Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite
Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of externa...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 43; pp. 18933 - 18937 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.10.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2).
A ferroelectricity‐driven self‐powered ultraviolet photodetector employing a 2D hybrid perovskite ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) is presented. It shows strong polarization sensitivity, with a large polarization ratio of up to 6.8. |
---|---|
AbstractList | Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide-band photodetectors. However, it still remains elusive to achieve the self-powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity-driven self-powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide-band gap hybrid ferroelectric (BPA)2 PbBr4 (BPA=3-bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self-powered ability. This self-powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV-polarized photodetectors (ZnO, GaN, and GeS2 ).Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide-band photodetectors. However, it still remains elusive to achieve the self-powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity-driven self-powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide-band gap hybrid ferroelectric (BPA)2 PbBr4 (BPA=3-bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self-powered ability. This self-powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV-polarized photodetectors (ZnO, GaN, and GeS2 ). Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA) 2 PbBr 4 (BPA=3‐bromopropylammonium) ( 1 ). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS 2 ). Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2). A ferroelectricity‐driven self‐powered ultraviolet photodetector employing a 2D hybrid perovskite ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) is presented. It shows strong polarization sensitivity, with a large polarization ratio of up to 6.8. Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2). |
Author | Li, Lina Dey, Dhananjay Liu, Xitao Luo, Junhua Peng, Yu Ji, Chengmin |
Author_xml | – sequence: 1 givenname: Chengmin orcidid: 0000-0002-5355-9006 surname: Ji fullname: Ji, Chengmin organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 2 givenname: Dhananjay surname: Dey fullname: Dey, Dhananjay organization: Chinese Academy of Sciences – sequence: 3 givenname: Yu surname: Peng fullname: Peng, Yu organization: Chinese Academy of Sciences – sequence: 4 givenname: Xitao surname: Liu fullname: Liu, Xitao organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Lina surname: Li fullname: Li, Lina organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Junhua orcidid: 0000-0002-3179-7652 surname: Luo fullname: Luo, Junhua email: jhluo@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkU1PGzEQhlcVSAXaa8-WeullU3_sh31EFAgSopEC55XjnS1DHZvaTqL01J_QY39ffwleUhUJCXGyrXmeGfmdw2LPeQdF8YHRCaOUf9YOYcIpp7Smir8pDljNWSnaVuzleyVE2cqavS0OY7zLvJS0OSj-nEEIHiyYFNBg2v799ftLwDU4Mgc75NfMbyBAT25sCnqN3kIis1uffA8pW-gd2WC6JfMUvPtGZt7qgD_1Y2EOLmLCde5L0BFNrjd-HIDLseCdtmSqLfZApttFwJ7MIPh1_I4J3hX7g7YR3v87j4qbs9Prk2l5-fX84uT4sjRCtrw0BlgttQGjmKkVbQbQrOrbgTOjqJbQ5DCGBqoFk7XQvO1BtmqhWyMqUS8GcVR82vW9D_7HCmLqlhgNWKsd-FXseMWFpIJTltGPz9A7vwr5EyNVKcUaqmimqh1lgo8xwNDlWB_jyPmh7RjtxnV147q6_-vK2uSZdh9wqcP2ZUHthA1a2L5Cd8dXF6dP7gM96rE4 |
CitedBy_id | crossref_primary_10_1002_smll_202308583 crossref_primary_10_1021_acs_chemmater_3c00277 crossref_primary_10_1002_adom_202102436 crossref_primary_10_1039_D3TC00199G crossref_primary_10_1002_adom_202200146 crossref_primary_10_1002_anie_202312538 crossref_primary_10_1002_ange_202424279 crossref_primary_10_1002_smll_202100442 crossref_primary_10_1021_acsami_4c07170 crossref_primary_10_1021_jacs_3c03719 crossref_primary_10_1002_adma_202205410 crossref_primary_10_1088_2752_5724_acf9ba crossref_primary_10_3788_gzxb20245307_0753301 crossref_primary_10_1002_adfm_202207854 crossref_primary_10_1039_D3CS00262D crossref_primary_10_1002_adom_202401011 crossref_primary_10_1021_acsphotonics_4c01793 crossref_primary_10_1126_sciadv_ads6123 crossref_primary_10_1002_apxr_202400087 crossref_primary_10_3390_nano12060910 crossref_primary_10_1002_anie_202308445 crossref_primary_10_1002_adom_202201342 crossref_primary_10_1002_ange_202500765 crossref_primary_10_1039_D2MH01287A crossref_primary_10_1002_ange_202302406 crossref_primary_10_1039_D4QI01035C crossref_primary_10_1021_acs_inorgchem_4c03898 crossref_primary_10_1039_D2NJ03613D crossref_primary_10_1039_D4QI00934G crossref_primary_10_1002_ange_202309055 crossref_primary_10_1021_acs_inorgchem_2c02900 crossref_primary_10_1039_D4QI01671H crossref_primary_10_1002_adom_202202383 crossref_primary_10_1039_D2TC03201E crossref_primary_10_1039_D3TC01926H crossref_primary_10_1039_D4TC02120G crossref_primary_10_1021_acsami_4c11534 crossref_primary_10_1103_PhysRevApplied_20_034035 crossref_primary_10_1016_j_optmat_2024_115532 crossref_primary_10_1021_acsami_4c14244 crossref_primary_10_1002_admi_202200556 crossref_primary_10_1016_j_mee_2021_111555 crossref_primary_10_1039_D0SC06112C crossref_primary_10_1021_jacs_2c06048 crossref_primary_10_1021_acsenergylett_3c00629 crossref_primary_10_59717_j_xinn_mater_2024_100084 crossref_primary_10_1039_D1TA09537D crossref_primary_10_1103_PhysRevApplied_17_054010 crossref_primary_10_1002_anie_202205030 crossref_primary_10_1021_jacs_0c12907 crossref_primary_10_1002_adfm_202305539 crossref_primary_10_1021_acs_nanolett_2c02978 crossref_primary_10_3390_nano12193358 crossref_primary_10_1002_adma_202101059 crossref_primary_10_1002_ejic_202200172 crossref_primary_10_1039_D3QI01116J crossref_primary_10_1002_anie_202500765 crossref_primary_10_1039_D2SC05216D crossref_primary_10_1007_s40820_023_01161_y crossref_primary_10_1002_adom_202402779 crossref_primary_10_1021_acs_cgd_3c01319 crossref_primary_10_1021_acs_chemmater_2c03770 crossref_primary_10_1002_smll_202200011 crossref_primary_10_1002_smll_202203882 crossref_primary_10_1039_D1NJ00810B crossref_primary_10_1021_jacs_0c09586 crossref_primary_10_1002_adfm_202205918 crossref_primary_10_1002_anie_202425653 crossref_primary_10_1002_adom_202302411 crossref_primary_10_1002_anie_202302406 crossref_primary_10_1103_PhysRevApplied_20_054025 crossref_primary_10_1002_anie_202309055 crossref_primary_10_1021_acsnano_4c12107 crossref_primary_10_1002_ange_202205030 crossref_primary_10_1002_adfm_202200223 crossref_primary_10_1016_j_cclet_2024_110092 crossref_primary_10_1016_j_commatsci_2024_113214 crossref_primary_10_1021_acs_chemmater_2c00094 crossref_primary_10_1021_acsnano_1c09119 crossref_primary_10_1002_admt_202401126 crossref_primary_10_1007_s11467_022_1156_3 crossref_primary_10_1002_chem_202300667 crossref_primary_10_1016_j_optlastec_2022_108194 crossref_primary_10_1016_j_joule_2021_07_008 crossref_primary_10_1021_acs_chemmater_1c01129 crossref_primary_10_1021_acsnano_4c00382 crossref_primary_10_1021_acs_chemmater_0c04440 crossref_primary_10_1002_apxr_202200044 crossref_primary_10_1016_j_cclet_2022_108051 crossref_primary_10_1021_jacs_4c10415 crossref_primary_10_1002_aelm_202001125 crossref_primary_10_1021_acs_jpcc_1c08962 crossref_primary_10_1002_smsc_202300246 crossref_primary_10_1039_D1TC05699A crossref_primary_10_1021_acs_nanolett_1c01729 crossref_primary_10_1016_j_nanoen_2025_110774 crossref_primary_10_1021_jacs_1c08281 crossref_primary_10_1002_smll_202103855 crossref_primary_10_6023_A21120613 crossref_primary_10_1021_acsanm_3c06308 crossref_primary_10_1039_D4TA07010K crossref_primary_10_1088_2752_5724_ace8aa crossref_primary_10_1021_acsami_3c17868 crossref_primary_10_1021_acs_chemmater_1c00540 crossref_primary_10_1021_acs_chemmater_3c01701 crossref_primary_10_1063_5_0222926 crossref_primary_10_3390_nano14231920 crossref_primary_10_1063_5_0183233 crossref_primary_10_1021_acs_jpcc_2c01731 crossref_primary_10_1021_acs_chemmater_3c02521 crossref_primary_10_1002_ange_202312538 crossref_primary_10_1021_jacs_3c03921 crossref_primary_10_1002_ange_202425653 crossref_primary_10_1038_s41467_021_26200_3 crossref_primary_10_1002_anie_202424279 crossref_primary_10_1039_D2QM00791F crossref_primary_10_1039_D3QI02660D crossref_primary_10_1016_j_nanoen_2022_107714 crossref_primary_10_1021_jacs_3c05020 crossref_primary_10_1016_j_materresbull_2022_112075 crossref_primary_10_1007_s40820_023_01048_y crossref_primary_10_1016_j_ceramint_2022_09_127 crossref_primary_10_1002_ange_202308445 |
Cites_doi | 10.1038/ncomms3835 10.1002/smll.201202408 10.1039/c3qi00058c 10.1038/nature18306 10.1002/anie.201406810 10.1016/j.cplett.2004.03.083 10.1002/adfm.201504477 10.1002/adma.200902985 10.1021/jacs.9b06815 10.1126/science.1168636 10.1002/anie.201907660 10.1002/anie.201705836 10.1038/nnano.2009.451 10.1002/ange.201601933 10.1364/OE.22.030148 10.1002/ange.201406810 10.1080/00150197608236596 10.1021/acs.chemrev.6b00136 10.1002/pssb.19660150224 10.1002/adma.201601196 10.1039/C5NR03400K 10.1021/jacs.9b10919 10.1021/acs.chemrev.5b00715 10.1021/acsnano.8b05162 10.1002/adom.201800351 10.1002/ange.201907660 10.1002/anie.201601933 10.1117/1.2829767 10.1021/acsnano.9b03994 10.1063/1.1841453 10.1002/ange.201705836 10.1002/adfm.201701342 10.1002/anie.201915094 10.1063/1.4978427 10.1002/adma.201704908 10.1107/S0567740878007098 10.1002/adma.201505224 10.1021/jacs.8b12948 10.1007/978-3-642-81351-1 10.1126/science.1062340 10.1002/adom.201500190 10.1103/PhysRev.35.269 10.3390/s100908604 10.1002/adfm.201900411 10.1002/ange.201915094 10.1021/jacs.9b10048 10.1038/nnano.2015.112 10.1021/jacs.9b02558 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202005092 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18937 |
ExternalDocumentID | 10_1002_anie_202005092 ANIE202005092 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China funderid: 21833010, 21525104, 21875251, 21971238, 21975258, 61975207 and 21921001 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20010200 – fundername: the Youth Innovation Promotion of CAS funderid: 2019301, 2020307 – fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: ZDBS-LY-SLH024 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3872-cce158acec91c5906fea14d7f21c90a8e6509f6e4b1853a27de879ba7c3435bf3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:16:38 EDT 2025 Fri Jul 25 12:05:29 EDT 2025 Tue Jul 01 01:17:44 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Wed Jan 22 16:33:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3872-cce158acec91c5906fea14d7f21c90a8e6509f6e4b1853a27de879ba7c3435bf3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3179-7652 0000-0002-5355-9006 |
PQID | 2449916090 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2423803201 proquest_journals_2449916090 crossref_citationtrail_10_1002_anie_202005092 crossref_primary_10_1002_anie_202005092 wiley_primary_10_1002_anie_202005092_ANIE202005092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 19, 2020 |
PublicationDateYYYYMMDD | 2020-10-19 |
PublicationDate_xml | – month: 10 year: 2020 text: October 19, 2020 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2010; 10 2004; 85 2013; 4 2004; 389 2015; 3 1966; 15 2019; 31 1978; 34 2020; 142 2017; 27 2019; 13 2015; 10 1930; 35 2020 2020; 59 132 2017; 110 2017 2017; 56 129 2019; 141 1979; 30 2015; 7 2014; 22 2019 2019; 58 131 1979 2013; 9 2014; 1 2018; 6 2010; 22 2001; 293 1976; 13 2016 2016; 55 128 2016; 536 2008; 47 2019; 29 2018; 30 2016; 116 2018; 12 2016; 28 2010; 5 2016; 26 2009; 324 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_1 Fridkin V. M. (e_1_2_2_44_1) 1979; 30 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_32_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 Sha T.-T. (e_1_2_2_37_1) 2019; 31 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_27_1 e_1_2_2_14_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_35_2 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 55 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 269 year: 1930 publication-title: Phys. Rev. – volume: 58 131 start-page: 14504 14646 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 12150 12318 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 11242 11424 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 start-page: 686 year: 1979 publication-title: JETP Lett. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 55 128 start-page: 6545 6655 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 7264 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 8604 year: 2010 publication-title: Sensors – volume: 47 year: 2008 publication-title: Opt. Eng. – volume: 85 start-page: 6128 year: 2004 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 2579 year: 2016 publication-title: Adv. Mater. – volume: 141 start-page: 18334 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 118 year: 2014 publication-title: Inorg. Chem. Front. – volume: 141 start-page: 14520 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 1455 year: 2001 publication-title: Science – year: 1979 – volume: 324 start-page: 63 year: 2009 publication-title: Science – volume: 15 start-page: 627 year: 1966 publication-title: Phys. Status Solidi B – volume: 12 start-page: 8798 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 707 year: 2015 publication-title: Nat. Nanotechnol. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 389 start-page: 176 year: 2004 publication-title: Chem. Phys. Lett. – volume: 7 start-page: 18537 year: 2015 publication-title: Nanoscale – volume: 34 start-page: 1970 year: 1978 publication-title: Acta Crystallogr. Sect. B – volume: 116 start-page: 12956 year: 2016 publication-title: Chem. Rev. – volume: 26 start-page: 1296 year: 2016 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 9907 year: 2019 publication-title: ACS Nano – volume: 5 start-page: 143 year: 2010 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 2005 year: 2013 publication-title: Small – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 305 year: 1976 publication-title: Ferroelectrics – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1418 year: 2015 publication-title: Adv. Opt. Mater. – volume: 22 start-page: 1763 year: 2010 publication-title: Adv. Mater. – volume: 4 start-page: 2835 year: 2013 publication-title: Nat. Commun. – volume: 141 start-page: 7693 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 3933 3961 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 30148 year: 2014 publication-title: Opt. Express – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 141 start-page: 2623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 686 year: 1979 ident: e_1_2_2_44_1 publication-title: JETP Lett. – ident: e_1_2_2_22_1 doi: 10.1038/ncomms3835 – ident: e_1_2_2_11_1 doi: 10.1002/smll.201202408 – ident: e_1_2_2_39_1 doi: 10.1039/c3qi00058c – ident: e_1_2_2_26_1 doi: 10.1038/nature18306 – ident: e_1_2_2_36_1 doi: 10.1002/anie.201406810 – ident: e_1_2_2_4_1 doi: 10.1016/j.cplett.2004.03.083 – ident: e_1_2_2_13_1 doi: 10.1002/adfm.201504477 – ident: e_1_2_2_18_1 doi: 10.1002/adma.200902985 – ident: e_1_2_2_17_1 doi: 10.1021/jacs.9b06815 – ident: e_1_2_2_25_1 doi: 10.1126/science.1168636 – ident: e_1_2_2_20_1 doi: 10.1002/anie.201907660 – ident: e_1_2_2_32_1 doi: 10.1002/anie.201705836 – ident: e_1_2_2_19_1 doi: 10.1038/nnano.2009.451 – ident: e_1_2_2_29_2 doi: 10.1002/ange.201601933 – ident: e_1_2_2_5_1 doi: 10.1364/OE.22.030148 – ident: e_1_2_2_36_2 doi: 10.1002/ange.201406810 – ident: e_1_2_2_24_1 doi: 10.1080/00150197608236596 – ident: e_1_2_2_27_1 doi: 10.1021/acs.chemrev.6b00136 – ident: e_1_2_2_41_1 doi: 10.1002/pssb.19660150224 – ident: e_1_2_2_42_1 doi: 10.1002/adma.201601196 – ident: e_1_2_2_15_1 doi: 10.1039/C5NR03400K – ident: e_1_2_2_30_1 doi: 10.1021/jacs.9b10919 – ident: e_1_2_2_28_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_2_43_1 doi: 10.1021/acsnano.8b05162 – ident: e_1_2_2_16_1 doi: 10.1002/adom.201800351 – ident: e_1_2_2_20_2 doi: 10.1002/ange.201907660 – ident: e_1_2_2_29_1 doi: 10.1002/anie.201601933 – ident: e_1_2_2_3_1 doi: 10.1117/1.2829767 – ident: e_1_2_2_12_1 doi: 10.1021/acsnano.9b03994 – ident: e_1_2_2_9_1 doi: 10.1063/1.1841453 – ident: e_1_2_2_32_2 doi: 10.1002/ange.201705836 – ident: e_1_2_2_6_1 doi: 10.1002/adfm.201701342 – ident: e_1_2_2_35_1 doi: 10.1002/anie.201915094 – ident: e_1_2_2_7_1 doi: 10.1063/1.4978427 – ident: e_1_2_2_23_1 doi: 10.1002/adma.201704908 – ident: e_1_2_2_40_1 doi: 10.1107/S0567740878007098 – ident: e_1_2_2_31_1 doi: 10.1002/adma.201505224 – ident: e_1_2_2_33_1 doi: 10.1021/jacs.8b12948 – ident: e_1_2_2_45_1 doi: 10.1007/978-3-642-81351-1 – volume: 31 start-page: 1901841 year: 2019 ident: e_1_2_2_37_1 publication-title: Adv. Mater. – ident: e_1_2_2_1_1 doi: 10.1126/science.1062340 – ident: e_1_2_2_14_1 doi: 10.1002/adom.201500190 – ident: e_1_2_2_38_1 doi: 10.1103/PhysRev.35.269 – ident: e_1_2_2_8_1 doi: 10.3390/s100908604 – ident: e_1_2_2_10_1 doi: 10.1002/adfm.201900411 – ident: e_1_2_2_35_2 doi: 10.1002/ange.201915094 – ident: e_1_2_2_34_1 doi: 10.1021/jacs.9b10048 – ident: e_1_2_2_2_1 doi: 10.1038/nnano.2015.112 – ident: e_1_2_2_21_1 doi: 10.1021/jacs.9b02558 |
SSID | ssj0028806 |
Score | 2.6352727 |
Snippet | Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various... Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18933 |
SubjectTerms | bulk photovoltaic effect Ferroelectricity ferroelectrics hybrid perovskites Linear polarization Military applications Perovskites Photometers Photovoltaic effect Photovoltaics Polarization polarization sensitivity self-powered photodetection Sensitivity Ultraviolet radiation Zinc oxide |
Title | Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005092 https://www.proquest.com/docview/2449916090 https://www.proquest.com/docview/2423803201 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LatwwFBUlm3aT9EkmnRYVClkpsWTZlpYhnWFaaBiSDGRn9HISMtjF42lpV_2ELvt9_ZLqyo9MCiXQ7iws-SHdKx097jkIvRXCepiaRkTGlBMuqSDC6JRwxnWa2sIkQabz40k6W_APF8nFRhR_yw8xLLiBZ4T-Ghxc6dXhLWkoRGD7-R0LDCbQCcOBLUBFpwN_FPPG2YYXxTEBFfqetTFih3eL3x2VbqHmJmANI850B6n-W9uDJjcH60YfmG9_0Dj-z888RtsdHMVHrf08QQ9c-RQ9PO5V4J6hn1NX11UrlnNtPGT_9f3Huxq6SHzmloVPzUFnzVm8WDa1Cvv8DZ5fVU1lXRPOeZUYFnvxGSy6X-I5zKW74E__iBLOjIF-Bb4uscLnXyp4AUgOtHQheOYnCtbh2VcILcNzV1efV7Di_BwtppPz4xnp1ByIiUXGiDGOJkIZZyQ1iYzSwinKbVYwamSkhAMuvyJ1XAOEUCyzTmRSq8zEHtLpIn6BtsqqdLsIe0hn_TAaW2E5twmTmc64yigNkDdWI0T61sxNR3UOihvLvCVpZjnUdz7U9wjtD_k_tSQff8057o0j75x9lXuEBCg7ktEIvRlu-3aCvRdVumoNeTw2ArF6OkIsWMI9b8qPTt5PhtTevxR6iR7BNYy0VI7RVlOv3SsPoRr9OrjJb4_KGCE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZVE2vBEDBYwEYuU2cZzXgkXV6ShD29GIzkjdBcd2oGKUoEyGqqz4BJb8Br_CJ_Al-DqPUiSEhNQFyyTOQ7ZvfO71vecAPIsiZWBq4NDYcznlsRvRSGYB5YxnQaBy6VuZzsNJkMz5q2P_eA2-dbUwDT9EH3BDy7D_azRwDEhvn7OGYgm2cfCYpTBhbV7lvj47NV7b8uV4aIb4OWOjvdluQlthASq9KGRUSu36kZBaxq70YyfItXC5CnPmytgRkUZauTzQPMPVTLBQ6SiMMxFKz6CLLPfMc6_AVZQRR7r-4euesYoZc2gKmjyPou59xxPpsO2L33txHTwHt79CZLvGjW7A9653mtSW91urOtuSn34jjvyvuu8mXG8RN9lpTOQWrOniNmzsdkJ3d-DrSFdV2egBnUjjlfz4_GVY4SpAjvQiN0dTlJLTiswXdSVsKkNNpu_KulS6tqlsBcF4NjnCfYW3ZIrhgra-1TyiwLQ4lOggJwURZHZa4gtQVaFhRCGJ8YWUJskZVs-Rqa7Kj0sMqt-F-aV0zD1YL8pC3wdiUKsySMFTkeJc-SwOs5CL0HUtqvfEAGg3fVLZsrmjqMgibXioWYrjm_bjO4AXffsPDY_JH1tudrMxbf9ny9SAQHQknNgZwNP-shkn3F4ShS5X2MbAP8cziHIAzE69v7wp3ZmM9_qjB_9y0xPYSGaHB-nBeLL_EK7heQQWbrwJ63W10o8MYqyzx9ZGCby57Fn9E7GUdzs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv_FddKGAkEKe0ieP8HThU3a52Kawi2pV6C47tQMUqqbJZqnLiETjyGLwKr8CTMJO_UiSEhNQDxyTOj-yZ-Bt75vsAnoahRpjq21bkOsISkRNaoUp9S3CR-r7OlFfLdL6e-uOZeHnkHa3At64WpuGH6BfcyDPq_zU5-InOts9JQ6kCG-M7XjOY8Datct-cnWLQtngxGeIIP-N8tHe4O7ZaXQFLuWHALaWM44VSGRU5yotsPzPSETrIuKMiW4aGWOUy34iUJjPJA23CIEploFwEF2nm4nOvwFXh2xGJRQzf9IRVHL2hqWdyXYtk7zuaSJtvX_zei9PgObb9FSHXU9zoJnzvOqfJbPmwtazSLfXpN97I_6n3bsGNFm-zncZBbsOKye_A9d1O5u4ufB2ZsiwaNaBjhTHJj89fhiXNAezAzDM8iklIzmg2m1elrBMZKha_L6pCm6pOZMsZrWazA9pVeMdiWixoq1vxETklxZFABzvOmWSHpwW9gDQVGj4UNsZISBs2PqPaORabsvi4oCX1ezC7lI5Zh9W8yM0GMMSsGnGCq0MthPZ4FKSBkIHj1JjelQOwOutJVMvlTpIi86RhoeYJjW_Sj-8AnvftTxoWkz-23OyMMWn_ZosEISCFEWjuA3jSX8Zxos0lmZtiSW0Q_Nku4skB8Nry_vKmZGc62euP7v_LTY_hWjwcJa8m0_0HsEanCVU40SasVuXSPES4WKWPag9l8Payjfonyid16g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectricity%E2%80%90Driven+Self%E2%80%90Powered+Ultraviolet+Photodetection+with+Strong+Polarization+Sensitivity+in+a+Two%E2%80%90Dimensional+Halide+Hybrid+Perovskite&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ji%2C+Chengmin&rft.au=Dey%2C+Dhananjay&rft.au=Yu%2C+Peng&rft.au=Liu%2C+Xitao&rft.date=2020-10-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=43&rft.spage=18933&rft.epage=18937&rft_id=info:doi/10.1002%2Fanie.202005092&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |