Nonprecious Bimetallic Sites Coordinated on N‐Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction

Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) elect...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 40; pp. e2000742 - n/a
Main Authors Yuan, Shan, Cui, Li‐Li, Dou, Zhiyu, Ge, Xin, He, Xingquan, Zhang, Wei, Asefa, Tewodros
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs. An efficient oxygen reduction reaction (ORR) electrocatalyst composed of bimetallic (Fe and Co) single atoms coordinated with N‐doped carbon (Fe/Co‐Nx‐C) is synthesized with silica template‐assisted and mesoporous silica‐protection synthetic methods. Compared with Pt/C, Fe/Co‐Nx‐C shows a better electrocatalytic activity, stability, and durability for ORR in zinc–air batteries.
AbstractList Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs.
Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐N x ‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐N x ‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐N x sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐N x ‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm −2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs.
Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs. An efficient oxygen reduction reaction (ORR) electrocatalyst composed of bimetallic (Fe and Co) single atoms coordinated with N‐doped carbon (Fe/Co‐Nx‐C) is synthesized with silica template‐assisted and mesoporous silica‐protection synthetic methods. Compared with Pt/C, Fe/Co‐Nx‐C shows a better electrocatalytic activity, stability, and durability for ORR in zinc–air batteries.
Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of fuel cells and metal-air batteries. Herein, a hierarchically porous bimetallic Fe/Co single-atom-coordinated N-doped carbon (Fe/Co-Nx -C) electrocatalyst for ORR is synthesized from Fe/Co-coordinated polyporphyrin using silica template-assisted and silica-protection synthetic strategies. In the synthesis, first silica nanoparticles-embedded, silica-protected Fe/Co-polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co-Nx -C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co-Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half-wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc-air battery (ZAB) assembled using Fe/Co-Nx -C as an air-cathode electrocatalyst gives a high peak power density (152.0 mW cm-2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single-atom electrocatalyst for ORR in ZABs.Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of fuel cells and metal-air batteries. Herein, a hierarchically porous bimetallic Fe/Co single-atom-coordinated N-doped carbon (Fe/Co-Nx -C) electrocatalyst for ORR is synthesized from Fe/Co-coordinated polyporphyrin using silica template-assisted and silica-protection synthetic strategies. In the synthesis, first silica nanoparticles-embedded, silica-protected Fe/Co-polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co-Nx -C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co-Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half-wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc-air battery (ZAB) assembled using Fe/Co-Nx -C as an air-cathode electrocatalyst gives a high peak power density (152.0 mW cm-2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single-atom electrocatalyst for ORR in ZABs.
Author Yuan, Shan
Dou, Zhiyu
Ge, Xin
He, Xingquan
Zhang, Wei
Asefa, Tewodros
Cui, Li‐Li
Author_xml – sequence: 1
  givenname: Shan
  surname: Yuan
  fullname: Yuan, Shan
  organization: Changchun University of Science and Technology
– sequence: 2
  givenname: Li‐Li
  surname: Cui
  fullname: Cui, Li‐Li
  organization: Changchun University of Science and Technology
– sequence: 3
  givenname: Zhiyu
  surname: Dou
  fullname: Dou, Zhiyu
  organization: Changchun University of Science and Technology
– sequence: 4
  givenname: Xin
  surname: Ge
  fullname: Ge, Xin
  organization: Jilin University
– sequence: 5
  givenname: Xingquan
  surname: He
  fullname: He, Xingquan
  email: hexingquan@hotmail.com
  organization: Changchun University of Science and Technology
– sequence: 6
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: weizhang@jlu.edu.cn
  organization: Jilin University
– sequence: 7
  givenname: Tewodros
  orcidid: 0000-0001-8634-5437
  surname: Asefa
  fullname: Asefa, Tewodros
  email: tasefa@chem.rutgers.edu
  organization: The State University of New Jersey
BookMark eNqFkU9PHCEYxkmjSf137ZnESy-7AsMwM0e72mqyrkmt5wnDvFQMC1tgtHPzI_Qz9pOUdc2amDSGA_Dyex5eePbRjvMOEPpEyZQSwk7i0topI4wQUnH2Ae1RQYuJqFmzs11T8hHtx3hPSEEZr_bQ08K7VQBl_BDxF7OEJK01Ct-YBBHPvA-9cTJBj73Di79Pf878Km9mMnTeRfxo0h0-19ooAy5h6Xp8NgTZWchIthpT9jpVyTyYNGLtA77-Pf4Eh79DP-Syd4doV0sb4ehlPkC3X89_zC4m8-tvl7PT-UQVdcUmupE1B61kJ3mpRFMI1YHqO-CV7Jqa1EKzUj-fk6KrRC2lFqwkPe16rqu-OECfN76r4H8NEFO7NFGBtdJBfnvLOCdCVLRqMnr8Br33Q3C5uzXVkDzKMlPTDaWCjzGAblfBLGUYW0radSDtOpB2G0gW8DcCZZJc_0EK0tj_y5qN7NFYGN-5pL25ms9ftf8A0IGmWQ
CitedBy_id crossref_primary_10_1002_slct_202301645
crossref_primary_10_1039_D3QI00502J
crossref_primary_10_1002_smll_202108094
crossref_primary_10_1039_D1TA00039J
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1007_s12274_023_5578_1
crossref_primary_10_1002_cctc_202002045
crossref_primary_10_1016_j_cej_2021_129973
crossref_primary_10_1016_j_cej_2021_132558
crossref_primary_10_1002_aenm_202301223
crossref_primary_10_1021_acsami_2c13837
crossref_primary_10_1016_j_jcis_2023_02_061
crossref_primary_10_1039_D3IM00056G
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1016_j_jcis_2022_10_036
crossref_primary_10_1002_smll_202006834
crossref_primary_10_1021_acsaem_1c00487
crossref_primary_10_1021_acs_chemmater_1c00235
crossref_primary_10_3390_inorganics10030036
crossref_primary_10_1039_D2TA05934G
crossref_primary_10_3390_catal13010080
crossref_primary_10_1016_j_nanoms_2024_09_008
crossref_primary_10_1039_D1RA08817C
crossref_primary_10_1002_smll_202204474
crossref_primary_10_1002_smll_202106091
crossref_primary_10_1016_j_apcatb_2022_121429
crossref_primary_10_1039_D1TA01325D
crossref_primary_10_1039_D1TA09861F
crossref_primary_10_1039_D1NJ02553H
crossref_primary_10_1016_j_cej_2022_137542
crossref_primary_10_1016_j_cej_2024_158565
crossref_primary_10_1021_acsanm_4c04291
crossref_primary_10_1016_j_jssc_2021_122106
crossref_primary_10_1016_j_nanoen_2022_107927
crossref_primary_10_1021_acsaem_2c02801
crossref_primary_10_1016_j_apcatb_2021_120785
crossref_primary_10_1002_cctc_202001131
crossref_primary_10_1016_j_carbon_2022_10_022
crossref_primary_10_1021_acsami_2c09019
crossref_primary_10_1021_acssuschemeng_0c08727
crossref_primary_10_1016_j_cej_2022_135295
crossref_primary_10_1039_D1DT02787E
crossref_primary_10_1002_zaac_202200002
crossref_primary_10_1002_admi_202100197
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1016_j_nxsust_2023_100014
crossref_primary_10_3390_ma16083283
crossref_primary_10_1016_j_apsusc_2021_152375
crossref_primary_10_1002_smll_202006698
crossref_primary_10_1007_s40843_023_2768_3
crossref_primary_10_1007_s40843_022_2059_x
crossref_primary_10_1002_smll_202307943
crossref_primary_10_1021_prechem_3c00022
Cites_doi 10.1002/aenm.201803737
10.1016/j.jechem.2019.08.009
10.1002/smll.201602334
10.1002/anie.201510990
10.1016/j.jpowsour.2017.02.030
10.1039/C8EE00977E
10.1002/adfm.201503613
10.1021/cm8002063
10.1002/anie.201500569
10.1002/adfm.201808872
10.1021/jp055150g
10.1002/anie.201702473
10.1021/jp806084d
10.1002/aenm.201801956
10.1039/C8TA04564J
10.1038/s41929-018-0063-z
10.1016/j.nanoen.2016.08.027
10.1039/c3ta13759g
10.1021/acsenergylett.9b00804
10.1073/pnas.1813605115
10.1021/acsnano.7b05832
10.1021/jacs.7b10385
10.1039/C7NR04349J
10.1038/nmat4367
10.1002/smtd.201700209
10.1016/j.nanoen.2019.104088
10.1002/adma.201900592
10.1038/srep09286
10.1021/ja405149m
10.1039/C8CC00988K
10.1002/anie.200907289
10.1021/acsami.9b12054
10.1039/C6TA10718D
10.1038/s41929-018-0146-x
10.1016/j.nanoen.2018.02.025
10.1021/ja3030565
10.1021/acsnano.8b08692
10.1002/anie.201810175
10.1002/anie.201804349
10.1016/j.electacta.2018.11.105
10.1038/ncomms5973
10.1002/adfm.201403657
10.1039/C9EE01722D
10.1021/acs.chemrev.5b00462
10.1002/smll.201703118
10.1002/anie.201703864
10.1016/j.nanoen.2018.06.023
10.1039/c2ee21802j
10.1002/smll.201700740
10.1002/smll.201704169
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202000742
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202000742
SMLL202000742
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51872115
– fundername: International Cooperation Project of Jilin Province
  funderid: 20190701022GH
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3872-f9a84efcaba45c6936cbecdbe47ab98086f25ffcaba03b768aaf6250d1bd4f7d3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 18:48:29 EDT 2025
Fri Jul 25 12:15:47 EDT 2025
Tue Jul 01 02:10:55 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Jan 22 16:31:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3872-f9a84efcaba45c6936cbecdbe47ab98086f25ffcaba03b768aaf6250d1bd4f7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8634-5437
PQID 2449090955
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2440667179
proquest_journals_2449090955
crossref_primary_10_1002_smll_202000742
crossref_citationtrail_10_1002_smll_202000742
wiley_primary_10_1002_smll_202000742_SMLL202000742
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 9
2015; 14
2017; 1
2019; 4
2015; 5
2013; 1
2019; 31
2019; 11
2019; 13
2019; 12
2015; 54
2019; 58
2006; 110
2017; 9
2017; 139
2016; 12
2016; 55
2018; 46
2018; 6
2018; 8
2015; 25
2014; 5
2010; 49
2012; 134
2018; 1
2019; 66
2017; 13
2018; 115
2017; 56
2019; 29
2013; 135
2016; 116
2018; 50
2020; 44
2008; 20
2018; 12
2008; 112
2018; 11
2016; 28
2018; 54
2016; 26
2012; 5
2017; 346
2018; 14
2019; 296
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
Liang H. W. (e_1_2_7_32_1) 2013; 135
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Yang D. (e_1_2_7_2_1) 2017; 1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 12
  start-page: 208
  year: 2018
  publication-title: ACS Nano
– volume: 1
  year: 2017
  publication-title: Small
– volume: 4
  start-page: 1619
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 9082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 49
  start-page: 2565
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  start-page: 396
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 9286
  year: 2015
  publication-title: Sci. Rep.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7936
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 738
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 110
  start-page: 1787
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 28
  start-page: 29
  year: 2016
  publication-title: Nano Energy
– volume: 56
  start-page: 6937
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 3177
  year: 2019
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 54
  start-page: 4274
  year: 2018
  publication-title: Chem. Commun.
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 4973
  year: 2014
  publication-title: Nat. Commun.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 872
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 691
  year: 2018
  publication-title: Nano Energy
– volume: 20
  start-page: 3954
  year: 2008
  publication-title: Chem. Mater.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2890
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 2622
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 781
  year: 2018
  publication-title: Nat. Catal.
– volume: 346
  start-page: 80
  year: 2017
  publication-title: J. Power Sources
– volume: 57
  start-page: 8614
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 6398
  year: 2016
  publication-title: Small
– volume: 55
  start-page: 1
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 296
  start-page: 653
  year: 2019
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 339
  year: 2018
  publication-title: Nat. Catal.
– volume: 11
  start-page: 1723
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 44
  start-page: 131
  year: 2020
  publication-title: J. Energy Chem.
– volume: 5
  start-page: 4513
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 937
  year: 2015
  publication-title: Nat. Mater.
– volume: 13
  year: 2017
  publication-title: Small
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201803737
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jechem.2019.08.009
– ident: e_1_2_7_50_1
  doi: 10.1002/smll.201602334
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201510990
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jpowsour.2017.02.030
– ident: e_1_2_7_15_1
  doi: 10.1039/C8EE00977E
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201503613
– ident: e_1_2_7_40_1
  doi: 10.1021/cm8002063
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201500569
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.201808872
– ident: e_1_2_7_46_1
  doi: 10.1021/jp055150g
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_7_42_1
  doi: 10.1021/jp806084d
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201801956
– ident: e_1_2_7_30_1
  doi: 10.1039/C8TA04564J
– ident: e_1_2_7_16_1
  doi: 10.1038/s41929-018-0063-z
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2016.08.027
– ident: e_1_2_7_43_1
  doi: 10.1039/c3ta13759g
– ident: e_1_2_7_12_1
  doi: 10.1021/acsenergylett.9b00804
– ident: e_1_2_7_51_1
  doi: 10.1073/pnas.1813605115
– ident: e_1_2_7_9_1
  doi: 10.1021/acsnano.7b05832
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.7b10385
– ident: e_1_2_7_44_1
  doi: 10.1039/C7NR04349J
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4367
– volume: 1
  start-page: 1700209
  year: 2017
  ident: e_1_2_7_2_1
  publication-title: Small
  doi: 10.1002/smtd.201700209
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2019.104088
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201900592
– ident: e_1_2_7_26_1
  doi: 10.1038/srep09286
– ident: e_1_2_7_38_1
  doi: 10.1021/ja405149m
– ident: e_1_2_7_29_1
  doi: 10.1039/C8CC00988K
– volume: 135
  start-page: 16002
  year: 2013
  ident: e_1_2_7_32_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_34_1
  doi: 10.1039/C7NR04349J
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.200907289
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.9b12054
– ident: e_1_2_7_35_1
  doi: 10.1039/C6TA10718D
– ident: e_1_2_7_23_1
  doi: 10.1038/s41929-018-0146-x
– ident: e_1_2_7_25_1
  doi: 10.1016/j.nanoen.2018.02.025
– ident: e_1_2_7_48_1
  doi: 10.1021/ja3030565
– ident: e_1_2_7_4_1
  doi: 10.1021/acsnano.8b08692
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201810175
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201804349
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2018.11.105
– ident: e_1_2_7_41_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201403657
– ident: e_1_2_7_1_1
  doi: 10.1039/C9EE01722D
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201703118
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2018.06.023
– ident: e_1_2_7_45_1
  doi: 10.1039/c2ee21802j
– ident: e_1_2_7_36_1
  doi: 10.1002/smll.201700740
– ident: e_1_2_7_49_1
  doi: 10.1002/smll.201704169
SSID ssj0031247
Score 2.5407214
Snippet Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of...
Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2000742
SubjectTerms Bimetals
Catalytic activity
Cobalt
Commercialization
Durability
Electrocatalysts
Fe/Co‐coordinated polyporphyrin
Fuel cells
Iron
Metal air batteries
Nanoparticles
Nanotechnology
oxygen reduction reaction
Oxygen reduction reactions
silica templates
Silicon dioxide
single‐atom catalysts
Surface area
Zinc-oxygen batteries
zinc–air batteries
Title Nonprecious Bimetallic Sites Coordinated on N‐Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000742
https://www.proquest.com/docview/2449090955
https://www.proquest.com/docview/2440667179
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiguBpte47R20rIlrBB3hbJi8otrul24J68if4G_0lzuy2axVE0NuGTDa7yUzmmzy-MLYPoQ1jzwSOthowQAkAbQ6EE8UKMCSy0rM0D3nVDs_v_YuH4GHqFH_JD1FNuJFlFOM1GTjI_OiTNDTvdWnpwC28IA3CtGGLUNFNxR_lofMqbldBn-UQ8daEtbHuHn0t_tUrfULNacBaeJyzRQaTby03mjwejobyUL18o3H8z88ssYUxHOUnpf4ssxmTrrD5KZLCVfbaztI-cWBko5yfdnoG4Xq3o_gtgtWcNzKMXjspIlbNs5S331_fmlkfEw0YSNRoThO9vFUQVaB_45Bq3hwN6MAWiuCrnrFmfqLKSyw4Qmh-_fSMWs1viFSW1GaN3Z-17hrnzvjeBkd5ceQ6VkDsG6tAgh-oUHihQk3R0vgRSBFjEGXdwBb5dU9ivANgMQyr62OpfRtpb53NpllqNhh3lVUy8gIVKeGb0JfaCgtgcNQItTj2a8yZ9FuixqTmdLdGNynpmN2EWjapWrbGDir5fknn8aPk9kQNkrFZ5wliIVEXxNpXY3tVNhokrbJAarAjSIY2DuNAV2Nu0ee_1JTcXl1eVqnNvxTaYnP0XG4y3Gazw8HI7CBYGsrdwiA-ABsSEOo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FcAAOhFU4BGgkEKdJnJ79kEOwEznENlIWKbehV8mKM2N5bIFzyifkV_gVPoEvoWq2JEgICSkHjj3T093T3VX1qpdXAO9EYIPINb6jrRbooPgCZU7EThgpgS6Rla6ldcjBMOgde59O_JMl-F7fhSn5IZoFN5KMQl-TgNOC9MYVa2h-Nqa9A16YQV6dq9w3i6_oteVbe10c4vec7-4cdXpOFVjAUW4UcsfGIvKMVUIKz1dB7AYKf0VL44VCxhGifMt9W7xvuxIBuRAW_YS23pTas6F2sdw7cJfCiBNdf_egYaxy0VwW8VzQSjpE9VXzRLb5xs323rSDV-D2OkQubNzuCvyoe6c82nK6Pp_JdXX-G3Hkf9V9j-BhhbjZdikij2HJpE_gwTUexqdwMczSCdF8ZPOcfRydGfRIxiPFDhGP56yTYVtHKYJyzbKUDX9eXHazCSY6YipRaBmtZbOdgosDTTgTqWbd-ZTupGEWLGqBNbNtVcbpYOglsM_fFii47IB4c0kynsHxrXTBc1hOs9S8AMaVVTJ0fRWq2DOBJ7WNrRAGFWOg402vBU49URJV8bZT-JBxUjJO84RGMmlGsgUfmvyTkrHkjznX6nmXVJorTxDuxe2YiAlb8LZ5jTqHNpJEanAgKA-djUZd3gJeTLK_1JQcDvr9JrX6Lx-9gXu9o0E_6e8N91_CfXpenqlcg-XZdG5eITacydeFNDL4ctvz9xfOtHPW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRUKwoDxFoMAggVi5TcfjxyxYlLhRS9OAWip1Z-YpRaR2FCeCsOon9FP6K_0FvoQ7frVFQkhIXbAc-_o1cx_njmfOBXgtQhvGvgk8bbXABCUQaHOCe1GsBKZEVvrWzUPuDcPtQ_bhKDhagrNmL0zFD9FOuDnLKP21M_CJtusXpKHF8dj9OqBlFKT1sspds_iGSVvxbifBEX5DaX_rc2_bq-sKeMqPI-pZLmJmrBJSsECF3A8VfomWhkVC8hhBvqWBLc93fYl4XAiLaUJXb0jNbKR9vO8NuMnCLnfFIpL9lrDKx2hZlnPBIOk5pq-GJrJL16--79UweIFtLyPkMsT1V-C86ZxqZcvXtflMrqkfv_FG_k-9dw_u1nibbFYGch-WTPYA7lxiYXwIJ8M8mziSj3xekPejY4P5yHikyAGi8YL0cnzXUYaQXJM8I8OfJ6dJPsFGT0wlmixxM9lkq2TiwABORKZJMp-6HWkogrda4JPJpqqqdBDMEcjH7ws0W7LvWHOdXTyCw2vpgsewnOWZeQKEKqtk5AcqUpyZkEltuRXCoFsMNd9gHfAaPUlVzdruioeM04pvmqZuJNN2JDvwtpWfVHwlf5RcbdQurf1WkSLY46jVPAg68Ko9jR7H_UYSmcGBcDJuZTR68g7QUsf-8qT0YG8waFtP_-Wil3DrU9JPBzvD3Wdw2x2uFlSuwvJsOjfPERjO5IvSFgl8uW71_QX9EHKF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonprecious+Bimetallic+Sites+Coordinated+on+N-Doped+Carbons+with+Efficient+and+Durable+Catalytic+Activity+for+Oxygen+Reduction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yuan%2C+Shan&rft.au=Cui%2C+Li-Li&rft.au=Dou%2C+Zhiyu&rft.au=Ge%2C+Xin&rft.date=2020-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=40&rft.spage=e2000742&rft_id=info:doi/10.1002%2Fsmll.202000742&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon