Alkali‐Etched Ni(II)‐Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting
The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water spli...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 41; pp. e1906564 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.
The introduction of defects into metal–organic framework (MOF) by alkali‐etching treatment to create rich active sites and tailor electrical conductivity is proposed. The resultant defect‐rich Ni(II)‐MOF nanosheet array exhibits excellent electrocatalytic overall water splitting performance, comparable to the noble metal‐based benchmark catalysts. |
---|---|
AbstractList | The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.
The introduction of defects into metal–organic framework (MOF) by alkali‐etching treatment to create rich active sites and tailor electrical conductivity is proposed. The resultant defect‐rich Ni(II)‐MOF nanosheet array exhibits excellent electrocatalytic overall water splitting performance, comparable to the noble metal‐based benchmark catalysts. The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal-organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)-MOF nanosheet array is presented as an ideal material model and a facile alkali-etched strategy is developed to break its NiO bonds accompanied with the introduction of extra-framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect-Ni-MOF||defect-Ni-MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm-2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts.The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal-organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)-MOF nanosheet array is presented as an ideal material model and a facile alkali-etched strategy is developed to break its NiO bonds accompanied with the introduction of extra-framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect-Ni-MOF||defect-Ni-MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm-2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts. The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm −2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts. The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active sites and improving conductivity for metal–organic frameworks (MOFs) is proposed to tailor electrocatalytic properties for overall water splitting. An Ni(II)‐MOF nanosheet array is presented as an ideal material model and a facile alkali‐etched strategy is developed to break its NiO bonds accompanied with the introduction of extra‐framework K cations, which contribute to creating highly active open metal sites and largely improving the electrical conductivity. As a result, the assembled defect‐Ni‐MOF||defect‐Ni‐MOF electrolyte cell delivers a lower and stable voltage of 1.50 V at 10 mA cm−2 in alkaline medium for overall water splitting, comparable to the combination of iridium and platinum as benchmark catalysts. |
Author | Dou, Yibo Zhou, Awu Zhou, Jian Wu, Xue‐Qian Li, Jian‐Rong Shu, Lun |
Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: Beijing University of Technology – sequence: 2 givenname: Yibo orcidid: 0000-0003-0802-9898 surname: Dou fullname: Dou, Yibo organization: Beijing University of Technology – sequence: 3 givenname: Xue‐Qian surname: Wu fullname: Wu, Xue‐Qian organization: Beijing University of Technology – sequence: 4 givenname: Awu surname: Zhou fullname: Zhou, Awu organization: Beijing University of Technology – sequence: 5 givenname: Lun surname: Shu fullname: Shu, Lun organization: Beijing University of Technology – sequence: 6 givenname: Jian‐Rong orcidid: 0000-0002-8101-8493 surname: Li fullname: Li, Jian‐Rong email: jrli@bjut.edu.cn organization: Beijing University of Technology |
BookMark | eNqFkc9KI0EQh5vFhVXXq-cBL3pI7H8z03OMEt1ANAcVj0NNT422dqZjd0fJzUdY8A19ElsiLgiLp6qC76sq-G2Rjd71SMguo0NGKT8Mc2uHnLKKFnkhf5BNVjAxKBSvNj57Rn-RrRDuKBWMy3KTPI7sPVjz-vx3HPUtttm52Z9MDtJ8BCGNZxjBvj6_zPwN9EZnJx7m-OT8fXYOvQu3iDEbeQ-rkHXOZ2OLOnqnIVmrmPjZI3qwNruGiD67WFgTo-lvfpOfHdiAOx91m1ydjC-P_wyms9PJ8Wg60EKVcpBDDrwt2kLkumw6rrkqixZLwXQjMW9U03DZAUClGioU5m1iKqWxBKHaAsU22V_vXXj3sMQQ67kJGq2FHt0y1FzKXApOJUvo3hf0zi19n75LVM6YoJKqRA3XlPYuBI9dvfBmDn5VM1q_x1C_x1B_xpAE-UXQJkI0ro8ejP2_Vq21J2Nx9c2R-uJsOv3nvgEP4KOS |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_133719 crossref_primary_10_1002_ange_202113082 crossref_primary_10_1016_j_cej_2024_148776 crossref_primary_10_1002_cctc_202101280 crossref_primary_10_1039_D1TA06438J crossref_primary_10_1021_acs_inorgchem_4c00124 crossref_primary_10_1002_anie_202208667 crossref_primary_10_1002_celc_202101476 crossref_primary_10_1016_j_cej_2021_131498 crossref_primary_10_1039_D3TA08079J crossref_primary_10_1016_j_ccr_2022_214699 crossref_primary_10_1016_j_chemosphere_2023_140574 crossref_primary_10_1016_j_jpowsour_2024_235230 crossref_primary_10_1016_j_mtchem_2022_101091 crossref_primary_10_1016_j_surfin_2023_103407 crossref_primary_10_1039_D1TA02896K crossref_primary_10_1016_j_cattod_2023_01_007 crossref_primary_10_1016_j_jcis_2023_02_113 crossref_primary_10_1021_acsami_4c01872 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1016_j_matt_2022_07_014 crossref_primary_10_1021_acs_cgd_3c00022 crossref_primary_10_1039_D3NJ05603A crossref_primary_10_1016_j_electacta_2024_144600 crossref_primary_10_1039_D1DT00822F crossref_primary_10_1002_adma_202206576 crossref_primary_10_1016_j_est_2024_112684 crossref_primary_10_1016_j_microc_2023_108694 crossref_primary_10_1002_asia_202401042 crossref_primary_10_1039_D3TA02610H crossref_primary_10_1016_j_jallcom_2024_174762 crossref_primary_10_1002_smtd_202401492 crossref_primary_10_1016_j_mtener_2022_101157 crossref_primary_10_1039_D4TC05012F crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1021_jacs_1c10963 crossref_primary_10_1021_acs_inorgchem_4c01078 crossref_primary_10_1080_16583655_2022_2079310 crossref_primary_10_1016_j_ijhydene_2022_09_077 crossref_primary_10_1021_acs_langmuir_4c04136 crossref_primary_10_1016_j_jcis_2023_12_017 crossref_primary_10_1007_s42864_022_00144_7 crossref_primary_10_1039_D3TA01903A crossref_primary_10_1021_jacs_4c05044 crossref_primary_10_1039_D1TA08287F crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1016_j_ijhydene_2024_10_366 crossref_primary_10_1002_anie_202113082 crossref_primary_10_1016_j_psep_2022_12_052 crossref_primary_10_1039_D4NA00290C crossref_primary_10_1039_D2QI01688E crossref_primary_10_3390_catal12070694 crossref_primary_10_1016_j_cej_2023_142646 crossref_primary_10_1002_smll_202311449 crossref_primary_10_1002_ange_202208667 crossref_primary_10_1039_D0QI01523G crossref_primary_10_1002_slct_202201464 crossref_primary_10_1002_smll_202302738 crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1016_j_ijhydene_2024_09_314 crossref_primary_10_1021_acs_energyfuels_4c05299 crossref_primary_10_1021_acsmaterialslett_4c00206 crossref_primary_10_1007_s12274_023_6003_5 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1039_D1NR00605C crossref_primary_10_1039_D4NJ02380C crossref_primary_10_1039_D1NJ01096D crossref_primary_10_1002_smll_202306085 crossref_primary_10_1002_sstr_202100203 crossref_primary_10_1016_j_ijhydene_2022_07_242 crossref_primary_10_1016_j_ijhydene_2025_02_267 crossref_primary_10_1016_j_jcis_2024_01_106 crossref_primary_10_1021_acsestengg_4c00949 crossref_primary_10_1016_j_cej_2022_137045 crossref_primary_10_1002_adma_202203420 crossref_primary_10_1039_D2CY00683A crossref_primary_10_1016_j_cej_2022_137966 crossref_primary_10_1039_D4DT02040E crossref_primary_10_1016_j_jcis_2024_06_215 crossref_primary_10_1016_j_seppur_2024_131073 crossref_primary_10_1016_j_jcis_2024_11_114 crossref_primary_10_1002_adma_202104341 crossref_primary_10_1002_advs_202104774 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1016_j_ccr_2022_214643 crossref_primary_10_1021_acsaem_4c00601 crossref_primary_10_1007_s11426_022_1545_0 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1039_D2IM00063F crossref_primary_10_1002_aenm_202303971 crossref_primary_10_1039_D3SE00595J crossref_primary_10_2139_ssrn_4199101 crossref_primary_10_3390_nano14141168 crossref_primary_10_1016_j_matchemphys_2024_129553 crossref_primary_10_1016_j_jcis_2024_08_111 crossref_primary_10_1021_acsnano_3c02956 crossref_primary_10_1021_acs_langmuir_4c04577 crossref_primary_10_1002_chem_202401644 crossref_primary_10_1016_j_ijhydene_2022_07_219 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1016_j_cej_2021_129155 crossref_primary_10_1016_j_surfin_2024_104273 crossref_primary_10_1038_s41467_023_37530_9 crossref_primary_10_1002_adma_202402184 crossref_primary_10_1016_j_jallcom_2021_161346 crossref_primary_10_1016_j_apsusc_2022_155079 crossref_primary_10_1021_acsami_2c00487 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1016_j_ccr_2022_214467 crossref_primary_10_1002_advs_202306678 crossref_primary_10_1016_j_apcatb_2021_120599 crossref_primary_10_1021_acscatal_3c05314 crossref_primary_10_1016_j_apcatb_2023_122850 crossref_primary_10_1088_1742_6596_1759_1_012012 crossref_primary_10_3390_catal13071047 |
Cites_doi | 10.1002/anie.201811545 10.1002/smll.201804832 10.1021/ja5082553 10.1021/jz2016507 10.1002/aenm.201602643 10.1021/jp000524l 10.1021/cs401245q 10.1039/C4CS00448E 10.1021/cm034455 10.1002/anie.201907136 10.1038/s41467-019-13415-8 10.1002/smll.201803576 10.1039/C3CS60468C 10.1038/nmat4410 10.1002/anie.201506219 10.1002/anie.201900428 10.1016/j.jechem.2016.06.003 10.1021/ja407115p 10.1021/jacs.5b02688 10.1002/anie.201607405 10.1002/anie.201311128 10.1038/ncomms15341 10.1149/2.040403jes 10.1038/s41563-018-0098-1 10.1002/anie.201904058 10.1002/smll.201804761 10.1002/chem.201503951 10.1002/anie.201901409 10.1038/s41560-019-0355-9 10.1002/smll.201802760 10.1038/ncomms8261 10.1039/C7EE03457A 10.1038/nmat2297 10.1002/anie.201802231 10.1021/acscatal.8b02203 10.1039/C7EE01917C 10.1021/acs.inorgchem.9b00202 10.1002/anie.201813634 10.1002/anie.201813481 10.1021/jacs.6b03125 10.1038/s41560-017-0018-7 10.1002/aenm.201703572 10.1039/C8EE03282C 10.1038/s41560-019-0402-6 10.1039/C8EE03276A 10.1002/aenm.201700005 10.1016/j.jcat.2018.09.012 10.1002/anie.201902588 10.1038/s41467-018-04746-z 10.1002/smll.201701931 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201906564 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_201906564 SMLL201906564 |
Genre | article |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation funderid: 2174064 – fundername: National Natural Science Foundation of China funderid: 21606006; 51621003; 21771012 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3874-5a5a2d6d635c7bf2c2876de731cb4e5b8bb24faaa98b038e5df2c98ce7a38d6e3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:29:50 EDT 2025 Wed Aug 13 09:41:55 EDT 2025 Tue Jul 01 02:10:56 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Wed Jan 22 16:33:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3874-5a5a2d6d635c7bf2c2876de731cb4e5b8bb24faaa98b038e5df2c98ce7a38d6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0802-9898 0000-0002-8101-8493 |
PQID | 2451130408 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2445432041 proquest_journals_2451130408 crossref_primary_10_1002_smll_201906564 crossref_citationtrail_10_1002_smll_201906564 wiley_primary_10_1002_smll_201906564_SMLL201906564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2015; 14 2019; 4 2015; 6 2017; 2 2019; 10 2019; 12 2019; 15 2019; 58 2018; 367 2008; 7 2003; 15 2014; 136 2014; 43 2016; 184 2016; 55 2018; 9 2018; 17 2018; 8 2012; 3 2014; 4 2015; 137 2000; 104 2017; 10 2015; 44 2017; 13 2013; 135 2014; 161 2016; 138 2018; 11 2016; 25 2018; 14 2018; 57 2014; 53 2016; 22 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 Zhao S. (e_1_2_6_18_1) 2016; 184 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 15 start-page: 4503 year: 2003 publication-title: Chem. Mater. – volume: 58 start-page: 4644 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 3566 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 7058 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 5837 year: 2019 publication-title: Inorg. Chem. – volume: 6 start-page: 7261 year: 2015 publication-title: Nat. Commun. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 1 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 367 start-page: 206 year: 2018 publication-title: J. Catal. – volume: 10 start-page: 5599 year: 2019 – volume: 14 year: 2018 publication-title: Small – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 14 start-page: 1245 year: 2015 publication-title: Nat. Mater. – volume: 184 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 2 start-page: 877 year: 2017 publication-title: Nat. Energy – volume: 22 start-page: 1646 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 15 year: 2019 publication-title: Small – volume: 161 start-page: A290 year: 2014 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 399 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 512 year: 2019 publication-title: Nat. Energy – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 625 year: 2018 publication-title: Nat. Mater. – volume: 12 start-page: 572 year: 2019 publication-title: Energy Environ. Sci. – volume: 137 start-page: 7169 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 874 year: 2016 publication-title: J. Energy Chem. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: 2551 year: 2018 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 57 start-page: 7071 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 8067 year: 2000 publication-title: J. Phys. Chem. A – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2563 year: 2017 publication-title: Energy Environ. Sci. – volume: 43 start-page: 6555 year: 2014 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 4679 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 8336 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1148 year: 2014 publication-title: ACS Catal. – volume: 58 start-page: 4227 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 7051 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 11 start-page: 744 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 322 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_6_17_1 doi: 10.1002/anie.201811545 – ident: e_1_2_6_41_1 doi: 10.1002/smll.201804832 – ident: e_1_2_6_44_1 doi: 10.1021/ja5082553 – ident: e_1_2_6_4_1 doi: 10.1021/jz2016507 – ident: e_1_2_6_16_1 doi: 10.1002/aenm.201602643 – ident: e_1_2_6_49_1 doi: 10.1021/jp000524l – ident: e_1_2_6_51_1 doi: 10.1021/cs401245q – ident: e_1_2_6_2_1 doi: 10.1039/C4CS00448E – ident: e_1_2_6_50_1 doi: 10.1021/cm034455 – ident: e_1_2_6_19_1 doi: 10.1002/anie.201907136 – ident: e_1_2_6_45_1 doi: 10.1038/s41467-019-13415-8 – ident: e_1_2_6_21_1 doi: 10.1002/smll.201803576 – ident: e_1_2_6_7_1 doi: 10.1039/C3CS60468C – ident: e_1_2_6_48_1 doi: 10.1038/nmat4410 – ident: e_1_2_6_22_1 doi: 10.1002/anie.201506219 – ident: e_1_2_6_3_1 doi: 10.1002/anie.201900428 – ident: e_1_2_6_29_1 doi: 10.1016/j.jechem.2016.06.003 – ident: e_1_2_6_1_1 doi: 10.1021/ja407115p – ident: e_1_2_6_14_1 doi: 10.1021/jacs.5b02688 – ident: e_1_2_6_6_1 doi: 10.1002/anie.201607405 – ident: e_1_2_6_20_1 doi: 10.1002/anie.201311128 – ident: e_1_2_6_13_1 doi: 10.1038/ncomms15341 – ident: e_1_2_6_35_1 doi: 10.1149/2.040403jes – ident: e_1_2_6_25_1 doi: 10.1038/s41563-018-0098-1 – ident: e_1_2_6_24_1 doi: 10.1002/anie.201904058 – ident: e_1_2_6_12_1 doi: 10.1002/smll.201804761 – ident: e_1_2_6_26_1 doi: 10.1002/chem.201503951 – ident: e_1_2_6_8_1 doi: 10.1002/anie.201901409 – ident: e_1_2_6_34_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_6_32_1 doi: 10.1002/smll.201802760 – ident: e_1_2_6_10_1 doi: 10.1038/ncomms8261 – ident: e_1_2_6_37_1 doi: 10.1039/C7EE03457A – ident: e_1_2_6_38_1 doi: 10.1038/nmat2297 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201802231 – ident: e_1_2_6_40_1 doi: 10.1021/acscatal.8b02203 – ident: e_1_2_6_11_1 doi: 10.1039/C7EE01917C – ident: e_1_2_6_31_1 doi: 10.1021/acs.inorgchem.9b00202 – ident: e_1_2_6_39_1 doi: 10.1002/anie.201813634 – ident: e_1_2_6_28_1 doi: 10.1002/anie.201813481 – ident: e_1_2_6_15_1 doi: 10.1021/jacs.6b03125 – ident: e_1_2_6_23_1 doi: 10.1038/s41560-017-0018-7 – ident: e_1_2_6_27_1 doi: 10.1002/aenm.201703572 – ident: e_1_2_6_42_1 doi: 10.1039/C8EE03282C – ident: e_1_2_6_5_1 doi: 10.1038/s41560-019-0402-6 – ident: e_1_2_6_47_1 doi: 10.1039/C8EE03276A – ident: e_1_2_6_36_1 doi: 10.1002/aenm.201700005 – ident: e_1_2_6_46_1 doi: 10.1016/j.jcat.2018.09.012 – volume: 184 start-page: 1 year: 2016 ident: e_1_2_6_18_1 publication-title: Nat. Energy – ident: e_1_2_6_30_1 doi: 10.1002/anie.201902588 – ident: e_1_2_6_43_1 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_6_9_1 doi: 10.1002/smll.201701931 |
SSID | ssj0031247 |
Score | 2.6250286 |
Snippet | The exploration of efficient electrocatalysts is the central issue for boosting the overall efficiency of water splitting. Herein, pertinently creating active... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e1906564 |
SubjectTerms | Alkali metals alkali‐etching Arrays Electrical resistivity electrocatalysis Electrocatalysts Iridium Metal-organic frameworks metal–organic frameworks (MOFs) Nanosheets Nanotechnology Nickel open metal sites overall water splitting Platinum Water splitting |
Title | Alkali‐Etched Ni(II)‐Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201906564 https://www.proquest.com/docview/2451130408 https://www.proquest.com/docview/2445432041 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54F-eNCIL6UO2StE0fp2yoeAEv6FvJrSibm6yboE_-BMF_uF_iSbrWKYigj6G5NScn50ty8h2ENklAVcrD2IuYNh6j3HhCkSqoe0QlzCBJtPPyPQsPr9nxbXA78oo_54coD9ysZrj12iq4kNneJ2lo9tCyVwdg0ACSWEJQ67BlUdFFyR9FwXi56CpgszxLvFWwNvpk72vxr1bpE2qOAlZncRrTSBR9zR1Nmrv9ntxVL99oHP_zMzNoaghHcS2fP7NozLTn0OQISeE8eqq1mgDWB69vdSthjc_ut4-OdiC9DxZQ41MD-H3w-p6_6lS4Ubh7YVi5O9mdMT2ovyueMwwAGdfzuDvu2OgZWsXnT_ZYrIVvAPV28SWAYueKvYCuG_Wrg0NvGK3BU5RHzAtEIIgONSAYFcmUKNiLhdpEtKokM4HkUhKWCiFiLn2YE4GGPDFXJhKU69DQRTTe7rTNEsKpjgMNSJUpmjIAEDKFTU3s-wpqr3JVrSCvkFaihlTmNqJGK8lJmElixzMpx7OCtsr8jzmJx485VwvhJ0NlzhJiOdworHa8gjbKz6CG9m5FtE2nb_OwgFHiM-gccZL-paXk8vTkpEwt_6XQCpogdvfvXAtX0Xiv2zdrAJF6ct2pwQewwAyg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4Veigc2tKCSEtbIyEBh4WN7d31HmmVKIEklQqI3lZ-rUCEpMoDCU78BKT-Q35Jx97sApWqSnC01q-1PZ7P4_E3ABs0YjoXcRok3NiAM2EDqWkdxT1hCleQosZ7-fbi1jHf_xmV3oTuLUzBD1EZ3Jxk-P3aCbgzSO_es4aOL_ru7gA1GmISPgcvXVhvf6r6UTFIMVRfPr4Kaq3AUW-VvI0h3X1c_rFeugebDyGr1znNN6DK3hauJuc704na0dd_ETk-63fewusZIiV7xRJaghd28A4WH_AUvofLvf454vW7m9uGm2RDemdb7fY2pr-iEjSkaxHC3938Lh52atIsPb4Ibt7D8am1E6x_JK_GBDEyaRShd7zl6ApbJd8vnWWsT04Q-I7IIeJi7429DMfNxtG3VjAL2BBoJhIeRDKS1MQGQYxOVE41HsdiYxNW14rbSAmlKM-llKlQIS6LyGCeVGibSCZMbNkKzA-GA7sKJDdpZBCscs1yjhhC5XiuScNQY-11oes1CMrpyvSMzdwF1ehnBQ8zzdx4ZtV41mCzyv-r4PH4Z861cvazmTyPM-po3BhueKIG69VnlER3vSIHdjh1eXjEGQ05do76qf5PS9lht9OpUh-eUugLvGoddTtZp907-AgL1BkDvKfhGsxPRlP7CRHTRH32MvEHaMEQuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKqFyoC1QdSltXQkJOASytpM4R1p2xbbLgngIbpFfERXbXbQPJHriJ1TqP-SXdOxswlKpQipHK37FnvF8tsffAKzRiOlcxGmQcGMDzoQNpKZ1VPeEKZQgRY338u3Ee6f863l0PvWKv-CHqA7cnGb49dop-JXJt-9JQ4c_uu7qAA0aQhI-A895HAon17tHFYEUQ-vlw6ug0Qoc81ZJ2xjS7YflH5qle6w5jVi9yWm-BFl2tvA0udwaj9SW_vkXj-NT_uYVLEzwKNkpBOg1PLO9RZifYilcguud7iWi9bvbXw03xYZ0vm-0WpuY_owm0JB9iwD-7vZ38axTk2bp70Vw6e4PL6wdYf0DeTMkiJBJowi848-NbrBVcnDtzsW65Axh74AcIyr2vtjLcNpsnHzZCybhGgLNRMKDSEaSmtgghNGJyqnGzVhsbMLqWnEbKaEU5bmUMhUqRKGIDOZJhbaJZMLElr2B2V6_Z98CyU0aGYSqXLOcI4JQOe5q0jDUWHtd6HoNgnK2Mj3hMnchNbpZwcJMMzeeWTWeNViv8l8VLB7_zLlaTn420eZhRh2JG8PlTtTgU_UZ9dBdrsie7Y9dHh5xRkOOnaN-ph9pKTveb7er1Mr_FPoIc4e7zazd6nx7By-oOwnwboarMDsajO17hEsj9cFrxB9LMg9z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alkali-Etched+Ni%28II%29-Based+Metal-Organic+Framework+Nanosheet+Arrays+for+Electrocatalytic+Overall+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhou%2C+Jian&rft.au=Dou%2C+Yibo&rft.au=Wu%2C+Xue-Qian&rft.au=Zhou%2C+Awu&rft.date=2020-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=41&rft.spage=e1906564&rft_id=info:doi/10.1002%2Fsmll.201906564&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |