Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds

Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiom...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 34; pp. 14275 - 14280
Main Authors Xu, Pin, Chen, Peng‐Yu, Xu, Hai‐Chao
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 17.08.2020
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. An efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes with C(sp3)−H species is described. Chlorine atoms, which are produced by light irradiation of anodically generated Cl2 from Cl−, a hydrogen atom from C(sp3)−H bonds to afford carbon radicals. The latter undergo Minisci alkylation to afford the final functionalized heteroarene products.
AbstractList Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp(3))-H donors through H(2)evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp(3))-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl(2)from Cl-. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)−H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl−. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products. An efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes with C(sp3)−H species is described. Chlorine atoms, which are produced by light irradiation of anodically generated Cl2 from Cl−, a hydrogen atom from C(sp3)−H bonds to afford carbon radicals. The latter undergo Minisci alkylation to afford the final functionalized heteroarene products.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C−H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp 3 )−H donors through H 2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp 3 )−H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl 2 from Cl − . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3 )-H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3 )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl- . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic C-H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross-coupling of heteroarenes and C(sp3 )-H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3 )-H donor is converted to a nucleophilic carbon radical through H-atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl- . The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.
Author Chen, Peng‐Yu
Xu, Pin
Xu, Hai‐Chao
Author_xml – sequence: 1
  givenname: Pin
  surname: Xu
  fullname: Xu, Pin
  organization: Xiamen University
– sequence: 2
  givenname: Peng‐Yu
  surname: Chen
  fullname: Chen, Peng‐Yu
  organization: Xiamen University
– sequence: 3
  givenname: Hai‐Chao
  orcidid: 0000-0002-3008-5143
  surname: Xu
  fullname: Xu, Hai‐Chao
  email: haichao.xu@xmu.edu.cn
  organization: Xiamen University
BookMark eNqNkU2LFDEQhoOsuB969dzgRZAe8zWd5Di2q7OwqODeQzpdvZ0lk4xJzy5z8-hR_In7S8wwo8KC6CkFeZ5K5a1TdBRiAISeEzwjGNPXJjiYUUwxngvKH6ETMqekZkKwo1Jzxmoh5-QYneZ8U3gpcfMEHTPKpcJYnSD32RpvOg_VpzFOETzYKUU7wsqVi-otjNs-xWsIZnK3ULUp5nz_9XsbN2vvwnUVh2oJE6RoEgTI1Z2bxmrh3Xosgq3a-28_ltWbGPr8FD0ejM_w7HCeoat351ftsr78-P6iXVzWlknB6wawGjhXwhpgvWh6SwzBEoQwilg6NAPvqRKy6wsIpLGYN6TrDKYNwx1jZ-jlvu06xS8byJNeuWzBexMgbrKmHCsiFWe8oC8eoDdxk0IZrlCMCCqUwoWSe-oOujhk6yBY0OvkViZtNS7B86aMIEuFSeum8u8YSj5hKuqr_1cLzfe03YWcYND20G1KxnlNsN6tXO9Wrn-vvGizB9qvB_4qqMNUzsP2H7RefLg4_-P-BMspvwQ
CitedBy_id crossref_primary_10_1021_acscatal_2c01087
crossref_primary_10_1021_acssuschemeng_1c06702
crossref_primary_10_1039_D2GC00310D
crossref_primary_10_1021_acs_orglett_2c00138
crossref_primary_10_6023_cjoc202311032
crossref_primary_10_1002_ejoc_202101036
crossref_primary_10_1021_jacs_3c02748
crossref_primary_10_1039_D4QO01179A
crossref_primary_10_1002_tcr_202100036
crossref_primary_10_1039_D4GC00164H
crossref_primary_10_1038_s41467_024_45015_6
crossref_primary_10_1055_a_2312_5896
crossref_primary_10_1002_ange_202306679
crossref_primary_10_1039_D2OB02070J
crossref_primary_10_1002_cjoc_202300288
crossref_primary_10_1016_S1872_2067_21_63923_2
crossref_primary_10_1039_D3GC00866E
crossref_primary_10_1039_D5QO00017C
crossref_primary_10_1039_D1CC01012C
crossref_primary_10_1021_jacs_2c09050
crossref_primary_10_1039_D1QO00054C
crossref_primary_10_1021_acs_joc_1c03007
crossref_primary_10_1039_D1GC02670D
crossref_primary_10_1039_D2OB00424K
crossref_primary_10_1016_j_chempr_2020_08_025
crossref_primary_10_1055_a_2147_2863
crossref_primary_10_1021_acs_orglett_0c02475
crossref_primary_10_1039_D4QO01068J
crossref_primary_10_1021_acs_accounts_4c00739
crossref_primary_10_1021_acs_chemrev_1c00263
crossref_primary_10_1021_acs_chemrev_1c00384
crossref_primary_10_1039_D3GC05089K
crossref_primary_10_1039_D4OB01526F
crossref_primary_10_1002_cctc_202401642
crossref_primary_10_1021_acs_joc_1c02125
crossref_primary_10_1021_acs_orglett_4c01986
crossref_primary_10_1002_ange_202100222
crossref_primary_10_1016_j_gresc_2021_03_002
crossref_primary_10_1021_acs_joc_2c02498
crossref_primary_10_1002_ange_202200266
crossref_primary_10_6023_cjoc202312016
crossref_primary_10_1016_j_trechm_2022_03_006
crossref_primary_10_1021_jacs_2c08068
crossref_primary_10_1021_acs_orglett_3c02619
crossref_primary_10_1002_tcr_202100048
crossref_primary_10_1016_j_cclet_2021_03_027
crossref_primary_10_1021_acs_orglett_1c01702
crossref_primary_10_1021_acssuschemeng_4c03719
crossref_primary_10_1002_tcr_202100047
crossref_primary_10_1039_D1QO00348H
crossref_primary_10_1021_acs_orglett_4c01998
crossref_primary_10_1021_acscatal_2c02934
crossref_primary_10_1002_chem_202401795
crossref_primary_10_1021_acs_chemrev_2c00478
crossref_primary_10_1039_D4QO00797B
crossref_primary_10_1002_cctc_202301537
crossref_primary_10_1002_anie_202202649
crossref_primary_10_1021_acs_joc_0c02898
crossref_primary_10_1002_advs_202408767
crossref_primary_10_1038_s41467_022_31813_3
crossref_primary_10_1021_acs_orglett_2c01784
crossref_primary_10_1038_s42004_021_00480_8
crossref_primary_10_6023_cjoc202112032
crossref_primary_10_1038_s44160_023_00480_7
crossref_primary_10_1038_s41467_023_42264_9
crossref_primary_10_6023_cjoc202105054
crossref_primary_10_1021_acs_joc_2c02277
crossref_primary_10_1038_s41467_025_57567_2
crossref_primary_10_1021_jacs_2c07107
crossref_primary_10_1039_D3GC02126B
crossref_primary_10_1021_acs_orglett_2c00224
crossref_primary_10_1002_cssc_202102326
crossref_primary_10_6023_cjoc202309024
crossref_primary_10_1038_s41467_023_43791_1
crossref_primary_10_1039_D4QO01067A
crossref_primary_10_1002_adsc_202300112
crossref_primary_10_1007_s41981_023_00290_0
crossref_primary_10_1039_D3SC01118F
crossref_primary_10_1002_anie_202100222
crossref_primary_10_1039_D3SC06337B
crossref_primary_10_1039_D2GC01225A
crossref_primary_10_1002_anie_202306679
crossref_primary_10_1039_D4GC00352G
crossref_primary_10_1039_D2SC05428K
crossref_primary_10_1080_17518253_2022_2134740
crossref_primary_10_6023_cjoc202305011
crossref_primary_10_1021_acs_orglett_1c00704
crossref_primary_10_1002_cctc_202400635
crossref_primary_10_1039_D1CS00223F
crossref_primary_10_1021_acs_joc_4c00189
crossref_primary_10_1021_jacs_0c08437
crossref_primary_10_1021_acs_inorgchem_3c00970
crossref_primary_10_6023_cjoc202112018
crossref_primary_10_1016_j_ijbiomac_2024_135260
crossref_primary_10_1039_D4QO01607F
crossref_primary_10_1039_D4SC06219A
crossref_primary_10_1039_D2QO01558G
crossref_primary_10_1002_adsc_202300927
crossref_primary_10_6023_cjoc202102001
crossref_primary_10_1055_a_2004_6485
crossref_primary_10_1038_s41467_024_53115_6
crossref_primary_10_1038_s41467_024_46890_9
crossref_primary_10_6023_cjoc202310034
crossref_primary_10_1039_D2CC06486C
crossref_primary_10_1002_ange_202202649
crossref_primary_10_1021_acs_orglett_2c00364
crossref_primary_10_1039_D2GC03156F
crossref_primary_10_1002_celc_202100272
crossref_primary_10_1002_ejoc_202300835
crossref_primary_10_1039_D1GC04384F
crossref_primary_10_1039_D2CC06999G
crossref_primary_10_1021_jacs_2c01914
crossref_primary_10_1055_s_0043_1775387
crossref_primary_10_1021_acscentsci_0c01532
crossref_primary_10_1016_j_scib_2023_11_048
crossref_primary_10_1002_ejoc_202200631
crossref_primary_10_1039_D3GC03292B
crossref_primary_10_1021_acs_joc_0c02695
crossref_primary_10_1021_acs_oprd_1c00038
crossref_primary_10_1021_acs_orglett_5c00256
crossref_primary_10_1002_anie_202200266
crossref_primary_10_1002_cssc_202102360
crossref_primary_10_1021_jasms_4c00011
crossref_primary_10_3762_bjoc_20_214
crossref_primary_10_6023_cjoc202102024
crossref_primary_10_1002_ange_202301026
crossref_primary_10_1021_jacs_1c00549
crossref_primary_10_1021_acs_inorgchem_4c01726
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1039_D3GC04109C
crossref_primary_10_1021_acscatal_3c01221
crossref_primary_10_1021_acs_orglett_1c02858
crossref_primary_10_1021_acs_joc_4c00093
crossref_primary_10_1039_D2CS00581F
crossref_primary_10_1016_S1872_2067_23_64615_7
crossref_primary_10_1021_acs_chemrev_3c00158
crossref_primary_10_1038_s41467_023_43286_z
crossref_primary_10_1039_D2QO01003H
crossref_primary_10_1021_acs_chemrev_4c00464
crossref_primary_10_1007_s41981_024_00312_5
crossref_primary_10_1021_acs_joc_4c01620
crossref_primary_10_1021_jacs_1c09341
crossref_primary_10_1002_adsc_202401064
crossref_primary_10_1016_j_cclet_2023_108509
crossref_primary_10_6023_cjoc202106051
crossref_primary_10_1002_adsc_202201076
crossref_primary_10_1039_D4OB01152J
crossref_primary_10_1002_ejoc_202300015
crossref_primary_10_1039_D1GC00027F
crossref_primary_10_1002_ejoc_202200417
crossref_primary_10_1038_s42004_023_00947_w
crossref_primary_10_1002_tcr_202300119
crossref_primary_10_1021_acs_orglett_4c02797
crossref_primary_10_1038_s41467_021_24280_9
crossref_primary_10_1039_D1CC00486G
crossref_primary_10_1002_ange_202107811
crossref_primary_10_1039_D4QO02040E
crossref_primary_10_3762_bjoc_19_81
crossref_primary_10_1002_adsc_202400442
crossref_primary_10_1002_ejoc_202200091
crossref_primary_10_1016_j_checat_2021_04_008
crossref_primary_10_1016_j_chempr_2024_02_020
crossref_primary_10_1039_D3QO00290J
crossref_primary_10_1039_D4EE02332C
crossref_primary_10_1002_cjoc_202200020
crossref_primary_10_1002_adsc_202301020
crossref_primary_10_1039_D4CC01335B
crossref_primary_10_1016_j_tchem_2023_100061
crossref_primary_10_1021_acs_joc_1c02773
crossref_primary_10_1002_tcr_202000186
crossref_primary_10_1021_jacs_1c01967
crossref_primary_10_1021_acssuschemeng_0c08434
crossref_primary_10_1021_acssuschemeng_2c02597
crossref_primary_10_1039_D4CC03383C
crossref_primary_10_1038_s41929_022_00855_7
crossref_primary_10_1021_acs_orglett_2c01022
crossref_primary_10_1038_s44160_022_00221_2
crossref_primary_10_3390_molecules28052206
crossref_primary_10_1002_anie_202423241
crossref_primary_10_1039_D4OB00394B
crossref_primary_10_6023_A22060260
crossref_primary_10_1002_ange_202105895
crossref_primary_10_1021_acs_orglett_3c01751
crossref_primary_10_1016_j_ces_2024_119900
crossref_primary_10_1021_acscatal_4c02320
crossref_primary_10_1021_acscatal_1c04073
crossref_primary_10_1021_acscatal_1c05604
crossref_primary_10_1039_D2SC05198B
crossref_primary_10_1021_acs_orglett_3c03490
crossref_primary_10_2174_2665976X03666220513153344
crossref_primary_10_1002_anie_202301026
crossref_primary_10_1016_j_jcat_2024_115789
crossref_primary_10_1039_D2OB00278G
crossref_primary_10_1021_jacs_3c07146
crossref_primary_10_1016_j_cej_2023_143421
crossref_primary_10_1039_D4SU00520A
crossref_primary_10_1039_D3FD00076A
crossref_primary_10_1016_j_ccr_2024_216175
crossref_primary_10_1021_acs_orglett_4c00615
crossref_primary_10_1021_jacsau_4c00496
crossref_primary_10_1002_ange_202423241
crossref_primary_10_1039_D1GC01871J
crossref_primary_10_1021_acs_joc_1c00260
crossref_primary_10_6023_cjoc202104024
crossref_primary_10_1016_j_gresc_2022_12_007
crossref_primary_10_1016_j_tetlet_2022_153646
crossref_primary_10_1039_D3CC02790B
crossref_primary_10_1002_adsc_202300644
crossref_primary_10_1039_D1GC03388C
crossref_primary_10_1039_D4SC03054K
crossref_primary_10_1002_chem_202402333
crossref_primary_10_1002_cctc_202401550
crossref_primary_10_1021_acs_chemrev_1c00332
crossref_primary_10_1016_j_tet_2021_132607
crossref_primary_10_1002_adsc_202001581
crossref_primary_10_1002_ange_202315881
crossref_primary_10_1002_anie_202315881
crossref_primary_10_1021_acs_joc_2c01238
crossref_primary_10_1002_anie_202105895
crossref_primary_10_1016_j_scib_2021_07_004
crossref_primary_10_1038_s41467_024_49557_7
Cites_doi 10.1002/ange.201209584
10.1038/s41467-019-08413-9
10.1201/9781420039863
10.1038/s41586-019-1539-y
10.1002/ange.201906381
10.1021/acs.orglett.9b00744
10.1002/ange.201813960
10.1021/acs.orglett.9b01635
10.1002/anie.201900977
10.1016/j.chempr.2017.03.009
10.1021/acs.accounts.9b00603
10.1021/acs.chemrev.8b00233
10.1002/anie.201806631
10.1002/anie.201814488
10.1021/acs.chemrev.9b00045
10.1021/acs.orglett.7b02589
10.1021/acs.orglett.9b02539
10.1021/jacs.9b10678
10.1021/acs.chemrev.7b00763
10.1002/anie.201906381
10.1038/s41929-019-0344-1
10.1021/acs.chemrev.7b00271
10.1002/anie.201407948
10.1002/ange.202002900
10.1021/jacs.7b08158
10.1039/C7CS00619E
10.1055/s-0037-1611633
10.1002/ange.201304268
10.1021/jacs.9b11472
10.1002/ange.201806631
10.1002/anie.201910300
10.1002/ange.201910348
10.1039/C6CC09725A
10.1021/acs.accounts.9b00529
10.1002/ange.201909983
10.1002/ange.201804844
10.1002/ange.201814488
10.1021/acs.accounts.9b00512
10.1002/ange.201410432
10.1002/ange.201810187
10.1002/ange.201702079
10.1021/ol201774b
10.1021/acs.joc.9b01603
10.1002/anie.202002900
10.1002/anie.201304268
10.1021/ol900070x
10.1021/ja00335a048
10.1002/ange.201407948
10.1039/C9QO01193E
10.1021/acscatal.8b04079
10.1021/acs.accounts.9b00472
10.1016/j.trechm.2019.01.011
10.1039/C6RE00159A
10.1002/ange.201910300
10.1126/science.aat9750
10.1021/jacs.7b09388
10.1002/anie.201909983
10.1021/cr040679f
10.1002/anie.201804844
10.1021/jacs.6b08397
10.1039/C8SC05631E
10.1002/anie.201702079
10.1002/anie.201209584
10.1021/acs.chemrev.7b00656
10.1002/anie.201410432
10.1002/anie.201910348
10.1021/acs.chemrev.7b00397
10.1038/nature14885
10.1002/chem.201905774
10.1021/jacs.9b12328
10.1002/anie.201810187
10.1021/acs.accounts.9b00510
10.1021/acs.chemrev.7b00475
10.1002/anie.201813960
10.1038/s41557-018-0142-4
10.1002/ange.201900977
10.1039/c3cs60464k
10.1002/anie.201913767
10.1039/c8sc05631e
10.1039/c6re00159a
10.1039/c7cs00619e
10.1130/B35211.1
10.1039/c9qo01193e
10.1038/s41929-019-0231-9
10.1039/c6cc09725a
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
17B
1KM
1KN
AOWDO
BLEPL
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202005724
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2020
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
Web of Science

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14280
ExternalDocumentID 000546461800001
10_1002_anie_202005724
ANIE202005724
Genre shortCommunication
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0204100
– fundername: National Natural Science Foundation of China
  funderid: 21672178; 21971213
– fundername: MOST
  grantid: 2016YFA0204100
– fundername: Fundamental Research Funds for the Central Universities
– fundername: NSFC; National Natural Science Foundation of China (NSFC)
  grantid: 21672178; 21971213
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c3874-6e09f4497cae3d76dc1a108e77a91c2f6f4d2978bde09e16c0461bba02630b33
IEDL.DBID DR2
ISICitedReferencesCount 232
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000546461800001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 10:38:50 EDT 2025
Fri Jul 25 10:36:29 EDT 2025
Wed Jul 09 10:54:05 EDT 2025
Fri Aug 29 16:11:00 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 01:17:41 EDT 2025
Wed Jan 22 16:34:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords ELECTROSYNTHESIS
CATALYSIS
photoelectrochemistry
electrochemistry
LIGHT
ARYLATION
radical reactions
C-H functionalization
FUNCTIONALIZATION
heterocycles
GENERATION
ARYL CHLORIDES
ALKANES
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3874-6e09f4497cae3d76dc1a108e77a91c2f6f4d2978bde09e16c0461bba02630b33
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3008-5143
PMID 32489009
PQID 2431727990
PQPubID 946352
PageCount 6
ParticipantIDs webofscience_primary_000546461800001CitationCount
wiley_primary_10_1002_anie_202005724_ANIE202005724
proquest_journals_2431727990
proquest_miscellaneous_2409189434
webofscience_primary_000546461800001
crossref_citationtrail_10_1002_anie_202005724
crossref_primary_10_1002_anie_202005724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 17, 2020
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 08
  year: 2020
  text: August 17, 2020
  day: 17
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 361
2017; 2
2019; 51
2019; 52
2019; 2
2020; 142
2019; 10
2019; 1
1984; 106
2020 2020; 59 132
2011; 13
2015; 525
2002
2017 2017; 56 129
2019 2019; 58 131
2013 2013; 52 125
2017; 117
2018; 47
2014; 43
2017; 139
2009; 11
2020; 7
2017; 53
2018; 8
2016; 1
2019; 84
2019 2019
2020; 53
2019; 21
2018; 118
2018 2018; 57 130
2015 2015; 54 127
2020; 26
2019; 119
2017; 19
2016; 138
2018; 10
2006; 106
2019; 573
e_1_2_2_2_3
e_1_2_2_4_1
e_1_2_2_47_2
e_1_2_2_24_1
e_1_2_2_68_3
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_49_3
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_41_3
e_1_2_2_43_1
e_1_2_2_62_3
e_1_2_2_64_1
e_1_2_2_6_3
e_1_2_2_28_2
e_1_2_2_66_2
e_1_2_2_8_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_60_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_19_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_51_3
e_1_2_2_32_2
e_1_2_2_15_3
e_1_2_2_17_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_55_3
e_1_2_2_70_3
e_1_2_2_72_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_69_3
e_1_2_2_23_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_5_3
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_63_3
e_1_2_2_65_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_46_2
Barham J. P. (e_1_2_2_55_2) 2019
e_1_2_2_67_2
e_1_2_2_61_1
e_1_2_2_58_3
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_3
e_1_2_2_75_1
e_1_2_2_50_2
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_71_1
Deng, HP (WOS:000444941600005) 2018; 57
Xiang, JB (WOS:000486647800046) 2019; 573
Huang, CY (WOS:000467999100006) 2019; 10
Jin, J. (000546461800001.33) 2015; 127
Evano, G (WOS:000474804800004) 2019; 58
Zhang, W (WOS:000496868300001) 2020; 59
Deng, GJ (WOS:000263776200033) 2009; 11
Wang, F (WOS:000471976400044) 2019; 58
Francke, R (WOS:000333330200008) 2014; 43
Yan, H (WOS:000462622700023) 2019; 58
Luo, Y.-R. (000546461800001.43) 2002
Proctor, R. S. J. (000546461800001.53) 2019; 131
Nielsen, M. K. (000546461800001.48) 2017; 129
Li, GX (WOS:000453491100087) 2018; 8
Quattrini, MC (WOS:000395874700007) 2017; 53
Zhang, W. (000546461800001.78) 2020; 132
Antonchick, A. P. (000546461800001.2) 2013; 125
Karkas, MD (WOS:000440433100006) 2018; 47
Meyer, TH (WOS:000521129500009) 2019; 1
Huang, H (WOS:000479869100001) 2019; 58
Xiong, P (WOS:000503910400006) 2019; 52
Jin, J (WOS:000360594100030) 2015; 525
Evano, G. (000546461800001.16) 2019; 131
Niu, LB (WOS:000456829100003) 2019; 10
Ackermann, L (WOS:000509420300009) 2020; 53
Huang, H. (000546461800001.24) 2019; 131
Deng, HP (WOS:000412043000045) 2017; 139
Girard, S. A. (000546461800001.21) 2014; 126
Huang, H (WOS:000497863800001) 2020; 59
Huang, H (WOS:000510531900008) 2020; 142
Caron, S (WOS:000238973000014) 2006; 106
Shields, BJ (WOS:000384952100003) 2016; 138
Correia, CA (WOS:000294242600027) 2011; 13
Fu, NK (WOS:000414506400041) 2017; 139
Rohe, S. (000546461800001.57) 2018; 130
Kim, H (WOS:000512222700001) 2020; 142
Yan, M (WOS:000415028500004) 2017; 117
Antonchick, AP (WOS:000316340700040) 2013; 52
Wang, QQ (WOS:000413709600006) 2017; 19
O'Brien, AG (WOS:000344050700027) 2014; 53
Barham, JP (WOS:000545490000004) 2020; 59
Yuan, Y (WOS:000503910400004) 2019; 52
Lai, X.-L. (000546461800001.39) 2020; 132
Barham, J. P. (000546461800001.4) 2019
O'Brien, A. G. (000546461800001.51) 2014; 126
Tian, WF (WOS:000485089300070) 2019; 21
Jiao, KJ (WOS:000514759600002) 2020; 53
Fukuyama, T (WOS:000389322200003) 2016; 1
Koeller, J (WOS:000459926800027) 2019; 51
Proctor, RSJ (WOS:000478917000001) 2019; 58
Waldvogel, SR (WOS:000440515000006) 2018; 118
Cowper, NGW (WOS:000512222700002) 2020; 142
Rohe, S (WOS:000452399900006) 2018; 57
Capaldo, L. (000546461800001.6) 2019; 131
Lai, XL (WOS:000528998700001) 2020; 59
MINISCI, F (WOS:A1984TS61700048) 1984; 106
Wang, F. (000546461800001.67) 2019; 131
Girard, SA (WOS:000328714900008) 2014; 53
Huang, HY (WOS:000518916800012) 2020; 132
Jiang, YY (WOS:000432093800002) 2018; 118
Capaldo, L (WOS:000494210300001) 2019; 58
Liang, XA (WOS:000464247500108) 2019; 21
Zhao, H (WOS:000481979100001) 2019; 21
Qiu, YA (WOS:000514228700001) 2020; 26
Deng, H.-P. (000546461800001.12) 2018; 130
Jin, J (WOS:000348713900029) 2015; 54
Sun, X (WOS:000450790300012) 2018; 10
Nutting, JE (WOS:000432093800010) 2018; 118
Hu, AH (WOS:000442818200036) 2018; 361
Yan, H (000546461800001.71) 2019; 131
Zhang, L (WOS:000464248600016) 2019; 2
Nielsen, MK (WOS:000402857800033) 2017; 56
Liu, WB (WOS:000408621100015) 2017; 2
Yoshida, J (WOS:000432093800007) 2018; 118
Wang, HM (WOS:000473251600001) 2019; 119
Moeller, KD (WOS:000432093800009) 2018; 118
Yu, Y (WOS:000503249100018) 2020; 7
Siu, JC (WOS:000526398000002) 2020; 53
Huang, C (WOS:000492118100018) 2019; 84
References_xml – volume: 573
  start-page: 398
  year: 2019
  end-page: 402
  publication-title: Nature
– volume: 142
  start-page: 1698
  year: 2020
  end-page: 1703
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 409 417
  year: 2020 2020
  end-page: 417 425
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 11868 12062
  year: 2014 2014
  end-page: 11871 12065
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 17508 17670
  year: 2019 2019
  end-page: 17510 17672
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 2093
  year: 2020
  end-page: 2099
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 3241
  year: 2020
  end-page: 3246
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 4485
  year: 2018
  end-page: 4540
  publication-title: Chem. Rev.
– volume: 106
  start-page: 7146
  year: 1984
  end-page: 7150
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 2943
  year: 2006
  end-page: 2989
  publication-title: Chem. Rev.
– volume: 19
  start-page: 5517
  year: 2017
  end-page: 5520
  publication-title: Org. Lett.
– volume: 13
  start-page: 4581
  year: 2011
  end-page: 4583
  publication-title: Org. Lett.
– year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 4834
  year: 2018
  end-page: 4885
  publication-title: Chem. Rev.
– volume: 361
  start-page: 668
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 688
  year: 2017
  end-page: 702
  publication-title: Chem
– volume: 52
  start-page: 3339
  year: 2019
  end-page: 3350
  publication-title: Acc. Chem. Res.
– volume: 118
  start-page: 4817
  year: 2018
  end-page: 4833
  publication-title: Chem. Rev.
– volume: 139
  start-page: 15548
  year: 2017
  end-page: 15553
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 613
  year: 2016
  end-page: 615
  publication-title: React. Chem. Eng.
– volume: 57 130
  start-page: 12661 12843
  year: 2018 2018
  end-page: 12665 12847
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 2492
  year: 2014
  end-page: 2521
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 13666 13802
  year: 2019 2019
  end-page: 13699 13837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 13230
  year: 2017
  end-page: 13319
  publication-title: Chem. Rev.
– volume: 2
  start-page: 266
  year: 2019
  end-page: 373
  publication-title: Nat. Catal.
– volume: 59 132
  start-page: 658 668
  year: 2020 2020
  end-page: 662 672
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 84
  year: 2020
  end-page: 104
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 300
  year: 2020
  end-page: 310
  publication-title: Acc. Chem. Res.
– volume: 21
  start-page: 6179
  year: 2019
  end-page: 6184
  publication-title: Org. Lett.
– volume: 53
  start-page: 547
  year: 2020
  end-page: 560
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 74 76
  year: 2014 2014
  end-page: 100 103
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 5018
  year: 2019
  end-page: 5024
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 6385 6451
  year: 2019 2019
  end-page: 6390 6456
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 525
  start-page: 87
  year: 2015
  publication-title: Nature
– volume: 52
  start-page: 3309
  year: 2019
  end-page: 3324
  publication-title: Acc. Chem. Res.
– volume: 52 125
  start-page: 3267 3349
  year: 2013 2013
  end-page: 3271 3353
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 4702
  year: 2018
  end-page: 4730
  publication-title: Chem. Rev.
– volume: 139
  start-page: 13579
  year: 2017
  end-page: 13584
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 12719
  year: 2016
  end-page: 12722
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2441
  year: 2019
  end-page: 2444
  publication-title: Org. Lett.
– volume: 21
  start-page: 6930
  year: 2019
  end-page: 6935
  publication-title: Org. Lett.
– volume: 51
  start-page: 1284
  year: 2019
  end-page: 1292
  publication-title: Synthesis
– volume: 84
  start-page: 12904
  year: 2019
  end-page: 12912
  publication-title: J. Org. Chem.
– volume: 56 129
  start-page: 7191 7297
  year: 2017 2017
  end-page: 7194 7300
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 63
  year: 2019
  end-page: 76
  publication-title: Trends Chem.
– volume: 47
  start-page: 5786
  year: 2018
  end-page: 5865
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 11847
  year: 2018
  end-page: 11853
  publication-title: ACS Catal.
– volume: 118
  start-page: 6706
  year: 2018
  end-page: 6765
  publication-title: Chem. Rev.
– volume: 11
  start-page: 1171
  year: 2009
  end-page: 1174
  publication-title: Org. Lett.
– volume: 58 131
  start-page: 4592 4640
  year: 2019 2019
  end-page: 4595 4643
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 1565 1585
  year: 2015 2015
  end-page: 1569 1589
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2002
– volume: 7
  start-page: 131
  year: 2020
  end-page: 135
  publication-title: Org. Chem. Front.
– volume: 10
  start-page: 467
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1229
  year: 2018
  end-page: 1233
  publication-title: Nat. Chem.
– volume: 142
  start-page: 2087
  year: 2020
  end-page: 2092
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 10626 10713
  year: 2020 2020
  end-page: 10632 10719
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 7558 7638
  year: 2019 2019
  end-page: 7598 7680
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 2335
  year: 2017
  end-page: 2338
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 13318 13452
  year: 2019 2019
  end-page: 13322 13456
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 6769
  year: 2019
  end-page: 6787
  publication-title: Chem. Rev.
– volume: 57 130
  start-page: 15664 15890
  year: 2018 2018
  end-page: 15669 15895
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_19_3
  doi: 10.1002/ange.201209584
– ident: e_1_2_2_22_2
  doi: 10.1038/s41467-019-08413-9
– ident: e_1_2_2_40_1
– ident: e_1_2_2_64_1
  doi: 10.1201/9781420039863
– ident: e_1_2_2_43_1
  doi: 10.1038/s41586-019-1539-y
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.201906381
– ident: e_1_2_2_23_2
  doi: 10.1021/acs.orglett.9b00744
– ident: e_1_2_2_49_3
  doi: 10.1002/ange.201813960
– ident: e_1_2_2_21_2
  doi: 10.1021/acs.orglett.9b01635
– ident: e_1_2_2_5_2
  doi: 10.1002/anie.201900977
– ident: e_1_2_2_74_2
  doi: 10.1016/j.chempr.2017.03.009
– ident: e_1_2_2_31_2
  doi: 10.1021/acs.accounts.9b00603
– ident: e_1_2_2_27_2
  doi: 10.1021/acs.chemrev.8b00233
– ident: e_1_2_2_6_2
  doi: 10.1002/anie.201806631
– ident: e_1_2_2_62_2
  doi: 10.1002/anie.201814488
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.chemrev.9b00045
– year: 2019
  ident: e_1_2_2_55_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_2_42_2
  doi: 10.1021/acs.orglett.7b02589
– ident: e_1_2_2_45_2
  doi: 10.1021/acs.orglett.9b02539
– ident: e_1_2_2_4_1
– ident: e_1_2_2_57_2
  doi: 10.1021/jacs.9b10678
– ident: e_1_2_2_37_2
  doi: 10.1021/acs.chemrev.7b00763
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.201906381
– ident: e_1_2_2_54_2
  doi: 10.1038/s41929-019-0344-1
– ident: e_1_2_2_25_1
– ident: e_1_2_2_28_2
  doi: 10.1021/acs.chemrev.7b00271
– ident: e_1_2_2_41_2
  doi: 10.1002/anie.201407948
– ident: e_1_2_2_63_3
  doi: 10.1002/ange.202002900
– ident: e_1_2_2_66_2
  doi: 10.1021/jacs.7b08158
– ident: e_1_2_2_17_1
– ident: e_1_2_2_32_2
  doi: 10.1039/C7CS00619E
– ident: e_1_2_2_46_2
  doi: 10.1055/s-0037-1611633
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201304268
– ident: e_1_2_2_60_1
  doi: 10.1021/jacs.9b11472
– ident: e_1_2_2_6_3
  doi: 10.1002/ange.201806631
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201910300
– ident: e_1_2_2_44_1
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201910348
– ident: e_1_2_2_16_2
  doi: 10.1039/C6CC09725A
– ident: e_1_2_2_30_2
  doi: 10.1021/acs.accounts.9b00529
– ident: e_1_2_2_58_3
  doi: 10.1002/ange.201909983
– ident: e_1_2_2_69_3
  doi: 10.1002/ange.201804844
– ident: e_1_2_2_62_3
  doi: 10.1002/ange.201814488
– ident: e_1_2_2_35_2
  doi: 10.1021/acs.accounts.9b00512
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201410432
– ident: e_1_2_2_70_3
  doi: 10.1002/ange.201810187
– ident: e_1_2_2_68_3
  doi: 10.1002/ange.201702079
– ident: e_1_2_2_9_2
  doi: 10.1021/ol201774b
– ident: e_1_2_2_1_1
– ident: e_1_2_2_13_2
  doi: 10.1021/acs.joc.9b01603
– ident: e_1_2_2_12_1
– ident: e_1_2_2_63_2
  doi: 10.1002/anie.202002900
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201304268
– ident: e_1_2_2_10_2
  doi: 10.1021/ol900070x
– ident: e_1_2_2_7_1
  doi: 10.1021/ja00335a048
– ident: e_1_2_2_41_3
  doi: 10.1002/ange.201407948
– ident: e_1_2_2_53_2
  doi: 10.1039/C9QO01193E
– ident: e_1_2_2_18_2
  doi: 10.1021/acscatal.8b04079
– ident: e_1_2_2_38_2
  doi: 10.1021/acs.accounts.9b00472
– ident: e_1_2_2_39_2
  doi: 10.1016/j.trechm.2019.01.011
– ident: e_1_2_2_71_1
  doi: 10.1039/C6RE00159A
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201910300
– ident: e_1_2_2_14_2
  doi: 10.1126/science.aat9750
– ident: e_1_2_2_65_1
– ident: e_1_2_2_48_1
– ident: e_1_2_2_75_1
  doi: 10.1021/jacs.7b09388
– ident: e_1_2_2_20_1
– ident: e_1_2_2_58_2
  doi: 10.1002/anie.201909983
– ident: e_1_2_2_24_1
  doi: 10.1021/cr040679f
– ident: e_1_2_2_69_2
  doi: 10.1002/anie.201804844
– ident: e_1_2_2_67_2
  doi: 10.1021/jacs.6b08397
– ident: e_1_2_2_11_2
  doi: 10.1039/C8SC05631E
– ident: e_1_2_2_68_2
  doi: 10.1002/anie.201702079
– ident: e_1_2_2_19_2
  doi: 10.1002/anie.201209584
– ident: e_1_2_2_61_1
– ident: e_1_2_2_33_2
  doi: 10.1021/acs.chemrev.7b00656
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201410432
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201910348
– ident: e_1_2_2_26_2
  doi: 10.1021/acs.chemrev.7b00397
– ident: e_1_2_2_72_1
– ident: e_1_2_2_73_2
  doi: 10.1038/nature14885
– ident: e_1_2_2_59_2
  doi: 10.1002/chem.201905774
– ident: e_1_2_2_56_2
  doi: 10.1021/jacs.9b12328
– ident: e_1_2_2_70_2
  doi: 10.1002/anie.201810187
– ident: e_1_2_2_8_1
– ident: e_1_2_2_29_2
  doi: 10.1021/acs.accounts.9b00510
– ident: e_1_2_2_36_2
  doi: 10.1021/acs.chemrev.7b00475
– ident: e_1_2_2_49_2
  doi: 10.1002/anie.201813960
– ident: e_1_2_2_47_2
  doi: 10.1038/s41557-018-0142-4
– ident: e_1_2_2_5_3
  doi: 10.1002/ange.201900977
– ident: e_1_2_2_34_2
  doi: 10.1039/c3cs60464k
– ident: e_1_2_2_55_3
– volume: 58
  start-page: 4592
  year: 2019
  ident: WOS:000462622700023
  article-title: Photoelectrochemical C-H Alkylation of Heteroarenes with Organotrifluoroborates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201814488
– volume: 119
  start-page: 6769
  year: 2019
  ident: WOS:000473251600001
  article-title: Recent Advances in Oxidative R-1-H/R-2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.9b00045
– volume: 525
  start-page: 87
  year: 2015
  ident: WOS:000360594100030
  article-title: Alcohols as alkylating agents in heteroarene C-H functionalization
  publication-title: NATURE
  doi: 10.1038/nature14885
– volume: 106
  start-page: 7146
  year: 1984
  ident: WOS:A1984TS61700048
  article-title: POLAR EFFECTS IN FREE-RADICAL REACTIONS - INDUCED DECOMPOSITIONS OF PEROXO COMPOUNDS IN THE SUBSTITUTION OF HETEROAROMATIC BASES BY NUCLEOPHILIC RADICALS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 21
  start-page: 2441
  year: 2019
  ident: WOS:000464247500108
  article-title: Visible-Light-Induced C(sp(3))-H Oxidative Arylation with Heteroarenes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b00744
– volume: 142
  start-page: 2087
  year: 2020
  ident: WOS:000512222700001
  article-title: Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b10678
– volume: 54
  start-page: 1565
  year: 2015
  ident: WOS:000348713900029
  article-title: Direct alpha-Arylation of Ethers through the Combination of Photoredox-Mediated C-H Functionalization and the Minisci Reaction
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201410432
– volume: 59
  start-page: 11732
  year: 2020
  ident: WOS:000545490000004
  article-title: Synthetic Photoelectrochemistry
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913767
– volume: 131
  start-page: 4640
  year: 2019
  ident: 000546461800001.71
  article-title: Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 6385
  year: 2019
  ident: WOS:000471976400044
  article-title: Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp(3))-H Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201813960
– volume: 138
  start-page: 12719
  year: 2016
  ident: WOS:000384952100003
  article-title: Direct C(sp(3))-H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b08397
– volume: 131
  start-page: 6451
  year: 2019
  ident: 000546461800001.67
  publication-title: Angew. Chem.
– volume: 59
  start-page: 658
  year: 2020
  ident: WOS:000497863800001
  article-title: Electrophotocatalytic SNAr Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201909983
– volume: 8
  start-page: 11847
  year: 2018
  ident: WOS:000453491100087
  article-title: Photoredox-Mediated Minisci-type Alkylation of N-Heteroarenes with Alkanes with High Methylene Selectivity
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.8b04079
– volume: 131
  start-page: 7638
  year: 2019
  ident: 000546461800001.16
  publication-title: Angew. Chem.
– volume: 52
  start-page: 3339
  year: 2019
  ident: WOS:000503910400006
  article-title: Chemistry with Electrochemically Generated N-Centered Radicals
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00472
– volume: 53
  start-page: 84
  year: 2020
  ident: WOS:000509420300009
  article-title: Metalla-electrocatalyzed C-H Activation by Earth-Abundant 3d Metals and Beyond
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00510
– volume: 21
  start-page: 6179
  year: 2019
  ident: WOS:000481979100001
  article-title: Visible Light-Promoted Aliphatic C-H Arylation Using Selectfluor as a Hydrogen Atom Transfer Reagent
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b01635
– volume: 131
  start-page: 17670
  year: 2019
  ident: 000546461800001.6
  publication-title: Angew. Chem.
– volume: 139
  start-page: 13579
  year: 2017
  ident: WOS:000412043000045
  article-title: Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide alpha-Hetero C(sp(3))-H Bonds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b08158
– volume: 10
  start-page: 5018
  year: 2019
  ident: WOS:000467999100006
  article-title: Diacetyl as a "traceless" visible light photosensitizer in metal-free cross-dehydrogenative coupling reactions
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c8sc05631e
– year: 2019
  ident: 000546461800001.4
  publication-title: Angew. Chem.
– volume: 1
  start-page: 613
  year: 2016
  ident: WOS:000389322200003
  article-title: A greener process for flow C-H chlorination of cyclic alkanes using in situ generation and on-site consumption of chlorine gas
  publication-title: REACTION CHEMISTRY & ENGINEERING
  doi: 10.1039/c6re00159a
– volume: 19
  start-page: 5517
  year: 2017
  ident: WOS:000413709600006
  article-title: Electrocatalytic Minisci Acylation Reaction of N-Heteroarenes Mediated by NH4I
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b02589
– volume: 118
  start-page: 4485
  year: 2018
  ident: WOS:000432093800002
  article-title: Use of Electrochemistry in the Synthesis of Heterocyclic Structures
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00271
– volume: 573
  start-page: 398
  year: 2019
  ident: WOS:000486647800046
  article-title: Hindered dialkyl ether synthesis with electrogenerated carbocations
  publication-title: NATURE
  doi: 10.1038/s41586-019-1539-y
– year: 2002
  ident: 000546461800001.43
  publication-title: Handbook of Bond Dissociation Energies in Organic Compounds
– volume: 53
  start-page: 74
  year: 2014
  ident: WOS:000328714900008
  article-title: The Cross-Dehydrogenative Coupling of C-sp3-H Bonds: A Versatile Strategy for C-C Bond Formations
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304268
– volume: 52
  start-page: 3309
  year: 2019
  ident: WOS:000503910400004
  article-title: Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00512
– volume: 21
  start-page: 6930
  year: 2019
  ident: WOS:000485089300070
  article-title: Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.9b02539
– volume: 52
  start-page: 3267
  year: 2013
  ident: WOS:000316340700040
  article-title: Direct Selective Oxidative Cross-Coupling of Simple Alkanes with Heteroarenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201209584
– volume: 59
  start-page: 409
  year: 2020
  ident: WOS:000496868300001
  article-title: Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910300
– volume: 118
  start-page: 4834
  year: 2018
  ident: WOS:000432093800010
  article-title: Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00763
– volume: 130
  start-page: 12843
  year: 2018
  ident: 000546461800001.12
  publication-title: Angew. Chem.
– volume: 56
  start-page: 7191
  year: 2017
  ident: WOS:000402857800033
  article-title: Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photocatalytic Generation of Chlorine Radicals
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201702079
– volume: 142
  start-page: 1698
  year: 2020
  ident: WOS:000510531900008
  article-title: Electrophotocatalytic C-H Functionalization of Ethers with High Regioselectivity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b11472
– volume: 130
  start-page: 15890
  year: 2018
  ident: 000546461800001.57
  publication-title: Angew. Chem.
– volume: 132
  start-page: 10713
  year: 2020
  ident: 000546461800001.39
  publication-title: Angew. Chem.
– volume: 47
  start-page: 5786
  year: 2018
  ident: WOS:000440433100006
  article-title: Electrochemical strategies for C-H functionalization and C-N bond formation
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c7cs00619e
– volume: 2
  start-page: 688
  year: 2017
  ident: WOS:000408621100015
  article-title: Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH
  publication-title: CHEM
  doi: 10.1016/j.chempr.2017.03.009
– volume: 132
  start-page: 668
  year: 2020
  ident: WOS:000518916800012
  article-title: Detrital zircon U-Pb ages of Paleogene deposits in the southwestern Sichuan foreland basin, China: Constraints on basin-mountain evolution along the southeastern margin of the Tibetan Plateau
  publication-title: GEOLOGICAL SOCIETY OF AMERICA BULLETIN
  doi: 10.1130/B35211.1
– volume: 59
  start-page: 10626
  year: 2020
  ident: WOS:000528998700001
  article-title: Electrophotocatalytic Decarboxylative C-H Functionalization of Heteroarenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202002900
– volume: 126
  start-page: 76
  year: 2014
  ident: 000546461800001.21
  article-title: The cross-dehydrogenative coupling of Csp3-H bonds: A versatile strategy for C-C bond formations
  publication-title: Angew. Chem.
– volume: 129
  start-page: 7297
  year: 2017
  ident: 000546461800001.48
  article-title: Mild, Redox-Neutral Formylation of Aryl Chlorides through the Photo-catalytic Generation of Chlorine Radicals
  publication-title: Angew. Chem.
– volume: 361
  start-page: 668
  year: 2018
  ident: WOS:000442818200036
  article-title: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aat9750
– volume: 58
  start-page: 17508
  year: 2019
  ident: WOS:000494210300001
  article-title: Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201910348
– volume: 126
  start-page: 12062
  year: 2014
  ident: 000546461800001.51
  article-title: Radical C-H Functionalization of Heteroarenes under Electrochemical Control
  publication-title: Angew. Chem.
– volume: 127
  start-page: 1585
  year: 2015
  ident: 000546461800001.33
  publication-title: Angew. Chem.
– volume: 53
  start-page: 547
  year: 2020
  ident: WOS:000526398000002
  article-title: Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00529
– volume: 118
  start-page: 4817
  year: 2018
  ident: WOS:000432093800009
  article-title: Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00656
– volume: 106
  start-page: 2943
  year: 2006
  ident: WOS:000238973000014
  article-title: Large-scale oxidations in the pharmaceutical industry
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr040679f
– volume: 118
  start-page: 4702
  year: 2018
  ident: WOS:000432093800007
  article-title: Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00475
– volume: 125
  start-page: 3349
  year: 2013
  ident: 000546461800001.2
  publication-title: Angew. Chem.
– volume: 51
  start-page: 1284
  year: 2019
  ident: WOS:000459926800027
  article-title: Visible-Light-Induced Decarboxylative C-H Adamantylation of Azoles at Ambient Temperature
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0037-1611633
– volume: 43
  start-page: 2492
  year: 2014
  ident: WOS:000333330200008
  article-title: Redox catalysis in organic electrosynthesis: basic principles and recent developments
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c3cs60464k
– volume: 58
  start-page: 13318
  year: 2019
  ident: WOS:000479869100001
  article-title: Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201906381
– volume: 58
  start-page: 7558
  year: 2019
  ident: WOS:000474804800004
  article-title: Beyond Friedel and Crafts: Innate Alkylation of C-H Bonds in Arenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201806631
– volume: 131
  start-page: 13452
  year: 2019
  ident: 000546461800001.24
  publication-title: Angew. Chem.
– volume: 84
  start-page: 12904
  year: 2019
  ident: WOS:000492118100018
  article-title: Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.9b01603
– volume: 58
  start-page: 13666
  year: 2019
  ident: WOS:000478917000001
  article-title: Recent Advances in Minisci-Type Reactions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201900977
– volume: 10
  start-page: ARTN 467
  year: 2019
  ident: WOS:000456829100003
  article-title: Visible light-induced direct alpha C-H functionalization of alcohols
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-08413-9
– volume: 142
  start-page: 2093
  year: 2020
  ident: WOS:000512222700002
  article-title: Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12328
– volume: 117
  start-page: 13230
  year: 2017
  ident: WOS:000415028500004
  article-title: Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00397
– volume: 131
  start-page: 13802
  year: 2019
  ident: 000546461800001.53
  publication-title: Angew. Chem.
– volume: 26
  start-page: 3241
  year: 2020
  ident: WOS:000514228700001
  article-title: Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201905774
– volume: 57
  start-page: 15664
  year: 2018
  ident: WOS:000452399900006
  article-title: Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201810187
– volume: 132
  start-page: 417
  year: 2020
  ident: 000546461800001.78
  publication-title: Angew. Chem.
– volume: 7
  start-page: 131
  year: 2020
  ident: WOS:000503249100018
  article-title: Merging photochemistry with electrochemistry in organic synthesis
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/c9qo01193e
– volume: 1
  start-page: 63
  year: 2019
  ident: WOS:000521129500009
  article-title: Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C-H Activation
  publication-title: TRENDS IN CHEMISTRY
  doi: 10.1016/j.trechm.2019.01.011
– volume: 53
  start-page: 11868
  year: 2014
  ident: WOS:000344050700027
  article-title: Radical C-H Functionalization of Heteroarenes under Electrochemical Control
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201407948
– volume: 57
  start-page: 12661
  year: 2018
  ident: WOS:000444941600005
  article-title: Microtubing-Reactor-Assisted Aliphatic C-H Functionalization with HCl as a Hydrogen-Atom-Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201804844
– volume: 10
  start-page: 1229
  year: 2018
  ident: WOS:000450790300012
  article-title: Catalytic dehydrogenative decarboxyolefination of carboxylic acids
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-018-0142-4
– volume: 11
  start-page: 1171
  year: 2009
  ident: WOS:000263776200033
  article-title: Sc(OTf)(3)-Catalyzed Direct Alkylation of Quinolines and Pyridines with Alkanes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol900070x
– volume: 118
  start-page: 6706
  year: 2018
  ident: WOS:000440515000006
  article-title: Electrochemical Arylation Reaction
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.8b00233
– volume: 2
  start-page: 366
  year: 2019
  ident: WOS:000464248600016
  article-title: Photoelectrocatalytic arene C-H amination
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0231-9
– volume: 139
  start-page: 15548
  year: 2017
  ident: WOS:000414506400041
  article-title: Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b09388
– volume: 53
  start-page: 2335
  year: 2017
  ident: WOS:000395874700007
  article-title: Versatile cross-dehydrogenative coupling of heteroaromatics and hydrogen donors via decatungstate photocatalysis
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c6cc09725a
– volume: 13
  start-page: 4581
  year: 2011
  ident: WOS:000294242600027
  article-title: Palladium-Catalyzed Minisci Reaction with Simple Alcohols
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol201774b
– volume: 53
  start-page: 300
  year: 2020
  ident: WOS:000514759600002
  article-title: Site-Selective C-H Functionalization via Synergistic Use of Electrochemistry and Transition Metal Catalysis
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00603
SSID ssj0028806
Score 2.6715763
Snippet Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic...
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross-coupling of heteroarenes with aliphatic...
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14275
SubjectTerms Aliphatic compounds
Alkylation
Bioactive compounds
Carbon
Catalysts
Chemical bonds
Chemistry
Chemistry, Multidisciplinary
Chlorine
Coupling (molecular)
Cross coupling
C−H functionalization
Dehydrogenation
Electrochemistry
Functional materials
heterocycles
Hydrogen evolution
Irradiation
Light irradiation
Oxidants
Oxidizing agents
Photochemistry
photoelectrochemistry
Physical Sciences
Radiation
radical reactions
Radicals
Science & Technology
Title Scalable Photoelectrochemical Dehydrogenative Cross‐Coupling of Heteroarenes with Aliphatic C−H Bonds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005724
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000546461800001
https://www.proquest.com/docview/2431727990
https://www.proquest.com/docview/2409189434
Volume 59
WOS 000546461800001
WOSCitedRecordID wos000546461800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOiFQgsiLa1cCamnwMZx7OS4ShdtKxVVhUrcIttxWATaIDZ7gBNHjqiPuE_SmfzBIqFW7S1RxknGnvGM7ZlvAHaVdgWaIelrFeUEqm38OMytr51Ae4QOalxHVX47lOOf4utJdPIoi7_Bh-g33Egz6vmaFFyb2f4DaChlYOP6jnZFFCdAUArYIq_oR48fxVE4m_SiMPSpCn2H2jjg-8vNl63Sg6u5ZIyW_dfaAB28At39ehN3cr43r8yevXmC6vg_vK3DWuudsmEjThvwwk1fw2raFYV7A2dHOKaUbcW-T8qqbIvo2BZ1gH12k-v8qkShrPHEWUrcLm7v03JOmb-nrCzYmAJwSspBczNG28BseHF2OSHkWJYu7n6NGZU6nm3C8cHoOB37bbUG34axEr50g6QQIlFWuzBXMreBDgaxU0ongeWFLETOcc1qciR0gbQE9W6MxkVgODBhuAUr03LqtoEpXGJanCmERIkpZJTkRkQ2ipxKYsEd98DvBiuzLZI5FdS4yBoMZp5R_2V9_3nwqae_bDA8nqXc6cY-a3V5lnHysbhCs-3Bx_4x9jsdreipK-dEgwJPUPb4it3HMtN_sHaOJbIc1wcqHgR_Q5a27BFAQeUBr4XmD0xkw8Mvo_7u7b80egcv6Zr2zgO1AyvV1dy9R-erMh9qBfsNDp0mnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V7aFcoLyEocAiFXFyG6_Xu_aBQ-S0cmgbIQhSb5a9XjcVVVw1jqr2xJFj1V_CX-Ev9Jcw41cJEgIh9cAxzvgxuzM7j935BmBDJSZHMyTtRHkZgWqntu9m2k6MQHuEDqpfnarcH8nok3h34B0swbe2FqbGh-gSbqQZ1XpNCk4J6a0b1FAqwcYAj9IiiovmXOWuOT_DqG32djjAKX7N-c72OIzsprGArV1fCVuaXpALESidGDdTMtNO4vR8o1QSOJrnMhcZx_AqzZDQOFITKnmaJhivuL2UUqC46K9QF3FC6x986ACrOGpDXc_kuja1vW9hInt8a_FzF83gjW-7YP0WHebK4u3cg-_tWNUHXT5vzst0U1_8AiP5Pw3mGtxt3G_Wr_XlPiyZ6QNYDduudw_h6CMKLZWTsfeToiyaLkG6gVVgAzM5z04L1LoKMJ2FNLrXXy7DYk6lzYesyFlEJ4wKKrIzM0Z5btY_PjqZEDQuC6-_XkWMejnPHsH4Nhh9DMvTYmqeAFMYQ2tcCoVElcilF2Sp8LTnGRX4ghtugd0KR6wbqHbqGHIc1yDTPKbpirvpsuBNR39Sg5T8lnK9lbW4WaxmMScnkiv0Syx41f2N4057R8nUFHOiQY0mrH58xMbPMtq9sPL-JbLsVztGFjh_QxY27BECQ2kBr4T0D0zE_dFwu_v19F9uegmr0Xh_L94bjnafwR26ThsFjlqH5fJ0bp6jp1mmLyrlZhDfsvz_AIM7gzs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VRQIu5S3cFlikIk5u7fV61z70EDmNEgpRBUXqzbLXa1K1iqPGESonjhwr_gh_hd_QX8KMXyVICITUA8c448fOznN35xuALZWYHN2QtBPlZwSqndqBl2k7MQL9EQaoQXWq8s1YDt-LV0f-0Qp8a2thanyIbsGNNKOy16TgsyzfuQINpQpszO9oVURx0Ryr3DfnHzFpm--O-jjDLzgf7B1GQ7vpK2BrL1DClsYJcyFCpRPjZUpm2k1cJzBKJaGreS5zkXHMrtIMCY0rNYGSp2mC6YrnpLQCijb_hpBOSL0i-m87vCqOylCXM3meTV3vW5RIh-8sf-6yF7wKbZec33K8XDm8wR343rKqPudysr0o02396RcUyf-Il3dhrQm-Wa_WlnuwYqb34VbU9rx7AMfvUGSpmIwdTIqyaHoE6QZUgfXN5Dw7K1DnKrh0FhFzLz9fRMWCCps_sCJnQzpfVFCJnZkzWuVmvdPj2YSAcVl0-eXrkFEn5_lDOLyOgT6C1WkxNY-BKcygNRpCIVEhcumHWSp87ftGhYHghltgt7IR6waonfqFnMY1xDSPabribroseNnRz2qIkt9SbraiFjemah5zCiG5wqjEgufd38h32jlKpqZYEA3qMyH14yO2fhbR7oVV7C9xyEG1X2SB-zdkUTM8wl8oLeCVjP5hEHFvPNrrfq3_y03P4OZBfxC_Ho33N-A2XaZdAldtwmp5tjBPMMws06eVajOIr1n8fwBcD4Hq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Photoelectrochemical+Dehydrogenative+Cross%E2%80%90Coupling+of+Heteroarenes+with+Aliphatic+C%E2%88%92H+Bonds&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Pin&rft.au=Peng%E2%80%90Yu+Chen&rft.au=Hai%E2%80%90Chao+Xu&rft.date=2020-08-17&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=34&rft.spage=14275&rft.epage=14280&rft_id=info:doi/10.1002%2Fanie.202005724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon