A metaheuristic optimization framework for informative gene selection
This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitnes...
Saved in:
Published in | Informatics in medicine unlocked Vol. 4; pp. 10 - 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-9148 2352-9148 |
DOI | 10.1016/j.imu.2016.09.003 |
Cover
Loading…
Abstract | This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1–0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures.
•Due to the iterative nature of the method, it searches a randomly generated greater space and selects a gene subset that will is close to the global optimal solution.•The HS tunes the search by ranking the solutions with respect to their fitness. The improvised solutions generated by HS-GA-SVM are used for adding relevant genes.•Proposed algorithm does not put any restriction on finding predefined number of genes, because the gene subsets are selected on probability in proposed approach.•The most relevant genes present in almost 90% of runs were grouped to form informative genes selected by proposed algorithm since they are the most frequently selected solutions in the final subsets.•The performance of predicted/selected gene subsets (informative genes) from proposed hybridized HS-GA-SVM model has been evaluated for five datasets using six probabilistic measures such as; BCR, F-measure, JI, ARI, NMI, and Purity. |
---|---|
AbstractList | This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1â0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. Keywords: Gene Selection, Metaheuristic, Harmony Search Algorithm, Genetic Algorithm, SVM This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1–0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. •Due to the iterative nature of the method, it searches a randomly generated greater space and selects a gene subset that will is close to the global optimal solution.•The HS tunes the search by ranking the solutions with respect to their fitness. The improvised solutions generated by HS-GA-SVM are used for adding relevant genes.•Proposed algorithm does not put any restriction on finding predefined number of genes, because the gene subsets are selected on probability in proposed approach.•The most relevant genes present in almost 90% of runs were grouped to form informative genes selected by proposed algorithm since they are the most frequently selected solutions in the final subsets.•The performance of predicted/selected gene subsets (informative genes) from proposed hybridized HS-GA-SVM model has been evaluated for five datasets using six probabilistic measures such as; BCR, F-measure, JI, ARI, NMI, and Purity. |
Author | Mishra, Debahuti Das, Kaberi Shaw, Kailash |
Author_xml | – sequence: 1 givenname: Kaberi surname: Das fullname: Das, Kaberi email: kaberidas@rediffmail.com organization: Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, India – sequence: 2 givenname: Debahuti surname: Mishra fullname: Mishra, Debahuti email: mishradebahuti@gmail.com organization: Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, India – sequence: 3 givenname: Kailash surname: Shaw fullname: Shaw, Kailash email: kailash.shaw@gmail.com organization: Department of Computer Engineering, D.Y. Patil College of Enggineering, Akrudi, Pune, India |
BookMark | eNp9kM1OAyEURompibX2AdzNC3SEGRiGuGqaqk2auNE14edSqZ2hYaY1-vTS1hjjogvghsv5cjnXaNCGFhC6JTgnmFR369w3u7xIZY5FjnF5gYZFyYqJILQe_Kmv0Ljr1hhjwquScTZE82nWQK_eYBd913uThW3vG_-leh_azEXVwEeI75kLMfNt2pvU2UO2ghayDjZgDg9v0KVTmw7GP-cIvT7MX2ZPk-Xz42I2XU5MWfNyUglTMWZ5XXNeEOE01-CYdVhYBkozbpyhlYO0FC6xoMQq7gjWQGtuNJQjtDjl2qDWcht9o-KnDMrL40WIK6li-sUGJANggjJKDasoWK1rYkkldF2YwmpKUxY5ZZkYui6C-80jWB60yrVMWuVBq8RCJq2J4f8Y4_ujqj4qvzlL3p9ISHr2HqLsjIfWgPUxOUzz-zP0N5dElXs |
CitedBy_id | crossref_primary_10_1111_jfpe_13236 crossref_primary_10_1109_ACCESS_2019_2922987 crossref_primary_10_1007_s10796_020_10037_0 crossref_primary_10_1016_j_cosrev_2020_100342 crossref_primary_10_1109_ACCESS_2019_2962906 crossref_primary_10_1007_s12652_021_03441_0 crossref_primary_10_1016_j_imu_2017_10_004 crossref_primary_10_7717_peerj_cs_2084 crossref_primary_10_1080_20479700_2021_1886478 crossref_primary_10_1186_s12859_023_05267_3 crossref_primary_10_4018_IJSIR_2019040102 |
Cites_doi | 10.1016/j.jbi.2008.05.011 10.1016/j.patrec.2015.07.028 10.1093/bioinformatics/btm344 10.1109/i-Society18435.2011.5978470 10.1016/j.dsp.2015.08.008 10.1016/j.patcog.2010.02.008 10.1109/TKDE.2005.66 10.1016/j.ins.2013.10.012 10.1016/j.eswa.2015.12.004 10.1016/j.patrec.2005.12.018 10.1016/j.artmed.2008.04.004 10.1016/j.neucom.2015.05.022 10.1016/j.jbi.2013.03.009 10.1016/j.asoc.2010.08.008 10.1016/j.eswa.2012.01.096 10.1016/j.patcog.2011.12.008 10.1016/j.engappai.2014.03.007 10.1007/s10618-006-0055-5 10.1016/j.knosys.2014.10.013 10.1016/j.csda.2009.02.028 10.1016/j.gdata.2016.02.012 10.1016/j.patrec.2012.05.019 10.1016/j.eswa.2013.09.004 10.1016/j.eswa.2015.01.069 10.1016/j.procs.2013.10.014 10.1016/j.amc.2011.11.095 10.1002/widm.32 10.1093/bib/bbn001 10.1016/j.jbi.2015.11.003 10.1109/TCBB.2014.2328334 10.1016/j.eswa.2012.08.057 10.1016/j.patcog.2013.02.007 10.1016/j.compbiomed.2015.04.011 10.1093/bib/bbn005 10.1016/j.engappai.2013.05.008 10.1016/j.patrec.2013.01.026 10.1016/j.compbiomed.2013.03.010 10.1016/j.compbiolchem.2015.03.001 10.1016/j.cor.2010.04.011 10.4310/SII.2009.v2.n2.a5 10.1016/j.eswa.2011.09.031 10.1016/j.neunet.2014.06.011 10.1016/j.procs.2015.07.387 10.1016/j.knosys.2013.10.016 |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.imu.2016.09.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-9148 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_5ee594544c564edbb81d169b82c2db44 10_1016_j_imu_2016_09_003 S2352914816300223 |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c3873-69c655d78877219fb7bef5df09d5eab57cfc46fe46fa030941da7f10be487cbe3 |
IEDL.DBID | DOA |
ISSN | 2352-9148 |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Thu Jul 03 08:41:02 EDT 2025 Wed May 17 01:43:10 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metaheuristic SVM Harmony Search Algorithm Gene Selection Genetic Algorithm |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3873-69c655d78877219fb7bef5df09d5eab57cfc46fe46fa030941da7f10be487cbe3 |
OpenAccessLink | https://doaj.org/article/5ee594544c564edbb81d169b82c2db44 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ee594544c564edbb81d169b82c2db44 crossref_primary_10_1016_j_imu_2016_09_003 crossref_citationtrail_10_1016_j_imu_2016_09_003 elsevier_sciencedirect_doi_10_1016_j_imu_2016_09_003 |
PublicationCentury | 2000 |
PublicationDate | 2016 2016-00-00 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | Informatics in medicine unlocked |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | AI-Raj Ibrahim M., Jassim S., Cawthome M.A, Langlands K., “Pathway-based Gene Selection for Disease Classification”, International Conference on Information Society (i-Society), pp. 360-365, 2011 Saeys, Inza, Larranaga (bib6) 2007; 23 bib35 OkanSakar, Kursun, Gurgen (bib8) 2012; 39 Dataset Repository, Bioinformatics Research Group, available on Ghazavi, Liao (bib28) 2008; 43 Zhang, Li, Luo, Sun, Chen, Dai, Yuan (bib5) 2014; 17–44 Das, Sil (bib54) 2011; 11 Wang, Liu, Feng, Zhu (bib41) 2015; 73 2005. Al-Betar, Abu Doush, Khader, Awadallah (bib39) 2012; 218 Chen, Wang, Li, Zhang, Yuan (bib9) 2016; 17 Statnikov A., Aliferis C.F, Tsamardinos I., Gems: Gene Expression Model Selector, Available Rendón, Abundez, Arizmendi, Quiroz (bib36) 2011; 5 Aziz, Verma, Srivastava (bib16) 2016; 8 Li, Zhao (bib26) 2009; 2 Liao, Jiang, Liang, Zhu, Cai, Cao (bib31) 2014; 11 Ferreira, Figueiredo (bib30) 2012; 33 Liu, Qian, Dai, Zhang (bib46) 2013; 46 Pham, Triantaphyllou (bib22) 2011; 38 García-Laencina, Sancho-Gómez, Figueiras-Vidal (bib53) 2013; 40 Bermejo, Gámez, Puerta (bib51) 2014; 55 Tong, Liu, Xu, Ju (bib49) 2013; 43 Kima C., Lia H., Shinb S.Y., Hwanga K.B., “An efficient and effective wrapper based on paired t-test for learning naive Bayes classifiers from large-scale domains”, 4th International Conference on Computational Systems-Biology and Bioinformatics, pp.102-112, 2013 Dessì, Pes (bib15) 2015; 42 2014. He, Cai, Niyogi (bib32) 2005; 18 Hilario, Kalousis (bib7) 2008; 9 Wang, An, Chen, Li, Alterovitz (bib19) 2015; 62 Shen, Shi, Kong (bib3) 2009; 42 Ghosh, Acharya (bib37) 2011; 1 Haindl, Somol, Ververidis, Kotropoulos (bib27) 2006 Mundra, Rajapakse (bib47) 2016; 59 Mao, Cai, Shao (bib4) 2013; 46 Ferreira, Figueiredo (bib29) 2012; 45 Ghareb, Abu Bakar, Razak Hamdan (bib44) 2016; 49 Weston, Barnhill, Vapnik (bib11) 2002; 46 Oreski, Oreski (bib21) 2014; 41 Anushaa, Sathiaseelan (bib43) 2015; 57 Tuo, Zhang, Yong, Yuan, Liu, Xu, Deng (bib40) 2015; 46 Tabakhi, Moradi, Akhlaghian (bib24) 2014; 32 Fenga, Guoa, Jingc, Sunb (bib50) 2015; 65 Shreem, Abdullah, Nazri (bib38) 2014; 258 Alonso-González, Moro-Sancho, Simon-Hurtado, Varela-Arrabal (bib20) 2012; 39 Alshamlan, Badr, Alohali (bib12) 2015; 56 Liu, Yu (bib14) 2005; 17 Thi, Vo, Dinh (bib48) 2015; 59 Ooi, Chetty, Teng (bib2) 2007; 14 De Stefano, Fontanella, Marrocco, Scotto di Freca (bib45) 2014; 35 Liu, Liu, Zhang (bib10) 2010; 43 Lai, Reinders, Wessels (bib25) 2006; 27 Manjarres, Landa-Torres, Gil-Lopez, Del Ser, Bilbao, Salcedo-Sanz, Geem (bib42) 2013; 26 Saeys, Inza, Larranaga (bib18) 2007; 23 Cao, Bonnet, Gadat (bib1) 2009; 53 Nam, Kim (bib13) 2008; 9 Tabakhi, Najafi, Ranjbar, Moradi (bib23) 2015; 168 Fenga (10.1016/j.imu.2016.09.003_bib50) 2015; 65 Ferreira (10.1016/j.imu.2016.09.003_bib30) 2012; 33 Shen (10.1016/j.imu.2016.09.003_bib3) 2009; 42 Li (10.1016/j.imu.2016.09.003_bib26) 2009; 2 Nam (10.1016/j.imu.2016.09.003_bib13) 2008; 9 Hilario (10.1016/j.imu.2016.09.003_bib7) 2008; 9 Al-Betar (10.1016/j.imu.2016.09.003_bib39) 2012; 218 De Stefano (10.1016/j.imu.2016.09.003_bib45) 2014; 35 He (10.1016/j.imu.2016.09.003_bib32) 2005; 18 10.1016/j.imu.2016.09.003_bib52 Shreem (10.1016/j.imu.2016.09.003_bib38) 2014; 258 Tabakhi (10.1016/j.imu.2016.09.003_bib24) 2014; 32 Tuo (10.1016/j.imu.2016.09.003_bib40) 2015; 46 Mundra (10.1016/j.imu.2016.09.003_bib47) 2016; 59 Lai (10.1016/j.imu.2016.09.003_bib25) 2006; 27 10.1016/j.imu.2016.09.003_bib17 Pham (10.1016/j.imu.2016.09.003_bib22) 2011; 38 Chen (10.1016/j.imu.2016.09.003_bib9) 2016; 17 Ooi (10.1016/j.imu.2016.09.003_bib2) 2007; 14 Weston (10.1016/j.imu.2016.09.003_bib11) 2002; 46 Rendón (10.1016/j.imu.2016.09.003_bib36) 2011; 5 Bermejo (10.1016/j.imu.2016.09.003_bib51) 2014; 55 Wang (10.1016/j.imu.2016.09.003_bib19) 2015; 62 Manjarres (10.1016/j.imu.2016.09.003_bib42) 2013; 26 Thi (10.1016/j.imu.2016.09.003_bib48) 2015; 59 García-Laencina (10.1016/j.imu.2016.09.003_bib53) 2013; 40 Liu (10.1016/j.imu.2016.09.003_bib10) 2010; 43 Liao (10.1016/j.imu.2016.09.003_bib31) 2014; 11 Ferreira (10.1016/j.imu.2016.09.003_bib29) 2012; 45 Zhang (10.1016/j.imu.2016.09.003_bib5) 2014; 17–44 Ghazavi (10.1016/j.imu.2016.09.003_bib28) 2008; 43 Liu (10.1016/j.imu.2016.09.003_bib14) 2005; 17 Dessì (10.1016/j.imu.2016.09.003_bib15) 2015; 42 Mao (10.1016/j.imu.2016.09.003_bib4) 2013; 46 Wang (10.1016/j.imu.2016.09.003_bib41) 2015; 73 10.1016/j.imu.2016.09.003_bib34 10.1016/j.imu.2016.09.003_bib33 Oreski (10.1016/j.imu.2016.09.003_bib21) 2014; 41 Liu (10.1016/j.imu.2016.09.003_bib46) 2013; 46 Cao (10.1016/j.imu.2016.09.003_bib1) 2009; 53 Haindl (10.1016/j.imu.2016.09.003_bib27) 2006 Tong (10.1016/j.imu.2016.09.003_bib49) 2013; 43 Alshamlan (10.1016/j.imu.2016.09.003_bib12) 2015; 56 Saeys (10.1016/j.imu.2016.09.003_bib6) 2007; 23 Anushaa (10.1016/j.imu.2016.09.003_bib43) 2015; 57 Das (10.1016/j.imu.2016.09.003_bib54) 2011; 11 Saeys (10.1016/j.imu.2016.09.003_bib18) 2007; 23 OkanSakar (10.1016/j.imu.2016.09.003_bib8) 2012; 39 Ghosh (10.1016/j.imu.2016.09.003_bib37) 2011; 1 Tabakhi (10.1016/j.imu.2016.09.003_bib23) 2015; 168 Ghareb (10.1016/j.imu.2016.09.003_bib44) 2016; 49 Alonso-González (10.1016/j.imu.2016.09.003_bib20) 2012; 39 Aziz (10.1016/j.imu.2016.09.003_bib16) 2016; 8 |
References_xml | – start-page: 569 year: 2006 end-page: 577 ident: bib27 article-title: Feature selection based on mutual correlation publication-title: Pattern Recognit, Image Anal Appl – volume: 38 start-page: 174 year: 2011 end-page: 189 ident: bib22 article-title: A meta-heuristic approach for improving the accuracy in some classification algorithms publication-title: Comput Oper Res – volume: 43 start-page: 195 year: 2008 end-page: 206 ident: bib28 article-title: Medical data mining by fuzzy modelling with selected features publication-title: Artif Intell Med – volume: 53 start-page: 3601 year: 2009 end-page: 3615 ident: bib1 article-title: Multiclass classification and gene selection with a stochastic algorithm publication-title: Comput Stat Data Anal – volume: 11 start-page: 2279 year: 2011 end-page: 2285 ident: bib54 article-title: An efficient classifier design integrating rough set and set oriented database operations publication-title: Appl Soft Comput – volume: 46 start-page: 2531 year: 2013 end-page: 2537 ident: bib46 article-title: An iterative SVM approach to feature selection and classification in high-dimensional datasets publication-title: Pattern Recognit – volume: 9 start-page: 102 year: 2008 end-page: 118 ident: bib7 article-title: Approaches to dimensionality reduction in proteomic biomarker studies publication-title: Brief Bioinforma – volume: 62 start-page: 14 year: 2015 end-page: 24 ident: bib19 article-title: Improving PLS–RFE based gene selection for microarray data classification publication-title: Comput Biol Med – volume: 56 start-page: 49 year: 2015 end-page: 60 ident: bib12 article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification publication-title: Comput Biol Chem – volume: 32 start-page: 112 year: 2014 end-page: 123 ident: bib24 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng Appl Artif Intell – volume: 59 start-page: 36 year: 2015 end-page: 50 ident: bib48 article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms publication-title: Neural Netw – volume: 42 start-page: 59 year: 2009 end-page: 65 ident: bib3 article-title: New gene selection method for multi class tumor classification by class centroid publication-title: J Biomed Inform – volume: 2 start-page: 153 year: 2009 end-page: 159 ident: bib26 article-title: Weighted random subspace method for high dimensional data classification publication-title: Stat Interface – volume: 46 start-page: 151 year: 2015 end-page: 163 ident: bib40 article-title: A harmony search algorithm for high-dimensional multimodal optimization problems publication-title: Digit Signal Process – volume: 41 start-page: 2052 year: 2014 end-page: 2064 ident: bib21 article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment publication-title: Expert Syst Appl – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib6 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – reference: ; 2014. – volume: 59 start-page: 31 year: 2016 end-page: 41 ident: bib47 article-title: Gene and sample selection using T-score with sample selection publication-title: J Biomed Inform – volume: 9 start-page: 189 year: 2008 end-page: 197 ident: bib13 article-title: Gene-set approach for expression pattern analysis publication-title: Brief Bioinforma – volume: 43 start-page: 2763 year: 2010 end-page: 2772 ident: bib10 article-title: Ensemble gene selection for cancer classification publication-title: Pattern Recognit – volume: 55 start-page: 140 year: 2014 end-page: 147 ident: bib51 article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier publication-title: Knowl-Based Syst – ident: bib35 – volume: 42 start-page: 4632 year: 2015 end-page: 4642 ident: bib15 article-title: Similarity of feature selection methods: An empirical study across data intensive classification tasks publication-title: Expert Syst Applications – volume: 46 start-page: 594 year: 2013 end-page: 601 ident: bib4 article-title: Selecting significant genes by randomization test for cancer classification using gene expression data publication-title: J Biomed Inform – volume: 168 start-page: 1024 year: 2015 end-page: 1036 ident: bib23 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing – volume: 73 start-page: 311 year: 2015 end-page: 323 ident: bib41 article-title: Novel feature selection method based on harmony search for email classification publication-title: Knowl-Based Syst – volume: 5 start-page: 27 year: 2011 end-page: 34 ident: bib36 article-title: Internal versus External cluster validation indexes publication-title: Int J Comput Commun – volume: 8 start-page: 4 year: 2016 end-page: 15 ident: bib16 article-title: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data publication-title: Genom Data – volume: 258 start-page: 108 year: 2014 end-page: 121 ident: bib38 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inf Sci – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib11 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn – volume: 57 start-page: 1074 year: 2015 end-page: 1080 ident: bib43 article-title: Feature Selection using publication-title: Procedia Comput Sci – volume: 49 start-page: 31 year: 2016 end-page: 47 ident: bib44 article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization publication-title: Expert Syst Appl – reference: Kima C., Lia H., Shinb S.Y., Hwanga K.B., “An efficient and effective wrapper based on paired t-test for learning naive Bayes classifiers from large-scale domains”, 4th International Conference on Computational Systems-Biology and Bioinformatics, pp.102-112, 2013 – reference: Statnikov A., Aliferis C.F, Tsamardinos I., Gems: Gene Expression Model Selector, Available: – volume: 65 start-page: 109 year: 2015 end-page: 115 ident: bib50 article-title: Feature subset selection using Naive Bayes for text classification publication-title: Pattern Recognit Lett – volume: 45 start-page: 3048 year: 2012 end-page: 3060 ident: bib29 article-title: An unsupervised approach to feature discretization and selection publication-title: Pattern Recognit – volume: 39 start-page: 7270 year: 2012 end-page: 7280 ident: bib20 article-title: Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods publication-title: Expert Syst Appl – volume: 1 start-page: 305 year: 2011 end-page: 315 ident: bib37 article-title: Cluster Ensembles publication-title: Wires Min Knowl Discov – volume: 14 start-page: 329 year: 2007 end-page: 366 ident: bib2 article-title: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets publication-title: Data Min Knowl Discov – volume: 40 start-page: 1333 year: 2013 end-page: 1341 ident: bib53 article-title: Classifying patterns with missing values using Multi-Task Learning perceptrons publication-title: Expert Syst Appl – volume: 39 start-page: 3432 year: 2012 end-page: 3437 ident: bib8 article-title: A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy-Maximum Relevance filter method publication-title: Expert Syst Appl – volume: 17–44 start-page: 1 year: 2014 end-page: 9 ident: bib5 article-title: Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions publication-title: BioMed Res Int – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib18 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 18 start-page: 507 year: 2005 end-page: 514 ident: bib32 article-title: Laplacian score for feature selection publication-title: Adv Neural Inf Process System – volume: 17 start-page: 491 year: 2005 end-page: 502 ident: bib14 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans Knowl Data Eng – reference: , 2005. – volume: 27 start-page: 1067 year: 2006 end-page: 1076 ident: bib25 article-title: Random subspace method for multivariate feature selection publication-title: Pattern Recognit Lett – reference: Dataset Repository, Bioinformatics Research Group, available on – volume: 26 start-page: 1818 year: 2013 end-page: 1831 ident: bib42 article-title: “A survey on applications of the harmony search algorithm publication-title: Eng Appl Artif Intell – volume: 218 start-page: 6095 year: 2012 end-page: 6117 ident: bib39 article-title: Novel selection schemes for harmony search publication-title: Appl Math Comput – volume: 35 start-page: 130 year: 2014 end-page: 141 ident: bib45 article-title: A GA-based feature selection approach with an application to handwritten character recognition publication-title: Pattern Recognit Lett – volume: 33 start-page: 1794 year: 2012 end-page: 1804 ident: bib30 article-title: Efficient feature selection filters for high-dimensional data publication-title: Pattern Recognit Lett – volume: 11 start-page: 1146 year: 2014 end-page: 1156 ident: bib31 article-title: Gene selection using locality sensitive Laplacian score publication-title: IEEE/ACM Trans Comput Biol Bioinforma – volume: 17 start-page: 1 year: 2016 end-page: 16 ident: bib9 article-title: Informative gene selection and the direct classification of tumors based on relative simplicity publication-title: BMC Bioinforma – volume: 43 start-page: 729 year: 2013 end-page: 737 ident: bib49 article-title: An ensemble of SVM classifiers based on gene pairs publication-title: Comput Biol Med – reference: AI-Raj Ibrahim M., Jassim S., Cawthome M.A, Langlands K., “Pathway-based Gene Selection for Disease Classification”, International Conference on Information Society (i-Society), pp. 360-365, 2011 – volume: 42 start-page: 59 issue: 1 year: 2009 ident: 10.1016/j.imu.2016.09.003_bib3 article-title: New gene selection method for multi class tumor classification by class centroid publication-title: J Biomed Inform doi: 10.1016/j.jbi.2008.05.011 – start-page: 569 year: 2006 ident: 10.1016/j.imu.2016.09.003_bib27 article-title: Feature selection based on mutual correlation publication-title: Pattern Recognit, Image Anal Appl – volume: 65 start-page: 109 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib50 article-title: Feature subset selection using Naive Bayes for text classification publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2015.07.028 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.imu.2016.09.003_bib6 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – ident: 10.1016/j.imu.2016.09.003_bib17 doi: 10.1109/i-Society18435.2011.5978470 – volume: 46 start-page: 151 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib40 article-title: A harmony search algorithm for high-dimensional multimodal optimization problems publication-title: Digit Signal Process doi: 10.1016/j.dsp.2015.08.008 – volume: 43 start-page: 2763 year: 2010 ident: 10.1016/j.imu.2016.09.003_bib10 article-title: Ensemble gene selection for cancer classification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.02.008 – volume: 17 start-page: 491 issue: 4 year: 2005 ident: 10.1016/j.imu.2016.09.003_bib14 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.66 – volume: 258 start-page: 108 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib38 article-title: Hybridising harmony search with a Markov blanket for gene selection problems publication-title: Inf Sci doi: 10.1016/j.ins.2013.10.012 – volume: 49 start-page: 31 year: 2016 ident: 10.1016/j.imu.2016.09.003_bib44 article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.12.004 – volume: 27 start-page: 1067 issue: 10 year: 2006 ident: 10.1016/j.imu.2016.09.003_bib25 article-title: Random subspace method for multivariate feature selection publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.12.018 – volume: 43 start-page: 195 year: 2008 ident: 10.1016/j.imu.2016.09.003_bib28 article-title: Medical data mining by fuzzy modelling with selected features publication-title: Artif Intell Med doi: 10.1016/j.artmed.2008.04.004 – volume: 168 start-page: 1024 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib23 article-title: Gene selection for microarray data classification using a novel ant colony optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.022 – ident: 10.1016/j.imu.2016.09.003_bib34 – volume: 46 start-page: 594 issue: 4 year: 2013 ident: 10.1016/j.imu.2016.09.003_bib4 article-title: Selecting significant genes by randomization test for cancer classification using gene expression data publication-title: J Biomed Inform doi: 10.1016/j.jbi.2013.03.009 – volume: 11 start-page: 2279 year: 2011 ident: 10.1016/j.imu.2016.09.003_bib54 article-title: An efficient classifier design integrating rough set and set oriented database operations publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.08.008 – volume: 39 start-page: 7270 issue: 8 year: 2012 ident: 10.1016/j.imu.2016.09.003_bib20 article-title: Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.01.096 – volume: 45 start-page: 3048 year: 2012 ident: 10.1016/j.imu.2016.09.003_bib29 article-title: An unsupervised approach to feature discretization and selection publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.12.008 – volume: 5 start-page: 27 issue: 01 year: 2011 ident: 10.1016/j.imu.2016.09.003_bib36 article-title: Internal versus External cluster validation indexes publication-title: Int J Comput Commun – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.imu.2016.09.003_bib11 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn – volume: 32 start-page: 112 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib24 article-title: An unsupervised feature selection algorithm based on ant colony optimization publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.03.007 – volume: 14 start-page: 329 issue: 3 year: 2007 ident: 10.1016/j.imu.2016.09.003_bib2 article-title: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets publication-title: Data Min Knowl Discov doi: 10.1007/s10618-006-0055-5 – volume: 73 start-page: 311 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib41 article-title: Novel feature selection method based on harmony search for email classification publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.10.013 – volume: 53 start-page: 3601 issue: 10 year: 2009 ident: 10.1016/j.imu.2016.09.003_bib1 article-title: Multiclass classification and gene selection with a stochastic algorithm publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.02.028 – volume: 8 start-page: 4 year: 2016 ident: 10.1016/j.imu.2016.09.003_bib16 article-title: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data publication-title: Genom Data doi: 10.1016/j.gdata.2016.02.012 – volume: 33 start-page: 1794 year: 2012 ident: 10.1016/j.imu.2016.09.003_bib30 article-title: Efficient feature selection filters for high-dimensional data publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2012.05.019 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.imu.2016.09.003_bib18 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – ident: 10.1016/j.imu.2016.09.003_bib33 – volume: 17–44 start-page: 1 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib5 article-title: Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions publication-title: BioMed Res Int – volume: 41 start-page: 2052 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib21 article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.004 – volume: 42 start-page: 4632 issue: 10 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib15 article-title: Similarity of feature selection methods: An empirical study across data intensive classification tasks publication-title: Expert Syst Applications doi: 10.1016/j.eswa.2015.01.069 – ident: 10.1016/j.imu.2016.09.003_bib52 doi: 10.1016/j.procs.2013.10.014 – volume: 218 start-page: 6095 issue: 10 year: 2012 ident: 10.1016/j.imu.2016.09.003_bib39 article-title: Novel selection schemes for harmony search publication-title: Appl Math Comput doi: 10.1016/j.amc.2011.11.095 – volume: 1 start-page: 305 year: 2011 ident: 10.1016/j.imu.2016.09.003_bib37 article-title: Cluster Ensembles publication-title: Wires Min Knowl Discov doi: 10.1002/widm.32 – volume: 9 start-page: 189 issue: 3 year: 2008 ident: 10.1016/j.imu.2016.09.003_bib13 article-title: Gene-set approach for expression pattern analysis publication-title: Brief Bioinforma doi: 10.1093/bib/bbn001 – volume: 59 start-page: 31 year: 2016 ident: 10.1016/j.imu.2016.09.003_bib47 article-title: Gene and sample selection using T-score with sample selection publication-title: J Biomed Inform doi: 10.1016/j.jbi.2015.11.003 – volume: 11 start-page: 1146 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib31 article-title: Gene selection using locality sensitive Laplacian score publication-title: IEEE/ACM Trans Comput Biol Bioinforma doi: 10.1109/TCBB.2014.2328334 – volume: 18 start-page: 507 year: 2005 ident: 10.1016/j.imu.2016.09.003_bib32 article-title: Laplacian score for feature selection publication-title: Adv Neural Inf Process System – volume: 40 start-page: 1333 year: 2013 ident: 10.1016/j.imu.2016.09.003_bib53 article-title: Classifying patterns with missing values using Multi-Task Learning perceptrons publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.08.057 – volume: 46 start-page: 2531 issue: 9 year: 2013 ident: 10.1016/j.imu.2016.09.003_bib46 article-title: An iterative SVM approach to feature selection and classification in high-dimensional datasets publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.02.007 – volume: 62 start-page: 14 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib19 article-title: Improving PLS–RFE based gene selection for microarray data classification publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.04.011 – volume: 17 start-page: 1 issue: 44 year: 2016 ident: 10.1016/j.imu.2016.09.003_bib9 article-title: Informative gene selection and the direct classification of tumors based on relative simplicity publication-title: BMC Bioinforma – volume: 9 start-page: 102 issue: 2 year: 2008 ident: 10.1016/j.imu.2016.09.003_bib7 article-title: Approaches to dimensionality reduction in proteomic biomarker studies publication-title: Brief Bioinforma doi: 10.1093/bib/bbn005 – volume: 26 start-page: 1818 issue: 8 year: 2013 ident: 10.1016/j.imu.2016.09.003_bib42 article-title: “A survey on applications of the harmony search algorithm publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.05.008 – volume: 35 start-page: 130 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib45 article-title: A GA-based feature selection approach with an application to handwritten character recognition publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2013.01.026 – volume: 43 start-page: 729 issue: 6 year: 2013 ident: 10.1016/j.imu.2016.09.003_bib49 article-title: An ensemble of SVM classifiers based on gene pairs publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.03.010 – volume: 56 start-page: 49 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib12 article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2015.03.001 – volume: 38 start-page: 174 issue: 1 year: 2011 ident: 10.1016/j.imu.2016.09.003_bib22 article-title: A meta-heuristic approach for improving the accuracy in some classification algorithms publication-title: Comput Oper Res doi: 10.1016/j.cor.2010.04.011 – volume: 2 start-page: 153 issue: 2 year: 2009 ident: 10.1016/j.imu.2016.09.003_bib26 article-title: Weighted random subspace method for high dimensional data classification publication-title: Stat Interface doi: 10.4310/SII.2009.v2.n2.a5 – volume: 39 start-page: 3432 issue: 3 year: 2012 ident: 10.1016/j.imu.2016.09.003_bib8 article-title: A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy-Maximum Relevance filter method publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.09.031 – volume: 59 start-page: 36 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib48 article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms publication-title: Neural Netw doi: 10.1016/j.neunet.2014.06.011 – volume: 57 start-page: 1074 year: 2015 ident: 10.1016/j.imu.2016.09.003_bib43 article-title: Feature Selection using k-Means Genetic Algorithm for Multi-objective Optimization publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.07.387 – volume: 55 start-page: 140 year: 2014 ident: 10.1016/j.imu.2016.09.003_bib51 article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2013.10.016 |
SSID | ssj0001763575 |
Score | 2.0500026 |
Snippet | This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | Gene Selection Genetic Algorithm Harmony Search Algorithm Metaheuristic SVM |
Title | A metaheuristic optimization framework for informative gene selection |
URI | https://dx.doi.org/10.1016/j.imu.2016.09.003 https://doaj.org/article/5ee594544c564edbb81d169b82c2db44 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMTUkSa2E48FtSqQoKJSt0sP86iiLYI0v_P2XGqLMDCkCW52NE9cnf2-TtCbrwuhLMOlbcQPGMGTdHk2mV1IQsNFTAO4ezw07OYzdnjgi96rb5CTVgLD9wy7o4DcMk4Y5YLBs4YDLBGQpq6sIUzLCKBos_rJVNxdSXirPHYWY4XaNGs7rY0Y3HXcrUNZV0iYpx2DbOSU4rY_T3f1PM300NykAJFOm4_8IjswfqYTMZ0BY1-hW0LsEw3aPGrdJSS-q7QimIkShMkavidUdQSoF-x5Q0SnpD5dPLyMMtSI4TMlnVVZkJawbkLhX-YsElvKgOeO59Lh6w0vLLeMuEBLx22TNjI6cqPcgOYjlgD5SkZrDdrOCNUS-8llJhUlMDwsTZC-9pJg3mZ0WCHJO84oWxCCQ_NKt5VVw72ppB5KjBP5TJAiw7J7e6VjxYi4zfi-8DeHWFAt443UOYqyVz9JfMhYZ1wVAoU2gAAh1r-PPf5f8x9QfbDkO0qzCUZNJ9buMK4pDHXUQW_Ae7L4Gs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+metaheuristic+optimization+framework+for+informative+gene+selection&rft.jtitle=Informatics+in+medicine+unlocked&rft.au=Das%2C+Kaberi&rft.au=Mishra%2C+Debahuti&rft.au=Shaw%2C+Kailash&rft.date=2016&rft.pub=Elsevier+Ltd&rft.issn=2352-9148&rft.eissn=2352-9148&rft.volume=4&rft.spage=10&rft.epage=20&rft_id=info:doi/10.1016%2Fj.imu.2016.09.003&rft.externalDocID=S2352914816300223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9148&client=summon |