_abf337
crossref_primary_10_1002_cssc_202100689
crossref_primary_10_1039_D5EE00294J
crossref_primary_10_1002_adma_202401370
crossref_primary_10_1002_adfm_202101742
crossref_primary_10_1016_j_synthmet_2021_116922
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1002_ange_202101867
crossref_primary_10_1021_acs_macromol_2c02184
crossref_primary_10_1039_D3NJ05159E
Cites_doi 10.1021/acsami.9b18076
10.1038/natrevmats.2018.3
10.1016/j.orgel.2019.05.004
10.1038/nmat4797
10.1002/adma.201802888
10.1039/C8TA09370A
10.1016/j.nanoen.2020.105032
10.3866/PKU.WHXB201805091
10.1016/j.orgel.2018.04.005
10.1002/adma.201908205
10.1039/C9TC01520E
10.1039/D0TA03703F
10.1002/adma.201504417
10.1038/nenergy.2016.89
10.1038/s41467-019-08508-3
10.1021/acs.jpclett.9b01222
10.1002/aenm.201800204
10.1007/s11426-019-9478-2
10.1002/aenm.201700855
10.1038/s41467-019-11001-6
10.1021/acs.chemmater.8b01319
10.1038/s41467-019-10098-z
10.1002/anie.201610944
10.1021/acs.macromol.0c00469
10.1016/j.scib.2020.01.001
10.1021/acs.chemrev.7b00535
10.1002/adma.201705209
10.1002/adma.202000645
10.1002/adma.201004301
10.1021/jacs.7b00566
10.1038/s41566-018-0104-9
10.1021/ja402371f
10.1039/C7SE00601B
10.1039/C7TC01310H
10.1021/acsami.0c05172
10.1002/ange.201610944
10.1016/j.joule.2017.09.020
10.1021/ja710815a
10.1146/annurev-physchem-040513-103639
10.1039/C5TC01205H
10.1016/j.isci.2019.06.033
10.1039/D0EE00862A
10.1002/adma.201705208
10.1002/adma.201404317
10.1021/acsami.8b15923
10.1039/c8ta09370a
10.1039/d0ee00862a
10.1039/c5tc01205h
10.1038/NMAT4797
10.1039/c7se00601b
10.1002/adfm.201705927
10.1039/d0ta03703f
10.1039/c7tc01310h
10.1039/c9tc01520e
10.1038/NENERGY.2016.89
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AOWDO
BLEPL
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202010856
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2020
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Web of Science

ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 22720
ExternalDocumentID 000575557600001
10_1002_anie_202010856
ANIE202010856
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51933001, 21734009 and 21421003
– fundername: DOE, Office of Science; United States Department of Energy (DOE)
– fundername: DOE, Office of Basic Energy Sciences; United States Department of Energy (DOE)
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 51933001; 21734009; 21421003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c3876-779361d10c3028110dd07bb41766818420c3ad32a8754f6fe9660034843fae9f3
IEDL.DBID DR2
ISICitedReferencesCount 220
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000575557600001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:12:14 EDT 2025
Fri Jul 25 10:49:35 EDT 2025
Wed Jul 09 20:26:38 EDT 2025
Fri Aug 29 16:15:59 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 01:17:47 EDT 2025
Wed Jan 22 16:33:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords organic solar cells
DESIGN
STRATEGY
PACKING
fully nonfused acceptors
ELECTRON-ACCEPTOR
J-aggregation
BULK-HETEROJUNCTION
ORGANIC PHOTOVOLTAICS
electron acceptors
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3876-779361d10c3028110dd07bb41766818420c3ad32a8754f6fe9660034843fae9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0126-7957
0000-0003-0036-2362
0000-0003-4156-2803
0000-0002-3533-1526
PMID 32866327
PQID 2465703648
PQPubID 946352
PageCount 7
ParticipantIDs proquest_journals_2465703648
crossref_citationtrail_10_1002_anie_202010856
crossref_primary_10_1002_anie_202010856
proquest_miscellaneous_2439622327
webofscience_primary_000575557600001
wiley_primary_10_1002_anie_202010856_ANIE202010856
webofscience_primary_000575557600001CitationCount
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 7, 2020
PublicationDateYYYYMMDD 2020-12-07
PublicationDate_xml – month: 12
  year: 2020
  text: December 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 7
2019; 71
2015; 3
2019; 10
2019; 35
2019; 17
2020; 12
2020; 32
2017 2017; 56 129
2017; 139
2014; 65
2018; 6
2018; 8
2018; 3
2015; 27
2018; 2
2016; 1
2019; 62
2020; 53
2020; 75
2018; 118
2020
2017; 16
2013; 135
2018; 30
2011; 23
2020; 65
2018; 12
2016; 28
2018; 10
2008; 130
2018; 58
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_36_2
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_47_1
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_56_2
e_1_2_6_14_3
e_1_2_6_37_1
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
Sun, YM (WOS:000289211600016) 2011; 23
Lin, YZ (WOS:000350057400002) 2015; 27
Li, XJ (WOS:000457291300007) 2019; 10
Li, TY (WOS:000471079400007) 2019; 10
Yao, HF (WOS:000397307600040) 2017; 56
Takase, M (WOS:000319856700036) 2013; 135
Vandewal, K (WOS:000426712600002) 2018; 2
Xia, T (WOS:000470762900005) 2019; 62
Zhang, ZQ (WOS:000447761900011) 2019; 35
Dai, SX (WOS:000525934300001) 2020; 32
Mai, JQ (WOS:000442206400026) 2018; 30
Fei, ZP (WOS:000425449300018) 2018; 30
Letizia, JA (WOS:000257902500028) 2008; 130
Zhang, XN (WOS:000561847400008) 2020; 75
Yang, LS (WOS:000425448200026) 2018; 28
Huang, H (WOS:000474732500011) 2019; 10
Han, GC (WOS:000402115100003) 2017; 5
Guo, XW (WOS:000469838800010) 2019; 71
Cui, Y (WOS:000522060400001) 2020; 32
Liu, YH (WOS:000396185700013) 2017; 139
Cheng, P (WOS:000426153800012) 2018; 12
Spano, FC (WOS:000336426700021) 2014; 65
Nikolis, VC (WOS:000414711100011) 2017; 7
Zhang, GY (WOS:000430156100006) 2018; 118
Peng, WH (WOS:000452482900033) 2018; 6
Li, SX (WOS:000424485100025) 2018; 30
Liu, QS (WOS:000517774500006) 2020; 65
Zhu, C (WOS:000566904600011) 2020; 13
Zhang, X (WOS:000537677300012) 2020; 53
Feng, SY (WOS:000510532000048) 2020; 12
Li, XX (WOS:000432557000020) 2018; 58
Qu, JF (WOS:000451496000064) 2018; 10
Liu, J (WOS:000394175200001) 2016; 1
Yao, H (000575557600001.38) 2017; 129
Lai, HJ (WOS:000477767700026) 2019; 17
Yan, D (WOS:000452679100016) 2018; 8
Ran, NA (WOS:000370192200020) 2016; 28
Zhao, QQ (WOS:000358733400023) 2015; 3
Yan, CQ (WOS:000427559200007) 2018; 3
Menke, SM (WOS:000425303800008) 2018; 2
Chen, HJ (WOS:000472579700007) 2019; 7
Liu, YH (WOS:000438653300015) 2018; 30
Ma, LJ (WOS:000529202100061) 2020; 12
Li, DH (WOS:000560225400017) 2020; 8
Baran, D (WOS:000394601600020) 2017; 16
References_xml – volume: 12
  start-page: 18777
  year: 2020
  end-page: 18784
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 8183
  year: 2015
  end-page: 8192
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 538
  year: 2018
  end-page: 544
  publication-title: Sustainable Energy Fuels
– volume: 23
  start-page: 1679
  year: 2011
  end-page: 1683
  publication-title: Adv. Mater.
– year: 2020
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 39992
  year: 2018
  end-page: 40000
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 24267
  year: 2018
  end-page: 24276
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 302
  year: 2019
  end-page: 314
  publication-title: iScience
– volume: 16
  start-page: 363
  year: 2017
  end-page: 369
  publication-title: Nat. Mater.
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  publication-title: Nat. Photonics
– volume: 10
  start-page: 2152
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 25
  year: 2018
  end-page: 35
  publication-title: Joule
– volume: 12
  start-page: 4638
  year: 2020
  end-page: 4648
  publication-title: ACS Appl. Mater. Interfaces
– year: 2020
  publication-title: J. Mater. Chem. A
– volume: 65
  start-page: 477
  year: 2014
  end-page: 500
  publication-title: Annu. Rev. Phys. Chem.
– volume: 135
  start-page: 8031
  year: 2013
  end-page: 8040
  publication-title: J. Am. Chem. Soc.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  publication-title: Adv. Mater.
– volume: 58
  start-page: 133
  year: 2018
  end-page: 138
  publication-title: Org. Electron.
– volume: 30
  start-page: 4307
  year: 2018
  end-page: 4312
  publication-title: Chem. Mater.
– volume: 139
  start-page: 3356
  year: 2017
  end-page: 3359
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2684
  year: 2019
  end-page: 2691
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 18003
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 56 129
  start-page: 3045 3091
  year: 2017 2017
  end-page: 3049 3095
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 71
  start-page: 65
  year: 2019
  end-page: 71
  publication-title: Org. Electron.
– volume: 28
  start-page: 1482
  year: 2016
  end-page: 1488
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 53
  start-page: 3747
  year: 2020
  end-page: 3755
  publication-title: Macromolecules
– volume: 10
  start-page: 519
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3038
  year: 2019
  publication-title: Nat. Commun.
– volume: 130
  start-page: 9679
  year: 2008
  end-page: 9694
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 3447
  year: 2018
  end-page: 3507
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 35
  start-page: 394
  year: 2019
  end-page: 400
  publication-title: Acta Phys. Chim. Sin.
– volume: 62
  start-page: 662
  year: 2019
  end-page: 668
  publication-title: Sci. China Chem.
– volume: 1
  start-page: 16089
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 7249
  year: 2019
  end-page: 7258
  publication-title: J. Mater. Chem. C
– volume: 65
  start-page: 272
  year: 2020
  end-page: 275
  publication-title: Sci. Bull.
– volume: 5
  start-page: 4852
  year: 2017
  end-page: 4857
  publication-title: J. Mater. Chem. C
– ident: e_1_2_6_28_2
  doi: 10.1021/acsami.9b18076
– ident: e_1_2_6_6_2
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_6_46_1
  doi: 10.1016/j.orgel.2019.05.004
– ident: e_1_2_6_25_2
  doi: 10.1038/nmat4797
– ident: e_1_2_6_37_1
– ident: e_1_2_6_53_1
– ident: e_1_2_6_19_2
  doi: 10.1002/adma.201802888
– ident: e_1_2_6_34_2
  doi: 10.1039/C8TA09370A
– ident: e_1_2_6_56_2
  doi: 10.1016/j.nanoen.2020.105032
– ident: e_1_2_6_4_1
– ident: e_1_2_6_36_2
  doi: 10.3866/PKU.WHXB201805091
– ident: e_1_2_6_33_2
  doi: 10.1016/j.orgel.2018.04.005
– ident: e_1_2_6_8_2
  doi: 10.1002/adma.201908205
– ident: e_1_2_6_38_2
  doi: 10.1039/C9TC01520E
– ident: e_1_2_6_13_2
  doi: 10.1039/D0TA03703F
– ident: e_1_2_6_54_2
  doi: 10.1002/adma.201504417
– ident: e_1_2_6_49_1
  doi: 10.1038/nenergy.2016.89
– ident: e_1_2_6_26_2
  doi: 10.1038/s41467-019-08508-3
– ident: e_1_2_6_51_2
  doi: 10.1021/acs.jpclett.9b01222
– ident: e_1_2_6_16_2
  doi: 10.1002/aenm.201800204
– ident: e_1_2_6_50_1
– ident: e_1_2_6_57_1
  doi: 10.1007/s11426-019-9478-2
– ident: e_1_2_6_48_1
  doi: 10.1002/aenm.201700855
– ident: e_1_2_6_30_2
  doi: 10.1038/s41467-019-11001-6
– ident: e_1_2_6_15_1
– ident: e_1_2_6_18_2
  doi: 10.1021/acs.chemmater.8b01319
– ident: e_1_2_6_35_2
  doi: 10.1038/s41467-019-10098-z
– ident: e_1_2_6_12_1
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.201610944
– ident: e_1_2_6_23_2
  doi: 10.1021/acs.macromol.0c00469
– ident: e_1_2_6_20_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_9_2
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_6_3_2
  doi: 10.1021/acs.chemrev.7b00535
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201705209
– ident: e_1_2_6_22_2
  doi: 10.1002/adma.202000645
– ident: e_1_2_6_45_1
  doi: 10.1002/adma.201004301
– ident: e_1_2_6_29_2
  doi: 10.1021/jacs.7b00566
– ident: e_1_2_6_2_2
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_6_40_2
  doi: 10.1021/ja402371f
– ident: e_1_2_6_47_1
  doi: 10.1039/C7SE00601B
– ident: e_1_2_6_7_1
– ident: e_1_2_6_17_2
  doi: 10.1039/C7TC01310H
– ident: e_1_2_6_55_2
  doi: 10.1021/acsami.0c05172
– ident: e_1_2_6_14_3
  doi: 10.1002/ange.201610944
– ident: e_1_2_6_52_2
  doi: 10.1016/j.joule.2017.09.020
– ident: e_1_2_6_41_1
– ident: e_1_2_6_39_2
  doi: 10.1021/ja710815a
– ident: e_1_2_6_27_1
– ident: e_1_2_6_24_1
– ident: e_1_2_6_42_2
  doi: 10.1146/annurev-physchem-040513-103639
– ident: e_1_2_6_43_2
  doi: 10.1039/C5TC01205H
– ident: e_1_2_6_21_2
  doi: 10.1016/j.isci.2019.06.033
– ident: e_1_2_6_32_1
– ident: e_1_2_6_10_2
  doi: 10.1039/D0EE00862A
– ident: e_1_2_6_31_2
  doi: 10.1002/adma.201705208
– ident: e_1_2_6_5_2
  doi: 10.1002/adma.201404317
– ident: e_1_2_6_44_1
  doi: 10.1021/acsami.8b15923
– volume: 65
  start-page: 477
  year: 2014
  ident: WOS:000336426700021
  article-title: H- and J-Aggregate Behavior in Polymeric Semiconductors
  publication-title: ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 65
  doi: 10.1146/annurev-physchem-040513-103639
– volume: 2
  start-page: 25
  year: 2018
  ident: WOS:000425303800008
  article-title: Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime
  publication-title: JOULE
  doi: 10.1016/j.joule.2017.09.020
– volume: 6
  start-page: 24267
  year: 2018
  ident: WOS:000452482900033
  article-title: Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/c8ta09370a
– volume: 13
  start-page: 2459
  year: 2020
  ident: WOS:000566904600011
  article-title: Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/d0ee00862a
– volume: 75
  start-page: ARTN 105032
  year: 2020
  ident: WOS:000561847400008
  article-title: On the understanding of energy loss and device fill factor trade-offs in non-fullerene organic solar cells with varied energy levels
  publication-title: NANO ENERGY
  doi: 10.1016/j.nanoen.2020.105032
– volume: 71
  start-page: 65
  year: 2019
  ident: WOS:000469838800010
  article-title: Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells
  publication-title: ORGANIC ELECTRONICS
  doi: 10.1016/j.orgel.2019.05.004
– volume: 53
  start-page: 3747
  year: 2020
  ident: WOS:000537677300012
  article-title: Modulation of J-Aggregation of Nonfullerene Acceptors toward Near-Infrared Absorption and Enhanced Efficiency
  publication-title: MACROMOLECULES
  doi: 10.1021/acs.macromol.0c00469
– volume: 118
  start-page: 3447
  year: 2018
  ident: WOS:000430156100006
  article-title: Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00535
– volume: 3
  start-page: 8183
  year: 2015
  ident: WOS:000358733400023
  article-title: Balancing the H- and J-aggregation in DTS(PTTh2)(2)/PC70BM to yield a high photovoltaic efficiency
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c5tc01205h
– volume: 8
  start-page: ARTN 1800204
  year: 2018
  ident: WOS:000452679100016
  article-title: Fused-Ring Nonfullerene Acceptor Forming Interpenetrating J-Architecture for Fullerene-Free Polymer Solar Cells
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201800204
– volume: 17
  start-page: 302
  year: 2019
  ident: WOS:000477767700026
  article-title: Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion
  publication-title: ISCIENCE
  doi: 10.1016/j.isci.2019.06.033
– volume: 16
  start-page: 363
  year: 2017
  ident: WOS:000394601600020
  article-title: Reducing the effciency-stability-cost gap of organic photovoltaics with highly effcient and stable small molecule acceptor ternary solar cells
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT4797
– volume: 10
  start-page: 2684
  year: 2019
  ident: WOS:000471079400007
  article-title: Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.9b01222
– volume: 135
  start-page: 8031
  year: 2013
  ident: WOS:000319856700036
  article-title: Pyrrole-Fused Azacoronene Family: The Influence of Replacement with Dialkoxybenzenes on the Optical and Electronic Properties in Neutral and Oxidized States
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja402371f
– volume: 2
  start-page: 538
  year: 2018
  ident: WOS:000426712600002
  article-title: How to determine optical gaps and voltage losses in organic photovoltaic materials
  publication-title: SUSTAINABLE ENERGY & FUELS
  doi: 10.1039/c7se00601b
– volume: 130
  start-page: 9679
  year: 2008
  ident: WOS:000257902500028
  article-title: n-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja710815a
– volume: 10
  start-page: 39992
  year: 2018
  ident: WOS:000451496000064
  article-title: Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.8b15923
– volume: 28
  start-page: ARTN 1705927
  year: 2018
  ident: WOS:000425448200026
  article-title: Molecular Consideration for Small Molecular Acceptors Based on Ladder-Type Dipyran: Influences of O-Functionalization and pi-Bridges
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201705927
– volume: 7
  start-page: ARTN 1700855
  year: 2017
  ident: WOS:000414711100011
  article-title: Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201700855
– volume: 139
  start-page: 3356
  year: 2017
  ident: WOS:000396185700013
  article-title: Exploiting Noncovalently Conformational Locking as a Design Strategy for High Performance Fused-Ring Electron Acceptor Used in Polymer Solar Cells
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b00566
– volume: 8
  start-page: 15607
  year: 2020
  ident: WOS:000560225400017
  article-title: Aggregation of non-fullerene acceptors in organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d0ta03703f
– volume: 65
  start-page: 272
  year: 2020
  ident: WOS:000517774500006
  article-title: 18% Efficiency organic solar cells
  publication-title: SCIENCE BULLETIN
  doi: 10.1016/j.scib.2020.01.001
– volume: 27
  start-page: 1170
  year: 2015
  ident: WOS:000350057400002
  article-title: An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201404317
– volume: 32
  start-page: ARTN 2000645
  year: 2020
  ident: WOS:000525934300001
  article-title: High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202000645
– volume: 32
  start-page: ARTN 1908205
  year: 2020
  ident: WOS:000522060400001
  article-title: Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201908205
– volume: 58
  start-page: 133
  year: 2018
  ident: WOS:000432557000020
  article-title: Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor
  publication-title: ORGANIC ELECTRONICS
  doi: 10.1016/j.orgel.2018.04.005
– volume: 62
  start-page: 662
  year: 2019
  ident: WOS:000470762900005
  article-title: Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-019-9478-2
– volume: 30
  start-page: ARTN 1705208
  year: 2018
  ident: WOS:000424485100025
  article-title: An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705208
– volume: 12
  start-page: 4638
  year: 2020
  ident: WOS:000510532000048
  article-title: Regulating the Packing of Non-Fullerene Acceptors via Multiple Noncovalent Interactions for Enhancing the Performance of Organic Solar Cells
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.9b18076
– volume: 30
  start-page: 4307
  year: 2018
  ident: WOS:000438653300015
  article-title: Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.8b01319
– volume: 30
  start-page: ARTN 1705209
  year: 2018
  ident: WOS:000425449300018
  article-title: An Alkylated Indacenodithieno[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201705209
– volume: 10
  start-page: ARTN 519
  year: 2019
  ident: WOS:000457291300007
  article-title: Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-08508-3
– volume: 129
  start-page: 3091
  year: 2017
  ident: 000575557600001.38
  article-title: andPhotovoltaic Characterization of a small molecular acceptor with an ultra-narrow band gap
  publication-title: Angew Chem
– volume: 3
  start-page: ARTN 18003
  year: 2018
  ident: WOS:000427559200007
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2018.3
– volume: 28
  start-page: 1482
  year: 2016
  ident: WOS:000370192200020
  article-title: Harvesting the Full Potential of Photons with Organic Solar Cells
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201504417
– volume: 23
  start-page: 1679
  year: 2011
  ident: WOS:000289211600016
  article-title: Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201004301
– volume: 5
  start-page: 4852
  year: 2017
  ident: WOS:000402115100003
  article-title: Terminal pi-pi stacking determines three-dimensional molecular packing and isotropic charge transport in an A-pi-A electron acceptor for non-fullerene organic solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c7tc01310h
– volume: 35
  start-page: 394
  year: 2019
  ident: WOS:000447761900011
  article-title: A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells
  publication-title: ACTA PHYSICO-CHIMICA SINICA
  doi: 10.3866/PKU.WHXB201805091
– volume: 56
  start-page: 3045
  year: 2017
  ident: WOS:000397307600040
  article-title: Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultra-Narrow Band Gap
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201610944
– volume: 7
  start-page: 7249
  year: 2019
  ident: WOS:000472579700007
  article-title: Improving the photovoltaic performance by employing alkyl chains perpendicular to the pi-conjugated plane of an organic dye in dye-sensitized solar cells
  publication-title: JOURNAL OF MATERIALS CHEMISTRY C
  doi: 10.1039/c9tc01520e
– volume: 10
  start-page: ARTN 3038
  year: 2019
  ident: WOS:000474732500011
  article-title: Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-11001-6
– volume: 12
  start-page: 131
  year: 2018
  ident: WOS:000426153800012
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-018-0104-9
– volume: 1
  start-page: ARTN 16089
  year: 2016
  ident: WOS:000394175200001
  article-title: Fast charge separation in a non-fullerene organic solar cell with a small driving force
  publication-title: NATURE ENERGY
  doi: 10.1038/NENERGY.2016.89
– volume: 30
  start-page: ARTN 1802888
  year: 2018
  ident: WOS:000442206400026
  article-title: Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201802888
– volume: 12
  start-page: 18777
  year: 2020
  ident: WOS:000529202100061
  article-title: High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c05172
SSID ssj0028806
Score 2.672633
Snippet Fused‐ring electron acceptors have made significant progress in recent years, while the development of fully non‐fused ring acceptors has been unsatisfactory....
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory....
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22714
SubjectTerms Absorption
Backbone
Chemistry
Chemistry, Multidisciplinary
electron acceptors
Energy charge
Energy conversion efficiency
Energy dissipation
Energy loss
Fabrication
fully nonfused acceptors
J-aggregation
organic solar cells
Photovoltaic cells
Physical Sciences
Polymers
Science & Technology
Solar cells
Title A Fully Non‐fused Ring Acceptor with Planar Backbone and Near‐IR Absorption for High Performance Polymer Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010856
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000575557600001
https://www.proquest.com/docview/2465703648
https://www.proquest.com/docview/2439622327
Volume 59
WOS 000575557600001
WOSCitedRecordID wos000575557600001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3DhjQgUNEiVOKVNbOexx7Bq1SKxqhYq9Rb5eemSVMmuRDnxE_iN_BJm8touEgLBLZFtJbZn7G_smW8YO3DCGG6zOLQyj0IKhQzz2JkwNp7ywho9kxQ7_GGRnl7I95fJ5a0o_p4fYjpwI83o1mtScKXboy1pKEVgo31Ht7l5Qpzb5LBFqGg58UdxFM4-vEiIkLLQj6yNET_abb67K22h5s5mtItfuw3o5AFT46_3fidXh5u1PjRff2F1_J--PWT3B3QKRS9Oj9gdVz1md-djUrgn7EsBZLTewKKufnz77jets7DE7Q8KQw4ydQN0sguUC0k18E6ZK11XDlRlYYFKhW3OllDotm66tQoQMwP5msD5NoIBzuvVzWfXwEeyu2HuVqv2Kbs4Of40Pw2H5A2hEbjCImqfiTS2cWQEzgOCDGujTGtJhJQIEiTHAmUFV2gwSZ96RzShkZC5FF65mRfP2F6FP_icAXGKxSnaRR7xjsx8buNEW-IqtCZ2ngcsHCevNAOzOSXYWJU9JzMvaTzLaTwD9naqf91zevy25v4oC-Wg223JZdrRlsk8YG-mYpwHumpRlas3VEfMUkRePAvYwW0Zmj5IYDlLkoQuRhEqBCz-m2rzoXtEWLAOGO-E6A-dKIvF2fH09uJfGr1k9-i5c-PJ9tneutm4VwjG1vp1p3A_AUZ7KX4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_lFdCixSESe39u76JwcOIW2V0NaqQiv1Zuzd9aXBrpxEEE48Aq_Cq_AIPAkz_gtBQiCkHjjaXtv7Nzvf7M58A7BjhFJcB66tZejYFApph65Rtqsyygur0p6k2OGTyB-eyzcX3sUafG1jYWp-iG7DjSSjWq9JwGlDem_JGkoh2Gjg0XFu6PmNX-WRWXxAq236arSPQ_yC88ODs8HQbhIL2Eqg9COi7Anf1a6jBKpXVIBaO0GaSiJLRAUmOT5ItOAJgnmZ-ZkhCktHyFCKLDG9TOB3b8BNSiNOdP37446xiqM41AFNQtiU977liXT43mp9V_XgEtyuqL9VxFypvMM78K3trNrT5XJ3Pkt31adfeCT_q968C7cbAM76tcTcgzWT34eNQZv37gF87DOyyxcsKvLvn79k86nRbIwanvUV-QAVJaPNa0bpnpKSvU7UZVrkhiW5ZhG2B98ZjVk_nRZltRwzNAsYudOw02WQBjstJov3pmRvaWuBDcxkMn0I59fS8EewnmMFN4ERbZrro-mXIaSTQRZq10s10TFq5ZqMW2C3syVWDXk75RCZxDXtNI9p_OJu_Cx42ZW_qmlLfltyu518cbN8TWMu_YqZTYYWPO8e4zjQaVKSm2JOZUTPR3DJAwt2fp603Q_JHgg8z6OzX0RDFrh_U2zQNI84GWYW8GrW_qERcT8aHXRXW__y0jPYGJ6dHMfHo-joMdyi-5XXUrAN67Nybp4g9pylTytpZ_DuugXiB5wpgtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hGBAkYq4pQ2sZ2fPXAIu111KUSrhUq9pYntXLok1f4IlhOPwKPwKrwCT8JM_pZFQiCkHjgmtpM49ni-sWe-Adg1QimuA9fWMnRsCoW0Q9co21U55YVVWU9S7PCb2D88lq9OvJMt-NrGwtT8EN2GG0lGtV6TgJ_rfH9NGkoR2Gjf0Wlu6PmNW-WRWX1Ao23-YjTAEX7G-fDgXf_QbvIK2Eqg8COg7Anf1a6jBGpX1H9aO0GWSeJKRP0lORakWvAUsbzM_dwQg6UjZChFnppeLvC5l-Cy9J0eJYsYTDrCKo7SUMczCWFT2vuWJtLh-5vfu6kG19h2Q_ttAuZK4w1vwLf2X9WOLmd7y0W2pz79QiP5P_3Mm3C9gd8squXlFmyZ4jZc7bdZ7-7Ax4iRVb5icVl8__wlX86NZhPU7yxS5AFUzhhtXTNK9pTO2MtUnWVlYVhaaBZjf7DNaMKibF7OqsWYoVHAyJmGjdchGmxcTlfvzYy9pY0F1jfT6fwuHF9Ix-_BdoEfeB8Ykaa5Php-OQI6GeShdr1MExmjVq7JuQV2O1kS1VC3UwaRaVKTTvOExi_pxs-C513985q05Lc1d9q5lzSL1zzh0q942WRowdOuGMeBzpLSwpRLqiN6PkJLHliw-_Oc7V5I1kDgeR6d_CIWssD9m2r9pnvEyLCwgFeT9g-dSKJ4dNBdPfiXRk_gyngwTF6P4qOHcI1uVy5LwQ5sL2ZL8wiB5yJ7XMk6g9OLlocfYsKBgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fully+Non-fused+Ring+Acceptor+with+Planar+Backbone+and+Near-IR+Absorption+for+High+Performance+Polymer+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Ya-Nan&rft.au=Li%2C+Miao&rft.au=Wang%2C+Yunzhi&rft.au=Wang%2C+Jing&rft.date=2020-12-07&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=50&rft.spage=22714&rft_id=info:doi/10.1002%2Fanie.202010856&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon