Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data

We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet proce...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 34; no. 5; pp. 824 - 843
Main Authors Tang, An-Min, Tang, Nian-Sheng
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 28.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew–normal distribution to specify the within‐subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis–Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within‐subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.
We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.
We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within‐subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew–normal distribution to specify the within‐subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis–Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within‐subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. Copyright © 2014 John Wiley & Sons, Ltd.
Author Tang, An-Min
Tang, Nian-Sheng
Author_xml – sequence: 1
  givenname: An-Min
  surname: Tang
  fullname: Tang, An-Min
  organization: Department of Statistics, Yunnan University, Yunnan, 650091, Kunming, China
– sequence: 2
  givenname: Nian-Sheng
  surname: Tang
  fullname: Tang, Nian-Sheng
  email: Correspondence to: Nian-Sheng Tang, Department of Statistics, Yunnan University, Kunming, Yunnan 650091, China., nstang@ynu.edu.cn
  organization: Department of Statistics, Yunnan University, Yunnan, 650091, Kunming, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25404574$$D View this record in MEDLINE/PubMed
BookMark eNp10U1v1DAQBmALFdFtQeIXIEtcuGTxR2InR1h120oLHAriaDnOpPLWH4vttOy_J6uWIio4-eBnxp55T9BRiAEQek3JkhLC3mfrl4JL_gwtKOlkRVjTHqEFYVJWQtLmGJ3kvCWE0obJF-iYNTWpG1kvULgCb3c6aQ8lWYM_6j1kqwO2YYQEwQCOAecbuKtCTF47vI02FOzjAM6GaxxH7CdX7K1OVhfALoZrW6bBhtnqMOA8pdv51uFBF_0SPR-1y_Dq4TxF39ZnX1cX1ebL-eXqw6YyvJW8YqIDIXotOkOHkfaEGcYNAz0PMAIBLQgfayGHVhrSUdr1IzEtaYQQtGej4Kfo3X3fXYo_JshFeZsNOKcDxCkrKhpW17SVB_r2Cd3GKc2_PyhBpGh53c3qzYOaeg-D2iXrddqr35v886JJMecE4yOhRB1CUnNI6hDSTJdPqLFFFxtDSdq6fxVU9wV31sH-v43V1eWnv73NBX4-ep1ulJBcNur753N1seLrTq7WasN_ATm_sZY
CODEN SMEDDA
CitedBy_id crossref_primary_10_1016_j_schres_2018_07_002
crossref_primary_10_1186_s12874_020_00976_2
crossref_primary_10_1146_annurev_statistics_030718_105048
crossref_primary_10_1016_j_jmva_2018_03_007
crossref_primary_10_1002_pst_2082
crossref_primary_10_1080_00949655_2018_1462813
crossref_primary_10_1080_02331888_2022_2121399
crossref_primary_10_1002_sim_9923
crossref_primary_10_3390_axioms13120849
crossref_primary_10_1007_s10985_023_09608_5
crossref_primary_10_1007_s40304_022_00320_8
crossref_primary_10_1080_24754269_2022_2107974
crossref_primary_10_3390_math10244816
crossref_primary_10_1002_mpr_1588
crossref_primary_10_1214_24_AOAS1902
crossref_primary_10_1007_s00180_023_01384_y
crossref_primary_10_1186_s12874_016_0212_5
crossref_primary_10_1080_00273171_2017_1407233
crossref_primary_10_1002_bimj_201600224
crossref_primary_10_1080_03610918_2019_1665687
crossref_primary_10_1093_genetics_iyad119
crossref_primary_10_1002_sim_8328
crossref_primary_10_1177_09622802231181767
crossref_primary_10_1515_ijb_2017_0047
crossref_primary_10_1515_sagmb_2023_0038
crossref_primary_10_7717_peerj_2582
crossref_primary_10_1007_s11464_022_1004_3
crossref_primary_10_1002_sim_8985
crossref_primary_10_1080_02664763_2022_2096209
Cites_doi 10.1198/016214501753208591
10.1002/bimj.200810491
10.1348/000711010X497262
10.1080/01621459.1995.10476485
10.1002/sim.3562
10.2307/2533439
10.2307/3316064
10.1007/s11336-006-1177-1
10.1016/j.csda.2010.03.025
10.1111/j.1541-0420.2007.00896.x
10.1111/j.1467-9868.2008.00704.x
10.1002/bimj.201200272
10.4310/SII.2010.v3.n2.a6
10.1002/sim.4205
10.1111/j.1541-0420.2012.01745.x
10.1198/jcgs.2010.09094
10.1080/01621459.1987.10478458
10.1111/j.1541-0420.2005.00448.x
10.1007/s11336-007-9010-7
10.1002/sim.4507
10.1002/sim.6065
10.1093/biomet/asr009
10.1093/biostatistics/3.4.511
10.1111/j.1541-0420.2007.00890.x
10.1214/ss/1038425655
10.1111/j.1541-0420.2012.01823.x
10.1017/CBO9780511755453
10.1109/TPAMI.1984.4767596
10.1198/1061860043010
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Feb 28, 2015
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Feb 28, 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6373
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 843
ExternalDocumentID 3615255591
25404574
10_1002_sim_6373
SIM6373
ark_67375_WNG_HC3F97CF_L
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3873-269e66ba69c1df1b02c23c2ea115fe0ea603f467d87c09119bf0c8056661b2f63
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 06:49:12 EDT 2025
Fri Jul 25 04:40:01 EDT 2025
Mon Jul 21 05:37:37 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Tue Jul 01 03:28:07 EDT 2025
Wed Jan 22 16:46:47 EST 2025
Wed Oct 30 09:52:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Bayesian local influence analysis
skew-normal distribution
survival data
joint models
centered Dirichlet process prior
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3873-269e66ba69c1df1b02c23c2ea115fe0ea603f467d87c09119bf0c8056661b2f63
Notes Supporting info item
ark:/67375/WNG-HC3F97CF-L
ArticleID:SIM6373
istex:8575A01EF3ACD799EBC3127F6E7B16F2FD652E6B
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25404574
PQID 1660768349
PQPubID 48361
PageCount 20
ParticipantIDs proquest_miscellaneous_1652441876
proquest_journals_1660768349
pubmed_primary_25404574
crossref_primary_10_1002_sim_6373
crossref_citationtrail_10_1002_sim_6373
wiley_primary_10_1002_sim_6373_SIM6373
istex_primary_ark_67375_WNG_HC3F97CF_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 February 2015
PublicationDateYYYYMMDD 2015-02-28
PublicationDate_xml – month: 02
  year: 2015
  text: 28 February 2015
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Li N, Elashoff RM, Li G. Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrics 2009; 51:19-30.
Song X, Wang CY. Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 2008; 64:557-566.
Huang X, Li G, Elashoff RM. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Statistics Interface 2010; 3:185-195.
Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 1994; 4:639-650.
Wang Y, Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association 2001; 96:895-905.
Chow SM, Tang NS, Yuan Y, Song XY, Zhu HT. Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior. British Journal of Mathematical and Statistical Psychology 2011; 64:69-106.
Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biometrical Journal 2013; 55:844-865.
Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37.
Fahrmeir L, Raach A. A Bayesian semiparametric latent variable model for mixed responses. Psychometrika 2007; 72:327-346.
Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556.
Lang S, Brezger A. Bayesian P-splines. Journal of Computational and Graphical Statistics 2004; 13:183-212.
Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996; 6:733-807.
Yang M, Dunson DB, Baird D. Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics and Data Analysis 2010; 54:2172-2186.
Rizopoulos D, Verbeke G, Lesaffre E. Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society 2009; 71:637-654.
Song XY, Lu ZH. Semiparametric latent variable models with Bayesian P-splines. Journal of Computational and Graphical Statistics 2010; 19:590-608.
Zhu HT, Ibrahim JG, Tang NS. Bayesian influence analysis: a geometric approach. Biometrika 2011; 98:307-323.
Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528.
Ibrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer-Verlag: New York, 2002.
Tsiatis A, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
Lee SY, Tang NS. Bayesian analysis of nonlinear structural equation models with nonignorable missing data. Psychometrika 2006; 71:541-564.
Taylor JMG, Park Y, Ankerst DP, Proust-Lima C, Williams S, Kestin L, Bae K, Pickles T, Sandler H. Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics 2013; 69:206-213.
Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987; 82:528-550.
Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62:432-445.
Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30:1366-1380.
Zhu HT, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 2012; 68:954-964.
Li N, Elashoff RM, Li G, Tseng CH. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Statistics in Medicine 2012; 31:1707-1721.
Hu WH, Li G, Li N. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 2009; 29:1601-1619.
Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 2003; 31:129-150.
Eilers P, Marx B. Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinder). Statistical Science 1996; 11:89-121.
Song XY, Lu ZH, Feng X. Latent variable models with nonparametric interaction effects of latent variables. Statistics in Medicine 2014; 33:1723-1737.
Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: New York, 2003.
De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014.
Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741.
2006; 71
2010; 54
2013; 69
1995; 90
2010; 19
2011; 30
2002; 3
2011; 98
2007; 72
2003
2002
2003; 31
2012; 31
2009; 29
1996; 11
2009; 51
2006; 62
2013; 55
1987; 82
2009; 71
2004; 14
1984; 6
2004; 13
2011; 64
2008; 64
2010; 3
2012; 68
1994; 50
2001; 96
2014; 33
1994; 4
1996; 6
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Tsiatis A (e_1_2_9_6_1) 2004; 14
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Sethuraman J (e_1_2_9_28_1) 1994; 4
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
Ibrahim JG (e_1_2_9_5_1) 2002
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
Gelman A (e_1_2_9_34_1) 1996; 6
References_xml – reference: Zhu HT, Ibrahim JG, Tang NS. Bayesian influence analysis: a geometric approach. Biometrika 2011; 98:307-323.
– reference: Fahrmeir L, Raach A. A Bayesian semiparametric latent variable model for mixed responses. Psychometrika 2007; 72:327-346.
– reference: Sahu SK, Dey DK, Branco MD. A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 2003; 31:129-150.
– reference: Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 1994; 4:639-650.
– reference: Song XY, Lu ZH. Semiparametric latent variable models with Bayesian P-splines. Journal of Computational and Graphical Statistics 2010; 19:590-608.
– reference: Ding J, Wang JL. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 2008; 64:546-556.
– reference: Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37.
– reference: Song XY, Lu ZH, Feng X. Latent variable models with nonparametric interaction effects of latent variables. Statistics in Medicine 2014; 33:1723-1737.
– reference: Lang S, Brezger A. Bayesian P-splines. Journal of Computational and Graphical Statistics 2004; 13:183-212.
– reference: Li N, Elashoff RM, Li G. Robust joint modeling of longitudinal measurements and competing risks failure time data. Biometrics 2009; 51:19-30.
– reference: Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University Press: New York, 2003.
– reference: Hu WH, Li G, Li N. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 2009; 29:1601-1619.
– reference: Lee SY, Tang NS. Bayesian analysis of nonlinear structural equation models with nonignorable missing data. Psychometrika 2006; 71:541-564.
– reference: Taylor JMG, Park Y, Ankerst DP, Proust-Lima C, Williams S, Kestin L, Bae K, Pickles T, Sandler H. Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics 2013; 69:206-213.
– reference: Wang Y, Taylor JMG. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association 2001; 96:895-905.
– reference: Chow SM, Tang NS, Yuan Y, Song XY, Zhu HT. Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior. British Journal of Mathematical and Statistical Psychology 2011; 64:69-106.
– reference: Zhu HT, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 2012; 68:954-964.
– reference: Song X, Wang CY. Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients. Biometrics 2008; 64:557-566.
– reference: Geman S, Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741.
– reference: Rizopoulos D, Verbeke G, Lesaffre E. Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society 2009; 71:637-654.
– reference: De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014.
– reference: Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30:1366-1380.
– reference: Gelman A, Meng XL, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 1996; 6:733-807.
– reference: Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62:432-445.
– reference: Li N, Elashoff RM, Li G, Tseng CH. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Statistics in Medicine 2012; 31:1707-1721.
– reference: Huang X, Li G, Elashoff RM. A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements. Statistics Interface 2010; 3:185-195.
– reference: Yang M, Dunson DB, Baird D. Semiparametric Bayes hierarchical models with mean and variance constraints. Computational Statistics and Data Analysis 2010; 54:2172-2186.
– reference: Tsiatis A, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
– reference: Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 1987; 82:528-550.
– reference: Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 2002; 3:511-528.
– reference: Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biometrical Journal 2013; 55:844-865.
– reference: Eilers P, Marx B. Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinder). Statistical Science 1996; 11:89-121.
– reference: Ibrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer-Verlag: New York, 2002.
– volume: 71
  start-page: 541
  year: 2006
  end-page: 564
  article-title: Bayesian analysis of nonlinear structural equation models with nonignorable missing data
  publication-title: Psychometrika
– volume: 3
  start-page: 511
  year: 2002
  end-page: 528
  article-title: An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
  publication-title: Biostatistics
– volume: 11
  start-page: 89
  year: 1996
  end-page: 121
  article-title: Flexible smoothing using B‐splines and penalized likelihood (with comments and rejoinder)
  publication-title: Statistical Science
– volume: 64
  start-page: 546
  year: 2008
  end-page: 556
  article-title: Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data
  publication-title: Biometrics
– volume: 33
  start-page: 1723
  year: 2014
  end-page: 1737
  article-title: Latent variable models with nonparametric interaction effects of latent variables
  publication-title: Statistics in Medicine
– volume: 29
  start-page: 1601
  year: 2009
  end-page: 1619
  article-title: A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data
  publication-title: Statistics in Medicine
– year: 2003
– volume: 50
  start-page: 1003
  year: 1994
  end-page: 1014
  article-title: Modelling progression of CD4‐lymphocyte count and its relationship to survival time
  publication-title: Biometrics
– volume: 6
  start-page: 733
  year: 1996
  end-page: 807
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statistica Sinica
– volume: 64
  start-page: 69
  year: 2011
  end-page: 106
  article-title: Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 96
  start-page: 895
  year: 2001
  end-page: 905
  article-title: Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
  publication-title: Journal of the American Statistical Association
– volume: 69
  start-page: 206
  year: 2013
  end-page: 213
  article-title: Real‐time individual predictions of prostate cancer recurrence using joint models
  publication-title: Biometrics
– volume: 19
  start-page: 590
  year: 2010
  end-page: 608
  article-title: Semiparametric latent variable models with Bayesian P‐splines
  publication-title: Journal of Computational and Graphical Statistics
– volume: 90
  start-page: 27
  year: 1995
  end-page: 37
  article-title: Modeling the relationship of survival to longitudinal data measure with error: applications to survival and CD4 counts in patients with AIDS
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 432
  year: 2006
  end-page: 445
  article-title: Joint models for multivariate longitudinal and multivariate survival data
  publication-title: Biometrics
– volume: 3
  start-page: 185
  year: 2010
  end-page: 195
  article-title: A joint model of longitudinal and competing risks survival data with heterogeneous random effects and outlying longitudinal measurements
  publication-title: Statistics Interface
– volume: 31
  start-page: 129
  year: 2003
  end-page: 150
  article-title: A new class of multivariate skew distributions with applications to Bayesian regression models
  publication-title: Canadian Journal of Statistics
– volume: 72
  start-page: 327
  year: 2007
  end-page: 346
  article-title: A Bayesian semiparametric latent variable model for mixed responses
  publication-title: Psychometrika
– volume: 13
  start-page: 183
  year: 2004
  end-page: 212
  article-title: Bayesian P‐splines
  publication-title: Journal of Computational and Graphical Statistics
– volume: 30
  start-page: 1366
  year: 2011
  end-page: 1380
  article-title: A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time‐to‐event
  publication-title: Statistics in Medicine
– volume: 31
  start-page: 1707
  year: 2012
  end-page: 1721
  article-title: Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects
  publication-title: Statistics in Medicine
– volume: 82
  start-page: 528
  year: 1987
  end-page: 550
  article-title: The calculation of posterior distributions by data augmentation (with discussion)
  publication-title: Journal of the American Statistical Association
– year: 2002
– volume: 71
  start-page: 637
  year: 2009
  end-page: 654
  article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
  publication-title: Journal of the Royal Statistical Society
– volume: 55
  start-page: 844
  year: 2013
  end-page: 865
  article-title: Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach
  publication-title: Biometrical Journal
– volume: 54
  start-page: 2172
  year: 2010
  end-page: 2186
  article-title: Semiparametric Bayes hierarchical models with mean and variance constraints
  publication-title: Computational Statistics and Data Analysis
– volume: 98
  start-page: 307
  year: 2011
  end-page: 323
  article-title: Bayesian influence analysis: a geometric approach
  publication-title: Biometrika
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Statistica Sinica
– volume: 51
  start-page: 19
  year: 2009
  end-page: 30
  article-title: Robust joint modeling of longitudinal measurements and competing risks failure time data
  publication-title: Biometrics
– volume: 68
  start-page: 954
  year: 2012
  end-page: 964
  article-title: Bayesian influence measures for joint models for longitudinal and survival data
  publication-title: Biometrics
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 64
  start-page: 557
  year: 2008
  end-page: 566
  article-title: Semiparametric approaches for joint modeling of longitudinal and survival data with time‐varying coefficients
  publication-title: Biometrics
– volume: 4
  start-page: 639
  year: 1994
  end-page: 650
  article-title: A constructive definition of Dirichlet priors
  publication-title: Statistica Sinica
– ident: e_1_2_9_4_1
  doi: 10.1198/016214501753208591
– ident: e_1_2_9_17_1
  doi: 10.1002/bimj.200810491
– volume: 6
  start-page: 733
  year: 1996
  ident: e_1_2_9_34_1
  article-title: Posterior predictive assessment of model fitness via realized discrepancies
  publication-title: Statistica Sinica
– ident: e_1_2_9_30_1
  doi: 10.1348/000711010X497262
– ident: e_1_2_9_3_1
  doi: 10.1080/01621459.1995.10476485
– ident: e_1_2_9_9_1
  doi: 10.1002/sim.3562
– ident: e_1_2_9_2_1
  doi: 10.2307/2533439
– volume: 14
  start-page: 809
  year: 2004
  ident: e_1_2_9_6_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Statistica Sinica
– ident: e_1_2_9_20_1
  doi: 10.2307/3316064
– ident: e_1_2_9_29_1
  doi: 10.1007/s11336-006-1177-1
– ident: e_1_2_9_22_1
  doi: 10.1016/j.csda.2010.03.025
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1541-0420.2007.00896.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1467-9868.2008.00704.x
– ident: e_1_2_9_14_1
  doi: 10.1002/bimj.201200272
– ident: e_1_2_9_18_1
  doi: 10.4310/SII.2010.v3.n2.a6
– ident: e_1_2_9_12_1
  doi: 10.1002/sim.4205
– volume-title: Bayesian Survival Analysis
  year: 2002
  ident: e_1_2_9_5_1
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1541-0420.2012.01745.x
– ident: e_1_2_9_25_1
  doi: 10.1198/jcgs.2010.09094
– ident: e_1_2_9_31_1
  doi: 10.1080/01621459.1987.10478458
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1541-0420.2005.00448.x
– ident: e_1_2_9_24_1
  doi: 10.1007/s11336-007-9010-7
– ident: e_1_2_9_13_1
  doi: 10.1002/sim.4507
– ident: e_1_2_9_26_1
  doi: 10.1002/sim.6065
– ident: e_1_2_9_33_1
  doi: 10.1093/biomet/asr009
– ident: e_1_2_9_16_1
  doi: 10.1093/biostatistics/3.4.511
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1541-0420.2007.00890.x
– ident: e_1_2_9_23_1
  doi: 10.1214/ss/1038425655
– volume: 4
  start-page: 639
  year: 1994
  ident: e_1_2_9_28_1
  article-title: A constructive definition of Dirichlet priors
  publication-title: Statistica Sinica
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1541-0420.2012.01823.x
– ident: e_1_2_9_21_1
  doi: 10.1017/CBO9780511755453
– ident: e_1_2_9_32_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_9_27_1
  doi: 10.1198/1061860043010
SSID ssj0011527
Score 2.2895806
Snippet We propose a semiparametric multivariate skew–normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited...
We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 824
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Bayesian local influence analysis
Biostatistics - methods
Breast Neoplasms - mortality
Breast Neoplasms - psychology
centered Dirichlet process prior
Clinical Trials as Topic - statistics & numerical data
Computer Simulation
Female
Humans
joint models
Longitudinal Studies
Medical statistics
Models, Statistical
Multivariate Analysis
Normal distribution
Quality of Life
Simulation
skew-normal distribution
Survival Analysis
survival data
Title Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data
URI https://api.istex.fr/ark:/67375/WNG-HC3F97CF-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6373
https://www.ncbi.nlm.nih.gov/pubmed/25404574
https://www.proquest.com/docview/1660768349
https://www.proquest.com/docview/1652441876
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQkVAlxGOBslCQkRCcsk3sxI6PsGJZENsDpaISByt-RFp2N6maDa8T_4F_yC9hJi9UVCTEKYdMZMeesT97Zr4h5HGYS8ulM4HKfRhgJdhAGZEFTLFcOqVy4zA5eXEo5sfx65PkpIuqxFyYlh9iuHBDy2jWazTwzFQHv0lDq-VmIrhEok8M1UI89HZgjor6aq3ooRQySnre2ZAd9B-e24ku46B-uQhmnketzbYzu04-9B1uo01Wk3prJvbbH1yO__dHN8i1Do3SZ6363CSXfDEiVxadv31Erra3erRNVhqRXcSmLbXzLXJ65DdLpA7fYFUuS59nXz2mZNJln0RIy4JWK__55_cfBWLjNf1YLostbcrvwJ5Jy5w2EY2f4MQOoJeuSyyfVDss1UWzwtGqhqUMjIFiJOttcjx78W46D7oCDoHlqeQBE8oLYTKhbOTyyITMMm6Zz2B6QDV8JkKew0rtUmkBt0TK5KFNAZIBaDAsF_wO2SnKwt8lNONO-BiOT8bFMXNOJcyjCzNVaWS9kWPytJ9MbTt2cyyysdYtLzPTMLoaR3dMHg2Spy2jxwUyTxp9GASysxVGwMlEvz98qedTPlNyOtNvxmS_VxjdGX-lIyHQv8ljBW0Nr8Fs0ReTFb6sUSYBYBXBXjQme62iDY3BmR2AtoyhF426_LWb-ujVAp_3_lXwPtkFwNel5O-Tne1Z7R8AqNqah435_AL19B9f
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJsEkxKXAKAwwEoKndImd2rV4gkLpoO0D28QekKz4Eqlrm0xry-2J_8A_5JdwTm5oaEiIpzzkRHGcc-zPPj7fR8iTMJWWS2cClfowQCXYQBmRBEyxVDqlUuOwOHk8EcOj-O1x93iDPK9rYUp-iGbDDSOjGK8xwHFDeu83a-hyuugILvklsoWC3kic_-p9wx0V1XqtmKMUMurWzLMh26ufPDcXbWG3frkIaJ7HrcXEM7hOPtZNLs-bzDrrlenYb3-wOf7nN90g1ypASl-UHnSTbPisRS6Pq5R7i1wtN_ZoWa_UItsIT0t251vk9MAvpsgevkBhLktfJl89VmXSaV1HSPOMLmf-88_vPzKEx3N6kk-zFS0UeGDapHlKi0ONn2DRDriXznNUUFo7VOuiSebocg2jGcQDxcOst8nR4PVhfxhUGg6B5T3JAyaUF8IkQtnIpZEJmWXcMp_A_wHv8IkIeQqDtetJC9AlUiYNbQ9QGeAGw1LB75DNLM_8XUIT7oSPYQVlXBwz51SXecxi9lQvst7INnlW_01tK4Jz1NmY65KamWnoXY292yaPG8vTktTjApunhUM0BsnZDA_Bya7-MHmjh30-ULI_0KM22a09Rlfxv9SREJji5LGCdzW3IXIxHZNkPl-jTRewVQTTUZvslJ7WvAyW7YC1ZQytKPzlr83UB_tjvN77V8NH5MrwcDzSo_3Ju_tkG_BfVaG_SzZXZ2v_ADDWyjwsYukXzuEjew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BK1WVEJdwCxRYJARPTu1de9f7CCkhBRIhSkUlHizvxVJIYkdNzO2Jf-AP-RJmfENFRUI85cFjebOe2T3rmTmHkEd-Jg2XVnsqc76HSrCe0iL1mGKZtEpl2mJz8mQqxsfhy5PopKmqxF6Ymh-i--CGkVGt1xjgK5vt_yYNXc-WA8Elv0i2Q-ErlG04eNtRRwWtXCumKIUMopZ41mf77Z1ntqJtnNUv5-HMs7C12ndGV8iHdsR1ucl8UG70wHz7g8zx__7SVXK5gaP0ae0_18gFl_fIzqRJuPfIpfqzHq27lXpkF8Fpze18nayO3HKG3OFLlOUy9Fn61WFPJp21XYS0yOl67j7__P4jR3C8oB-LWb6hlf4ObJq0yGhV0vgJjuyAeumiQP2k0qJWF01zS9clrGUQDRRLWW-Q49Hzd8Ox1yg4eIbHkntMKCeEToUygc0C7TPDuGEuhdcDvuFS4fMMlmobSwPAJVA6800MmAxQg2aZ4DfJVl7k7jahKbfChXB-0jYMmbUqYg5zmLGKA-O07JMn7ctMTENvjiobi6QmZmYJzG6Cs9snDzvLVU3pcY7N48ofOoP0dI4lcDJK3k9fJOMhHyk5HCWv-2SvdZikif51EgiBCU4eKnhWdxniFpMxae6KEm0iQFYBbEZ9cqt2tO5hcGgHpC1DGEXlLn8dZnJ0OMHfO_9q-IDsvDmAYR9OX90luwD-mvb8PbK1OS3dPQBYG32_iqRfUbwiKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+Bayesian+inference+on+skew-normal+joint+modeling+of+multivariate+longitudinal+and+survival+data&rft.jtitle=Statistics+in+medicine&rft.au=Tang%2C+An-Min&rft.au=Tang%2C+Nian-Sheng&rft.date=2015-02-28&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=34&rft.issue=5&rft.spage=824&rft_id=info:doi/10.1002%2Fsim.6373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon