Nonprecious Bimetallic Sites Coordinated on N‐Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction
Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) elect...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 40; pp. e2000742 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs.
An efficient oxygen reduction reaction (ORR) electrocatalyst composed of bimetallic (Fe and Co) single atoms coordinated with N‐doped carbon (Fe/Co‐Nx‐C) is synthesized with silica template‐assisted and mesoporous silica‐protection synthetic methods. Compared with Pt/C, Fe/Co‐Nx‐C shows a better electrocatalytic activity, stability, and durability for ORR in zinc–air batteries. |
---|---|
AbstractList | Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs. Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐N x ‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐N x ‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐N x sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐N x ‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm −2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs. Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of fuel cells and metal–air batteries. Herein, a hierarchically porous bimetallic Fe/Co single‐atom‐coordinated N‐doped carbon (Fe/Co‐Nx‐C) electrocatalyst for ORR is synthesized from Fe/Co‐coordinated polyporphyrin using silica template‐assisted and silica‐protection synthetic strategies. In the synthesis, first silica nanoparticles‐embedded, silica‐protected Fe/Co‐polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co‐Nx‐C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co‐Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half‐wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc–air battery (ZAB) assembled using Fe/Co‐Nx‐C as an air‐cathode electrocatalyst gives a high peak power density (152.0 mW cm−2) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single‐atom electrocatalyst for ORR in ZABs. An efficient oxygen reduction reaction (ORR) electrocatalyst composed of bimetallic (Fe and Co) single atoms coordinated with N‐doped carbon (Fe/Co‐Nx‐C) is synthesized with silica template‐assisted and mesoporous silica‐protection synthetic methods. Compared with Pt/C, Fe/Co‐Nx‐C shows a better electrocatalytic activity, stability, and durability for ORR in zinc–air batteries. Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of fuel cells and metal-air batteries. Herein, a hierarchically porous bimetallic Fe/Co single-atom-coordinated N-doped carbon (Fe/Co-Nx -C) electrocatalyst for ORR is synthesized from Fe/Co-coordinated polyporphyrin using silica template-assisted and silica-protection synthetic strategies. In the synthesis, first silica nanoparticles-embedded, silica-protected Fe/Co-polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co-Nx -C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co-Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half-wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc-air battery (ZAB) assembled using Fe/Co-Nx -C as an air-cathode electrocatalyst gives a high peak power density (152.0 mW cm-2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single-atom electrocatalyst for ORR in ZABs.Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of fuel cells and metal-air batteries. Herein, a hierarchically porous bimetallic Fe/Co single-atom-coordinated N-doped carbon (Fe/Co-Nx -C) electrocatalyst for ORR is synthesized from Fe/Co-coordinated polyporphyrin using silica template-assisted and silica-protection synthetic strategies. In the synthesis, first silica nanoparticles-embedded, silica-protected Fe/Co-polyporphyrin is prepared. It is then pyrolyzed and treated with acidic solution. The resulting Fe/Co-Nx -C material has a large specific surface area, large electrochemically active surface area, good conductivity, and catalytically active Fe/Co-Nx sites. The material exhibits a very good electrocatalytic activity for the ORR in alkaline media, with a half-wave potential of 0.86 V versus reversible hydrogen electrode, which is better than that of Pt/C (20 wt%). Furthermore, it shows an outstanding operational stability and durability during the reaction. A zinc-air battery (ZAB) assembled using Fe/Co-Nx -C as an air-cathode electrocatalyst gives a high peak power density (152.0 mW cm-2 ) and shows a good recovery property. Furthermore, the performance of the battery is better than a corresponding ZAB containing Pt/C as an electrocatalyst. The work also demonstrates a synthetic route to a highly active, stable, and scalable single-atom electrocatalyst for ORR in ZABs. |
Author | Yuan, Shan Dou, Zhiyu Ge, Xin He, Xingquan Zhang, Wei Asefa, Tewodros Cui, Li‐Li |
Author_xml | – sequence: 1 givenname: Shan surname: Yuan fullname: Yuan, Shan organization: Changchun University of Science and Technology – sequence: 2 givenname: Li‐Li surname: Cui fullname: Cui, Li‐Li organization: Changchun University of Science and Technology – sequence: 3 givenname: Zhiyu surname: Dou fullname: Dou, Zhiyu organization: Changchun University of Science and Technology – sequence: 4 givenname: Xin surname: Ge fullname: Ge, Xin organization: Jilin University – sequence: 5 givenname: Xingquan surname: He fullname: He, Xingquan email: hexingquan@hotmail.com organization: Changchun University of Science and Technology – sequence: 6 givenname: Wei surname: Zhang fullname: Zhang, Wei email: weizhang@jlu.edu.cn organization: Jilin University – sequence: 7 givenname: Tewodros orcidid: 0000-0001-8634-5437 surname: Asefa fullname: Asefa, Tewodros email: tasefa@chem.rutgers.edu organization: The State University of New Jersey |
BookMark | eNqFkU9PHCEYxkmjSf137ZnESy-7AsMwM0e72mqyrkmt5wnDvFQMC1tgtHPzI_Qz9pOUdc2amDSGA_Dyex5eePbRjvMOEPpEyZQSwk7i0topI4wQUnH2Ae1RQYuJqFmzs11T8hHtx3hPSEEZr_bQ08K7VQBl_BDxF7OEJK01Ct-YBBHPvA-9cTJBj73Di79Pf878Km9mMnTeRfxo0h0-19ooAy5h6Xp8NgTZWchIthpT9jpVyTyYNGLtA77-Pf4Eh79DP-Syd4doV0sb4ehlPkC3X89_zC4m8-tvl7PT-UQVdcUmupE1B61kJ3mpRFMI1YHqO-CV7Jqa1EKzUj-fk6KrRC2lFqwkPe16rqu-OECfN76r4H8NEFO7NFGBtdJBfnvLOCdCVLRqMnr8Br33Q3C5uzXVkDzKMlPTDaWCjzGAblfBLGUYW0radSDtOpB2G0gW8DcCZZJc_0EK0tj_y5qN7NFYGN-5pL25ms9ftf8A0IGmWQ |
CitedBy_id | crossref_primary_10_1002_slct_202301645 crossref_primary_10_1039_D3QI00502J crossref_primary_10_1002_smll_202108094 crossref_primary_10_1039_D1TA00039J crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1007_s12274_023_5578_1 crossref_primary_10_1002_cctc_202002045 crossref_primary_10_1016_j_cej_2021_129973 crossref_primary_10_1016_j_cej_2021_132558 crossref_primary_10_1002_aenm_202301223 crossref_primary_10_1021_acsami_2c13837 crossref_primary_10_1016_j_jcis_2023_02_061 crossref_primary_10_1039_D3IM00056G crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1016_j_jcis_2022_10_036 crossref_primary_10_1002_smll_202006834 crossref_primary_10_1021_acsaem_1c00487 crossref_primary_10_1021_acs_chemmater_1c00235 crossref_primary_10_3390_inorganics10030036 crossref_primary_10_1039_D2TA05934G crossref_primary_10_3390_catal13010080 crossref_primary_10_1016_j_nanoms_2024_09_008 crossref_primary_10_1039_D1RA08817C crossref_primary_10_1002_smll_202204474 crossref_primary_10_1002_smll_202106091 crossref_primary_10_1016_j_apcatb_2022_121429 crossref_primary_10_1039_D1TA01325D crossref_primary_10_1039_D1TA09861F crossref_primary_10_1039_D1NJ02553H crossref_primary_10_1016_j_cej_2022_137542 crossref_primary_10_1016_j_cej_2024_158565 crossref_primary_10_1021_acsanm_4c04291 crossref_primary_10_1016_j_jssc_2021_122106 crossref_primary_10_1016_j_nanoen_2022_107927 crossref_primary_10_1021_acsaem_2c02801 crossref_primary_10_1016_j_apcatb_2021_120785 crossref_primary_10_1002_cctc_202001131 crossref_primary_10_1016_j_carbon_2022_10_022 crossref_primary_10_1021_acsami_2c09019 crossref_primary_10_1021_acssuschemeng_0c08727 crossref_primary_10_1016_j_cej_2022_135295 crossref_primary_10_1039_D1DT02787E crossref_primary_10_1002_zaac_202200002 crossref_primary_10_1002_admi_202100197 crossref_primary_10_1002_smll_202302739 crossref_primary_10_1016_j_nxsust_2023_100014 crossref_primary_10_3390_ma16083283 crossref_primary_10_1016_j_apsusc_2021_152375 crossref_primary_10_1002_smll_202006698 crossref_primary_10_1007_s40843_023_2768_3 crossref_primary_10_1007_s40843_022_2059_x crossref_primary_10_1002_smll_202307943 crossref_primary_10_1021_prechem_3c00022 |
Cites_doi | 10.1002/aenm.201803737 10.1016/j.jechem.2019.08.009 10.1002/smll.201602334 10.1002/anie.201510990 10.1016/j.jpowsour.2017.02.030 10.1039/C8EE00977E 10.1002/adfm.201503613 10.1021/cm8002063 10.1002/anie.201500569 10.1002/adfm.201808872 10.1021/jp055150g 10.1002/anie.201702473 10.1021/jp806084d 10.1002/aenm.201801956 10.1039/C8TA04564J 10.1038/s41929-018-0063-z 10.1016/j.nanoen.2016.08.027 10.1039/c3ta13759g 10.1021/acsenergylett.9b00804 10.1073/pnas.1813605115 10.1021/acsnano.7b05832 10.1021/jacs.7b10385 10.1039/C7NR04349J 10.1038/nmat4367 10.1002/smtd.201700209 10.1016/j.nanoen.2019.104088 10.1002/adma.201900592 10.1038/srep09286 10.1021/ja405149m 10.1039/C8CC00988K 10.1002/anie.200907289 10.1021/acsami.9b12054 10.1039/C6TA10718D 10.1038/s41929-018-0146-x 10.1016/j.nanoen.2018.02.025 10.1021/ja3030565 10.1021/acsnano.8b08692 10.1002/anie.201810175 10.1002/anie.201804349 10.1016/j.electacta.2018.11.105 10.1038/ncomms5973 10.1002/adfm.201403657 10.1039/C9EE01722D 10.1021/acs.chemrev.5b00462 10.1002/smll.201703118 10.1002/anie.201703864 10.1016/j.nanoen.2018.06.023 10.1039/c2ee21802j 10.1002/smll.201700740 10.1002/smll.201704169 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202000742 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202000742 SMLL202000742 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51872115 – fundername: International Cooperation Project of Jilin Province funderid: 20190701022GH |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3872-f9a84efcaba45c6936cbecdbe47ab98086f25ffcaba03b768aaf6250d1bd4f7d3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 18:48:29 EDT 2025 Fri Jul 25 12:15:47 EDT 2025 Tue Jul 01 02:10:55 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Jan 22 16:31:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3872-f9a84efcaba45c6936cbecdbe47ab98086f25ffcaba03b768aaf6250d1bd4f7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8634-5437 |
PQID | 2449090955 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2440667179 proquest_journals_2449090955 crossref_primary_10_1002_smll_202000742 crossref_citationtrail_10_1002_smll_202000742 wiley_primary_10_1002_smll_202000742_SMLL202000742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 9 2015; 14 2017; 1 2019; 4 2015; 5 2013; 1 2019; 31 2019; 11 2019; 13 2019; 12 2015; 54 2019; 58 2006; 110 2017; 9 2017; 139 2016; 12 2016; 55 2018; 46 2018; 6 2018; 8 2015; 25 2014; 5 2010; 49 2012; 134 2018; 1 2019; 66 2017; 13 2018; 115 2017; 56 2019; 29 2013; 135 2016; 116 2018; 50 2020; 44 2008; 20 2018; 12 2008; 112 2018; 11 2016; 28 2018; 54 2016; 26 2012; 5 2017; 346 2018; 14 2019; 296 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Liang H. W. (e_1_2_7_32_1) 2013; 135 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Yang D. (e_1_2_7_2_1) 2017; 1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 12 start-page: 208 year: 2018 publication-title: ACS Nano – volume: 1 year: 2017 publication-title: Small – volume: 4 start-page: 1619 year: 2019 publication-title: ACS Energy Lett. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 9082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2018 publication-title: Small – volume: 49 start-page: 2565 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 396 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 9286 year: 2015 publication-title: Sci. Rep. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 7936 year: 2012 publication-title: Energy Environ. Sci. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 738 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 110 start-page: 1787 year: 2006 publication-title: J. Phys. Chem. B – volume: 28 start-page: 29 year: 2016 publication-title: Nano Energy – volume: 56 start-page: 6937 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 3177 year: 2019 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: Nanoscale – volume: 54 start-page: 4274 year: 2018 publication-title: Chem. Commun. – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 5 start-page: 4973 year: 2014 publication-title: Nat. Commun. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 872 year: 2015 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 691 year: 2018 publication-title: Nano Energy – volume: 20 start-page: 3954 year: 2008 publication-title: Chem. Mater. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 2890 year: 2019 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 2622 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 781 year: 2018 publication-title: Nat. Catal. – volume: 346 start-page: 80 year: 2017 publication-title: J. Power Sources – volume: 57 start-page: 8614 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 6398 year: 2016 publication-title: Small – volume: 55 start-page: 1 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 296 start-page: 653 year: 2019 publication-title: Electrochim. Acta – volume: 1 start-page: 339 year: 2018 publication-title: Nat. Catal. – volume: 11 start-page: 1723 year: 2018 publication-title: Energy Environ. Sci. – volume: 44 start-page: 131 year: 2020 publication-title: J. Energy Chem. – volume: 5 start-page: 4513 year: 2017 publication-title: J. Mater. Chem. A – volume: 14 start-page: 937 year: 2015 publication-title: Nat. Mater. – volume: 13 year: 2017 publication-title: Small – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201803737 – ident: e_1_2_7_31_1 doi: 10.1016/j.jechem.2019.08.009 – ident: e_1_2_7_50_1 doi: 10.1002/smll.201602334 – ident: e_1_2_7_21_1 doi: 10.1002/anie.201510990 – ident: e_1_2_7_52_1 doi: 10.1016/j.jpowsour.2017.02.030 – ident: e_1_2_7_15_1 doi: 10.1039/C8EE00977E – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201503613 – ident: e_1_2_7_40_1 doi: 10.1021/cm8002063 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201500569 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.201808872 – ident: e_1_2_7_46_1 doi: 10.1021/jp055150g – ident: e_1_2_7_17_1 doi: 10.1002/anie.201702473 – ident: e_1_2_7_42_1 doi: 10.1021/jp806084d – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201801956 – ident: e_1_2_7_30_1 doi: 10.1039/C8TA04564J – ident: e_1_2_7_16_1 doi: 10.1038/s41929-018-0063-z – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2016.08.027 – ident: e_1_2_7_43_1 doi: 10.1039/c3ta13759g – ident: e_1_2_7_12_1 doi: 10.1021/acsenergylett.9b00804 – ident: e_1_2_7_51_1 doi: 10.1073/pnas.1813605115 – ident: e_1_2_7_9_1 doi: 10.1021/acsnano.7b05832 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.7b10385 – ident: e_1_2_7_44_1 doi: 10.1039/C7NR04349J – ident: e_1_2_7_7_1 doi: 10.1038/nmat4367 – volume: 1 start-page: 1700209 year: 2017 ident: e_1_2_7_2_1 publication-title: Small doi: 10.1002/smtd.201700209 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2019.104088 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201900592 – ident: e_1_2_7_26_1 doi: 10.1038/srep09286 – ident: e_1_2_7_38_1 doi: 10.1021/ja405149m – ident: e_1_2_7_29_1 doi: 10.1039/C8CC00988K – volume: 135 start-page: 16002 year: 2013 ident: e_1_2_7_32_1 publication-title: J. Mater. Chem. A – ident: e_1_2_7_34_1 doi: 10.1039/C7NR04349J – ident: e_1_2_7_47_1 doi: 10.1002/anie.200907289 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.9b12054 – ident: e_1_2_7_35_1 doi: 10.1039/C6TA10718D – ident: e_1_2_7_23_1 doi: 10.1038/s41929-018-0146-x – ident: e_1_2_7_25_1 doi: 10.1016/j.nanoen.2018.02.025 – ident: e_1_2_7_48_1 doi: 10.1021/ja3030565 – ident: e_1_2_7_4_1 doi: 10.1021/acsnano.8b08692 – ident: e_1_2_7_28_1 doi: 10.1002/anie.201810175 – ident: e_1_2_7_20_1 doi: 10.1002/anie.201804349 – ident: e_1_2_7_37_1 doi: 10.1016/j.electacta.2018.11.105 – ident: e_1_2_7_41_1 doi: 10.1038/ncomms5973 – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201403657 – ident: e_1_2_7_1_1 doi: 10.1039/C9EE01722D – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201703118 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201703864 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2018.06.023 – ident: e_1_2_7_45_1 doi: 10.1039/c2ee21802j – ident: e_1_2_7_36_1 doi: 10.1002/smll.201700740 – ident: e_1_2_7_49_1 doi: 10.1002/smll.201704169 |
SSID | ssj0031247 |
Score | 2.5407214 |
Snippet | Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large‐scale commercialization of... Developing efficient, inexpensive, and durable electrocatalysts for the oxygen reduction reaction (ORR) is important for the large-scale commercialization of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2000742 |
SubjectTerms | Bimetals Catalytic activity Cobalt Commercialization Durability Electrocatalysts Fe/Co‐coordinated polyporphyrin Fuel cells Iron Metal air batteries Nanoparticles Nanotechnology oxygen reduction reaction Oxygen reduction reactions silica templates Silicon dioxide single‐atom catalysts Surface area Zinc-oxygen batteries zinc–air batteries |
Title | Nonprecious Bimetallic Sites Coordinated on N‐Doped Carbons with Efficient and Durable Catalytic Activity for Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202000742 https://www.proquest.com/docview/2449090955 https://www.proquest.com/docview/2440667179 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiguBpte47R20rIlrBB3hbJi8otrul24J68if4G_0lzuy2axVE0NuGTDa7yUzmmzy-MLYPoQ1jzwSOthowQAkAbQ6EE8UKMCSy0rM0D3nVDs_v_YuH4GHqFH_JD1FNuJFlFOM1GTjI_OiTNDTvdWnpwC28IA3CtGGLUNFNxR_lofMqbldBn-UQ8daEtbHuHn0t_tUrfULNacBaeJyzRQaTby03mjwejobyUL18o3H8z88ssYUxHOUnpf4ssxmTrrD5KZLCVfbaztI-cWBko5yfdnoG4Xq3o_gtgtWcNzKMXjspIlbNs5S331_fmlkfEw0YSNRoThO9vFUQVaB_45Bq3hwN6MAWiuCrnrFmfqLKSyw4Qmh-_fSMWs1viFSW1GaN3Z-17hrnzvjeBkd5ceQ6VkDsG6tAgh-oUHihQk3R0vgRSBFjEGXdwBb5dU9ivANgMQyr62OpfRtpb53NpllqNhh3lVUy8gIVKeGb0JfaCgtgcNQItTj2a8yZ9FuixqTmdLdGNynpmN2EWjapWrbGDir5fknn8aPk9kQNkrFZ5wliIVEXxNpXY3tVNhokrbJAarAjSIY2DuNAV2Nu0ee_1JTcXl1eVqnNvxTaYnP0XG4y3Gazw8HI7CBYGsrdwiA-ABsSEOo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhNBEC2FcAAOhFU4BGgkEKdJnJ79kEOwEznENlIWKbehV8mKM2N5bIFzyifkV_gVPoEvoWq2JEgICSkHjj3T093T3VX1qpdXAO9EYIPINb6jrRbooPgCZU7EThgpgS6Rla6ldcjBMOgde59O_JMl-F7fhSn5IZoFN5KMQl-TgNOC9MYVa2h-Nqa9A16YQV6dq9w3i6_oteVbe10c4vec7-4cdXpOFVjAUW4UcsfGIvKMVUIKz1dB7AYKf0VL44VCxhGifMt9W7xvuxIBuRAW_YS23pTas6F2sdw7cJfCiBNdf_egYaxy0VwW8VzQSjpE9VXzRLb5xs323rSDV-D2OkQubNzuCvyoe6c82nK6Pp_JdXX-G3Hkf9V9j-BhhbjZdikij2HJpE_gwTUexqdwMczSCdF8ZPOcfRydGfRIxiPFDhGP56yTYVtHKYJyzbKUDX9eXHazCSY6YipRaBmtZbOdgosDTTgTqWbd-ZTupGEWLGqBNbNtVcbpYOglsM_fFii47IB4c0kynsHxrXTBc1hOs9S8AMaVVTJ0fRWq2DOBJ7WNrRAGFWOg402vBU49URJV8bZT-JBxUjJO84RGMmlGsgUfmvyTkrHkjznX6nmXVJorTxDuxe2YiAlb8LZ5jTqHNpJEanAgKA-djUZd3gJeTLK_1JQcDvr9JrX6Lx-9gXu9o0E_6e8N91_CfXpenqlcg-XZdG5eITacydeFNDL4ctvz9xfOtHPW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qRUKwoDxFoMAggVi5TcfjxyxYlLhRS9OAWip1Z-YpRaR2FCeCsOon9FP6K_0FvoQ7frVFQkhIXbAc-_o1cx_njmfOBXgtQhvGvgk8bbXABCUQaHOCe1GsBKZEVvrWzUPuDcPtQ_bhKDhagrNmL0zFD9FOuDnLKP21M_CJtusXpKHF8dj9OqBlFKT1sspds_iGSVvxbifBEX5DaX_rc2_bq-sKeMqPI-pZLmJmrBJSsECF3A8VfomWhkVC8hhBvqWBLc93fYl4XAiLaUJXb0jNbKR9vO8NuMnCLnfFIpL9lrDKx2hZlnPBIOk5pq-GJrJL16--79UweIFtLyPkMsT1V-C86ZxqZcvXtflMrqkfv_FG_k-9dw_u1nibbFYGch-WTPYA7lxiYXwIJ8M8mziSj3xekPejY4P5yHikyAGi8YL0cnzXUYaQXJM8I8OfJ6dJPsFGT0wlmixxM9lkq2TiwABORKZJMp-6HWkogrda4JPJpqqqdBDMEcjH7ws0W7LvWHOdXTyCw2vpgsewnOWZeQKEKqtk5AcqUpyZkEltuRXCoFsMNd9gHfAaPUlVzdruioeM04pvmqZuJNN2JDvwtpWfVHwlf5RcbdQurf1WkSLY46jVPAg68Ko9jR7H_UYSmcGBcDJuZTR68g7QUsf-8qT0YG8waFtP_-Wil3DrU9JPBzvD3Wdw2x2uFlSuwvJsOjfPERjO5IvSFgl8uW71_QX9EHKF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonprecious+Bimetallic+Sites+Coordinated+on+N-Doped+Carbons+with+Efficient+and+Durable+Catalytic+Activity+for+Oxygen+Reduction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yuan%2C+Shan&rft.au=Cui%2C+Li-Li&rft.au=Dou%2C+Zhiyu&rft.au=Ge%2C+Xin&rft.date=2020-10-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=16&rft.issue=40&rft.spage=e2000742&rft_id=info:doi/10.1002%2Fsmll.202000742&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |