Alkali‐Etched Ni(II)‐Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting

The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water spli...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 41; pp. e1906564 - n/a
Main Authors Zhou, Jian, Dou, Yibo, Wu, Xue‐Qian, Zhou, Awu, Shu, Lun, Li, Jian‐Rong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts. The introduction of defects into metal–organic framework (MOF) by alkali‐etching treatment to create rich active sites and tailor electrical conductivity is proposed. The resultant defect‐rich Ni(II)‐MOF nanosheet array exhibits excellent electrocatalytic overall water splitting performance, comparable to the noble metal‐based benchmark catalysts.
AbstractList The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts. The introduction of defects into metal–organic framework (MOF) by alkali‐etching treatment to create rich active sites and tailor electrical conductivity is proposed. The resultant defect‐rich Ni(II)‐MOF nanosheet array exhibits excellent electrocatalytic overall water splitting performance, comparable to the noble metal‐based benchmark catalysts.
The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal-organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)-MOF nanosheet array is presented as an ideal material model and a facile alkali-etched strategy is developed to break its NiO bonds accompanied with the introduction of extra-framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect-Ni-MOF||defect-Ni-MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm-2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal-organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)-MOF nanosheet array is presented as an ideal material model and a facile alkali-etched strategy is developed to break its NiO bonds accompanied with the introduction of extra-framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect-Ni-MOF||defect-Ni-MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm-2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.
The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm −2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.
The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.
Author Dou, Yibo
Zhou, Awu
Zhou, Jian
Wu, Xue‐Qian
Li, Jian‐Rong
Shu, Lun
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: Beijing University of Technology
– sequence: 2
  givenname: Yibo
  orcidid: 0000-0003-0802-9898
  surname: Dou
  fullname: Dou, Yibo
  organization: Beijing University of Technology
– sequence: 3
  givenname: Xue‐Qian
  surname: Wu
  fullname: Wu, Xue‐Qian
  organization: Beijing University of Technology
– sequence: 4
  givenname: Awu
  surname: Zhou
  fullname: Zhou, Awu
  organization: Beijing University of Technology
– sequence: 5
  givenname: Lun
  surname: Shu
  fullname: Shu, Lun
  organization: Beijing University of Technology
– sequence: 6
  givenname: Jian‐Rong
  orcidid: 0000-0002-8101-8493
  surname: Li
  fullname: Li, Jian‐Rong
  email: jrli@bjut.edu.cn
  organization: Beijing University of Technology
BookMark eNqFkc9KI0EQh5vFhVXXq-cBL3pI7H8z03OMEt1ANAcVj0NNT422dqZjd0fJzUdY8A19ElsiLgiLp6qC76sq-G2Rjd71SMguo0NGKT8Mc2uHnLKKFnkhf5BNVjAxKBSvNj57Rn-RrRDuKBWMy3KTPI7sPVjz-vx3HPUtttm52Z9MDtJ8BCGNZxjBvj6_zPwN9EZnJx7m-OT8fXYOvQu3iDEbeQ-rkHXOZ2OLOnqnIVmrmPjZI3qwNruGiD67WFgTo-lvfpOfHdiAOx91m1ydjC-P_wyms9PJ8Wg60EKVcpBDDrwt2kLkumw6rrkqixZLwXQjMW9U03DZAUClGioU5m1iKqWxBKHaAsU22V_vXXj3sMQQ67kJGq2FHt0y1FzKXApOJUvo3hf0zi19n75LVM6YoJKqRA3XlPYuBI9dvfBmDn5VM1q_x1C_x1B_xpAE-UXQJkI0ro8ejP2_Vq21J2Nx9c2R-uJsOv3nvgEP4KOS
CitedBy_id crossref_primary_10_1016_j_cej_2021_133719
crossref_primary_10_1002_ange_202113082
crossref_primary_10_1016_j_cej_2024_148776
crossref_primary_10_1002_cctc_202101280
crossref_primary_10_1039_D1TA06438J
crossref_primary_10_1021_acs_inorgchem_4c00124
crossref_primary_10_1002_anie_202208667
crossref_primary_10_1002_celc_202101476
crossref_primary_10_1016_j_cej_2021_131498
crossref_primary_10_1039_D3TA08079J
crossref_primary_10_1016_j_ccr_2022_214699
crossref_primary_10_1016_j_chemosphere_2023_140574
crossref_primary_10_1016_j_jpowsour_2024_235230
crossref_primary_10_1016_j_mtchem_2022_101091
crossref_primary_10_1016_j_surfin_2023_103407
crossref_primary_10_1039_D1TA02896K
crossref_primary_10_1016_j_cattod_2023_01_007
crossref_primary_10_1016_j_jcis_2023_02_113
crossref_primary_10_1021_acsami_4c01872
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1016_j_matt_2022_07_014
crossref_primary_10_1021_acs_cgd_3c00022
crossref_primary_10_1039_D3NJ05603A
crossref_primary_10_1016_j_electacta_2024_144600
crossref_primary_10_1039_D1DT00822F
crossref_primary_10_1002_adma_202206576
crossref_primary_10_1016_j_est_2024_112684
crossref_primary_10_1016_j_microc_2023_108694
crossref_primary_10_1002_asia_202401042
crossref_primary_10_1039_D3TA02610H
crossref_primary_10_1016_j_jallcom_2024_174762
crossref_primary_10_1002_smtd_202401492
crossref_primary_10_1016_j_mtener_2022_101157
crossref_primary_10_1039_D4TC05012F
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1021_jacs_1c10963
crossref_primary_10_1021_acs_inorgchem_4c01078
crossref_primary_10_1080_16583655_2022_2079310
crossref_primary_10_1016_j_ijhydene_2022_09_077
crossref_primary_10_1021_acs_langmuir_4c04136
crossref_primary_10_1016_j_jcis_2023_12_017
crossref_primary_10_1007_s42864_022_00144_7
crossref_primary_10_1039_D3TA01903A
crossref_primary_10_1021_jacs_4c05044
crossref_primary_10_1039_D1TA08287F
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1016_j_ijhydene_2024_10_366
crossref_primary_10_1002_anie_202113082
crossref_primary_10_1016_j_psep_2022_12_052
crossref_primary_10_1039_D4NA00290C
crossref_primary_10_1039_D2QI01688E
crossref_primary_10_3390_catal12070694
crossref_primary_10_1016_j_cej_2023_142646
crossref_primary_10_1002_smll_202311449
crossref_primary_10_1002_ange_202208667
crossref_primary_10_1039_D0QI01523G
crossref_primary_10_1002_slct_202201464
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1016_j_ijhydene_2024_09_314
crossref_primary_10_1021_acs_energyfuels_4c05299
crossref_primary_10_1021_acsmaterialslett_4c00206
crossref_primary_10_1007_s12274_023_6003_5
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1039_D1NR00605C
crossref_primary_10_1039_D4NJ02380C
crossref_primary_10_1039_D1NJ01096D
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1002_sstr_202100203
crossref_primary_10_1016_j_ijhydene_2022_07_242
crossref_primary_10_1016_j_ijhydene_2025_02_267
crossref_primary_10_1016_j_jcis_2024_01_106
crossref_primary_10_1021_acsestengg_4c00949
crossref_primary_10_1016_j_cej_2022_137045
crossref_primary_10_1002_adma_202203420
crossref_primary_10_1039_D2CY00683A
crossref_primary_10_1016_j_cej_2022_137966
crossref_primary_10_1039_D4DT02040E
crossref_primary_10_1016_j_jcis_2024_06_215
crossref_primary_10_1016_j_seppur_2024_131073
crossref_primary_10_1016_j_jcis_2024_11_114
crossref_primary_10_1002_adma_202104341
crossref_primary_10_1002_advs_202104774
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1016_j_ccr_2022_214643
crossref_primary_10_1021_acsaem_4c00601
crossref_primary_10_1007_s11426_022_1545_0
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1039_D2IM00063F
crossref_primary_10_1002_aenm_202303971
crossref_primary_10_1039_D3SE00595J
crossref_primary_10_2139_ssrn_4199101
crossref_primary_10_3390_nano14141168
crossref_primary_10_1016_j_matchemphys_2024_129553
crossref_primary_10_1016_j_jcis_2024_08_111
crossref_primary_10_1021_acsnano_3c02956
crossref_primary_10_1021_acs_langmuir_4c04577
crossref_primary_10_1002_chem_202401644
crossref_primary_10_1016_j_ijhydene_2022_07_219
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1016_j_cej_2021_129155
crossref_primary_10_1016_j_surfin_2024_104273
crossref_primary_10_1038_s41467_023_37530_9
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1016_j_jallcom_2021_161346
crossref_primary_10_1016_j_apsusc_2022_155079
crossref_primary_10_1021_acsami_2c00487
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1016_j_ccr_2022_214467
crossref_primary_10_1002_advs_202306678
crossref_primary_10_1016_j_apcatb_2021_120599
crossref_primary_10_1021_acscatal_3c05314
crossref_primary_10_1016_j_apcatb_2023_122850
crossref_primary_10_1088_1742_6596_1759_1_012012
crossref_primary_10_3390_catal13071047
Cites_doi 10.1002/anie.201811545
10.1002/smll.201804832
10.1021/ja5082553
10.1021/jz2016507
10.1002/aenm.201602643
10.1021/jp000524l
10.1021/cs401245q
10.1039/C4CS00448E
10.1021/cm034455
10.1002/anie.201907136
10.1038/s41467-019-13415-8
10.1002/smll.201803576
10.1039/C3CS60468C
10.1038/nmat4410
10.1002/anie.201506219
10.1002/anie.201900428
10.1016/j.jechem.2016.06.003
10.1021/ja407115p
10.1021/jacs.5b02688
10.1002/anie.201607405
10.1002/anie.201311128
10.1038/ncomms15341
10.1149/2.040403jes
10.1038/s41563-018-0098-1
10.1002/anie.201904058
10.1002/smll.201804761
10.1002/chem.201503951
10.1002/anie.201901409
10.1038/s41560-019-0355-9
10.1002/smll.201802760
10.1038/ncomms8261
10.1039/C7EE03457A
10.1038/nmat2297
10.1002/anie.201802231
10.1021/acscatal.8b02203
10.1039/C7EE01917C
10.1021/acs.inorgchem.9b00202
10.1002/anie.201813634
10.1002/anie.201813481
10.1021/jacs.6b03125
10.1038/s41560-017-0018-7
10.1002/aenm.201703572
10.1039/C8EE03282C
10.1038/s41560-019-0402-6
10.1039/C8EE03276A
10.1002/aenm.201700005
10.1016/j.jcat.2018.09.012
10.1002/anie.201902588
10.1038/s41467-018-04746-z
10.1002/smll.201701931
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201906564
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_201906564
SMLL201906564
Genre article
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  funderid: 2174064
– fundername: National Natural Science Foundation of China
  funderid: 21606006; 51621003; 21771012
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3874-5a5a2d6d635c7bf2c2876de731cb4e5b8bb24faaa98b038e5df2c98ce7a38d6e3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:29:50 EDT 2025
Wed Aug 13 09:41:55 EDT 2025
Tue Jul 01 02:10:56 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Wed Jan 22 16:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3874-5a5a2d6d635c7bf2c2876de731cb4e5b8bb24faaa98b038e5df2c98ce7a38d6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0802-9898
0000-0002-8101-8493
PQID 2451130408
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2445432041
proquest_journals_2451130408
crossref_primary_10_1002_smll_201906564
crossref_citationtrail_10_1002_smll_201906564
wiley_primary_10_1002_smll_201906564_SMLL201906564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2015; 14
2019; 4
2015; 6
2017; 2
2019; 10
2019; 12
2019; 15
2019; 58
2018; 367
2008; 7
2003; 15
2014; 136
2014; 43
2016; 184
2016; 55
2018; 9
2018; 17
2018; 8
2012; 3
2014; 4
2015; 137
2000; 104
2017; 10
2015; 44
2017; 13
2013; 135
2014; 161
2016; 138
2018; 11
2016; 25
2018; 14
2018; 57
2014; 53
2016; 22
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
Zhao S. (e_1_2_6_18_1) 2016; 184
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 15
  start-page: 4503
  year: 2003
  publication-title: Chem. Mater.
– volume: 58
  start-page: 4644
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 3566
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 7058
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 5837
  year: 2019
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 7261
  year: 2015
  publication-title: Nat. Commun.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 1
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 367
  start-page: 206
  year: 2018
  publication-title: J. Catal.
– volume: 10
  start-page: 5599
  year: 2019
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 14
  start-page: 1245
  year: 2015
  publication-title: Nat. Mater.
– volume: 184
  start-page: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 2
  start-page: 877
  year: 2017
  publication-title: Nat. Energy
– volume: 22
  start-page: 1646
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 161
  start-page: A290
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 399
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 512
  year: 2019
  publication-title: Nat. Energy
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 625
  year: 2018
  publication-title: Nat. Mater.
– volume: 12
  start-page: 572
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 7169
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 874
  year: 2016
  publication-title: J. Energy Chem.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2551
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 7071
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 8067
  year: 2000
  publication-title: J. Phys. Chem. A
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2563
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 6555
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 4679
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 8336
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1148
  year: 2014
  publication-title: ACS Catal.
– volume: 58
  start-page: 4227
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 7051
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 11
  start-page: 744
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 322
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201811545
– ident: e_1_2_6_41_1
  doi: 10.1002/smll.201804832
– ident: e_1_2_6_44_1
  doi: 10.1021/ja5082553
– ident: e_1_2_6_4_1
  doi: 10.1021/jz2016507
– ident: e_1_2_6_16_1
  doi: 10.1002/aenm.201602643
– ident: e_1_2_6_49_1
  doi: 10.1021/jp000524l
– ident: e_1_2_6_51_1
  doi: 10.1021/cs401245q
– ident: e_1_2_6_2_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_6_50_1
  doi: 10.1021/cm034455
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.201907136
– ident: e_1_2_6_45_1
  doi: 10.1038/s41467-019-13415-8
– ident: e_1_2_6_21_1
  doi: 10.1002/smll.201803576
– ident: e_1_2_6_7_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_6_48_1
  doi: 10.1038/nmat4410
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.201506219
– ident: e_1_2_6_3_1
  doi: 10.1002/anie.201900428
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jechem.2016.06.003
– ident: e_1_2_6_1_1
  doi: 10.1021/ja407115p
– ident: e_1_2_6_14_1
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_6_6_1
  doi: 10.1002/anie.201607405
– ident: e_1_2_6_20_1
  doi: 10.1002/anie.201311128
– ident: e_1_2_6_13_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_6_35_1
  doi: 10.1149/2.040403jes
– ident: e_1_2_6_25_1
  doi: 10.1038/s41563-018-0098-1
– ident: e_1_2_6_24_1
  doi: 10.1002/anie.201904058
– ident: e_1_2_6_12_1
  doi: 10.1002/smll.201804761
– ident: e_1_2_6_26_1
  doi: 10.1002/chem.201503951
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.201901409
– ident: e_1_2_6_34_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_6_32_1
  doi: 10.1002/smll.201802760
– ident: e_1_2_6_10_1
  doi: 10.1038/ncomms8261
– ident: e_1_2_6_37_1
  doi: 10.1039/C7EE03457A
– ident: e_1_2_6_38_1
  doi: 10.1038/nmat2297
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201802231
– ident: e_1_2_6_40_1
  doi: 10.1021/acscatal.8b02203
– ident: e_1_2_6_11_1
  doi: 10.1039/C7EE01917C
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.inorgchem.9b00202
– ident: e_1_2_6_39_1
  doi: 10.1002/anie.201813634
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.201813481
– ident: e_1_2_6_15_1
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_6_23_1
  doi: 10.1038/s41560-017-0018-7
– ident: e_1_2_6_27_1
  doi: 10.1002/aenm.201703572
– ident: e_1_2_6_42_1
  doi: 10.1039/C8EE03282C
– ident: e_1_2_6_5_1
  doi: 10.1038/s41560-019-0402-6
– ident: e_1_2_6_47_1
  doi: 10.1039/C8EE03276A
– ident: e_1_2_6_36_1
  doi: 10.1002/aenm.201700005
– ident: e_1_2_6_46_1
  doi: 10.1016/j.jcat.2018.09.012
– volume: 184
  start-page: 1
  year: 2016
  ident: e_1_2_6_18_1
  publication-title: Nat. Energy
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201902588
– ident: e_1_2_6_43_1
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_6_9_1
  doi: 10.1002/smll.201701931
SSID ssj0031247
Score 2.6250286
Snippet The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1906564
SubjectTerms Alkali metals
alkali‐etching
Arrays
Electrical resistivity
electrocatalysis
Electrocatalysts
Iridium
Metal-organic frameworks
metal–organic frameworks (MOFs)
Nanosheets
Nanotechnology
Nickel
open metal sites
overall water splitting
Platinum
Water splitting
Title Alkali‐Etched Ni(II)‐Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906564
https://www.proquest.com/docview/2451130408
https://www.proquest.com/docview/2445432041
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54F-eNCIL6UO2StE0fp2yoeAEv6FvJrSibm6yboE_-BMF_uF_iSbrWKYigj6G5NScn50ty8h2ENklAVcrD2IuYNh6j3HhCkSqoe0QlzCBJtPPyPQsPr9nxbXA78oo_54coD9ysZrj12iq4kNneJ2lo9tCyVwdg0ACSWEJQ67BlUdFFyR9FwXi56CpgszxLvFWwNvpk72vxr1bpE2qOAlZncRrTSBR9zR1Nmrv9ntxVL99oHP_zMzNoaghHcS2fP7NozLTn0OQISeE8eqq1mgDWB69vdSthjc_ut4-OdiC9DxZQ41MD-H3w-p6_6lS4Ubh7YVi5O9mdMT2ovyueMwwAGdfzuDvu2OgZWsXnT_ZYrIVvAPV28SWAYueKvYCuG_Wrg0NvGK3BU5RHzAtEIIgONSAYFcmUKNiLhdpEtKokM4HkUhKWCiFiLn2YE4GGPDFXJhKU69DQRTTe7rTNEsKpjgMNSJUpmjIAEDKFTU3s-wpqr3JVrSCvkFaihlTmNqJGK8lJmElixzMpx7OCtsr8jzmJx485VwvhJ0NlzhJiOdworHa8gjbKz6CG9m5FtE2nb_OwgFHiM-gccZL-paXk8vTkpEwt_6XQCpogdvfvXAtX0Xiv2zdrAJF6ct2pwQewwAyg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4Veigc2tKCSEtbIyEBh4WN7d31HmmVKIEklQqI3lZ-rUCEpMoDCU78BKT-Q35Jx97sApWqSnC01q-1PZ7P4_E3ABs0YjoXcRok3NiAM2EDqWkdxT1hCleQosZ7-fbi1jHf_xmV3oTuLUzBD1EZ3Jxk-P3aCbgzSO_es4aOL_ru7gA1GmISPgcvXVhvf6r6UTFIMVRfPr4Kaq3AUW-VvI0h3X1c_rFeugebDyGr1znNN6DK3hauJuc704na0dd_ETk-63fewusZIiV7xRJaghd28A4WH_AUvofLvf454vW7m9uGm2RDemdb7fY2pr-iEjSkaxHC3938Lh52atIsPb4Ibt7D8am1E6x_JK_GBDEyaRShd7zl6ApbJd8vnWWsT04Q-I7IIeJi7429DMfNxtG3VjAL2BBoJhIeRDKS1MQGQYxOVE41HsdiYxNW14rbSAmlKM-llKlQIS6LyGCeVGibSCZMbNkKzA-GA7sKJDdpZBCscs1yjhhC5XiuScNQY-11oes1CMrpyvSMzdwF1ehnBQ8zzdx4ZtV41mCzyv-r4PH4Z861cvazmTyPM-po3BhueKIG69VnlER3vSIHdjh1eXjEGQ05do76qf5PS9lht9OpUh-eUugLvGoddTtZp907-AgL1BkDvKfhGsxPRlP7CRHTRH32MvEHaMEQuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKqFyoC1QdSltXQkJOASytpM4R1p2xbbLgngIbpFfERXbXbQPJHriJ1TqP-SXdOxswlKpQipHK37FnvF8tsffAKzRiOlcxGmQcGMDzoQNpKZ1VPeEKZQgRY338u3Ee6f863l0PvWKv-CHqA7cnGb49dop-JXJt-9JQ4c_uu7qAA0aQhI-A895HAon17tHFYEUQ-vlw6ug0Qoc81ZJ2xjS7YflH5qle6w5jVi9yWm-BFl2tvA0udwaj9SW_vkXj-NT_uYVLEzwKNkpBOg1PLO9RZifYilcguud7iWi9bvbXw03xYZ0vm-0WpuY_owm0JB9iwD-7vZ38axTk2bp70Vw6e4PL6wdYf0DeTMkiJBJowi848-NbrBVcnDtzsW65Axh74AcIyr2vtjLcNpsnHzZCybhGgLNRMKDSEaSmtgghNGJyqnGzVhsbMLqWnEbKaEU5bmUMhUqRKGIDOZJhbaJZMLElr2B2V6_Z98CyU0aGYSqXLOcI4JQOe5q0jDUWHtd6HoNgnK2Mj3hMnchNbpZwcJMMzeeWTWeNViv8l8VLB7_zLlaTn420eZhRh2JG8PlTtTgU_UZ9dBdrsie7Y9dHh5xRkOOnaN-ph9pKTveb7er1Mr_FPoIc4e7zazd6nx7By-oOwnwboarMDsajO17hEsj9cFrxB9LMg9z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali-Etched+Ni%28II%29-Based+Metal-Organic+Framework+Nanosheet+Arrays+for+Electrocatalytic+Overall+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhou%2C+Jian&rft.au=Dou%2C+Yibo&rft.au=Wu%2C+Xue-Qian&rft.au=Zhou%2C+Awu&rft.date=2020-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=41&rft.spage=e1906564&rft_id=info:doi/10.1002%2Fsmll.201906564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon