Exact optimum coin bias in Efron's randomization procedure

Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized, in that subjects are always randomized to one of two treatments with a probability less than 1. The parameter of interest is the bias p of the coin, which...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 34; no. 28; pp. 3760 - 3768
Main Authors Antognini, Alessandro Baldi, Rosenberger, William F., Wang, Yang, Zagoraiou, Maroussa
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 10.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/sim.6576

Cover

Abstract Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized, in that subjects are always randomized to one of two treatments with a probability less than 1. The parameter of interest is the bias p of the coin, which can range from 0.5 to 1. In this note, we propose a compound optimization strategy that selects p based on a subjected weighting of the relative importance of the two fundamental criteria of interest for restricted randomization mechanisms, namely balance between the treatment assignments and allocation randomness. We use exact and asymptotic distributional properties of Efron's coin to find the optimal p under compound criteria involving imbalance variability, expected imbalance, selection bias, and accidental bias, for both small/moderate trials and large samples. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized, in that subjects are always randomized to one of two treatments with a probability less than 1. The parameter of interest is the bias p of the coin, which can range from 0.5 to 1. In this note, we propose a compound optimization strategy that selects p based on a subjected weighting of the relative importance of the two fundamental criteria of interest for restricted randomization mechanisms, namely balance between the treatment assignments and allocation randomness. We use exact and asymptotic distributional properties of Efron's coin to find the optimal p under compound criteria involving imbalance variability, expected imbalance, selection bias, and accidental bias, for both small/moderate trials and large samples. Copyright © 2015 John Wiley & Sons, Ltd.
Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized , in that subjects are always randomized to one of two treatments with a probability less than 1. The parameter of interest is the bias p of the coin, which can range from 0.5 to 1. In this note, we propose a compound optimization strategy that selects p based on a subjected weighting of the relative importance of the two fundamental criteria of interest for restricted randomization mechanisms, namely balance between the treatment assignments and allocation randomness. We use exact and asymptotic distributional properties of Efron's coin to find the optimal p under compound criteria involving imbalance variability, expected imbalance, selection bias, and accidental bias, for both small/moderate trials and large samples. Copyright © 2015 John Wiley & Sons, Ltd.
Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized, in that subjects are always randomized to one of two treatments with a probability less than 1. The parameter of interest is the bias p of the coin, which can range from 0.5 to 1. In this note, we propose a compound optimization strategy that selects p based on a subjected weighting of the relative importance of the two fundamental criteria of interest for restricted randomization mechanisms, namely balance between the treatment assignments and allocation randomness. We use exact and asymptotic distributional properties of Efron's coin to find the optimal p under compound criteria involving imbalance variability, expected imbalance, selection bias, and accidental bias, for both small/moderate trials and large samples.
Author Wang, Yang
Antognini, Alessandro Baldi
Rosenberger, William F.
Zagoraiou, Maroussa
Author_xml – sequence: 1
  givenname: Alessandro Baldi
  surname: Antognini
  fullname: Antognini, Alessandro Baldi
  email: Correspondence to: Alessandro Baldi Antognini, Department of Statistical Sciences, University of Bologna, Via Belle Arti 41, 40127, Bologna, Italy., a.baldi@unibo.it
  organization: Department of Statistical Sciences, University of Bologna, Via Belle Arti 41, 40127, Bologna, Italy
– sequence: 2
  givenname: William F.
  surname: Rosenberger
  fullname: Rosenberger, William F.
  organization: Department of Statistics, George Mason University, 4400 University Drive MS 4A7, VA, Fairfax, U.S.A
– sequence: 3
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Department of Statistics, George Mason University, 4400 University Drive MS 4A7, VA, Fairfax, U.S.A
– sequence: 4
  givenname: Maroussa
  surname: Zagoraiou
  fullname: Zagoraiou, Maroussa
  organization: Department of Business Administration and Law, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26123177$$D View this record in MEDLINE/PubMed
BookMark eNp10ElLxDAUB_Agio4L-Amk4EEvHbO0ScabDuMCrqh4DGn6AtG2GZMWl09vxxVFT-_ye__3-C-j-cY3gNA6wUOCMd2Jrh7yXPA5NCB4JFJMczmPBpgKkXJB8iW0HOMdxoTkVCyiJcoJZUSIAdqdPGnTJn7aurqrE-NdkxROx6SfExt8sxWToJvS1-5Ft843yTR4A2UXYBUtWF1FWPuYK-jmYHI9PkpPzg-Px3snqWFS8DTPKRhhdCZsAYZYVgIuJS14KXmWFZTPfpG2MFKCJQSDzXU2As6EHZmMSraCtt9z-8sPHcRW1S4aqCrdgO-iIoJKziUTtKebv-id70LTfzdTIyYp5bhXGx-qK2oo1TS4Wodn9dnK90UTfIwB7BchWM0KV33halZ4T4e_qHHtW1Ft0K76ayF9X3h0FTz_G6yujk9_ehdbePryOtwrLpjI1e3ZocLXZ-OLq9N9dcleAT4Mnj8
CODEN SMEDDA
CitedBy_id crossref_primary_10_1002_sim_8919
crossref_primary_10_3389_fpsyt_2019_00108
crossref_primary_10_1002_sim_8160
crossref_primary_10_1186_s12874_021_01303_z
crossref_primary_10_1214_21_EJS1866
crossref_primary_10_1080_19466315_2023_2261671
crossref_primary_10_1002_sim_7817
crossref_primary_10_3389_fpsyt_2019_01023
Cites_doi 10.1111/j.2517-6161.1988.tb01717.x
10.1214/12-AOS1007
10.1111/j.1467-9876.2004.00436.x
10.1136/bmj.325.7358.249
10.2307/2529712
10.1093/biomet/asr021
10.1093/biomet/asr077
10.1002/0471722103
10.1016/j.jspi.2007.06.033
10.1002/sim.4780142406
10.1016/S0197-2456(99)00014-8
10.1214/09-AOS758
10.1016/j.cct.2011.08.004
10.1002/pst.493
10.1111/1467-9868.00056
10.1016/j.jspi.2014.11.002
10.1093/biomet/58.3.403
10.1214/aos/1176344068
10.1002/sim.3014
10.1002/sim.1538
10.1201/b18306
10.2174/157488706775246139
10.1214/aoms/1177706973
10.1002/(SICI)1097-0258(19990815)18:15<1903::AID-SIM188>3.0.CO;2-F
10.1016/j.jspi.2005.08.012
10.1214/13-STS449
10.1093/biomet/asq055
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Dec 10, 2015
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Dec 10, 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6576
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3768
ExternalDocumentID 3856109991
26123177
10_1002_sim_6576
SIM6576
ark_67375_WNG_0TNCPSMB_Q
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3876-552ec7ca47fbec1f3de0d82b6d8644b2661238fbc88ef110ef5a49e637f9c4283
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 05:24:00 EDT 2025
Fri Jul 25 09:43:10 EDT 2025
Wed Feb 19 01:57:31 EST 2025
Thu Apr 24 23:12:59 EDT 2025
Tue Jul 01 03:28:07 EDT 2025
Wed Jan 22 16:19:16 EST 2025
Wed Oct 30 09:55:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords selection bias
compound optimality
biased coin design
accidental bias
restricted randomization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3876-552ec7ca47fbec1f3de0d82b6d8644b2661238fbc88ef110ef5a49e637f9c4283
Notes istex:FEACF2400E512BF55DD6BED31C413FA30B3D2BFA
ArticleID:SIM6576
ark:/67375/WNG-0TNCPSMB-Q
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 26123177
PQID 1729382260
PQPubID 48361
PageCount 9
ParticipantIDs proquest_miscellaneous_1728668372
proquest_journals_1729382260
pubmed_primary_26123177
crossref_primary_10_1002_sim_6576
crossref_citationtrail_10_1002_sim_6576
wiley_primary_10_1002_sim_6576_SIM6576
istex_primary_ark_67375_WNG_0TNCPSMB_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-10
10 December 2015
2015-Dec-10
20151210
PublicationDateYYYYMMDD 2015-12-10
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 1975; 31:103-115.
Azriel D, Mandel M, Rinott Y. Optimal allocation to maximize power of two-sample tests for binary response. Biometrika 2012; 99:101-113.
Kjaegard LL, Als-Nielsen B. Association between competing interests and author's conclusions: epidemiological study of randomized clinical trials published in the BMJ. British Medical Journal 2002; 325:249-252.
Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical trials in the presence of prognostic factors. Biometrika 2011; 98:519-535.
Berger VW, Exner DV. Detecting selection bias in randomized clinical trials. Controlled Clinical Trials 1999; 20:319-327.
Senn S. A personal view of some controversies in allocating treatment to patients in clinical trials. Statistics in Medicine 1995; 14:2661-2674.
Wei LJ. The adaptive biased coin design for sequential experiments. The Annals of Statistics 1978; 6:92-100.
Berger VW, Ivanova A, Knoll MD. Minimizing predictability while retaining balance through the use of less restrictive randomization procedures. Statistics in Medicine 2003; 22:3017-3028.
Atkinson AC, Biswas A. Randomised Response-Adaptive Designs In Clinical Trials. Boca Raton: Chapman & Hall/CRC Press, 2014.
Efron B. Forcing sequential experiments to be balanced. Biometrika 1971; 58:403-417.
Salama I, Ivanova A, Qaqish B. Efficient generation of constrained block allocation sequences. Statistics in Medicine 2008; 27:1421-1428.
Rosenberger WF, Lachin JL. Randomization in Clinical Trials: Theory and Practice. John Wiley & Sons: New York, 2002.
Berger VW. A review of methods for ensuring the comparability of comparison groups in randomized clinical trials. Reviews on Recent Clinical Trials 2006; 1:81-86.
Baldi Antognini A, Giovagnoli A. Compound optimal allocation for individual and collective ethics in binary clinical trials. Biometrika 2010; 97:935-946.
Lewis JA. Statistical principles for clinical trials (ICH e9): an introductory note on an international guideline. Statistics in Medicine 1999; 18:1903-1942.
Azriel D. Power efficiency of Efron's biased coin design. Journal of Statistical Planning and Inference 2015; 159:15-27.
Dette H. Designing experiments with respect to standardized optimality criteria. Journal of the Royal Statistical Society Series B 1997; 59:97-110.
Baldi Antognini A, Giovagnoli A. Adaptive Designs for Sequential Treatment allocation. Boca Raton: Chapman & Hall/CRC Press, 2015.
Zhao W, Weng Y. Block urn designs. a new randomization algorithm for sequential trials with two or more treatments and balanced or unbalanced allocation. Contemporary Clinical Trials 2011; 32:953-996.
Cumberland WG, Royall RM. Does simple random sampling provide adequate balance? Journal of Royal Statistical Society Series B 1988; 50:118-124.
Markaryan T, Rosenberger WF. Exact properties of Efron's biased coin randomization procedure. The Annals of Statistics 2010; 38:1546-1567.
Baldi Antognini A, Giovagnoli A. A new "biased coin design" for the sequential allocation of two treatments. Journal of the Royal Statistical Society Series C 2004; 53:651-664.
Baldi Antognini A, Zagoraiou M. Multi-objective optimal designs in comparative clinical trials with covariates: the reinforced doubly-adaptive biased coin design. The Annals of Statistics 2012; 40:1315-1345.
Burman CF. On sequential treatment allocations in clinical trials. PhD Dissertation. Department of Mathematics. Goteborg University, 1996.
Baldi Antognini A. A theoretical analysis of the power of biased coin designs. Journal of Statistical Planning and Inference 2008; 138:1792-1798.
Atkinson AC. Selecting a biased-coin design. Statistical Science 2014; 29:144-163.
Zhao W, Weng Y, Wu Q, Palesch Y. Quantitative comparison of randomization designs in sequential clinical trials based on treatment balance and allocation randomness. Pharmaceutical Statistics 2012; 11:39-48.
Geraldes M, Melfi V, Page C, Zhang H. The doubly adaptive weighted difference design. Journal of Statistical Planning and Inference 2006; 136:1923-1939.
Blackwell DH, Hodges JL. Design for the control of selection bias. Annals of Mathematical Statistics 1957; 28:449-460.
2010; 97
2010; 38
1995; 14
2007
1996
2011; 32
2011; 98
1999; 20
1988; 50
1975; 31
2006; 1
2014; 29
2002
2012; 99
2012; 11
1978; 6
2006; 136
2004; 53
2015; 159
1999; 18
1997; 59
2008; 27
1971; 58
2002; 325
2008; 138
2015
2014
1957; 28
2003; 22
2012; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Burman CF (e_1_2_7_29_1) 1996
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Cumberland WG (e_1_2_7_12_1) 1988; 50
Baldi Antognini A (e_1_2_7_24_1) 2015
Atkinson AC (e_1_2_7_28_1) 2014
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Kjaegard LL, Als-Nielsen B. Association between competing interests and author's conclusions: epidemiological study of randomized clinical trials published in the BMJ. British Medical Journal 2002; 325:249-252.
– reference: Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 1975; 31:103-115.
– reference: Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical trials in the presence of prognostic factors. Biometrika 2011; 98:519-535.
– reference: Dette H. Designing experiments with respect to standardized optimality criteria. Journal of the Royal Statistical Society Series B 1997; 59:97-110.
– reference: Lewis JA. Statistical principles for clinical trials (ICH e9): an introductory note on an international guideline. Statistics in Medicine 1999; 18:1903-1942.
– reference: Baldi Antognini A, Giovagnoli A. Adaptive Designs for Sequential Treatment allocation. Boca Raton: Chapman & Hall/CRC Press, 2015.
– reference: Salama I, Ivanova A, Qaqish B. Efficient generation of constrained block allocation sequences. Statistics in Medicine 2008; 27:1421-1428.
– reference: Atkinson AC. Selecting a biased-coin design. Statistical Science 2014; 29:144-163.
– reference: Azriel D. Power efficiency of Efron's biased coin design. Journal of Statistical Planning and Inference 2015; 159:15-27.
– reference: Efron B. Forcing sequential experiments to be balanced. Biometrika 1971; 58:403-417.
– reference: Baldi Antognini A, Zagoraiou M. Multi-objective optimal designs in comparative clinical trials with covariates: the reinforced doubly-adaptive biased coin design. The Annals of Statistics 2012; 40:1315-1345.
– reference: Wei LJ. The adaptive biased coin design for sequential experiments. The Annals of Statistics 1978; 6:92-100.
– reference: Baldi Antognini A, Giovagnoli A. Compound optimal allocation for individual and collective ethics in binary clinical trials. Biometrika 2010; 97:935-946.
– reference: Zhao W, Weng Y. Block urn designs. a new randomization algorithm for sequential trials with two or more treatments and balanced or unbalanced allocation. Contemporary Clinical Trials 2011; 32:953-996.
– reference: Berger VW, Ivanova A, Knoll MD. Minimizing predictability while retaining balance through the use of less restrictive randomization procedures. Statistics in Medicine 2003; 22:3017-3028.
– reference: Baldi Antognini A. A theoretical analysis of the power of biased coin designs. Journal of Statistical Planning and Inference 2008; 138:1792-1798.
– reference: Atkinson AC, Biswas A. Randomised Response-Adaptive Designs In Clinical Trials. Boca Raton: Chapman & Hall/CRC Press, 2014.
– reference: Blackwell DH, Hodges JL. Design for the control of selection bias. Annals of Mathematical Statistics 1957; 28:449-460.
– reference: Rosenberger WF, Lachin JL. Randomization in Clinical Trials: Theory and Practice. John Wiley & Sons: New York, 2002.
– reference: Cumberland WG, Royall RM. Does simple random sampling provide adequate balance? Journal of Royal Statistical Society Series B 1988; 50:118-124.
– reference: Burman CF. On sequential treatment allocations in clinical trials. PhD Dissertation. Department of Mathematics. Goteborg University, 1996.
– reference: Berger VW, Exner DV. Detecting selection bias in randomized clinical trials. Controlled Clinical Trials 1999; 20:319-327.
– reference: Senn S. A personal view of some controversies in allocating treatment to patients in clinical trials. Statistics in Medicine 1995; 14:2661-2674.
– reference: Markaryan T, Rosenberger WF. Exact properties of Efron's biased coin randomization procedure. The Annals of Statistics 2010; 38:1546-1567.
– reference: Berger VW. A review of methods for ensuring the comparability of comparison groups in randomized clinical trials. Reviews on Recent Clinical Trials 2006; 1:81-86.
– reference: Geraldes M, Melfi V, Page C, Zhang H. The doubly adaptive weighted difference design. Journal of Statistical Planning and Inference 2006; 136:1923-1939.
– reference: Azriel D, Mandel M, Rinott Y. Optimal allocation to maximize power of two-sample tests for binary response. Biometrika 2012; 99:101-113.
– reference: Baldi Antognini A, Giovagnoli A. A new "biased coin design" for the sequential allocation of two treatments. Journal of the Royal Statistical Society Series C 2004; 53:651-664.
– reference: Zhao W, Weng Y, Wu Q, Palesch Y. Quantitative comparison of randomization designs in sequential clinical trials based on treatment balance and allocation randomness. Pharmaceutical Statistics 2012; 11:39-48.
– volume: 14
  start-page: 2661
  year: 1995
  end-page: 2674
  article-title: A personal view of some controversies in allocating treatment to patients in clinical trials
  publication-title: Statistics in Medicine
– volume: 59
  start-page: 97
  year: 1997
  end-page: 110
  article-title: Designing experiments with respect to standardized optimality criteria
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 53
  start-page: 651
  year: 2004
  end-page: 664
  article-title: A new “biased coin design” for the sequential allocation of two treatments
  publication-title: Journal of the Royal Statistical Society Series C
– volume: 99
  start-page: 101
  year: 2012
  end-page: 113
  article-title: Optimal allocation to maximize power of two‐sample tests for binary response
  publication-title: Biometrika
– year: 1996
– volume: 18
  start-page: 1903
  year: 1999
  end-page: 1942
  article-title: Statistical principles for clinical trials (ICH e9): an introductory note on an international guideline
  publication-title: Statistics in Medicine
– volume: 28
  start-page: 449
  year: 1957
  end-page: 460
  article-title: Design for the control of selection bias
  publication-title: Annals of Mathematical Statistics
– volume: 27
  start-page: 1421
  year: 2008
  end-page: 1428
  article-title: Efficient generation of constrained block allocation sequences
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 81
  year: 2006
  end-page: 86
  article-title: A review of methods for ensuring the comparability of comparison groups in randomized clinical trials
  publication-title: Reviews on Recent Clinical Trials
– volume: 29
  start-page: 144
  year: 2014
  end-page: 163
  article-title: Selecting a biased‐coin design
  publication-title: Statistical Science
– volume: 6
  start-page: 92
  year: 1978
  end-page: 100
  article-title: The adaptive biased coin design for sequential experiments
  publication-title: The Annals of Statistics
– year: 2014
– volume: 22
  start-page: 3017
  year: 2003
  end-page: 3028
  article-title: Minimizing predictability while retaining balance through the use of less restrictive randomization procedures
  publication-title: Statistics in Medicine
– volume: 136
  start-page: 1923
  year: 2006
  end-page: 1939
  article-title: The doubly adaptive weighted difference design
  publication-title: Journal of Statistical Planning and Inference
– volume: 20
  start-page: 319
  year: 1999
  end-page: 327
  article-title: Detecting selection bias in randomized clinical trials
  publication-title: Controlled Clinical Trials
– volume: 97
  start-page: 935
  year: 2010
  end-page: 946
  article-title: Compound optimal allocation for individual and collective ethics in binary clinical trials
  publication-title: Biometrika
– volume: 98
  start-page: 519
  year: 2011
  end-page: 535
  article-title: The covariate‐adaptive biased coin design for balancing clinical trials in the presence of prognostic factors
  publication-title: Biometrika
– volume: 31
  start-page: 103
  year: 1975
  end-page: 115
  article-title: Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial
  publication-title: Biometrics
– volume: 40
  start-page: 1315
  year: 2012
  end-page: 1345
  article-title: Multi‐objective optimal designs in comparative clinical trials with covariates: the reinforced doubly‐adaptive biased coin design
  publication-title: The Annals of Statistics
– volume: 58
  start-page: 403
  year: 1971
  end-page: 417
  article-title: Forcing sequential experiments to be balanced
  publication-title: Biometrika
– volume: 325
  start-page: 249
  year: 2002
  end-page: 252
  article-title: Association between competing interests and author's conclusions: epidemiological study of randomized clinical trials published in the BMJ
  publication-title: British Medical Journal
– year: 2002
– volume: 138
  start-page: 1792
  year: 2008
  end-page: 1798
  article-title: A theoretical analysis of the power of biased coin designs
  publication-title: Journal of Statistical Planning and Inference
– volume: 11
  start-page: 39
  year: 2012
  end-page: 48
  article-title: Quantitative comparison of randomization designs in sequential clinical trials based on treatment balance and allocation randomness
  publication-title: Pharmaceutical Statistics
– volume: 50
  start-page: 118
  year: 1988
  end-page: 124
  article-title: Does simple random sampling provide adequate balance
  publication-title: Journal of Royal Statistical Society Series B
– volume: 32
  start-page: 953
  year: 2011
  end-page: 996
  article-title: Block urn designs. a new randomization algorithm for sequential trials with two or more treatments and balanced or unbalanced allocation
  publication-title: Contemporary Clinical Trials
– volume: 159
  start-page: 15
  year: 2015
  end-page: 27
  article-title: Power efficiency of Efron's biased coin design
  publication-title: Journal of Statistical Planning and Inference
– year: 2007
  article-title: Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design
– volume: 38
  start-page: 1546
  year: 2010
  end-page: 1567
  article-title: Exact properties of Efron's biased coin randomization procedure
  publication-title: The Annals of Statistics
– year: 2015
– volume: 50
  start-page: 118
  year: 1988
  ident: e_1_2_7_12_1
  article-title: Does simple random sampling provide adequate balance
  publication-title: Journal of Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1988.tb01717.x
– ident: e_1_2_7_21_1
  doi: 10.1214/12-AOS1007
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1467-9876.2004.00436.x
– ident: e_1_2_7_8_1
  doi: 10.1136/bmj.325.7358.249
– ident: e_1_2_7_25_1
  doi: 10.2307/2529712
– ident: e_1_2_7_30_1
  doi: 10.1093/biomet/asr021
– ident: e_1_2_7_11_1
  doi: 10.1093/biomet/asr077
– ident: e_1_2_7_13_1
  doi: 10.1002/0471722103
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jspi.2007.06.033
– ident: e_1_2_7_7_1
  doi: 10.1002/sim.4780142406
– ident: e_1_2_7_4_1
  doi: 10.1016/S0197-2456(99)00014-8
– ident: e_1_2_7_22_1
  doi: 10.1214/09-AOS758
– volume-title: Randomised Response‐Adaptive Designs In Clinical Trials
  year: 2014
  ident: e_1_2_7_28_1
– volume-title: On sequential treatment allocations in clinical trials
  year: 1996
  ident: e_1_2_7_29_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cct.2011.08.004
– ident: e_1_2_7_27_1
  doi: 10.1002/pst.493
– ident: e_1_2_7_31_1
  doi: 10.1111/1467-9868.00056
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jspi.2014.11.002
– ident: e_1_2_7_2_1
  doi: 10.1093/biomet/58.3.403
– ident: e_1_2_7_17_1
  doi: 10.1214/aos/1176344068
– ident: e_1_2_7_14_1
  doi: 10.1002/sim.3014
– ident: e_1_2_7_5_1
  doi: 10.1002/sim.1538
– volume-title: Adaptive Designs for Sequential Treatment allocation
  year: 2015
  ident: e_1_2_7_24_1
  doi: 10.1201/b18306
– ident: e_1_2_7_6_1
  doi: 10.2174/157488706775246139
– ident: e_1_2_7_3_1
  doi: 10.1214/aoms/1177706973
– ident: e_1_2_7_9_1
– ident: e_1_2_7_10_1
  doi: 10.1002/(SICI)1097-0258(19990815)18:15<1903::AID-SIM188>3.0.CO;2-F
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jspi.2005.08.012
– ident: e_1_2_7_26_1
  doi: 10.1214/13-STS449
– ident: e_1_2_7_20_1
  doi: 10.1093/biomet/asq055
SSID ssj0011527
Score 2.2043445
Snippet Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized, in that subjects...
Efron's biased coin design is a restricted randomization procedure that has very favorable balancing properties, yet it is fully randomized , in that subjects...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3760
SubjectTerms accidental bias
Asymptotic methods
biased coin design
Clinical Trials as Topic - statistics & numerical data
compound optimality
Humans
Medical statistics
Medical treatment
Optimization techniques
Probability distribution
Random Allocation
Research Design
restricted randomization
Selection Bias
Title Exact optimum coin bias in Efron's randomization procedure
URI https://api.istex.fr/ark:/67375/WNG-0TNCPSMB-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6576
https://www.ncbi.nlm.nih.gov/pubmed/26123177
https://www.proquest.com/docview/1729382260
https://www.proquest.com/docview/1728668372
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kghTE1lPrtVVWEPuUa752k_hm69Uq3KG2xYIPy37CUS-RywWKf31nskmkUkF82odM2M3OzswvO7O_JeR1YkzCCmuD1GoWpHkqA6m0DFSmkY4wknmb0Z3N-elF-umSXXZVlXgWxvNDDBtuaBmtv0YDl6o-_E0aWi-WEw5oGdxvlHCkzX__dWCOivrbWjFDybOI9byzYXzYv3grEt3HSb2-C2beRq1t2DnZIt_7Aftqk6tJs1YT_esPLsf_-6Jt8qhDo_SdXz6PyT1bjsiDWZdvH5GHfleP-sNKI7KJ2NRTOz8hb6fXUq9pBU5n2SyprhYlVQtZU2inblWVBzWFSGiqZXfWk7bR0jQr-5RcnEzPj0-D7iqGQCfgLwPGYqszLdPMgdIjlxgbmjxW3OQAqBRGeYj9Tuk8tw4QhXVMpoXlSeYKjZxuz8hGWZX2OaFK2cJxZpx2AC14JlMkhJFRoQqWKW3G5KBXi9AdTzlel_FDeIblWMA8CZynMXk1SP703Bx3yLxpNTsIyNUV1rJlTHybfxDh-fz489nsSHwZk_1e9aIz41oAuisSgFA8hL6Gx2CAmFWRpa2aVibnHP7z4zHZ8Utm6Az52QCgZTCKVvF_HaY4-zjDdvdfBffIJkA3hoU1UbhPNtarxr4AeLRWL1tDuAEtAgrJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFrQgXtbbatUIYp9mO7dkZvRJ69atdha1W9oHIeQKS90Z2d2B4q_3ZG5SqSA-5WFOSOacnJwvOckXgJeR1hHNjPFio6gXp7HwhFTCk4lydISBSOuMbj5lk5P44xk924A33V2Yhh-i33BznlHP187B3Yb03m_W0NV8MWIIl6_BVow4w6283n_tuaOC7r1Wl6NkSUA75lk_3OtqXopFW06tF1cBzcu4tQ48B7fhW9fl5rzJ-ahay5H6-Qeb43_-0x241QJS8rYZQXdhwxQDuJ63KfcB3Gw29khzX2kA2w6eNuzO9-D1-EKoNSlx3llUC6LKeUHkXKwIlmO7LIvdFcFgqMtFe92T1AFTV0tzH04OxrP9ide-xuCpCKdMj9LQqESJOLFo98BG2vg6DSXTKWIq6QI9hn8rVZoai6DCWCrizLAosZlytG4PYLMoC_MIiJQms4xqqyyiC5aI2HHCiCCTGU2k0kPY7ezCVUtV7l7M-M4bkuWQo56409MQXvSSPxp6jitkXtWm7QXE8twdZ0soP51-4P5suv_5OH_Hvwxhp7M9bz15xRHgZRGiKOZjW_1n9EGXWBGFKataJmUMl_rhEB42Y6ZvzFG0IUZLsBe15f_aTX58mLvy8b8KPocbk1l-xI8Op5-ewDYiOerO2QT-Dmyul5V5imhpLZ_VXvEL18UO6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB-0hVIQH-frtGoEsZ_2uq8ku37Temer3lFtiwU_hDzhqLdb7m6h-Nc72ZdUKoif8mFnSXYmk_ltZvILwKvEmITm1gap1TRIs1QGUmkZKK49HWEkszqjO52xg9P04xk9a6sq_VmYhh-i33DznlGv197BL4zb-00aupovRgzR8k3YTBkCCQ-IvvbUUVF3XatPUTIe0Y54Noz3ujevhKJNr9XL63DmVdhax53JHfjejbgpNzkfVWs10j__IHP8v0-6C7dbOEreNvPnHtywxQC2pm3CfQC3mm090pxWGsC2B6cNt_N9eDO-lHpNSlx1FtWC6HJeEDWXK4Lt2C3LYndFMBSactEe9iR1uDTV0j6A08n4ZP8gaO9iCHSCC2ZAaWw11zLlDq0eucTY0GSxYiZDRKV8mMfg75TOMusQUlhHZZpblnCXa0_q9hA2irKwj4EoZXPHqHHaIbZgXKaeEUZGucopV9oMYbczi9AtUbm_L-OHaCiWY4F6El5PQ3jZS1405BzXyLyuLdsLyOW5L2bjVHybfRDhyWz_6Hj6TnwZwk5netH68UogvMsTxFAsxL76x-iBPq0iC1tWtUzGGP7ox0N41EyZvjNP0IYIjeMoasP_dZji-HDq2yf_KvgCto7eT8Tnw9mnp7CNMI76Ipso3IGN9bKyzxAqrdXz2id-AaL1DZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+optimum+coin+bias+in+Efron%27s+randomization+procedure&rft.jtitle=Statistics+in+medicine&rft.au=Antognini%2C+Alessandro+Baldi&rft.au=Rosenberger%2C+William+F.&rft.au=Wang%2C+Yang&rft.au=Zagoraiou%2C+Maroussa&rft.date=2015-12-10&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=34&rft.issue=28&rft.spage=3760&rft.epage=3768&rft_id=info:doi/10.1002%2Fsim.6576&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0TNCPSMB_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon