Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data
We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet proce...
Saved in:
Published in | Statistics in medicine Vol. 34; no. 5; pp. 824 - 843 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
28.02.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew–normal distribution to specify the within‐subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis–Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within‐subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew–normal distribution to specify the within‐subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis–Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within‐subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. Copyright © 2014 John Wiley & Sons, Ltd. |
Author | Tang, An-Min Tang, Nian-Sheng |
Author_xml | – sequence: 1 givenname: An-Min surname: Tang fullname: Tang, An-Min organization: Department of Statistics, Yunnan University, Yunnan, 650091, Kunming, China – sequence: 2 givenname: Nian-Sheng surname: Tang fullname: Tang, Nian-Sheng email: Correspondence to: Nian-Sheng Tang, Department of Statistics, Yunnan University, Kunming, Yunnan 650091, China., nstang@ynu.edu.cn organization: Department of Statistics, Yunnan University, Yunnan, 650091, Kunming, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25404574$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1v1DAQBmALFdFtQeIXIEtcuGTxR2InR1h120oLHAriaDnOpPLWH4vttOy_J6uWIio4-eBnxp55T9BRiAEQek3JkhLC3mfrl4JL_gwtKOlkRVjTHqEFYVJWQtLmGJ3kvCWE0obJF-iYNTWpG1kvULgCb3c6aQ8lWYM_6j1kqwO2YYQEwQCOAecbuKtCTF47vI02FOzjAM6GaxxH7CdX7K1OVhfALoZrW6bBhtnqMOA8pdv51uFBF_0SPR-1y_Dq4TxF39ZnX1cX1ebL-eXqw6YyvJW8YqIDIXotOkOHkfaEGcYNAz0PMAIBLQgfayGHVhrSUdr1IzEtaYQQtGej4Kfo3X3fXYo_JshFeZsNOKcDxCkrKhpW17SVB_r2Cd3GKc2_PyhBpGh53c3qzYOaeg-D2iXrddqr35v886JJMecE4yOhRB1CUnNI6hDSTJdPqLFFFxtDSdq6fxVU9wV31sH-v43V1eWnv73NBX4-ep1ulJBcNur753N1seLrTq7WasN_ATm_sZY |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1016_j_schres_2018_07_002 crossref_primary_10_1186_s12874_020_00976_2 crossref_primary_10_1146_annurev_statistics_030718_105048 crossref_primary_10_1016_j_jmva_2018_03_007 crossref_primary_10_1002_pst_2082 crossref_primary_10_1080_00949655_2018_1462813 crossref_primary_10_1080_02331888_2022_2121399 crossref_primary_10_1002_sim_9923 crossref_primary_10_3390_axioms13120849 crossref_primary_10_1007_s10985_023_09608_5 crossref_primary_10_1007_s40304_022_00320_8 crossref_primary_10_1080_24754269_2022_2107974 crossref_primary_10_3390_math10244816 crossref_primary_10_1002_mpr_1588 crossref_primary_10_1214_24_AOAS1902 crossref_primary_10_1007_s00180_023_01384_y crossref_primary_10_1186_s12874_016_0212_5 crossref_primary_10_1080_00273171_2017_1407233 crossref_primary_10_1002_bimj_201600224 crossref_primary_10_1080_03610918_2019_1665687 crossref_primary_10_1093_genetics_iyad119 crossref_primary_10_1002_sim_8328 crossref_primary_10_1177_09622802231181767 crossref_primary_10_1515_ijb_2017_0047 crossref_primary_10_1515_sagmb_2023_0038 crossref_primary_10_7717_peerj_2582 crossref_primary_10_1007_s11464_022_1004_3 crossref_primary_10_1002_sim_8985 crossref_primary_10_1080_02664763_2022_2096209 |
Cites_doi | 10.1198/016214501753208591 10.1002/bimj.200810491 10.1348/000711010X497262 10.1080/01621459.1995.10476485 10.1002/sim.3562 10.2307/2533439 10.2307/3316064 10.1007/s11336-006-1177-1 10.1016/j.csda.2010.03.025 10.1111/j.1541-0420.2007.00896.x 10.1111/j.1467-9868.2008.00704.x 10.1002/bimj.201200272 10.4310/SII.2010.v3.n2.a6 10.1002/sim.4205 10.1111/j.1541-0420.2012.01745.x 10.1198/jcgs.2010.09094 10.1080/01621459.1987.10478458 10.1111/j.1541-0420.2005.00448.x 10.1007/s11336-007-9010-7 10.1002/sim.4507 10.1002/sim.6065 10.1093/biomet/asr009 10.1093/biostatistics/3.4.511 10.1111/j.1541-0420.2007.00890.x 10.1214/ss/1038425655 10.1111/j.1541-0420.2012.01823.x 10.1017/CBO9780511755453 10.1109/TPAMI.1984.4767596 10.1198/1061860043010 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Feb 28, 2015 |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Feb 28, 2015 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.6373 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 843 |
ExternalDocumentID | 3615255591 25404574 10_1002_sim_6373 SIM6373 ark_67375_WNG_HC3F97CF_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3873-269e66ba69c1df1b02c23c2ea115fe0ea603f467d87c09119bf0c8056661b2f63 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 06:49:12 EDT 2025 Fri Jul 25 04:40:01 EDT 2025 Mon Jul 21 05:37:37 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Tue Jul 01 03:28:07 EDT 2025 Wed Jan 22 16:46:47 EST 2025 Wed Oct 30 09:52:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Bayesian local influence analysis skew-normal distribution survival data joint models centered Dirichlet process prior |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3873-269e66ba69c1df1b02c23c2ea115fe0ea603f467d87c09119bf0c8056661b2f63 |
Notes | Supporting info item ark:/67375/WNG-HC3F97CF-L ArticleID:SIM6373 istex:8575A01EF3ACD799EBC3127F6E7B16F2FD652E6B SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25404574 |
PQID | 1660768349 |
PQPubID | 48361 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1652441876 proquest_journals_1660768349 pubmed_primary_25404574 crossref_primary_10_1002_sim_6373 crossref_citationtrail_10_1002_sim_6373 wiley_primary_10_1002_sim_6373_SIM6373 istex_primary_ark_67375_WNG_HC3F97CF_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 February 2015 |
PublicationDateYYYYMMDD | 2015-02-28 |
PublicationDate_xml | – month: 02 year: 2015 text: 28 February 2015 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Li N, Elashoff RM, Li G. Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrics 2009; 51:19-30. Song X, Wang CY. Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 2008; 64:557-566. Huang X, Li G, Elashoff RM. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Statistics Interface 2010; 3:185-195. Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 1994; 4:639-650. Wang Y, Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association 2001; 96:895-905. Chow SM, Tang NS, Yuan Y, Song XY, Zhu HT. Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior. British Journal of Mathematical and Statistical Psychology 2011; 64:69-106. Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biometrical Journal 2013; 55:844-865. Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37. Fahrmeir L, Raach A. A Bayesian semiparametric latent variable model for mixed responses. Psychometrika 2007; 72:327-346. Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556. Lang S, Brezger A. Bayesian P-splines. Journal of Computational and Graphical Statistics 2004; 13:183-212. Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996; 6:733-807. Yang M, Dunson DB, Baird D. Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics and Data Analysis 2010; 54:2172-2186. Rizopoulos D, Verbeke G, Lesaffre E. Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society 2009; 71:637-654. Song XY, Lu ZH. Semiparametric latent variable models with Bayesian P-splines. Journal of Computational and Graphical Statistics 2010; 19:590-608. Zhu HT, Ibrahim JG, Tang NS. Bayesian influence analysis: a geometric approach. Biometrika 2011; 98:307-323. Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528. Ibrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer-Verlag: New York, 2002. Tsiatis A, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834. Lee SY, Tang NS. Bayesian analysis of nonlinear structural equation models with nonignorable missing data. Psychometrika 2006; 71:541-564. Taylor JMG, Park Y, Ankerst DP, Proust-Lima C, Williams S, Kestin L, Bae K, Pickles T, Sandler H. Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics 2013; 69:206-213. Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987; 82:528-550. Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62:432-445. Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30:1366-1380. Zhu HT, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 2012; 68:954-964. Li N, Elashoff RM, Li G, Tseng CH. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Statistics in Medicine 2012; 31:1707-1721. Hu WH, Li G, Li N. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 2009; 29:1601-1619. Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 2003; 31:129-150. Eilers P, Marx B. Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinder). Statistical Science 1996; 11:89-121. Song XY, Lu ZH, Feng X. Latent variable models with nonparametric interaction effects of latent variables. Statistics in Medicine 2014; 33:1723-1737. Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: New York, 2003. De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014. Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741. 2006; 71 2010; 54 2013; 69 1995; 90 2010; 19 2011; 30 2002; 3 2011; 98 2007; 72 2003 2002 2003; 31 2012; 31 2009; 29 1996; 11 2009; 51 2006; 62 2013; 55 1987; 82 2009; 71 2004; 14 1984; 6 2004; 13 2011; 64 2008; 64 2010; 3 2012; 68 1994; 50 2001; 96 2014; 33 1994; 4 1996; 6 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Tsiatis A (e_1_2_9_6_1) 2004; 14 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 Sethuraman J (e_1_2_9_28_1) 1994; 4 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 Ibrahim JG (e_1_2_9_5_1) 2002 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 Gelman A (e_1_2_9_34_1) 1996; 6 |
References_xml | – reference: Zhu HT, Ibrahim JG, Tang NS. Bayesian influence analysis: a geometric approach. Biometrika 2011; 98:307-323. – reference: Fahrmeir L, Raach A. A Bayesian semiparametric latent variable model for mixed responses. Psychometrika 2007; 72:327-346. – reference: Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 2003; 31:129-150. – reference: Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 1994; 4:639-650. – reference: Song XY, Lu ZH. Semiparametric latent variable models with Bayesian P-splines. Journal of Computational and Graphical Statistics 2010; 19:590-608. – reference: Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556. – reference: Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37. – reference: Song XY, Lu ZH, Feng X. Latent variable models with nonparametric interaction effects of latent variables. Statistics in Medicine 2014; 33:1723-1737. – reference: Lang S, Brezger A. Bayesian P-splines. Journal of Computational and Graphical Statistics 2004; 13:183-212. – reference: Li N, Elashoff RM, Li G. Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrics 2009; 51:19-30. – reference: Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: New York, 2003. – reference: Hu WH, Li G, Li N. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 2009; 29:1601-1619. – reference: Lee SY, Tang NS. Bayesian analysis of nonlinear structural equation models with nonignorable missing data. Psychometrika 2006; 71:541-564. – reference: Taylor JMG, Park Y, Ankerst DP, Proust-Lima C, Williams S, Kestin L, Bae K, Pickles T, Sandler H. Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics 2013; 69:206-213. – reference: Wang Y, Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association 2001; 96:895-905. – reference: Chow SM, Tang NS, Yuan Y, Song XY, Zhu HT. Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior. British Journal of Mathematical and Statistical Psychology 2011; 64:69-106. – reference: Zhu HT, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 2012; 68:954-964. – reference: Song X, Wang CY. Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 2008; 64:557-566. – reference: Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741. – reference: Rizopoulos D, Verbeke G, Lesaffre E. Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society 2009; 71:637-654. – reference: De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014. – reference: Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30:1366-1380. – reference: Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996; 6:733-807. – reference: Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62:432-445. – reference: Li N, Elashoff RM, Li G, Tseng CH. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Statistics in Medicine 2012; 31:1707-1721. – reference: Huang X, Li G, Elashoff RM. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Statistics Interface 2010; 3:185-195. – reference: Yang M, Dunson DB, Baird D. Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics and Data Analysis 2010; 54:2172-2186. – reference: Tsiatis A, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834. – reference: Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987; 82:528-550. – reference: Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528. – reference: Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biometrical Journal 2013; 55:844-865. – reference: Eilers P, Marx B. Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinder). Statistical Science 1996; 11:89-121. – reference: Ibrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer-Verlag: New York, 2002. – volume: 71 start-page: 541 year: 2006 end-page: 564 article-title: Bayesian analysis of nonlinear structural equation models with nonignorable missing data publication-title: Psychometrika – volume: 3 start-page: 511 year: 2002 end-page: 528 article-title: An estimator for the proportional hazards model with multiple longitudinal covariates measured with error publication-title: Biostatistics – volume: 11 start-page: 89 year: 1996 end-page: 121 article-title: Flexible smoothing using B‐splines and penalized likelihood (with comments and rejoinder) publication-title: Statistical Science – volume: 64 start-page: 546 year: 2008 end-page: 556 article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data publication-title: Biometrics – volume: 33 start-page: 1723 year: 2014 end-page: 1737 article-title: Latent variable models with nonparametric interaction effects of latent variables publication-title: Statistics in Medicine – volume: 29 start-page: 1601 year: 2009 end-page: 1619 article-title: A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data publication-title: Statistics in Medicine – year: 2003 – volume: 50 start-page: 1003 year: 1994 end-page: 1014 article-title: Modelling progression of CD4‐lymphocyte count and its relationship to survival time publication-title: Biometrics – volume: 6 start-page: 733 year: 1996 end-page: 807 article-title: Posterior predictive assessment of model fitness via realized discrepancies publication-title: Statistica Sinica – volume: 64 start-page: 69 year: 2011 end-page: 106 article-title: Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior publication-title: British Journal of Mathematical and Statistical Psychology – volume: 96 start-page: 895 year: 2001 end-page: 905 article-title: Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome publication-title: Journal of the American Statistical Association – volume: 69 start-page: 206 year: 2013 end-page: 213 article-title: Real‐time individual predictions of prostate cancer recurrence using joint models publication-title: Biometrics – volume: 19 start-page: 590 year: 2010 end-page: 608 article-title: Semiparametric latent variable models with Bayesian P‐splines publication-title: Journal of Computational and Graphical Statistics – volume: 90 start-page: 27 year: 1995 end-page: 37 article-title: Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS publication-title: Journal of the American Statistical Association – volume: 62 start-page: 432 year: 2006 end-page: 445 article-title: Joint models for multivariate longitudinal and multivariate survival data publication-title: Biometrics – volume: 3 start-page: 185 year: 2010 end-page: 195 article-title: A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements publication-title: Statistics Interface – volume: 31 start-page: 129 year: 2003 end-page: 150 article-title: A new class of multivariate skew distributions with applications to Bayesian regression models publication-title: Canadian Journal of Statistics – volume: 72 start-page: 327 year: 2007 end-page: 346 article-title: A Bayesian semiparametric latent variable model for mixed responses publication-title: Psychometrika – volume: 13 start-page: 183 year: 2004 end-page: 212 article-title: Bayesian P‐splines publication-title: Journal of Computational and Graphical Statistics – volume: 30 start-page: 1366 year: 2011 end-page: 1380 article-title: A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time‐to‐event publication-title: Statistics in Medicine – volume: 31 start-page: 1707 year: 2012 end-page: 1721 article-title: Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects publication-title: Statistics in Medicine – volume: 82 start-page: 528 year: 1987 end-page: 550 article-title: The calculation of posterior distributions by data augmentation (with discussion) publication-title: Journal of the American Statistical Association – year: 2002 – volume: 71 start-page: 637 year: 2009 end-page: 654 article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data publication-title: Journal of the Royal Statistical Society – volume: 55 start-page: 844 year: 2013 end-page: 865 article-title: Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach publication-title: Biometrical Journal – volume: 54 start-page: 2172 year: 2010 end-page: 2186 article-title: Semiparametric Bayes hierarchical models with mean and variance constraints publication-title: Computational Statistics and Data Analysis – volume: 98 start-page: 307 year: 2011 end-page: 323 article-title: Bayesian influence analysis: a geometric approach publication-title: Biometrika – volume: 14 start-page: 809 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Statistica Sinica – volume: 51 start-page: 19 year: 2009 end-page: 30 article-title: Robust joint modeling of longitudinal measurements and competing risks failure time data publication-title: Biometrics – volume: 68 start-page: 954 year: 2012 end-page: 964 article-title: Bayesian influence measures for joint models for longitudinal and survival data publication-title: Biometrics – volume: 6 start-page: 721 year: 1984 end-page: 741 article-title: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 64 start-page: 557 year: 2008 end-page: 566 article-title: Semiparametric approaches for joint modeling of longitudinal and survival data with time‐varying coefficients publication-title: Biometrics – volume: 4 start-page: 639 year: 1994 end-page: 650 article-title: A constructive definition of Dirichlet priors publication-title: Statistica Sinica – ident: e_1_2_9_4_1 doi: 10.1198/016214501753208591 – ident: e_1_2_9_17_1 doi: 10.1002/bimj.200810491 – volume: 6 start-page: 733 year: 1996 ident: e_1_2_9_34_1 article-title: Posterior predictive assessment of model fitness via realized discrepancies publication-title: Statistica Sinica – ident: e_1_2_9_30_1 doi: 10.1348/000711010X497262 – ident: e_1_2_9_3_1 doi: 10.1080/01621459.1995.10476485 – ident: e_1_2_9_9_1 doi: 10.1002/sim.3562 – ident: e_1_2_9_2_1 doi: 10.2307/2533439 – volume: 14 start-page: 809 year: 2004 ident: e_1_2_9_6_1 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Statistica Sinica – ident: e_1_2_9_20_1 doi: 10.2307/3316064 – ident: e_1_2_9_29_1 doi: 10.1007/s11336-006-1177-1 – ident: e_1_2_9_22_1 doi: 10.1016/j.csda.2010.03.025 – ident: e_1_2_9_15_1 doi: 10.1111/j.1541-0420.2007.00896.x – ident: e_1_2_9_10_1 doi: 10.1111/j.1467-9868.2008.00704.x – ident: e_1_2_9_14_1 doi: 10.1002/bimj.201200272 – ident: e_1_2_9_18_1 doi: 10.4310/SII.2010.v3.n2.a6 – ident: e_1_2_9_12_1 doi: 10.1002/sim.4205 – volume-title: Bayesian Survival Analysis year: 2002 ident: e_1_2_9_5_1 – ident: e_1_2_9_11_1 doi: 10.1111/j.1541-0420.2012.01745.x – ident: e_1_2_9_25_1 doi: 10.1198/jcgs.2010.09094 – ident: e_1_2_9_31_1 doi: 10.1080/01621459.1987.10478458 – ident: e_1_2_9_7_1 doi: 10.1111/j.1541-0420.2005.00448.x – ident: e_1_2_9_24_1 doi: 10.1007/s11336-007-9010-7 – ident: e_1_2_9_13_1 doi: 10.1002/sim.4507 – ident: e_1_2_9_26_1 doi: 10.1002/sim.6065 – ident: e_1_2_9_33_1 doi: 10.1093/biomet/asr009 – ident: e_1_2_9_16_1 doi: 10.1093/biostatistics/3.4.511 – ident: e_1_2_9_8_1 doi: 10.1111/j.1541-0420.2007.00890.x – ident: e_1_2_9_23_1 doi: 10.1214/ss/1038425655 – volume: 4 start-page: 639 year: 1994 ident: e_1_2_9_28_1 article-title: A constructive definition of Dirichlet priors publication-title: Statistica Sinica – ident: e_1_2_9_19_1 doi: 10.1111/j.1541-0420.2012.01823.x – ident: e_1_2_9_21_1 doi: 10.1017/CBO9780511755453 – ident: e_1_2_9_32_1 doi: 10.1109/TPAMI.1984.4767596 – ident: e_1_2_9_27_1 doi: 10.1198/1061860043010 |
SSID | ssj0011527 |
Score | 2.2895806 |
Snippet | We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited... We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 824 |
SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Bayesian local influence analysis Biostatistics - methods Breast Neoplasms - mortality Breast Neoplasms - psychology centered Dirichlet process prior Clinical Trials as Topic - statistics & numerical data Computer Simulation Female Humans joint models Longitudinal Studies Medical statistics Models, Statistical Multivariate Analysis Normal distribution Quality of Life Simulation skew-normal distribution Survival Analysis survival data |
Title | Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data |
URI | https://api.istex.fr/ark:/67375/WNG-HC3F97CF-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6373 https://www.ncbi.nlm.nih.gov/pubmed/25404574 https://www.proquest.com/docview/1660768349 https://www.proquest.com/docview/1652441876 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGOBslCQkRCcsk3sxI6PsGJZENsDpaISByt-RFp2N6maDa8T_4F_yC9hJi9UVCTEKYdMZMeesT97Zr4h5HGYS8ulM4HKfRhgJdhAGZEFTLFcOqVy4zA5eXEo5sfx65PkpIuqxFyYlh9iuHBDy2jWazTwzFQHv0lDq-VmIrhEok8M1UI89HZgjor6aq3ooRQySnre2ZAd9B-e24ku46B-uQhmnketzbYzu04-9B1uo01Wk3prJvbbH1yO__dHN8i1Do3SZ6363CSXfDEiVxadv31Erra3erRNVhqRXcSmLbXzLXJ65DdLpA7fYFUuS59nXz2mZNJln0RIy4JWK__55_cfBWLjNf1YLostbcrvwJ5Jy5w2EY2f4MQOoJeuSyyfVDss1UWzwtGqhqUMjIFiJOttcjx78W46D7oCDoHlqeQBE8oLYTKhbOTyyITMMm6Zz2B6QDV8JkKew0rtUmkBt0TK5KFNAZIBaDAsF_wO2SnKwt8lNONO-BiOT8bFMXNOJcyjCzNVaWS9kWPytJ9MbTt2cyyysdYtLzPTMLoaR3dMHg2Spy2jxwUyTxp9GASysxVGwMlEvz98qedTPlNyOtNvxmS_VxjdGX-lIyHQv8ljBW0Nr8Fs0ReTFb6sUSYBYBXBXjQme62iDY3BmR2AtoyhF426_LWb-ujVAp_3_lXwPtkFwNel5O-Tne1Z7R8AqNqah435_AL19B9f |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJsEkxKXAKAwwEoKndImd2rV4gkLpoO0D28QekKz4Eqlrm0xry-2J_8A_5JdwTm5oaEiIpzzkRHGcc-zPPj7fR8iTMJWWS2cClfowQCXYQBmRBEyxVDqlUuOwOHk8EcOj-O1x93iDPK9rYUp-iGbDDSOjGK8xwHFDeu83a-hyuugILvklsoWC3kic_-p9wx0V1XqtmKMUMurWzLMh26ufPDcXbWG3frkIaJ7HrcXEM7hOPtZNLs-bzDrrlenYb3-wOf7nN90g1ypASl-UHnSTbPisRS6Pq5R7i1wtN_ZoWa_UItsIT0t251vk9MAvpsgevkBhLktfJl89VmXSaV1HSPOMLmf-88_vPzKEx3N6kk-zFS0UeGDapHlKi0ONn2DRDriXznNUUFo7VOuiSebocg2jGcQDxcOst8nR4PVhfxhUGg6B5T3JAyaUF8IkQtnIpZEJmWXcMp_A_wHv8IkIeQqDtetJC9AlUiYNbQ9QGeAGw1LB75DNLM_8XUIT7oSPYQVlXBwz51SXecxi9lQvst7INnlW_01tK4Jz1NmY65KamWnoXY292yaPG8vTktTjApunhUM0BsnZDA_Bya7-MHmjh30-ULI_0KM22a09Rlfxv9SREJji5LGCdzW3IXIxHZNkPl-jTRewVQTTUZvslJ7WvAyW7YC1ZQytKPzlr83UB_tjvN77V8NH5MrwcDzSo_3Ju_tkG_BfVaG_SzZXZ2v_ADDWyjwsYukXzuEjew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BK1WVEJdwCxRYJARPTu1de9f7CCkhBRIhSkUlHizvxVJIYkdNzO2Jf-AP-RJmfENFRUI85cFjebOe2T3rmTmHkEd-Jg2XVnsqc76HSrCe0iL1mGKZtEpl2mJz8mQqxsfhy5PopKmqxF6Ymh-i--CGkVGt1xjgK5vt_yYNXc-WA8Elv0i2Q-ErlG04eNtRRwWtXCumKIUMopZ41mf77Z1ntqJtnNUv5-HMs7C12ndGV8iHdsR1ucl8UG70wHz7g8zx__7SVXK5gaP0ae0_18gFl_fIzqRJuPfIpfqzHq27lXpkF8Fpze18nayO3HKG3OFLlOUy9Fn61WFPJp21XYS0yOl67j7__P4jR3C8oB-LWb6hlf4ObJq0yGhV0vgJjuyAeumiQP2k0qJWF01zS9clrGUQDRRLWW-Q49Hzd8Ox1yg4eIbHkntMKCeEToUygc0C7TPDuGEuhdcDvuFS4fMMlmobSwPAJVA6800MmAxQg2aZ4DfJVl7k7jahKbfChXB-0jYMmbUqYg5zmLGKA-O07JMn7ctMTENvjiobi6QmZmYJzG6Cs9snDzvLVU3pcY7N48ofOoP0dI4lcDJK3k9fJOMhHyk5HCWv-2SvdZikif51EgiBCU4eKnhWdxniFpMxae6KEm0iQFYBbEZ9cqt2tO5hcGgHpC1DGEXlLn8dZnJ0OMHfO_9q-IDsvDmAYR9OX90luwD-mvb8PbK1OS3dPQBYG32_iqRfUbwiKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+Bayesian+inference+on+skew-normal+joint+modeling+of+multivariate+longitudinal+and+survival+data&rft.jtitle=Statistics+in+medicine&rft.au=Tang%2C+An-Min&rft.au=Tang%2C+Nian-Sheng&rft.date=2015-02-28&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=34&rft.issue=5&rft.spage=824&rft_id=info:doi/10.1002%2Fsim.6373&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |