A metaheuristic optimization framework for informative gene selection

This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitnes...

Full description

Saved in:
Bibliographic Details
Published inInformatics in medicine unlocked Vol. 4; pp. 10 - 20
Main Authors Das, Kaberi, Mishra, Debahuti, Shaw, Kailash
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2016
Elsevier
Subjects
Online AccessGet full text
ISSN2352-9148
2352-9148
DOI10.1016/j.imu.2016.09.003

Cover

Loading…
Abstract This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1–0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. •Due to the iterative nature of the method, it searches a randomly generated greater space and selects a gene subset that will is close to the global optimal solution.•The HS tunes the search by ranking the solutions with respect to their fitness. The improvised solutions generated by HS-GA-SVM are used for adding relevant genes.•Proposed algorithm does not put any restriction on finding predefined number of genes, because the gene subsets are selected on probability in proposed approach.•The most relevant genes present in almost 90% of runs were grouped to form informative genes selected by proposed algorithm since they are the most frequently selected solutions in the final subsets.•The performance of predicted/selected gene subsets (informative genes) from proposed hybridized HS-GA-SVM model has been evaluated for five datasets using six probabilistic measures such as; BCR, F-measure, JI, ARI, NMI, and Purity.
AbstractList This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1â0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. Keywords: Gene Selection, Metaheuristic, Harmony Search Algorithm, Genetic Algorithm, SVM
This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the proposed model broadly works in two phases, in the first phase, the model allows the hybridization of HS with GA to compute and evaluate the fitness of the randomly selected solutions of binary strings and then HS ranks the solutions in descending order of their fitness. In the second phase, the offsprings are generated using crossover and mutation operations of GA and finally, those offsprings were selected for the next generation whose fitness value is more than their parents evaluated by SVM classifier. The accuracy of the final gene subsets obtained from this model has been evaluated using SVM classifiers. The merit of this approach is analyzed by experimental results on five benchmark datasets and the results showed an impressive accuracy over existing feature selection approaches. The occurrence of gene subsets selected from this model have also been computed and the most often selected gene subsets with the probability of [0.1–0.9] have been chosen as optimal sets of informative genes. Finally, the performance of those selected informative gene subsets have been measured and established through probabilistic measures. •Due to the iterative nature of the method, it searches a randomly generated greater space and selects a gene subset that will is close to the global optimal solution.•The HS tunes the search by ranking the solutions with respect to their fitness. The improvised solutions generated by HS-GA-SVM are used for adding relevant genes.•Proposed algorithm does not put any restriction on finding predefined number of genes, because the gene subsets are selected on probability in proposed approach.•The most relevant genes present in almost 90% of runs were grouped to form informative genes selected by proposed algorithm since they are the most frequently selected solutions in the final subsets.•The performance of predicted/selected gene subsets (informative genes) from proposed hybridized HS-GA-SVM model has been evaluated for five datasets using six probabilistic measures such as; BCR, F-measure, JI, ARI, NMI, and Purity.
Author Mishra, Debahuti
Das, Kaberi
Shaw, Kailash
Author_xml – sequence: 1
  givenname: Kaberi
  surname: Das
  fullname: Das, Kaberi
  email: kaberidas@rediffmail.com
  organization: Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
– sequence: 2
  givenname: Debahuti
  surname: Mishra
  fullname: Mishra, Debahuti
  email: mishradebahuti@gmail.com
  organization: Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
– sequence: 3
  givenname: Kailash
  surname: Shaw
  fullname: Shaw, Kailash
  email: kailash.shaw@gmail.com
  organization: Department of Computer Engineering, D.Y. Patil College of Enggineering, Akrudi, Pune, India
BookMark eNp9kM1OAyEURompibX2AdzNC3SEGRiGuGqaqk2auNE14edSqZ2hYaY1-vTS1hjjogvghsv5cjnXaNCGFhC6JTgnmFR369w3u7xIZY5FjnF5gYZFyYqJILQe_Kmv0Ljr1hhjwquScTZE82nWQK_eYBd913uThW3vG_-leh_azEXVwEeI75kLMfNt2pvU2UO2ghayDjZgDg9v0KVTmw7GP-cIvT7MX2ZPk-Xz42I2XU5MWfNyUglTMWZ5XXNeEOE01-CYdVhYBkozbpyhlYO0FC6xoMQq7gjWQGtuNJQjtDjl2qDWcht9o-KnDMrL40WIK6li-sUGJANggjJKDasoWK1rYkkldF2YwmpKUxY5ZZkYui6C-80jWB60yrVMWuVBq8RCJq2J4f8Y4_ujqj4qvzlL3p9ISHr2HqLsjIfWgPUxOUzz-zP0N5dElXs
CitedBy_id crossref_primary_10_1111_jfpe_13236
crossref_primary_10_1109_ACCESS_2019_2922987
crossref_primary_10_1007_s10796_020_10037_0
crossref_primary_10_1016_j_cosrev_2020_100342
crossref_primary_10_1109_ACCESS_2019_2962906
crossref_primary_10_1007_s12652_021_03441_0
crossref_primary_10_1016_j_imu_2017_10_004
crossref_primary_10_7717_peerj_cs_2084
crossref_primary_10_1080_20479700_2021_1886478
crossref_primary_10_1186_s12859_023_05267_3
crossref_primary_10_4018_IJSIR_2019040102
Cites_doi 10.1016/j.jbi.2008.05.011
10.1016/j.patrec.2015.07.028
10.1093/bioinformatics/btm344
10.1109/i-Society18435.2011.5978470
10.1016/j.dsp.2015.08.008
10.1016/j.patcog.2010.02.008
10.1109/TKDE.2005.66
10.1016/j.ins.2013.10.012
10.1016/j.eswa.2015.12.004
10.1016/j.patrec.2005.12.018
10.1016/j.artmed.2008.04.004
10.1016/j.neucom.2015.05.022
10.1016/j.jbi.2013.03.009
10.1016/j.asoc.2010.08.008
10.1016/j.eswa.2012.01.096
10.1016/j.patcog.2011.12.008
10.1016/j.engappai.2014.03.007
10.1007/s10618-006-0055-5
10.1016/j.knosys.2014.10.013
10.1016/j.csda.2009.02.028
10.1016/j.gdata.2016.02.012
10.1016/j.patrec.2012.05.019
10.1016/j.eswa.2013.09.004
10.1016/j.eswa.2015.01.069
10.1016/j.procs.2013.10.014
10.1016/j.amc.2011.11.095
10.1002/widm.32
10.1093/bib/bbn001
10.1016/j.jbi.2015.11.003
10.1109/TCBB.2014.2328334
10.1016/j.eswa.2012.08.057
10.1016/j.patcog.2013.02.007
10.1016/j.compbiomed.2015.04.011
10.1093/bib/bbn005
10.1016/j.engappai.2013.05.008
10.1016/j.patrec.2013.01.026
10.1016/j.compbiomed.2013.03.010
10.1016/j.compbiolchem.2015.03.001
10.1016/j.cor.2010.04.011
10.4310/SII.2009.v2.n2.a5
10.1016/j.eswa.2011.09.031
10.1016/j.neunet.2014.06.011
10.1016/j.procs.2015.07.387
10.1016/j.knosys.2013.10.016
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.imu.2016.09.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-9148
EndPage 20
ExternalDocumentID oai_doaj_org_article_5ee594544c564edbb81d169b82c2db44
10_1016_j_imu_2016_09_003
S2352914816300223
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3873-69c655d78877219fb7bef5df09d5eab57cfc46fe46fa030941da7f10be487cbe3
IEDL.DBID DOA
ISSN 2352-9148
IngestDate Wed Aug 27 01:29:46 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Thu Jul 03 08:41:02 EDT 2025
Wed May 17 01:43:10 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic
SVM
Harmony Search Algorithm
Gene Selection
Genetic Algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3873-69c655d78877219fb7bef5df09d5eab57cfc46fe46fa030941da7f10be487cbe3
OpenAccessLink https://doaj.org/article/5ee594544c564edbb81d169b82c2db44
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5ee594544c564edbb81d169b82c2db44
crossref_primary_10_1016_j_imu_2016_09_003
crossref_citationtrail_10_1016_j_imu_2016_09_003
elsevier_sciencedirect_doi_10_1016_j_imu_2016_09_003
PublicationCentury 2000
PublicationDate 2016
2016-00-00
2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Informatics in medicine unlocked
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References AI-Raj Ibrahim M., Jassim S., Cawthome M.A, Langlands K., “Pathway-based Gene Selection for Disease Classification”, International Conference on Information Society (i-Society), pp. 360-365, 2011
Saeys, Inza, Larranaga (bib6) 2007; 23
bib35
OkanSakar, Kursun, Gurgen (bib8) 2012; 39
Dataset Repository, Bioinformatics Research Group, available on
Ghazavi, Liao (bib28) 2008; 43
Zhang, Li, Luo, Sun, Chen, Dai, Yuan (bib5) 2014; 17–44
Das, Sil (bib54) 2011; 11
Wang, Liu, Feng, Zhu (bib41) 2015; 73
2005.
Al-Betar, Abu Doush, Khader, Awadallah (bib39) 2012; 218
Chen, Wang, Li, Zhang, Yuan (bib9) 2016; 17
Statnikov A., Aliferis C.F, Tsamardinos I., Gems: Gene Expression Model Selector, Available
Rendón, Abundez, Arizmendi, Quiroz (bib36) 2011; 5
Aziz, Verma, Srivastava (bib16) 2016; 8
Li, Zhao (bib26) 2009; 2
Liao, Jiang, Liang, Zhu, Cai, Cao (bib31) 2014; 11
Ferreira, Figueiredo (bib30) 2012; 33
Liu, Qian, Dai, Zhang (bib46) 2013; 46
Pham, Triantaphyllou (bib22) 2011; 38
García-Laencina, Sancho-Gómez, Figueiras-Vidal (bib53) 2013; 40
Bermejo, Gámez, Puerta (bib51) 2014; 55
Tong, Liu, Xu, Ju (bib49) 2013; 43
Kima C., Lia H., Shinb S.Y., Hwanga K.B., “An efficient and effective wrapper based on paired t-test for learning naive Bayes classifiers from large-scale domains”, 4th International Conference on Computational Systems-Biology and Bioinformatics, pp.102-112, 2013
Dessì, Pes (bib15) 2015; 42
2014.
He, Cai, Niyogi (bib32) 2005; 18
Hilario, Kalousis (bib7) 2008; 9
Wang, An, Chen, Li, Alterovitz (bib19) 2015; 62
Shen, Shi, Kong (bib3) 2009; 42
Ghosh, Acharya (bib37) 2011; 1
Haindl, Somol, Ververidis, Kotropoulos (bib27) 2006
Mundra, Rajapakse (bib47) 2016; 59
Mao, Cai, Shao (bib4) 2013; 46
Ferreira, Figueiredo (bib29) 2012; 45
Ghareb, Abu Bakar, Razak Hamdan (bib44) 2016; 49
Weston, Barnhill, Vapnik (bib11) 2002; 46
Oreski, Oreski (bib21) 2014; 41
Anushaa, Sathiaseelan (bib43) 2015; 57
Tuo, Zhang, Yong, Yuan, Liu, Xu, Deng (bib40) 2015; 46
Tabakhi, Moradi, Akhlaghian (bib24) 2014; 32
Fenga, Guoa, Jingc, Sunb (bib50) 2015; 65
Shreem, Abdullah, Nazri (bib38) 2014; 258
Alonso-González, Moro-Sancho, Simon-Hurtado, Varela-Arrabal (bib20) 2012; 39
Alshamlan, Badr, Alohali (bib12) 2015; 56
Liu, Yu (bib14) 2005; 17
Thi, Vo, Dinh (bib48) 2015; 59
Ooi, Chetty, Teng (bib2) 2007; 14
De Stefano, Fontanella, Marrocco, Scotto di Freca (bib45) 2014; 35
Liu, Liu, Zhang (bib10) 2010; 43
Lai, Reinders, Wessels (bib25) 2006; 27
Manjarres, Landa-Torres, Gil-Lopez, Del Ser, Bilbao, Salcedo-Sanz, Geem (bib42) 2013; 26
Saeys, Inza, Larranaga (bib18) 2007; 23
Cao, Bonnet, Gadat (bib1) 2009; 53
Nam, Kim (bib13) 2008; 9
Tabakhi, Najafi, Ranjbar, Moradi (bib23) 2015; 168
Fenga (10.1016/j.imu.2016.09.003_bib50) 2015; 65
Ferreira (10.1016/j.imu.2016.09.003_bib30) 2012; 33
Shen (10.1016/j.imu.2016.09.003_bib3) 2009; 42
Li (10.1016/j.imu.2016.09.003_bib26) 2009; 2
Nam (10.1016/j.imu.2016.09.003_bib13) 2008; 9
Hilario (10.1016/j.imu.2016.09.003_bib7) 2008; 9
Al-Betar (10.1016/j.imu.2016.09.003_bib39) 2012; 218
De Stefano (10.1016/j.imu.2016.09.003_bib45) 2014; 35
He (10.1016/j.imu.2016.09.003_bib32) 2005; 18
10.1016/j.imu.2016.09.003_bib52
Shreem (10.1016/j.imu.2016.09.003_bib38) 2014; 258
Tabakhi (10.1016/j.imu.2016.09.003_bib24) 2014; 32
Tuo (10.1016/j.imu.2016.09.003_bib40) 2015; 46
Mundra (10.1016/j.imu.2016.09.003_bib47) 2016; 59
Lai (10.1016/j.imu.2016.09.003_bib25) 2006; 27
10.1016/j.imu.2016.09.003_bib17
Pham (10.1016/j.imu.2016.09.003_bib22) 2011; 38
Chen (10.1016/j.imu.2016.09.003_bib9) 2016; 17
Ooi (10.1016/j.imu.2016.09.003_bib2) 2007; 14
Weston (10.1016/j.imu.2016.09.003_bib11) 2002; 46
Rendón (10.1016/j.imu.2016.09.003_bib36) 2011; 5
Bermejo (10.1016/j.imu.2016.09.003_bib51) 2014; 55
Wang (10.1016/j.imu.2016.09.003_bib19) 2015; 62
Manjarres (10.1016/j.imu.2016.09.003_bib42) 2013; 26
Thi (10.1016/j.imu.2016.09.003_bib48) 2015; 59
García-Laencina (10.1016/j.imu.2016.09.003_bib53) 2013; 40
Liu (10.1016/j.imu.2016.09.003_bib10) 2010; 43
Liao (10.1016/j.imu.2016.09.003_bib31) 2014; 11
Ferreira (10.1016/j.imu.2016.09.003_bib29) 2012; 45
Zhang (10.1016/j.imu.2016.09.003_bib5) 2014; 17–44
Ghazavi (10.1016/j.imu.2016.09.003_bib28) 2008; 43
Liu (10.1016/j.imu.2016.09.003_bib14) 2005; 17
Dessì (10.1016/j.imu.2016.09.003_bib15) 2015; 42
Mao (10.1016/j.imu.2016.09.003_bib4) 2013; 46
Wang (10.1016/j.imu.2016.09.003_bib41) 2015; 73
10.1016/j.imu.2016.09.003_bib34
10.1016/j.imu.2016.09.003_bib33
Oreski (10.1016/j.imu.2016.09.003_bib21) 2014; 41
Liu (10.1016/j.imu.2016.09.003_bib46) 2013; 46
Cao (10.1016/j.imu.2016.09.003_bib1) 2009; 53
Haindl (10.1016/j.imu.2016.09.003_bib27) 2006
Tong (10.1016/j.imu.2016.09.003_bib49) 2013; 43
Alshamlan (10.1016/j.imu.2016.09.003_bib12) 2015; 56
Saeys (10.1016/j.imu.2016.09.003_bib6) 2007; 23
Anushaa (10.1016/j.imu.2016.09.003_bib43) 2015; 57
Das (10.1016/j.imu.2016.09.003_bib54) 2011; 11
Saeys (10.1016/j.imu.2016.09.003_bib18) 2007; 23
OkanSakar (10.1016/j.imu.2016.09.003_bib8) 2012; 39
Ghosh (10.1016/j.imu.2016.09.003_bib37) 2011; 1
Tabakhi (10.1016/j.imu.2016.09.003_bib23) 2015; 168
Ghareb (10.1016/j.imu.2016.09.003_bib44) 2016; 49
Alonso-González (10.1016/j.imu.2016.09.003_bib20) 2012; 39
Aziz (10.1016/j.imu.2016.09.003_bib16) 2016; 8
References_xml – start-page: 569
  year: 2006
  end-page: 577
  ident: bib27
  article-title: Feature selection based on mutual correlation
  publication-title: Pattern Recognit, Image Anal Appl
– volume: 38
  start-page: 174
  year: 2011
  end-page: 189
  ident: bib22
  article-title: A meta-heuristic approach for improving the accuracy in some classification algorithms
  publication-title: Comput Oper Res
– volume: 43
  start-page: 195
  year: 2008
  end-page: 206
  ident: bib28
  article-title: Medical data mining by fuzzy modelling with selected features
  publication-title: Artif Intell Med
– volume: 53
  start-page: 3601
  year: 2009
  end-page: 3615
  ident: bib1
  article-title: Multiclass classification and gene selection with a stochastic algorithm
  publication-title: Comput Stat Data Anal
– volume: 11
  start-page: 2279
  year: 2011
  end-page: 2285
  ident: bib54
  article-title: An efficient classifier design integrating rough set and set oriented database operations
  publication-title: Appl Soft Comput
– volume: 46
  start-page: 2531
  year: 2013
  end-page: 2537
  ident: bib46
  article-title: An iterative SVM approach to feature selection and classification in high-dimensional datasets
  publication-title: Pattern Recognit
– volume: 9
  start-page: 102
  year: 2008
  end-page: 118
  ident: bib7
  article-title: Approaches to dimensionality reduction in proteomic biomarker studies
  publication-title: Brief Bioinforma
– volume: 62
  start-page: 14
  year: 2015
  end-page: 24
  ident: bib19
  article-title: Improving PLS–RFE based gene selection for microarray data classification
  publication-title: Comput Biol Med
– volume: 56
  start-page: 49
  year: 2015
  end-page: 60
  ident: bib12
  article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification
  publication-title: Comput Biol Chem
– volume: 32
  start-page: 112
  year: 2014
  end-page: 123
  ident: bib24
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng Appl Artif Intell
– volume: 59
  start-page: 36
  year: 2015
  end-page: 50
  ident: bib48
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
  publication-title: Neural Netw
– volume: 42
  start-page: 59
  year: 2009
  end-page: 65
  ident: bib3
  article-title: New gene selection method for multi class tumor classification by class centroid
  publication-title: J Biomed Inform
– volume: 2
  start-page: 153
  year: 2009
  end-page: 159
  ident: bib26
  article-title: Weighted random subspace method for high dimensional data classification
  publication-title: Stat Interface
– volume: 46
  start-page: 151
  year: 2015
  end-page: 163
  ident: bib40
  article-title: A harmony search algorithm for high-dimensional multimodal optimization problems
  publication-title: Digit Signal Process
– volume: 41
  start-page: 2052
  year: 2014
  end-page: 2064
  ident: bib21
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst Appl
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib6
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– reference: ; 2014.
– volume: 59
  start-page: 31
  year: 2016
  end-page: 41
  ident: bib47
  article-title: Gene and sample selection using T-score with sample selection
  publication-title: J Biomed Inform
– volume: 9
  start-page: 189
  year: 2008
  end-page: 197
  ident: bib13
  article-title: Gene-set approach for expression pattern analysis
  publication-title: Brief Bioinforma
– volume: 43
  start-page: 2763
  year: 2010
  end-page: 2772
  ident: bib10
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognit
– volume: 55
  start-page: 140
  year: 2014
  end-page: 147
  ident: bib51
  article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier
  publication-title: Knowl-Based Syst
– ident: bib35
– volume: 42
  start-page: 4632
  year: 2015
  end-page: 4642
  ident: bib15
  article-title: Similarity of feature selection methods: An empirical study across data intensive classification tasks
  publication-title: Expert Syst Applications
– volume: 46
  start-page: 594
  year: 2013
  end-page: 601
  ident: bib4
  article-title: Selecting significant genes by randomization test for cancer classification using gene expression data
  publication-title: J Biomed Inform
– volume: 168
  start-page: 1024
  year: 2015
  end-page: 1036
  ident: bib23
  article-title: Gene selection for microarray data classification using a novel ant colony optimization
  publication-title: Neurocomputing
– volume: 73
  start-page: 311
  year: 2015
  end-page: 323
  ident: bib41
  article-title: Novel feature selection method based on harmony search for email classification
  publication-title: Knowl-Based Syst
– volume: 5
  start-page: 27
  year: 2011
  end-page: 34
  ident: bib36
  article-title: Internal versus External cluster validation indexes
  publication-title: Int J Comput Commun
– volume: 8
  start-page: 4
  year: 2016
  end-page: 15
  ident: bib16
  article-title: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data
  publication-title: Genom Data
– volume: 258
  start-page: 108
  year: 2014
  end-page: 121
  ident: bib38
  article-title: Hybridising harmony search with a Markov blanket for gene selection problems
  publication-title: Inf Sci
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib11
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
– volume: 57
  start-page: 1074
  year: 2015
  end-page: 1080
  ident: bib43
  article-title: Feature Selection using
  publication-title: Procedia Comput Sci
– volume: 49
  start-page: 31
  year: 2016
  end-page: 47
  ident: bib44
  article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization
  publication-title: Expert Syst Appl
– reference: Kima C., Lia H., Shinb S.Y., Hwanga K.B., “An efficient and effective wrapper based on paired t-test for learning naive Bayes classifiers from large-scale domains”, 4th International Conference on Computational Systems-Biology and Bioinformatics, pp.102-112, 2013
– reference: Statnikov A., Aliferis C.F, Tsamardinos I., Gems: Gene Expression Model Selector, Available:
– volume: 65
  start-page: 109
  year: 2015
  end-page: 115
  ident: bib50
  article-title: Feature subset selection using Naive Bayes for text classification
  publication-title: Pattern Recognit Lett
– volume: 45
  start-page: 3048
  year: 2012
  end-page: 3060
  ident: bib29
  article-title: An unsupervised approach to feature discretization and selection
  publication-title: Pattern Recognit
– volume: 39
  start-page: 7270
  year: 2012
  end-page: 7280
  ident: bib20
  article-title: Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods
  publication-title: Expert Syst Appl
– volume: 1
  start-page: 305
  year: 2011
  end-page: 315
  ident: bib37
  article-title: Cluster Ensembles
  publication-title: Wires Min Knowl Discov
– volume: 14
  start-page: 329
  year: 2007
  end-page: 366
  ident: bib2
  article-title: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets
  publication-title: Data Min Knowl Discov
– volume: 40
  start-page: 1333
  year: 2013
  end-page: 1341
  ident: bib53
  article-title: Classifying patterns with missing values using Multi-Task Learning perceptrons
  publication-title: Expert Syst Appl
– volume: 39
  start-page: 3432
  year: 2012
  end-page: 3437
  ident: bib8
  article-title: A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy-Maximum Relevance filter method
  publication-title: Expert Syst Appl
– volume: 17–44
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib5
  article-title: Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions
  publication-title: BioMed Res Int
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib18
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 18
  start-page: 507
  year: 2005
  end-page: 514
  ident: bib32
  article-title: Laplacian score for feature selection
  publication-title: Adv Neural Inf Process System
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: bib14
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans Knowl Data Eng
– reference: , 2005.
– volume: 27
  start-page: 1067
  year: 2006
  end-page: 1076
  ident: bib25
  article-title: Random subspace method for multivariate feature selection
  publication-title: Pattern Recognit Lett
– reference: Dataset Repository, Bioinformatics Research Group, available on
– volume: 26
  start-page: 1818
  year: 2013
  end-page: 1831
  ident: bib42
  article-title: “A survey on applications of the harmony search algorithm
  publication-title: Eng Appl Artif Intell
– volume: 218
  start-page: 6095
  year: 2012
  end-page: 6117
  ident: bib39
  article-title: Novel selection schemes for harmony search
  publication-title: Appl Math Comput
– volume: 35
  start-page: 130
  year: 2014
  end-page: 141
  ident: bib45
  article-title: A GA-based feature selection approach with an application to handwritten character recognition
  publication-title: Pattern Recognit Lett
– volume: 33
  start-page: 1794
  year: 2012
  end-page: 1804
  ident: bib30
  article-title: Efficient feature selection filters for high-dimensional data
  publication-title: Pattern Recognit Lett
– volume: 11
  start-page: 1146
  year: 2014
  end-page: 1156
  ident: bib31
  article-title: Gene selection using locality sensitive Laplacian score
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
– volume: 17
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib9
  article-title: Informative gene selection and the direct classification of tumors based on relative simplicity
  publication-title: BMC Bioinforma
– volume: 43
  start-page: 729
  year: 2013
  end-page: 737
  ident: bib49
  article-title: An ensemble of SVM classifiers based on gene pairs
  publication-title: Comput Biol Med
– reference: AI-Raj Ibrahim M., Jassim S., Cawthome M.A, Langlands K., “Pathway-based Gene Selection for Disease Classification”, International Conference on Information Society (i-Society), pp. 360-365, 2011
– volume: 42
  start-page: 59
  issue: 1
  year: 2009
  ident: 10.1016/j.imu.2016.09.003_bib3
  article-title: New gene selection method for multi class tumor classification by class centroid
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.05.011
– start-page: 569
  year: 2006
  ident: 10.1016/j.imu.2016.09.003_bib27
  article-title: Feature selection based on mutual correlation
  publication-title: Pattern Recognit, Image Anal Appl
– volume: 65
  start-page: 109
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib50
  article-title: Feature subset selection using Naive Bayes for text classification
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2015.07.028
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.imu.2016.09.003_bib6
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– ident: 10.1016/j.imu.2016.09.003_bib17
  doi: 10.1109/i-Society18435.2011.5978470
– volume: 46
  start-page: 151
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib40
  article-title: A harmony search algorithm for high-dimensional multimodal optimization problems
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2015.08.008
– volume: 43
  start-page: 2763
  year: 2010
  ident: 10.1016/j.imu.2016.09.003_bib10
  article-title: Ensemble gene selection for cancer classification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.02.008
– volume: 17
  start-page: 491
  issue: 4
  year: 2005
  ident: 10.1016/j.imu.2016.09.003_bib14
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.66
– volume: 258
  start-page: 108
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib38
  article-title: Hybridising harmony search with a Markov blanket for gene selection problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.10.012
– volume: 49
  start-page: 31
  year: 2016
  ident: 10.1016/j.imu.2016.09.003_bib44
  article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.12.004
– volume: 27
  start-page: 1067
  issue: 10
  year: 2006
  ident: 10.1016/j.imu.2016.09.003_bib25
  article-title: Random subspace method for multivariate feature selection
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.12.018
– volume: 43
  start-page: 195
  year: 2008
  ident: 10.1016/j.imu.2016.09.003_bib28
  article-title: Medical data mining by fuzzy modelling with selected features
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2008.04.004
– volume: 168
  start-page: 1024
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib23
  article-title: Gene selection for microarray data classification using a novel ant colony optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.022
– ident: 10.1016/j.imu.2016.09.003_bib34
– volume: 46
  start-page: 594
  issue: 4
  year: 2013
  ident: 10.1016/j.imu.2016.09.003_bib4
  article-title: Selecting significant genes by randomization test for cancer classification using gene expression data
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2013.03.009
– volume: 11
  start-page: 2279
  year: 2011
  ident: 10.1016/j.imu.2016.09.003_bib54
  article-title: An efficient classifier design integrating rough set and set oriented database operations
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.08.008
– volume: 39
  start-page: 7270
  issue: 8
  year: 2012
  ident: 10.1016/j.imu.2016.09.003_bib20
  article-title: Microarray gene expression classification with few genes: Criteria to combine attribute selection and classification methods
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.01.096
– volume: 45
  start-page: 3048
  year: 2012
  ident: 10.1016/j.imu.2016.09.003_bib29
  article-title: An unsupervised approach to feature discretization and selection
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.12.008
– volume: 5
  start-page: 27
  issue: 01
  year: 2011
  ident: 10.1016/j.imu.2016.09.003_bib36
  article-title: Internal versus External cluster validation indexes
  publication-title: Int J Comput Commun
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.imu.2016.09.003_bib11
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
– volume: 32
  start-page: 112
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib24
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.03.007
– volume: 14
  start-page: 329
  issue: 3
  year: 2007
  ident: 10.1016/j.imu.2016.09.003_bib2
  article-title: Differential prioritization in feature selection and classifier aggregation for multiclass microarray datasets
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-006-0055-5
– volume: 73
  start-page: 311
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib41
  article-title: Novel feature selection method based on harmony search for email classification
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.10.013
– volume: 53
  start-page: 3601
  issue: 10
  year: 2009
  ident: 10.1016/j.imu.2016.09.003_bib1
  article-title: Multiclass classification and gene selection with a stochastic algorithm
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.02.028
– volume: 8
  start-page: 4
  year: 2016
  ident: 10.1016/j.imu.2016.09.003_bib16
  article-title: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data
  publication-title: Genom Data
  doi: 10.1016/j.gdata.2016.02.012
– volume: 33
  start-page: 1794
  year: 2012
  ident: 10.1016/j.imu.2016.09.003_bib30
  article-title: Efficient feature selection filters for high-dimensional data
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2012.05.019
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.imu.2016.09.003_bib18
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– ident: 10.1016/j.imu.2016.09.003_bib33
– volume: 17–44
  start-page: 1
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib5
  article-title: Informative Gene Selection and Direct Classification of Tumor Based on Chi-Square Test of Pairwise Gene Interactions
  publication-title: BioMed Res Int
– volume: 41
  start-page: 2052
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib21
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.004
– volume: 42
  start-page: 4632
  issue: 10
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib15
  article-title: Similarity of feature selection methods: An empirical study across data intensive classification tasks
  publication-title: Expert Syst Applications
  doi: 10.1016/j.eswa.2015.01.069
– ident: 10.1016/j.imu.2016.09.003_bib52
  doi: 10.1016/j.procs.2013.10.014
– volume: 218
  start-page: 6095
  issue: 10
  year: 2012
  ident: 10.1016/j.imu.2016.09.003_bib39
  article-title: Novel selection schemes for harmony search
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.11.095
– volume: 1
  start-page: 305
  year: 2011
  ident: 10.1016/j.imu.2016.09.003_bib37
  article-title: Cluster Ensembles
  publication-title: Wires Min Knowl Discov
  doi: 10.1002/widm.32
– volume: 9
  start-page: 189
  issue: 3
  year: 2008
  ident: 10.1016/j.imu.2016.09.003_bib13
  article-title: Gene-set approach for expression pattern analysis
  publication-title: Brief Bioinforma
  doi: 10.1093/bib/bbn001
– volume: 59
  start-page: 31
  year: 2016
  ident: 10.1016/j.imu.2016.09.003_bib47
  article-title: Gene and sample selection using T-score with sample selection
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.11.003
– volume: 11
  start-page: 1146
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib31
  article-title: Gene selection using locality sensitive Laplacian score
  publication-title: IEEE/ACM Trans Comput Biol Bioinforma
  doi: 10.1109/TCBB.2014.2328334
– volume: 18
  start-page: 507
  year: 2005
  ident: 10.1016/j.imu.2016.09.003_bib32
  article-title: Laplacian score for feature selection
  publication-title: Adv Neural Inf Process System
– volume: 40
  start-page: 1333
  year: 2013
  ident: 10.1016/j.imu.2016.09.003_bib53
  article-title: Classifying patterns with missing values using Multi-Task Learning perceptrons
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.08.057
– volume: 46
  start-page: 2531
  issue: 9
  year: 2013
  ident: 10.1016/j.imu.2016.09.003_bib46
  article-title: An iterative SVM approach to feature selection and classification in high-dimensional datasets
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.02.007
– volume: 62
  start-page: 14
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib19
  article-title: Improving PLS–RFE based gene selection for microarray data classification
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.04.011
– volume: 17
  start-page: 1
  issue: 44
  year: 2016
  ident: 10.1016/j.imu.2016.09.003_bib9
  article-title: Informative gene selection and the direct classification of tumors based on relative simplicity
  publication-title: BMC Bioinforma
– volume: 9
  start-page: 102
  issue: 2
  year: 2008
  ident: 10.1016/j.imu.2016.09.003_bib7
  article-title: Approaches to dimensionality reduction in proteomic biomarker studies
  publication-title: Brief Bioinforma
  doi: 10.1093/bib/bbn005
– volume: 26
  start-page: 1818
  issue: 8
  year: 2013
  ident: 10.1016/j.imu.2016.09.003_bib42
  article-title: “A survey on applications of the harmony search algorithm
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.05.008
– volume: 35
  start-page: 130
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib45
  article-title: A GA-based feature selection approach with an application to handwritten character recognition
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2013.01.026
– volume: 43
  start-page: 729
  issue: 6
  year: 2013
  ident: 10.1016/j.imu.2016.09.003_bib49
  article-title: An ensemble of SVM classifiers based on gene pairs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.03.010
– volume: 56
  start-page: 49
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib12
  article-title: Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2015.03.001
– volume: 38
  start-page: 174
  issue: 1
  year: 2011
  ident: 10.1016/j.imu.2016.09.003_bib22
  article-title: A meta-heuristic approach for improving the accuracy in some classification algorithms
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2010.04.011
– volume: 2
  start-page: 153
  issue: 2
  year: 2009
  ident: 10.1016/j.imu.2016.09.003_bib26
  article-title: Weighted random subspace method for high dimensional data classification
  publication-title: Stat Interface
  doi: 10.4310/SII.2009.v2.n2.a5
– volume: 39
  start-page: 3432
  issue: 3
  year: 2012
  ident: 10.1016/j.imu.2016.09.003_bib8
  article-title: A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy-Maximum Relevance filter method
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.09.031
– volume: 59
  start-page: 36
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib48
  article-title: Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.06.011
– volume: 57
  start-page: 1074
  year: 2015
  ident: 10.1016/j.imu.2016.09.003_bib43
  article-title: Feature Selection using k-Means Genetic Algorithm for Multi-objective Optimization
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.07.387
– volume: 55
  start-page: 140
  year: 2014
  ident: 10.1016/j.imu.2016.09.003_bib51
  article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2013.10.016
SSID ssj0001763575
Score 2.0500026
Snippet This paper presents a metaheuristic framework using Harmony Search (HS) with Genetic Algorithm (GA) for gene selection. The internal architecture of the...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Gene Selection
Genetic Algorithm
Harmony Search Algorithm
Metaheuristic
SVM
Title A metaheuristic optimization framework for informative gene selection
URI https://dx.doi.org/10.1016/j.imu.2016.09.003
https://doaj.org/article/5ee594544c564edbb81d169b82c2db44
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMTUkSa2E48FtSqQoKJSt0sP86iiLYI0v_P2XGqLMDCkCW52NE9cnf2-TtCbrwuhLMOlbcQPGMGTdHk2mV1IQsNFTAO4ezw07OYzdnjgi96rb5CTVgLD9wy7o4DcMk4Y5YLBs4YDLBGQpq6sIUzLCKBos_rJVNxdSXirPHYWY4XaNGs7rY0Y3HXcrUNZV0iYpx2DbOSU4rY_T3f1PM300NykAJFOm4_8IjswfqYTMZ0BY1-hW0LsEw3aPGrdJSS-q7QimIkShMkavidUdQSoF-x5Q0SnpD5dPLyMMtSI4TMlnVVZkJawbkLhX-YsElvKgOeO59Lh6w0vLLeMuEBLx22TNjI6cqPcgOYjlgD5SkZrDdrOCNUS-8llJhUlMDwsTZC-9pJg3mZ0WCHJO84oWxCCQ_NKt5VVw72ppB5KjBP5TJAiw7J7e6VjxYi4zfi-8DeHWFAt443UOYqyVz9JfMhYZ1wVAoU2gAAh1r-PPf5f8x9QfbDkO0qzCUZNJ9buMK4pDHXUQW_Ae7L4Gs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+metaheuristic+optimization+framework+for+informative+gene+selection&rft.jtitle=Informatics+in+medicine+unlocked&rft.au=Das%2C+Kaberi&rft.au=Mishra%2C+Debahuti&rft.au=Shaw%2C+Kailash&rft.date=2016&rft.pub=Elsevier+Ltd&rft.issn=2352-9148&rft.eissn=2352-9148&rft.volume=4&rft.spage=10&rft.epage=20&rft_id=info:doi/10.1016%2Fj.imu.2016.09.003&rft.externalDocID=S2352914816300223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9148&client=summon