Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiom...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 34; pp. 14275 - 14280 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
17.08.2020
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
An efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes with C(sp3)−H species is described. Chlorine atoms, which are produced by light irradiation of anodically generated Cl2 from Cl−, a hydrogen atom from C(sp3)−H bonds to afford carbon radicals. The latter undergo Minisci alkylation to afford the final functionalized heteroarene products. |
---|---|
AbstractList | Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp(3))-H donors through H(2)evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp(3))-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl(2)from Cl-. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. An efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes with C(sp3)−H species is described. Chlorine atoms, which are produced by light irradiation of anodically generated Cl2 from Cl−, a hydrogen atom from C(sp3)−H bonds to afford carbon radicals. The latter undergo Minisci alkylation to afford the final functionalized heteroarene products. Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp 3 )−H donors through H 2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp 3 )−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl 2 from Cl − . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3 )-H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3 )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl- . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3 )-H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3 )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl- . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. |
Author | Chen, Peng‐Yu Xu, Pin Xu, Hai‐Chao |
Author_xml | – sequence: 1 givenname: Pin surname: Xu fullname: Xu, Pin organization: Xiamen University – sequence: 2 givenname: Peng‐Yu surname: Chen fullname: Chen, Peng‐Yu organization: Xiamen University – sequence: 3 givenname: Hai‐Chao orcidid: 0000-0002-3008-5143 surname: Xu fullname: Xu, Hai‐Chao email: haichao.xu@xmu.edu.cn organization: Xiamen University |
BookMark | eNqNkU2LFDEQhoOsuB969dzgRZAe8zWd5Di2q7OwqODeQzpdvZ0lk4xJzy5z8-hR_In7S8wwo8KC6CkFeZ5K5a1TdBRiAISeEzwjGNPXJjiYUUwxngvKH6ETMqekZkKwo1Jzxmoh5-QYneZ8U3gpcfMEHTPKpcJYnSD32RpvOg_VpzFOETzYKUU7wsqVi-otjNs-xWsIZnK3ULUp5nz_9XsbN2vvwnUVh2oJE6RoEgTI1Z2bxmrh3Xosgq3a-28_ltWbGPr8FD0ejM_w7HCeoat351ftsr78-P6iXVzWlknB6wawGjhXwhpgvWh6SwzBEoQwilg6NAPvqRKy6wsIpLGYN6TrDKYNwx1jZ-jlvu06xS8byJNeuWzBexMgbrKmHCsiFWe8oC8eoDdxk0IZrlCMCCqUwoWSe-oOujhk6yBY0OvkViZtNS7B86aMIEuFSeum8u8YSj5hKuqr_1cLzfe03YWcYND20G1KxnlNsN6tXO9Wrn-vvGizB9qvB_4qqMNUzsP2H7RefLg4_-P-BMspvwQ |
CitedBy_id | crossref_primary_10_1021_acscatal_2c01087 crossref_primary_10_1021_acssuschemeng_1c06702 crossref_primary_10_1039_D2GC00310D crossref_primary_10_1021_acs_orglett_2c00138 crossref_primary_10_6023_cjoc202311032 crossref_primary_10_1002_ejoc_202101036 crossref_primary_10_1021_jacs_3c02748 crossref_primary_10_1039_D4QO01179A crossref_primary_10_1002_tcr_202100036 crossref_primary_10_1039_D4GC00164H crossref_primary_10_1038_s41467_024_45015_6 crossref_primary_10_1055_a_2312_5896 crossref_primary_10_1002_ange_202306679 crossref_primary_10_1039_D2OB02070J crossref_primary_10_1002_cjoc_202300288 crossref_primary_10_1016_S1872_2067_21_63923_2 crossref_primary_10_1039_D3GC00866E crossref_primary_10_1039_D5QO00017C crossref_primary_10_1039_D1CC01012C crossref_primary_10_1021_jacs_2c09050 crossref_primary_10_1039_D1QO00054C crossref_primary_10_1021_acs_joc_1c03007 crossref_primary_10_1039_D1GC02670D crossref_primary_10_1039_D2OB00424K crossref_primary_10_1016_j_chempr_2020_08_025 crossref_primary_10_1055_a_2147_2863 crossref_primary_10_1021_acs_orglett_0c02475 crossref_primary_10_1039_D4QO01068J crossref_primary_10_1021_acs_accounts_4c00739 crossref_primary_10_1021_acs_chemrev_1c00263 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1039_D3GC05089K crossref_primary_10_1039_D4OB01526F crossref_primary_10_1002_cctc_202401642 crossref_primary_10_1021_acs_joc_1c02125 crossref_primary_10_1021_acs_orglett_4c01986 crossref_primary_10_1002_ange_202100222 crossref_primary_10_1016_j_gresc_2021_03_002 crossref_primary_10_1021_acs_joc_2c02498 crossref_primary_10_1002_ange_202200266 crossref_primary_10_6023_cjoc202312016 crossref_primary_10_1016_j_trechm_2022_03_006 crossref_primary_10_1021_jacs_2c08068 crossref_primary_10_1021_acs_orglett_3c02619 crossref_primary_10_1002_tcr_202100048 crossref_primary_10_1016_j_cclet_2021_03_027 crossref_primary_10_1021_acs_orglett_1c01702 crossref_primary_10_1021_acssuschemeng_4c03719 crossref_primary_10_1002_tcr_202100047 crossref_primary_10_1039_D1QO00348H crossref_primary_10_1021_acs_orglett_4c01998 crossref_primary_10_1021_acscatal_2c02934 crossref_primary_10_1002_chem_202401795 crossref_primary_10_1021_acs_chemrev_2c00478 crossref_primary_10_1039_D4QO00797B crossref_primary_10_1002_cctc_202301537 crossref_primary_10_1002_anie_202202649 crossref_primary_10_1021_acs_joc_0c02898 crossref_primary_10_1002_advs_202408767 crossref_primary_10_1038_s41467_022_31813_3 crossref_primary_10_1021_acs_orglett_2c01784 crossref_primary_10_1038_s42004_021_00480_8 crossref_primary_10_6023_cjoc202112032 crossref_primary_10_1038_s44160_023_00480_7 crossref_primary_10_1038_s41467_023_42264_9 crossref_primary_10_6023_cjoc202105054 crossref_primary_10_1021_acs_joc_2c02277 crossref_primary_10_1038_s41467_025_57567_2 crossref_primary_10_1021_jacs_2c07107 crossref_primary_10_1039_D3GC02126B crossref_primary_10_1021_acs_orglett_2c00224 crossref_primary_10_1002_cssc_202102326 crossref_primary_10_6023_cjoc202309024 crossref_primary_10_1038_s41467_023_43791_1 crossref_primary_10_1039_D4QO01067A crossref_primary_10_1002_adsc_202300112 crossref_primary_10_1007_s41981_023_00290_0 crossref_primary_10_1039_D3SC01118F crossref_primary_10_1002_anie_202100222 crossref_primary_10_1039_D3SC06337B crossref_primary_10_1039_D2GC01225A crossref_primary_10_1002_anie_202306679 crossref_primary_10_1039_D4GC00352G crossref_primary_10_1039_D2SC05428K crossref_primary_10_1080_17518253_2022_2134740 crossref_primary_10_6023_cjoc202305011 crossref_primary_10_1021_acs_orglett_1c00704 crossref_primary_10_1002_cctc_202400635 crossref_primary_10_1039_D1CS00223F crossref_primary_10_1021_acs_joc_4c00189 crossref_primary_10_1021_jacs_0c08437 crossref_primary_10_1021_acs_inorgchem_3c00970 crossref_primary_10_6023_cjoc202112018 crossref_primary_10_1016_j_ijbiomac_2024_135260 crossref_primary_10_1039_D4QO01607F crossref_primary_10_1039_D4SC06219A crossref_primary_10_1039_D2QO01558G crossref_primary_10_1002_adsc_202300927 crossref_primary_10_6023_cjoc202102001 crossref_primary_10_1055_a_2004_6485 crossref_primary_10_1038_s41467_024_53115_6 crossref_primary_10_1038_s41467_024_46890_9 crossref_primary_10_6023_cjoc202310034 crossref_primary_10_1039_D2CC06486C crossref_primary_10_1002_ange_202202649 crossref_primary_10_1021_acs_orglett_2c00364 crossref_primary_10_1039_D2GC03156F crossref_primary_10_1002_celc_202100272 crossref_primary_10_1002_ejoc_202300835 crossref_primary_10_1039_D1GC04384F crossref_primary_10_1039_D2CC06999G crossref_primary_10_1021_jacs_2c01914 crossref_primary_10_1055_s_0043_1775387 crossref_primary_10_1021_acscentsci_0c01532 crossref_primary_10_1016_j_scib_2023_11_048 crossref_primary_10_1002_ejoc_202200631 crossref_primary_10_1039_D3GC03292B crossref_primary_10_1021_acs_joc_0c02695 crossref_primary_10_1021_acs_oprd_1c00038 crossref_primary_10_1021_acs_orglett_5c00256 crossref_primary_10_1002_anie_202200266 crossref_primary_10_1002_cssc_202102360 crossref_primary_10_1021_jasms_4c00011 crossref_primary_10_3762_bjoc_20_214 crossref_primary_10_6023_cjoc202102024 crossref_primary_10_1002_ange_202301026 crossref_primary_10_1021_jacs_1c00549 crossref_primary_10_1021_acs_inorgchem_4c01726 crossref_primary_10_1039_D2GC03829C crossref_primary_10_1039_D3GC04109C crossref_primary_10_1021_acscatal_3c01221 crossref_primary_10_1021_acs_orglett_1c02858 crossref_primary_10_1021_acs_joc_4c00093 crossref_primary_10_1039_D2CS00581F crossref_primary_10_1016_S1872_2067_23_64615_7 crossref_primary_10_1021_acs_chemrev_3c00158 crossref_primary_10_1038_s41467_023_43286_z crossref_primary_10_1039_D2QO01003H crossref_primary_10_1021_acs_chemrev_4c00464 crossref_primary_10_1007_s41981_024_00312_5 crossref_primary_10_1021_acs_joc_4c01620 crossref_primary_10_1021_jacs_1c09341 crossref_primary_10_1002_adsc_202401064 crossref_primary_10_1016_j_cclet_2023_108509 crossref_primary_10_6023_cjoc202106051 crossref_primary_10_1002_adsc_202201076 crossref_primary_10_1039_D4OB01152J crossref_primary_10_1002_ejoc_202300015 crossref_primary_10_1039_D1GC00027F crossref_primary_10_1002_ejoc_202200417 crossref_primary_10_1038_s42004_023_00947_w crossref_primary_10_1002_tcr_202300119 crossref_primary_10_1021_acs_orglett_4c02797 crossref_primary_10_1038_s41467_021_24280_9 crossref_primary_10_1039_D1CC00486G crossref_primary_10_1002_ange_202107811 crossref_primary_10_1039_D4QO02040E crossref_primary_10_3762_bjoc_19_81 crossref_primary_10_1002_adsc_202400442 crossref_primary_10_1002_ejoc_202200091 crossref_primary_10_1016_j_checat_2021_04_008 crossref_primary_10_1016_j_chempr_2024_02_020 crossref_primary_10_1039_D3QO00290J crossref_primary_10_1039_D4EE02332C crossref_primary_10_1002_cjoc_202200020 crossref_primary_10_1002_adsc_202301020 crossref_primary_10_1039_D4CC01335B crossref_primary_10_1016_j_tchem_2023_100061 crossref_primary_10_1021_acs_joc_1c02773 crossref_primary_10_1002_tcr_202000186 crossref_primary_10_1021_jacs_1c01967 crossref_primary_10_1021_acssuschemeng_0c08434 crossref_primary_10_1021_acssuschemeng_2c02597 crossref_primary_10_1039_D4CC03383C crossref_primary_10_1038_s41929_022_00855_7 crossref_primary_10_1021_acs_orglett_2c01022 crossref_primary_10_1038_s44160_022_00221_2 crossref_primary_10_3390_molecules28052206 crossref_primary_10_1002_anie_202423241 crossref_primary_10_1039_D4OB00394B crossref_primary_10_6023_A22060260 crossref_primary_10_1002_ange_202105895 crossref_primary_10_1021_acs_orglett_3c01751 crossref_primary_10_1016_j_ces_2024_119900 crossref_primary_10_1021_acscatal_4c02320 crossref_primary_10_1021_acscatal_1c04073 crossref_primary_10_1021_acscatal_1c05604 crossref_primary_10_1039_D2SC05198B crossref_primary_10_1021_acs_orglett_3c03490 crossref_primary_10_2174_2665976X03666220513153344 crossref_primary_10_1002_anie_202301026 crossref_primary_10_1016_j_jcat_2024_115789 crossref_primary_10_1039_D2OB00278G crossref_primary_10_1021_jacs_3c07146 crossref_primary_10_1016_j_cej_2023_143421 crossref_primary_10_1039_D4SU00520A crossref_primary_10_1039_D3FD00076A crossref_primary_10_1016_j_ccr_2024_216175 crossref_primary_10_1021_acs_orglett_4c00615 crossref_primary_10_1021_jacsau_4c00496 crossref_primary_10_1002_ange_202423241 crossref_primary_10_1039_D1GC01871J crossref_primary_10_1021_acs_joc_1c00260 crossref_primary_10_6023_cjoc202104024 crossref_primary_10_1016_j_gresc_2022_12_007 crossref_primary_10_1016_j_tetlet_2022_153646 crossref_primary_10_1039_D3CC02790B crossref_primary_10_1002_adsc_202300644 crossref_primary_10_1039_D1GC03388C crossref_primary_10_1039_D4SC03054K crossref_primary_10_1002_chem_202402333 crossref_primary_10_1002_cctc_202401550 crossref_primary_10_1021_acs_chemrev_1c00332 crossref_primary_10_1016_j_tet_2021_132607 crossref_primary_10_1002_adsc_202001581 crossref_primary_10_1002_ange_202315881 crossref_primary_10_1002_anie_202315881 crossref_primary_10_1021_acs_joc_2c01238 crossref_primary_10_1002_anie_202105895 crossref_primary_10_1016_j_scib_2021_07_004 crossref_primary_10_1038_s41467_024_49557_7 |
Cites_doi | 10.1002/ange.201209584 10.1038/s41467-019-08413-9 10.1201/9781420039863 10.1038/s41586-019-1539-y 10.1002/ange.201906381 10.1021/acs.orglett.9b00744 10.1002/ange.201813960 10.1021/acs.orglett.9b01635 10.1002/anie.201900977 10.1016/j.chempr.2017.03.009 10.1021/acs.accounts.9b00603 10.1021/acs.chemrev.8b00233 10.1002/anie.201806631 10.1002/anie.201814488 10.1021/acs.chemrev.9b00045 10.1021/acs.orglett.7b02589 10.1021/acs.orglett.9b02539 10.1021/jacs.9b10678 10.1021/acs.chemrev.7b00763 10.1002/anie.201906381 10.1038/s41929-019-0344-1 10.1021/acs.chemrev.7b00271 10.1002/anie.201407948 10.1002/ange.202002900 10.1021/jacs.7b08158 10.1039/C7CS00619E 10.1055/s-0037-1611633 10.1002/ange.201304268 10.1021/jacs.9b11472 10.1002/ange.201806631 10.1002/anie.201910300 10.1002/ange.201910348 10.1039/C6CC09725A 10.1021/acs.accounts.9b00529 10.1002/ange.201909983 10.1002/ange.201804844 10.1002/ange.201814488 10.1021/acs.accounts.9b00512 10.1002/ange.201410432 10.1002/ange.201810187 10.1002/ange.201702079 10.1021/ol201774b 10.1021/acs.joc.9b01603 10.1002/anie.202002900 10.1002/anie.201304268 10.1021/ol900070x 10.1021/ja00335a048 10.1002/ange.201407948 10.1039/C9QO01193E 10.1021/acscatal.8b04079 10.1021/acs.accounts.9b00472 10.1016/j.trechm.2019.01.011 10.1039/C6RE00159A 10.1002/ange.201910300 10.1126/science.aat9750 10.1021/jacs.7b09388 10.1002/anie.201909983 10.1021/cr040679f 10.1002/anie.201804844 10.1021/jacs.6b08397 10.1039/C8SC05631E 10.1002/anie.201702079 10.1002/anie.201209584 10.1021/acs.chemrev.7b00656 10.1002/anie.201410432 10.1002/anie.201910348 10.1021/acs.chemrev.7b00397 10.1038/nature14885 10.1002/chem.201905774 10.1021/jacs.9b12328 10.1002/anie.201810187 10.1021/acs.accounts.9b00510 10.1021/acs.chemrev.7b00475 10.1002/anie.201813960 10.1038/s41557-018-0142-4 10.1002/ange.201900977 10.1039/c3cs60464k 10.1002/anie.201913767 10.1039/c8sc05631e 10.1039/c6re00159a 10.1039/c7cs00619e 10.1130/B35211.1 10.1039/c9qo01193e 10.1038/s41929-019-0231-9 10.1039/c6cc09725a |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 17B 1KM 1KN AOWDO BLEPL DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202005724 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Web of Science CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14280 |
ExternalDocumentID | 000546461800001 10_1002_anie_202005724 ANIE202005724 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFA0204100 – fundername: National Natural Science Foundation of China funderid: 21672178; 21971213 – fundername: MOST grantid: 2016YFA0204100 – fundername: Fundamental Research Funds for the Central Universities – fundername: NSFC; National Natural Science Foundation of China (NSFC) grantid: 21672178; 21971213 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3874-6e09f4497cae3d76dc1a108e77a91c2f6f4d2978bde09e16c0461bba02630b33 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 232 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000546461800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 10:38:50 EDT 2025 Fri Jul 25 10:36:29 EDT 2025 Wed Jul 09 10:54:05 EDT 2025 Fri Aug 29 16:11:00 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 01:17:41 EDT 2025 Wed Jan 22 16:34:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | ELECTROSYNTHESIS CATALYSIS photoelectrochemistry electrochemistry LIGHT ARYLATION radical reactions C-H functionalization FUNCTIONALIZATION heterocycles GENERATION ARYL CHLORIDES ALKANES |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3874-6e09f4497cae3d76dc1a108e77a91c2f6f4d2978bde09e16c0461bba02630b33 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3008-5143 |
PMID | 32489009 |
PQID | 2431727990 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | webofscience_primary_000546461800001CitationCount wiley_primary_10_1002_anie_202005724_ANIE202005724 proquest_journals_2431727990 proquest_miscellaneous_2409189434 webofscience_primary_000546461800001 crossref_citationtrail_10_1002_anie_202005724 crossref_primary_10_1002_anie_202005724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 17, 2020 |
PublicationDateYYYYMMDD | 2020-08-17 |
PublicationDate_xml | – month: 08 year: 2020 text: August 17, 2020 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 361 2017; 2 2019; 51 2019; 52 2019; 2 2020; 142 2019; 10 2019; 1 1984; 106 2020 2020; 59 132 2011; 13 2015; 525 2002 2017 2017; 56 129 2019 2019; 58 131 2013 2013; 52 125 2017; 117 2018; 47 2014; 43 2017; 139 2009; 11 2020; 7 2017; 53 2018; 8 2016; 1 2019; 84 2019 2019 2020; 53 2019; 21 2018; 118 2018 2018; 57 130 2015 2015; 54 127 2020; 26 2019; 119 2017; 19 2016; 138 2018; 10 2006; 106 2019; 573 e_1_2_2_2_3 e_1_2_2_4_1 e_1_2_2_47_2 e_1_2_2_24_1 e_1_2_2_68_3 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_49_3 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_41_3 e_1_2_2_43_1 e_1_2_2_62_3 e_1_2_2_64_1 e_1_2_2_6_3 e_1_2_2_28_2 e_1_2_2_66_2 e_1_2_2_8_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_60_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_74_2 e_1_2_2_19_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_51_3 e_1_2_2_32_2 e_1_2_2_15_3 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_55_3 e_1_2_2_70_3 e_1_2_2_72_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_69_3 e_1_2_2_23_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_5_3 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_63_3 e_1_2_2_65_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_46_2 Barham J. P. (e_1_2_2_55_2) 2019 e_1_2_2_67_2 e_1_2_2_61_1 e_1_2_2_58_3 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_3 e_1_2_2_75_1 e_1_2_2_50_2 e_1_2_2_52_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_71_1 Deng, HP (WOS:000444941600005) 2018; 57 Xiang, JB (WOS:000486647800046) 2019; 573 Huang, CY (WOS:000467999100006) 2019; 10 Jin, J. (000546461800001.33) 2015; 127 Evano, G (WOS:000474804800004) 2019; 58 Zhang, W (WOS:000496868300001) 2020; 59 Deng, GJ (WOS:000263776200033) 2009; 11 Wang, F (WOS:000471976400044) 2019; 58 Francke, R (WOS:000333330200008) 2014; 43 Yan, H (WOS:000462622700023) 2019; 58 Luo, Y.-R. (000546461800001.43) 2002 Proctor, R. S. J. (000546461800001.53) 2019; 131 Nielsen, M. K. (000546461800001.48) 2017; 129 Li, GX (WOS:000453491100087) 2018; 8 Quattrini, MC (WOS:000395874700007) 2017; 53 Zhang, W. (000546461800001.78) 2020; 132 Antonchick, A. P. (000546461800001.2) 2013; 125 Karkas, MD (WOS:000440433100006) 2018; 47 Meyer, TH (WOS:000521129500009) 2019; 1 Huang, H (WOS:000479869100001) 2019; 58 Xiong, P (WOS:000503910400006) 2019; 52 Jin, J (WOS:000360594100030) 2015; 525 Evano, G. (000546461800001.16) 2019; 131 Niu, LB (WOS:000456829100003) 2019; 10 Ackermann, L (WOS:000509420300009) 2020; 53 Huang, H. (000546461800001.24) 2019; 131 Deng, HP (WOS:000412043000045) 2017; 139 Girard, S. A. (000546461800001.21) 2014; 126 Huang, H (WOS:000497863800001) 2020; 59 Huang, H (WOS:000510531900008) 2020; 142 Caron, S (WOS:000238973000014) 2006; 106 Shields, BJ (WOS:000384952100003) 2016; 138 Correia, CA (WOS:000294242600027) 2011; 13 Fu, NK (WOS:000414506400041) 2017; 139 Rohe, S. (000546461800001.57) 2018; 130 Kim, H (WOS:000512222700001) 2020; 142 Yan, M (WOS:000415028500004) 2017; 117 Antonchick, AP (WOS:000316340700040) 2013; 52 Wang, QQ (WOS:000413709600006) 2017; 19 O'Brien, AG (WOS:000344050700027) 2014; 53 Barham, JP (WOS:000545490000004) 2020; 59 Yuan, Y (WOS:000503910400004) 2019; 52 Lai, X.-L. (000546461800001.39) 2020; 132 Barham, J. P. (000546461800001.4) 2019 O'Brien, A. G. (000546461800001.51) 2014; 126 Tian, WF (WOS:000485089300070) 2019; 21 Jiao, KJ (WOS:000514759600002) 2020; 53 Fukuyama, T (WOS:000389322200003) 2016; 1 Koeller, J (WOS:000459926800027) 2019; 51 Proctor, RSJ (WOS:000478917000001) 2019; 58 Waldvogel, SR (WOS:000440515000006) 2018; 118 Cowper, NGW (WOS:000512222700002) 2020; 142 Rohe, S (WOS:000452399900006) 2018; 57 Capaldo, L. (000546461800001.6) 2019; 131 Lai, XL (WOS:000528998700001) 2020; 59 MINISCI, F (WOS:A1984TS61700048) 1984; 106 Wang, F. (000546461800001.67) 2019; 131 Girard, SA (WOS:000328714900008) 2014; 53 Huang, HY (WOS:000518916800012) 2020; 132 Jiang, YY (WOS:000432093800002) 2018; 118 Capaldo, L (WOS:000494210300001) 2019; 58 Liang, XA (WOS:000464247500108) 2019; 21 Zhao, H (WOS:000481979100001) 2019; 21 Qiu, YA (WOS:000514228700001) 2020; 26 Deng, H.-P. (000546461800001.12) 2018; 130 Jin, J (WOS:000348713900029) 2015; 54 Sun, X (WOS:000450790300012) 2018; 10 Nutting, JE (WOS:000432093800010) 2018; 118 Hu, AH (WOS:000442818200036) 2018; 361 Yan, H (000546461800001.71) 2019; 131 Zhang, L (WOS:000464248600016) 2019; 2 Nielsen, MK (WOS:000402857800033) 2017; 56 Liu, WB (WOS:000408621100015) 2017; 2 Yoshida, J (WOS:000432093800007) 2018; 118 Wang, HM (WOS:000473251600001) 2019; 119 Moeller, KD (WOS:000432093800009) 2018; 118 Yu, Y (WOS:000503249100018) 2020; 7 Siu, JC (WOS:000526398000002) 2020; 53 Huang, C (WOS:000492118100018) 2019; 84 |
References_xml | – volume: 573 start-page: 398 year: 2019 end-page: 402 publication-title: Nature – volume: 142 start-page: 1698 year: 2020 end-page: 1703 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 409 417 year: 2020 2020 end-page: 417 425 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 11868 12062 year: 2014 2014 end-page: 11871 12065 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 17508 17670 year: 2019 2019 end-page: 17510 17672 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 2093 year: 2020 end-page: 2099 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 3241 year: 2020 end-page: 3246 publication-title: Chem. Eur. J. – volume: 118 start-page: 4485 year: 2018 end-page: 4540 publication-title: Chem. Rev. – volume: 106 start-page: 7146 year: 1984 end-page: 7150 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 2943 year: 2006 end-page: 2989 publication-title: Chem. Rev. – volume: 19 start-page: 5517 year: 2017 end-page: 5520 publication-title: Org. Lett. – volume: 13 start-page: 4581 year: 2011 end-page: 4583 publication-title: Org. Lett. – year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 4834 year: 2018 end-page: 4885 publication-title: Chem. Rev. – volume: 361 start-page: 668 year: 2018 publication-title: Science – volume: 2 start-page: 688 year: 2017 end-page: 702 publication-title: Chem – volume: 52 start-page: 3339 year: 2019 end-page: 3350 publication-title: Acc. Chem. Res. – volume: 118 start-page: 4817 year: 2018 end-page: 4833 publication-title: Chem. Rev. – volume: 139 start-page: 15548 year: 2017 end-page: 15553 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 613 year: 2016 end-page: 615 publication-title: React. Chem. Eng. – volume: 57 130 start-page: 12661 12843 year: 2018 2018 end-page: 12665 12847 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 2492 year: 2014 end-page: 2521 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 13666 13802 year: 2019 2019 end-page: 13699 13837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 13230 year: 2017 end-page: 13319 publication-title: Chem. Rev. – volume: 2 start-page: 266 year: 2019 end-page: 373 publication-title: Nat. Catal. – volume: 59 132 start-page: 658 668 year: 2020 2020 end-page: 662 672 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 84 year: 2020 end-page: 104 publication-title: Acc. Chem. Res. – volume: 53 start-page: 300 year: 2020 end-page: 310 publication-title: Acc. Chem. Res. – volume: 21 start-page: 6179 year: 2019 end-page: 6184 publication-title: Org. Lett. – volume: 53 start-page: 547 year: 2020 end-page: 560 publication-title: Acc. Chem. Res. – volume: 53 126 start-page: 74 76 year: 2014 2014 end-page: 100 103 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 5018 year: 2019 end-page: 5024 publication-title: Chem. Sci. – volume: 58 131 start-page: 6385 6451 year: 2019 2019 end-page: 6390 6456 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 525 start-page: 87 year: 2015 publication-title: Nature – volume: 52 start-page: 3309 year: 2019 end-page: 3324 publication-title: Acc. Chem. Res. – volume: 52 125 start-page: 3267 3349 year: 2013 2013 end-page: 3271 3353 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 4702 year: 2018 end-page: 4730 publication-title: Chem. Rev. – volume: 139 start-page: 13579 year: 2017 end-page: 13584 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 12719 year: 2016 end-page: 12722 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2441 year: 2019 end-page: 2444 publication-title: Org. Lett. – volume: 21 start-page: 6930 year: 2019 end-page: 6935 publication-title: Org. Lett. – volume: 51 start-page: 1284 year: 2019 end-page: 1292 publication-title: Synthesis – volume: 84 start-page: 12904 year: 2019 end-page: 12912 publication-title: J. Org. Chem. – volume: 56 129 start-page: 7191 7297 year: 2017 2017 end-page: 7194 7300 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 63 year: 2019 end-page: 76 publication-title: Trends Chem. – volume: 47 start-page: 5786 year: 2018 end-page: 5865 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 11847 year: 2018 end-page: 11853 publication-title: ACS Catal. – volume: 118 start-page: 6706 year: 2018 end-page: 6765 publication-title: Chem. Rev. – volume: 11 start-page: 1171 year: 2009 end-page: 1174 publication-title: Org. Lett. – volume: 58 131 start-page: 4592 4640 year: 2019 2019 end-page: 4595 4643 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 1565 1585 year: 2015 2015 end-page: 1569 1589 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2002 – volume: 7 start-page: 131 year: 2020 end-page: 135 publication-title: Org. Chem. Front. – volume: 10 start-page: 467 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 1229 year: 2018 end-page: 1233 publication-title: Nat. Chem. – volume: 142 start-page: 2087 year: 2020 end-page: 2092 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 10626 10713 year: 2020 2020 end-page: 10632 10719 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 7558 7638 year: 2019 2019 end-page: 7598 7680 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 2335 year: 2017 end-page: 2338 publication-title: Chem. Commun. – volume: 58 131 start-page: 13318 13452 year: 2019 2019 end-page: 13322 13456 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 6769 year: 2019 end-page: 6787 publication-title: Chem. Rev. – volume: 57 130 start-page: 15664 15890 year: 2018 2018 end-page: 15669 15895 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_19_3 doi: 10.1002/ange.201209584 – ident: e_1_2_2_22_2 doi: 10.1038/s41467-019-08413-9 – ident: e_1_2_2_40_1 – ident: e_1_2_2_64_1 doi: 10.1201/9781420039863 – ident: e_1_2_2_43_1 doi: 10.1038/s41586-019-1539-y – ident: e_1_2_2_50_3 doi: 10.1002/ange.201906381 – ident: e_1_2_2_23_2 doi: 10.1021/acs.orglett.9b00744 – ident: e_1_2_2_49_3 doi: 10.1002/ange.201813960 – ident: e_1_2_2_21_2 doi: 10.1021/acs.orglett.9b01635 – ident: e_1_2_2_5_2 doi: 10.1002/anie.201900977 – ident: e_1_2_2_74_2 doi: 10.1016/j.chempr.2017.03.009 – ident: e_1_2_2_31_2 doi: 10.1021/acs.accounts.9b00603 – ident: e_1_2_2_27_2 doi: 10.1021/acs.chemrev.8b00233 – ident: e_1_2_2_6_2 doi: 10.1002/anie.201806631 – ident: e_1_2_2_62_2 doi: 10.1002/anie.201814488 – ident: e_1_2_2_3_2 doi: 10.1021/acs.chemrev.9b00045 – year: 2019 ident: e_1_2_2_55_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_2_42_2 doi: 10.1021/acs.orglett.7b02589 – ident: e_1_2_2_45_2 doi: 10.1021/acs.orglett.9b02539 – ident: e_1_2_2_4_1 – ident: e_1_2_2_57_2 doi: 10.1021/jacs.9b10678 – ident: e_1_2_2_37_2 doi: 10.1021/acs.chemrev.7b00763 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201906381 – ident: e_1_2_2_54_2 doi: 10.1038/s41929-019-0344-1 – ident: e_1_2_2_25_1 – ident: e_1_2_2_28_2 doi: 10.1021/acs.chemrev.7b00271 – ident: e_1_2_2_41_2 doi: 10.1002/anie.201407948 – ident: e_1_2_2_63_3 doi: 10.1002/ange.202002900 – ident: e_1_2_2_66_2 doi: 10.1021/jacs.7b08158 – ident: e_1_2_2_17_1 – ident: e_1_2_2_32_2 doi: 10.1039/C7CS00619E – ident: e_1_2_2_46_2 doi: 10.1055/s-0037-1611633 – ident: e_1_2_2_2_3 doi: 10.1002/ange.201304268 – ident: e_1_2_2_60_1 doi: 10.1021/jacs.9b11472 – ident: e_1_2_2_6_3 doi: 10.1002/ange.201806631 – ident: e_1_2_2_51_2 doi: 10.1002/anie.201910300 – ident: e_1_2_2_44_1 – ident: e_1_2_2_52_3 doi: 10.1002/ange.201910348 – ident: e_1_2_2_16_2 doi: 10.1039/C6CC09725A – ident: e_1_2_2_30_2 doi: 10.1021/acs.accounts.9b00529 – ident: e_1_2_2_58_3 doi: 10.1002/ange.201909983 – ident: e_1_2_2_69_3 doi: 10.1002/ange.201804844 – ident: e_1_2_2_62_3 doi: 10.1002/ange.201814488 – ident: e_1_2_2_35_2 doi: 10.1021/acs.accounts.9b00512 – ident: e_1_2_2_15_3 doi: 10.1002/ange.201410432 – ident: e_1_2_2_70_3 doi: 10.1002/ange.201810187 – ident: e_1_2_2_68_3 doi: 10.1002/ange.201702079 – ident: e_1_2_2_9_2 doi: 10.1021/ol201774b – ident: e_1_2_2_1_1 – ident: e_1_2_2_13_2 doi: 10.1021/acs.joc.9b01603 – ident: e_1_2_2_12_1 – ident: e_1_2_2_63_2 doi: 10.1002/anie.202002900 – ident: e_1_2_2_2_2 doi: 10.1002/anie.201304268 – ident: e_1_2_2_10_2 doi: 10.1021/ol900070x – ident: e_1_2_2_7_1 doi: 10.1021/ja00335a048 – ident: e_1_2_2_41_3 doi: 10.1002/ange.201407948 – ident: e_1_2_2_53_2 doi: 10.1039/C9QO01193E – ident: e_1_2_2_18_2 doi: 10.1021/acscatal.8b04079 – ident: e_1_2_2_38_2 doi: 10.1021/acs.accounts.9b00472 – ident: e_1_2_2_39_2 doi: 10.1016/j.trechm.2019.01.011 – ident: e_1_2_2_71_1 doi: 10.1039/C6RE00159A – ident: e_1_2_2_51_3 doi: 10.1002/ange.201910300 – ident: e_1_2_2_14_2 doi: 10.1126/science.aat9750 – ident: e_1_2_2_65_1 – ident: e_1_2_2_48_1 – ident: e_1_2_2_75_1 doi: 10.1021/jacs.7b09388 – ident: e_1_2_2_20_1 – ident: e_1_2_2_58_2 doi: 10.1002/anie.201909983 – ident: e_1_2_2_24_1 doi: 10.1021/cr040679f – ident: e_1_2_2_69_2 doi: 10.1002/anie.201804844 – ident: e_1_2_2_67_2 doi: 10.1021/jacs.6b08397 – ident: e_1_2_2_11_2 doi: 10.1039/C8SC05631E – ident: e_1_2_2_68_2 doi: 10.1002/anie.201702079 – ident: e_1_2_2_19_2 doi: 10.1002/anie.201209584 – ident: e_1_2_2_61_1 – ident: e_1_2_2_33_2 doi: 10.1021/acs.chemrev.7b00656 – ident: e_1_2_2_15_2 doi: 10.1002/anie.201410432 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201910348 – ident: e_1_2_2_26_2 doi: 10.1021/acs.chemrev.7b00397 – ident: e_1_2_2_72_1 – ident: e_1_2_2_73_2 doi: 10.1038/nature14885 – ident: e_1_2_2_59_2 doi: 10.1002/chem.201905774 – ident: e_1_2_2_56_2 doi: 10.1021/jacs.9b12328 – ident: e_1_2_2_70_2 doi: 10.1002/anie.201810187 – ident: e_1_2_2_8_1 – ident: e_1_2_2_29_2 doi: 10.1021/acs.accounts.9b00510 – ident: e_1_2_2_36_2 doi: 10.1021/acs.chemrev.7b00475 – ident: e_1_2_2_49_2 doi: 10.1002/anie.201813960 – ident: e_1_2_2_47_2 doi: 10.1038/s41557-018-0142-4 – ident: e_1_2_2_5_3 doi: 10.1002/ange.201900977 – ident: e_1_2_2_34_2 doi: 10.1039/c3cs60464k – ident: e_1_2_2_55_3 – volume: 58 start-page: 4592 year: 2019 ident: WOS:000462622700023 article-title: Photoelectrochemical C-H Alkylation of Heteroarenes with Organotrifluoroborates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201814488 – volume: 119 start-page: 6769 year: 2019 ident: WOS:000473251600001 article-title: Recent Advances in Oxidative R-1-H/R-2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.9b00045 – volume: 525 start-page: 87 year: 2015 ident: WOS:000360594100030 article-title: Alcohols as alkylating agents in heteroarene C-H functionalization publication-title: NATURE doi: 10.1038/nature14885 – volume: 106 start-page: 7146 year: 1984 ident: WOS:A1984TS61700048 article-title: POLAR EFFECTS IN FREE-RADICAL REACTIONS - INDUCED DECOMPOSITIONS OF PEROXO COMPOUNDS IN THE SUBSTITUTION OF HETEROAROMATIC BASES BY NUCLEOPHILIC RADICALS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 21 start-page: 2441 year: 2019 ident: WOS:000464247500108 article-title: Visible-Light-Induced C(sp(3))-H Oxidative Arylation with Heteroarenes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b00744 – volume: 142 start-page: 2087 year: 2020 ident: WOS:000512222700001 article-title: Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b10678 – volume: 54 start-page: 1565 year: 2015 ident: WOS:000348713900029 article-title: Direct alpha-Arylation of Ethers through the Combination of Photoredox-Mediated C-H Functionalization and the Minisci Reaction publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201410432 – volume: 59 start-page: 11732 year: 2020 ident: WOS:000545490000004 article-title: Synthetic Photoelectrochemistry publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201913767 – volume: 131 start-page: 4640 year: 2019 ident: 000546461800001.71 article-title: Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 6385 year: 2019 ident: WOS:000471976400044 article-title: Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp(3))-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201813960 – volume: 138 start-page: 12719 year: 2016 ident: WOS:000384952100003 article-title: Direct C(sp(3))-H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b08397 – volume: 131 start-page: 6451 year: 2019 ident: 000546461800001.67 publication-title: Angew. Chem. – volume: 59 start-page: 658 year: 2020 ident: WOS:000497863800001 article-title: Electrophotocatalytic SNAr Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201909983 – volume: 8 start-page: 11847 year: 2018 ident: WOS:000453491100087 article-title: Photoredox-Mediated Minisci-type Alkylation of N-Heteroarenes with Alkanes with High Methylene Selectivity publication-title: ACS CATALYSIS doi: 10.1021/acscatal.8b04079 – volume: 131 start-page: 7638 year: 2019 ident: 000546461800001.16 publication-title: Angew. Chem. – volume: 52 start-page: 3339 year: 2019 ident: WOS:000503910400006 article-title: Chemistry with Electrochemically Generated N-Centered Radicals publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00472 – volume: 53 start-page: 84 year: 2020 ident: WOS:000509420300009 article-title: Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00510 – volume: 21 start-page: 6179 year: 2019 ident: WOS:000481979100001 article-title: Visible Light-Promoted Aliphatic C-H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b01635 – volume: 131 start-page: 17670 year: 2019 ident: 000546461800001.6 publication-title: Angew. Chem. – volume: 139 start-page: 13579 year: 2017 ident: WOS:000412043000045 article-title: Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide alpha-Hetero C(sp(3))-H Bonds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b08158 – volume: 10 start-page: 5018 year: 2019 ident: WOS:000467999100006 article-title: Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions publication-title: CHEMICAL SCIENCE doi: 10.1039/c8sc05631e – year: 2019 ident: 000546461800001.4 publication-title: Angew. Chem. – volume: 1 start-page: 613 year: 2016 ident: WOS:000389322200003 article-title: A greener process for flow C-H chlorination of cyclic alkanes using in situ generation and on-site consumption of chlorine gas publication-title: REACTION CHEMISTRY & ENGINEERING doi: 10.1039/c6re00159a – volume: 19 start-page: 5517 year: 2017 ident: WOS:000413709600006 article-title: Electrocatalytic Minisci Acylation Reaction of N-Heteroarenes Mediated by NH4I publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b02589 – volume: 118 start-page: 4485 year: 2018 ident: WOS:000432093800002 article-title: Use of Electrochemistry in the Synthesis of Heterocyclic Structures publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00271 – volume: 573 start-page: 398 year: 2019 ident: WOS:000486647800046 article-title: Hindered dialkyl ether synthesis with electrogenerated carbocations publication-title: NATURE doi: 10.1038/s41586-019-1539-y – year: 2002 ident: 000546461800001.43 publication-title: Handbook of Bond Dissociation Energies in Organic Compounds – volume: 53 start-page: 74 year: 2014 ident: WOS:000328714900008 article-title: The Cross-Dehydrogenative Coupling of C-sp3-H Bonds: A Versatile Strategy for C-C Bond Formations publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201304268 – volume: 52 start-page: 3309 year: 2019 ident: WOS:000503910400004 article-title: Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00512 – volume: 21 start-page: 6930 year: 2019 ident: WOS:000485089300070 article-title: Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b02539 – volume: 52 start-page: 3267 year: 2013 ident: WOS:000316340700040 article-title: Direct Selective Oxidative Cross-Coupling of Simple Alkanes with Heteroarenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201209584 – volume: 59 start-page: 409 year: 2020 ident: WOS:000496868300001 article-title: Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910300 – volume: 118 start-page: 4834 year: 2018 ident: WOS:000432093800010 article-title: Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00763 – volume: 130 start-page: 12843 year: 2018 ident: 000546461800001.12 publication-title: Angew. Chem. – volume: 56 start-page: 7191 year: 2017 ident: WOS:000402857800033 article-title: Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702079 – volume: 142 start-page: 1698 year: 2020 ident: WOS:000510531900008 article-title: Electrophotocatalytic C-H Functionalization of Ethers with High Regioselectivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b11472 – volume: 130 start-page: 15890 year: 2018 ident: 000546461800001.57 publication-title: Angew. Chem. – volume: 132 start-page: 10713 year: 2020 ident: 000546461800001.39 publication-title: Angew. Chem. – volume: 47 start-page: 5786 year: 2018 ident: WOS:000440433100006 article-title: Electrochemical strategies for C-H functionalization and C-N bond formation publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00619e – volume: 2 start-page: 688 year: 2017 ident: WOS:000408621100015 article-title: Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH publication-title: CHEM doi: 10.1016/j.chempr.2017.03.009 – volume: 132 start-page: 668 year: 2020 ident: WOS:000518916800012 article-title: Detrital zircon U-Pb ages of Paleogene deposits in the southwestern Sichuan foreland basin, China: Constraints on basin-mountain evolution along the southeastern margin of the Tibetan Plateau publication-title: GEOLOGICAL SOCIETY OF AMERICA BULLETIN doi: 10.1130/B35211.1 – volume: 59 start-page: 10626 year: 2020 ident: WOS:000528998700001 article-title: Electrophotocatalytic Decarboxylative C-H Functionalization of Heteroarenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202002900 – volume: 126 start-page: 76 year: 2014 ident: 000546461800001.21 article-title: The cross-dehydrogenative coupling of Csp3-H bonds: A versatile strategy for C-C bond formations publication-title: Angew. Chem. – volume: 129 start-page: 7297 year: 2017 ident: 000546461800001.48 article-title: Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photo-catalytic Generation of Chlorine Radicals publication-title: Angew. Chem. – volume: 361 start-page: 668 year: 2018 ident: WOS:000442818200036 article-title: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis publication-title: SCIENCE doi: 10.1126/science.aat9750 – volume: 58 start-page: 17508 year: 2019 ident: WOS:000494210300001 article-title: Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201910348 – volume: 126 start-page: 12062 year: 2014 ident: 000546461800001.51 article-title: Radical C-H Functionalization of Heteroarenes under Electrochemical Control publication-title: Angew. Chem. – volume: 127 start-page: 1585 year: 2015 ident: 000546461800001.33 publication-title: Angew. Chem. – volume: 53 start-page: 547 year: 2020 ident: WOS:000526398000002 article-title: Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00529 – volume: 118 start-page: 4817 year: 2018 ident: WOS:000432093800009 article-title: Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00656 – volume: 106 start-page: 2943 year: 2006 ident: WOS:000238973000014 article-title: Large-scale oxidations in the pharmaceutical industry publication-title: CHEMICAL REVIEWS doi: 10.1021/cr040679f – volume: 118 start-page: 4702 year: 2018 ident: WOS:000432093800007 article-title: Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00475 – volume: 125 start-page: 3349 year: 2013 ident: 000546461800001.2 publication-title: Angew. Chem. – volume: 51 start-page: 1284 year: 2019 ident: WOS:000459926800027 article-title: Visible-Light-Induced Decarboxylative C-H Adamantylation of Azoles at Ambient Temperature publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0037-1611633 – volume: 43 start-page: 2492 year: 2014 ident: WOS:000333330200008 article-title: Redox catalysis in organic electrosynthesis: basic principles and recent developments publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60464k – volume: 58 start-page: 13318 year: 2019 ident: WOS:000479869100001 article-title: Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906381 – volume: 58 start-page: 7558 year: 2019 ident: WOS:000474804800004 article-title: Beyond Friedel and Crafts: Innate Alkylation of C-H Bonds in Arenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201806631 – volume: 131 start-page: 13452 year: 2019 ident: 000546461800001.24 publication-title: Angew. Chem. – volume: 84 start-page: 12904 year: 2019 ident: WOS:000492118100018 article-title: Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.9b01603 – volume: 58 start-page: 13666 year: 2019 ident: WOS:000478917000001 article-title: Recent Advances in Minisci-Type Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201900977 – volume: 10 start-page: ARTN 467 year: 2019 ident: WOS:000456829100003 article-title: Visible light-induced direct alpha C-H functionalization of alcohols publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-08413-9 – volume: 142 start-page: 2093 year: 2020 ident: WOS:000512222700002 article-title: Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12328 – volume: 117 start-page: 13230 year: 2017 ident: WOS:000415028500004 article-title: Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00397 – volume: 131 start-page: 13802 year: 2019 ident: 000546461800001.53 publication-title: Angew. Chem. – volume: 26 start-page: 3241 year: 2020 ident: WOS:000514228700001 article-title: Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201905774 – volume: 57 start-page: 15664 year: 2018 ident: WOS:000452399900006 article-title: Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201810187 – volume: 132 start-page: 417 year: 2020 ident: 000546461800001.78 publication-title: Angew. Chem. – volume: 7 start-page: 131 year: 2020 ident: WOS:000503249100018 article-title: Merging photochemistry with electrochemistry in organic synthesis publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c9qo01193e – volume: 1 start-page: 63 year: 2019 ident: WOS:000521129500009 article-title: Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C-H Activation publication-title: TRENDS IN CHEMISTRY doi: 10.1016/j.trechm.2019.01.011 – volume: 53 start-page: 11868 year: 2014 ident: WOS:000344050700027 article-title: Radical C-H Functionalization of Heteroarenes under Electrochemical Control publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201407948 – volume: 57 start-page: 12661 year: 2018 ident: WOS:000444941600005 article-title: Microtubing-Reactor-Assisted Aliphatic C-H Functionalization with HCl as a Hydrogen-Atom-Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201804844 – volume: 10 start-page: 1229 year: 2018 ident: WOS:000450790300012 article-title: Catalytic dehydrogenative decarboxyolefination of carboxylic acids publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-018-0142-4 – volume: 11 start-page: 1171 year: 2009 ident: WOS:000263776200033 article-title: Sc(OTf)(3)-Catalyzed Direct Alkylation of Quinolines and Pyridines with Alkanes publication-title: ORGANIC LETTERS doi: 10.1021/ol900070x – volume: 118 start-page: 6706 year: 2018 ident: WOS:000440515000006 article-title: Electrochemical Arylation Reaction publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.8b00233 – volume: 2 start-page: 366 year: 2019 ident: WOS:000464248600016 article-title: Photoelectrocatalytic arene C-H amination publication-title: NATURE CATALYSIS doi: 10.1038/s41929-019-0231-9 – volume: 139 start-page: 15548 year: 2017 ident: WOS:000414506400041 article-title: Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b09388 – volume: 53 start-page: 2335 year: 2017 ident: WOS:000395874700007 article-title: Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c6cc09725a – volume: 13 start-page: 4581 year: 2011 ident: WOS:000294242600027 article-title: Palladium-Catalyzed Minisci Reaction with Simple Alcohols publication-title: ORGANIC LETTERS doi: 10.1021/ol201774b – volume: 53 start-page: 300 year: 2020 ident: WOS:000514759600002 article-title: Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00603 |
SSID | ssj0028806 |
Score | 2.6715763 |
Snippet | Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic... Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic... |
Source | Web of Science |
SourceID | proquest webofscience crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14275 |
SubjectTerms | Aliphatic compounds Alkylation Bioactive compounds Carbon Catalysts Chemical bonds Chemistry Chemistry, Multidisciplinary Chlorine Coupling (molecular) Cross coupling C−H functionalization Dehydrogenation Electrochemistry Functional materials heterocycles Hydrogen evolution Irradiation Light irradiation Oxidants Oxidizing agents Photochemistry photoelectrochemistry Physical Sciences Radiation radical reactions Radicals Science & Technology |
Title | Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005724 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000546461800001 https://www.proquest.com/docview/2431727990 https://www.proquest.com/docview/2409189434 |
Volume | 59 |
WOS | 000546461800001 |
WOSCitedRecordID | wos000546461800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOiFQgsiLa1cCamnwMZx7OS4ShdtKxVVhUrcIttxWATaIDZ7gBNHjqiPuE_SmfzBIqFW7S1RxknGnvGM7ZlvAHaVdgWaIelrFeUEqm38OMytr51Ae4QOalxHVX47lOOf4utJdPIoi7_Bh-g33Egz6vmaFFyb2f4DaChlYOP6jnZFFCdAUArYIq_oR48fxVE4m_SiMPSpCn2H2jjg-8vNl63Sg6u5ZIyW_dfaAB28At39ehN3cr43r8yevXmC6vg_vK3DWuudsmEjThvwwk1fw2raFYV7A2dHOKaUbcW-T8qqbIvo2BZ1gH12k-v8qkShrPHEWUrcLm7v03JOmb-nrCzYmAJwSspBczNG28BseHF2OSHkWJYu7n6NGZU6nm3C8cHoOB37bbUG34axEr50g6QQIlFWuzBXMreBDgaxU0ongeWFLETOcc1qciR0gbQE9W6MxkVgODBhuAUr03LqtoEpXGJanCmERIkpZJTkRkQ2ipxKYsEd98DvBiuzLZI5FdS4yBoMZp5R_2V9_3nwqae_bDA8nqXc6cY-a3V5lnHysbhCs-3Bx_4x9jsdreipK-dEgwJPUPb4it3HMtN_sHaOJbIc1wcqHgR_Q5a27BFAQeUBr4XmD0xkw8Mvo_7u7b80egcv6Zr2zgO1AyvV1dy9R-erMh9qBfsNDp0mnQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V7aFcoLyEocAiFXFyG6_Xu_aBQ-S0cmgbIQhSb5a9XjcVVVw1jqr2xJFj1V_CX-Ev9Jcw41cJEgIh9cAxzvgxuzM7j935BmBDJSZHMyTtRHkZgWqntu9m2k6MQHuEDqpfnarcH8nok3h34B0swbe2FqbGh-gSbqQZ1XpNCk4J6a0b1FAqwcYAj9IiiovmXOWuOT_DqG32djjAKX7N-c72OIzsprGArV1fCVuaXpALESidGDdTMtNO4vR8o1QSOJrnMhcZx_AqzZDQOFITKnmaJhivuL2UUqC46K9QF3FC6x986ACrOGpDXc_kuja1vW9hInt8a_FzF83gjW-7YP0WHebK4u3cg-_tWNUHXT5vzst0U1_8AiP5Pw3mGtxt3G_Wr_XlPiyZ6QNYDduudw_h6CMKLZWTsfeToiyaLkG6gVVgAzM5z04L1LoKMJ2FNLrXXy7DYk6lzYesyFlEJ4wKKrIzM0Z5btY_PjqZEDQuC6-_XkWMejnPHsH4Nhh9DMvTYmqeAFMYQ2tcCoVElcilF2Sp8LTnGRX4ghtugd0KR6wbqHbqGHIc1yDTPKbpirvpsuBNR39Sg5T8lnK9lbW4WaxmMScnkiv0Syx41f2N4057R8nUFHOiQY0mrH58xMbPMtq9sPL-JbLsVztGFjh_QxY27BECQ2kBr4T0D0zE_dFwu_v19F9uegmr0Xh_L94bjnafwR26ThsFjlqH5fJ0bp6jp1mmLyrlZhDfsvz_AIM7gzs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VRQIu5S3cFlikIk5u7fV61z70EDmNEgpRBUXqzbLXa1K1iqPGESonjhwr_gh_hd_QX8KMXyVICITUA8c448fOznN35xuALZWYHN2QtBPlZwSqndqBl2k7MQL9EQaoQXWq8s1YDt-LV0f-0Qp8a2thanyIbsGNNKOy16TgsyzfuQINpQpszO9oVURx0Ryr3DfnHzFpm--O-jjDLzgf7B1GQ7vpK2BrL1DClsYJcyFCpRPjZUpm2k1cJzBKJaGreS5zkXHMrtIMCY0rNYGSp2mC6YrnpLQCijb_hpBOSL0i-m87vCqOylCXM3meTV3vW5RIh-8sf-6yF7wKbZec33K8XDm8wR343rKqPudysr0o02396RcUyf-Il3dhrQm-Wa_WlnuwYqb34VbU9rx7AMfvUGSpmIwdTIqyaHoE6QZUgfXN5Dw7K1DnKrh0FhFzLz9fRMWCCps_sCJnQzpfVFCJnZkzWuVmvdPj2YSAcVl0-eXrkFEn5_lDOLyOgT6C1WkxNY-BKcygNRpCIVEhcumHWSp87ftGhYHghltgt7IR6waonfqFnMY1xDSPabribroseNnRz2qIkt9SbraiFjemah5zCiG5wqjEgufd38h32jlKpqZYEA3qMyH14yO2fhbR7oVV7C9xyEG1X2SB-zdkUTM8wl8oLeCVjP5hEHFvPNrrfq3_y03P4OZBfxC_Ho33N-A2XaZdAldtwmp5tjBPMMws06eVajOIr1n8fwBcD4Hq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Photoelectrochemical+Dehydrogenative+Cross%E2%80%90Coupling+of+Heteroarenes+with+Aliphatic+C%E2%88%92H+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Pin&rft.au=Peng%E2%80%90Yu+Chen&rft.au=Hai%E2%80%90Chao+Xu&rft.date=2020-08-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=34&rft.spage=14275&rft.epage=14280&rft_id=info:doi/10.1002%2Fanie.202005724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |