Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite

Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of externa...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 43; pp. 18933 - 18937
Main Authors Ji, Chengmin, Dey, Dhananjay, Peng, Yu, Liu, Xitao, Li, Lina, Luo, Junhua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.10.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2). A ferroelectricity‐driven self‐powered ultraviolet photodetector employing a 2D hybrid perovskite ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) is presented. It shows strong polarization sensitivity, with a large polarization ratio of up to 6.8.
AbstractList Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide-band photodetectors. However, it still remains elusive to achieve the self-powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity-driven self-powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide-band gap hybrid ferroelectric (BPA)2 PbBr4 (BPA=3-bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self-powered ability. This self-powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV-polarized photodetectors (ZnO, GaN, and GeS2 ).Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide-band photodetectors. However, it still remains elusive to achieve the self-powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity-driven self-powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide-band gap hybrid ferroelectric (BPA)2 PbBr4 (BPA=3-bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self-powered ability. This self-powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV-polarized photodetectors (ZnO, GaN, and GeS2 ).
Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA) 2 PbBr 4 (BPA=3‐bromopropylammonium) ( 1 ). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS 2 ).
Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2). A ferroelectricity‐driven self‐powered ultraviolet photodetector employing a 2D hybrid perovskite ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) is presented. It shows strong polarization sensitivity, with a large polarization ratio of up to 6.8.
Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various wide‐band photodetectors. However, it still remains elusive to achieve the self‐powered devices, which can be operated in the absence of external bias. Herein, for the first time, ferroelectricity‐driven self‐powered photodetection towards polarized UV light was successfully demonstrated in a 2D wide‐band gap hybrid ferroelectric (BPA)2PbBr4 (BPA=3‐bromopropylammonium) (1). We found that the prominent spontaneous polarization in 1 results in a bulk photovoltaic effect (BPVE) of 0.85 V, that independently drives photoexcited carriers separation and transport and thus supports self‐powered ability. This self‐powered detector shows strong polarization sensitivity to linearly polarized UV illumination with a polarization ratio up to 6.8, which is superior to that of previously reported UV‐polarized photodetectors (ZnO, GaN, and GeS2).
Author Li, Lina
Dey, Dhananjay
Liu, Xitao
Luo, Junhua
Peng, Yu
Ji, Chengmin
Author_xml – sequence: 1
  givenname: Chengmin
  orcidid: 0000-0002-5355-9006
  surname: Ji
  fullname: Ji, Chengmin
  organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 2
  givenname: Dhananjay
  surname: Dey
  fullname: Dey, Dhananjay
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yu
  surname: Peng
  fullname: Peng, Yu
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xitao
  surname: Liu
  fullname: Liu, Xitao
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Lina
  surname: Li
  fullname: Li, Lina
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Junhua
  orcidid: 0000-0002-3179-7652
  surname: Luo
  fullname: Luo, Junhua
  email: jhluo@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkU1PGzEQhlcVSAXaa8-WeullU3_sh31EFAgSopEC55XjnS1DHZvaTqL01J_QY39ffwleUhUJCXGyrXmeGfmdw2LPeQdF8YHRCaOUf9YOYcIpp7Smir8pDljNWSnaVuzleyVE2cqavS0OY7zLvJS0OSj-nEEIHiyYFNBg2v799ftLwDU4Mgc75NfMbyBAT25sCnqN3kIis1uffA8pW-gd2WC6JfMUvPtGZt7qgD_1Y2EOLmLCde5L0BFNrjd-HIDLseCdtmSqLfZApttFwJ7MIPh1_I4J3hX7g7YR3v87j4qbs9Prk2l5-fX84uT4sjRCtrw0BlgttQGjmKkVbQbQrOrbgTOjqJbQ5DCGBqoFk7XQvO1BtmqhWyMqUS8GcVR82vW9D_7HCmLqlhgNWKsd-FXseMWFpIJTltGPz9A7vwr5EyNVKcUaqmimqh1lgo8xwNDlWB_jyPmh7RjtxnV147q6_-vK2uSZdh9wqcP2ZUHthA1a2L5Cd8dXF6dP7gM96rE4
CitedBy_id crossref_primary_10_1002_smll_202308583
crossref_primary_10_1021_acs_chemmater_3c00277
crossref_primary_10_1002_adom_202102436
crossref_primary_10_1039_D3TC00199G
crossref_primary_10_1002_adom_202200146
crossref_primary_10_1002_anie_202312538
crossref_primary_10_1002_ange_202424279
crossref_primary_10_1002_smll_202100442
crossref_primary_10_1021_acsami_4c07170
crossref_primary_10_1021_jacs_3c03719
crossref_primary_10_1002_adma_202205410
crossref_primary_10_1088_2752_5724_acf9ba
crossref_primary_10_3788_gzxb20245307_0753301
crossref_primary_10_1002_adfm_202207854
crossref_primary_10_1039_D3CS00262D
crossref_primary_10_1002_adom_202401011
crossref_primary_10_1021_acsphotonics_4c01793
crossref_primary_10_1126_sciadv_ads6123
crossref_primary_10_1002_apxr_202400087
crossref_primary_10_3390_nano12060910
crossref_primary_10_1002_anie_202308445
crossref_primary_10_1002_adom_202201342
crossref_primary_10_1002_ange_202500765
crossref_primary_10_1039_D2MH01287A
crossref_primary_10_1002_ange_202302406
crossref_primary_10_1039_D4QI01035C
crossref_primary_10_1021_acs_inorgchem_4c03898
crossref_primary_10_1039_D2NJ03613D
crossref_primary_10_1039_D4QI00934G
crossref_primary_10_1002_ange_202309055
crossref_primary_10_1021_acs_inorgchem_2c02900
crossref_primary_10_1039_D4QI01671H
crossref_primary_10_1002_adom_202202383
crossref_primary_10_1039_D2TC03201E
crossref_primary_10_1039_D3TC01926H
crossref_primary_10_1039_D4TC02120G
crossref_primary_10_1021_acsami_4c11534
crossref_primary_10_1103_PhysRevApplied_20_034035
crossref_primary_10_1016_j_optmat_2024_115532
crossref_primary_10_1021_acsami_4c14244
crossref_primary_10_1002_admi_202200556
crossref_primary_10_1016_j_mee_2021_111555
crossref_primary_10_1039_D0SC06112C
crossref_primary_10_1021_jacs_2c06048
crossref_primary_10_1021_acsenergylett_3c00629
crossref_primary_10_59717_j_xinn_mater_2024_100084
crossref_primary_10_1039_D1TA09537D
crossref_primary_10_1103_PhysRevApplied_17_054010
crossref_primary_10_1002_anie_202205030
crossref_primary_10_1021_jacs_0c12907
crossref_primary_10_1002_adfm_202305539
crossref_primary_10_1021_acs_nanolett_2c02978
crossref_primary_10_3390_nano12193358
crossref_primary_10_1002_adma_202101059
crossref_primary_10_1002_ejic_202200172
crossref_primary_10_1039_D3QI01116J
crossref_primary_10_1002_anie_202500765
crossref_primary_10_1039_D2SC05216D
crossref_primary_10_1007_s40820_023_01161_y
crossref_primary_10_1002_adom_202402779
crossref_primary_10_1021_acs_cgd_3c01319
crossref_primary_10_1021_acs_chemmater_2c03770
crossref_primary_10_1002_smll_202200011
crossref_primary_10_1002_smll_202203882
crossref_primary_10_1039_D1NJ00810B
crossref_primary_10_1021_jacs_0c09586
crossref_primary_10_1002_adfm_202205918
crossref_primary_10_1002_anie_202425653
crossref_primary_10_1002_adom_202302411
crossref_primary_10_1002_anie_202302406
crossref_primary_10_1103_PhysRevApplied_20_054025
crossref_primary_10_1002_anie_202309055
crossref_primary_10_1021_acsnano_4c12107
crossref_primary_10_1002_ange_202205030
crossref_primary_10_1002_adfm_202200223
crossref_primary_10_1016_j_cclet_2024_110092
crossref_primary_10_1016_j_commatsci_2024_113214
crossref_primary_10_1021_acs_chemmater_2c00094
crossref_primary_10_1021_acsnano_1c09119
crossref_primary_10_1002_admt_202401126
crossref_primary_10_1007_s11467_022_1156_3
crossref_primary_10_1002_chem_202300667
crossref_primary_10_1016_j_optlastec_2022_108194
crossref_primary_10_1016_j_joule_2021_07_008
crossref_primary_10_1021_acs_chemmater_1c01129
crossref_primary_10_1021_acsnano_4c00382
crossref_primary_10_1021_acs_chemmater_0c04440
crossref_primary_10_1002_apxr_202200044
crossref_primary_10_1016_j_cclet_2022_108051
crossref_primary_10_1021_jacs_4c10415
crossref_primary_10_1002_aelm_202001125
crossref_primary_10_1021_acs_jpcc_1c08962
crossref_primary_10_1002_smsc_202300246
crossref_primary_10_1039_D1TC05699A
crossref_primary_10_1021_acs_nanolett_1c01729
crossref_primary_10_1016_j_nanoen_2025_110774
crossref_primary_10_1021_jacs_1c08281
crossref_primary_10_1002_smll_202103855
crossref_primary_10_6023_A21120613
crossref_primary_10_1021_acsanm_3c06308
crossref_primary_10_1039_D4TA07010K
crossref_primary_10_1088_2752_5724_ace8aa
crossref_primary_10_1021_acsami_3c17868
crossref_primary_10_1021_acs_chemmater_1c00540
crossref_primary_10_1021_acs_chemmater_3c01701
crossref_primary_10_1063_5_0222926
crossref_primary_10_3390_nano14231920
crossref_primary_10_1063_5_0183233
crossref_primary_10_1021_acs_jpcc_2c01731
crossref_primary_10_1021_acs_chemmater_3c02521
crossref_primary_10_1002_ange_202312538
crossref_primary_10_1021_jacs_3c03921
crossref_primary_10_1002_ange_202425653
crossref_primary_10_1038_s41467_021_26200_3
crossref_primary_10_1002_anie_202424279
crossref_primary_10_1039_D2QM00791F
crossref_primary_10_1039_D3QI02660D
crossref_primary_10_1016_j_nanoen_2022_107714
crossref_primary_10_1021_jacs_3c05020
crossref_primary_10_1016_j_materresbull_2022_112075
crossref_primary_10_1007_s40820_023_01048_y
crossref_primary_10_1016_j_ceramint_2022_09_127
crossref_primary_10_1002_ange_202308445
Cites_doi 10.1038/ncomms3835
10.1002/smll.201202408
10.1039/c3qi00058c
10.1038/nature18306
10.1002/anie.201406810
10.1016/j.cplett.2004.03.083
10.1002/adfm.201504477
10.1002/adma.200902985
10.1021/jacs.9b06815
10.1126/science.1168636
10.1002/anie.201907660
10.1002/anie.201705836
10.1038/nnano.2009.451
10.1002/ange.201601933
10.1364/OE.22.030148
10.1002/ange.201406810
10.1080/00150197608236596
10.1021/acs.chemrev.6b00136
10.1002/pssb.19660150224
10.1002/adma.201601196
10.1039/C5NR03400K
10.1021/jacs.9b10919
10.1021/acs.chemrev.5b00715
10.1021/acsnano.8b05162
10.1002/adom.201800351
10.1002/ange.201907660
10.1002/anie.201601933
10.1117/1.2829767
10.1021/acsnano.9b03994
10.1063/1.1841453
10.1002/ange.201705836
10.1002/adfm.201701342
10.1002/anie.201915094
10.1063/1.4978427
10.1002/adma.201704908
10.1107/S0567740878007098
10.1002/adma.201505224
10.1021/jacs.8b12948
10.1007/978-3-642-81351-1
10.1126/science.1062340
10.1002/adom.201500190
10.1103/PhysRev.35.269
10.3390/s100908604
10.1002/adfm.201900411
10.1002/ange.201915094
10.1021/jacs.9b10048
10.1038/nnano.2015.112
10.1021/jacs.9b02558
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202005092
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 18937
ExternalDocumentID 10_1002_anie_202005092
ANIE202005092
Genre shortCommunication
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 21833010, 21525104, 21875251, 21971238, 21975258, 61975207 and 21921001
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20010200
– fundername: the Youth Innovation Promotion of CAS
  funderid: 2019301, 2020307
– fundername: the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  funderid: ZDBS-LY-SLH024
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3872-cce158acec91c5906fea14d7f21c90a8e6509f6e4b1853a27de879ba7c3435bf3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:16:38 EDT 2025
Fri Jul 25 12:05:29 EDT 2025
Tue Jul 01 01:17:44 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3872-cce158acec91c5906fea14d7f21c90a8e6509f6e4b1853a27de879ba7c3435bf3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3179-7652
0000-0002-5355-9006
PQID 2449916090
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2423803201
proquest_journals_2449916090
crossref_citationtrail_10_1002_anie_202005092
crossref_primary_10_1002_anie_202005092
wiley_primary_10_1002_anie_202005092_ANIE202005092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 19, 2020
PublicationDateYYYYMMDD 2020-10-19
PublicationDate_xml – month: 10
  year: 2020
  text: October 19, 2020
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2010; 10
2004; 85
2013; 4
2004; 389
2015; 3
1966; 15
2019; 31
1978; 34
2020; 142
2017; 27
2019; 13
2015; 10
1930; 35
2020 2020; 59 132
2017; 110
2017 2017; 56 129
2019; 141
1979; 30
2015; 7
2014; 22
2019 2019; 58 131
1979
2013; 9
2014; 1
2018; 6
2010; 22
2001; 293
1976; 13
2016 2016; 55 128
2016; 536
2008; 47
2019; 29
2018; 30
2016; 116
2018; 12
2016; 28
2010; 5
2016; 26
2009; 324
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
Fridkin V. M. (e_1_2_2_44_1) 1979; 30
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_32_2
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
Sha T.-T. (e_1_2_2_37_1) 2019; 31
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_27_1
e_1_2_2_14_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_35_2
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 55
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 269
  year: 1930
  publication-title: Phys. Rev.
– volume: 58 131
  start-page: 14504 14646
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 12150 12318
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 11242 11424
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  start-page: 686
  year: 1979
  publication-title: JETP Lett.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 55 128
  start-page: 6545 6655
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 7264
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 8604
  year: 2010
  publication-title: Sensors
– volume: 47
  year: 2008
  publication-title: Opt. Eng.
– volume: 85
  start-page: 6128
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 2579
  year: 2016
  publication-title: Adv. Mater.
– volume: 141
  start-page: 18334
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 118
  year: 2014
  publication-title: Inorg. Chem. Front.
– volume: 141
  start-page: 14520
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 293
  start-page: 1455
  year: 2001
  publication-title: Science
– year: 1979
– volume: 324
  start-page: 63
  year: 2009
  publication-title: Science
– volume: 15
  start-page: 627
  year: 1966
  publication-title: Phys. Status Solidi B
– volume: 12
  start-page: 8798
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 707
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 389
  start-page: 176
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 18537
  year: 2015
  publication-title: Nanoscale
– volume: 34
  start-page: 1970
  year: 1978
  publication-title: Acta Crystallogr. Sect. B
– volume: 116
  start-page: 12956
  year: 2016
  publication-title: Chem. Rev.
– volume: 26
  start-page: 1296
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 9907
  year: 2019
  publication-title: ACS Nano
– volume: 5
  start-page: 143
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 2005
  year: 2013
  publication-title: Small
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 305
  year: 1976
  publication-title: Ferroelectrics
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1418
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 22
  start-page: 1763
  year: 2010
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2835
  year: 2013
  publication-title: Nat. Commun.
– volume: 141
  start-page: 7693
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 3933 3961
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 30148
  year: 2014
  publication-title: Opt. Express
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 141
  start-page: 2623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 686
  year: 1979
  ident: e_1_2_2_44_1
  publication-title: JETP Lett.
– ident: e_1_2_2_22_1
  doi: 10.1038/ncomms3835
– ident: e_1_2_2_11_1
  doi: 10.1002/smll.201202408
– ident: e_1_2_2_39_1
  doi: 10.1039/c3qi00058c
– ident: e_1_2_2_26_1
  doi: 10.1038/nature18306
– ident: e_1_2_2_36_1
  doi: 10.1002/anie.201406810
– ident: e_1_2_2_4_1
  doi: 10.1016/j.cplett.2004.03.083
– ident: e_1_2_2_13_1
  doi: 10.1002/adfm.201504477
– ident: e_1_2_2_18_1
  doi: 10.1002/adma.200902985
– ident: e_1_2_2_17_1
  doi: 10.1021/jacs.9b06815
– ident: e_1_2_2_25_1
  doi: 10.1126/science.1168636
– ident: e_1_2_2_20_1
  doi: 10.1002/anie.201907660
– ident: e_1_2_2_32_1
  doi: 10.1002/anie.201705836
– ident: e_1_2_2_19_1
  doi: 10.1038/nnano.2009.451
– ident: e_1_2_2_29_2
  doi: 10.1002/ange.201601933
– ident: e_1_2_2_5_1
  doi: 10.1364/OE.22.030148
– ident: e_1_2_2_36_2
  doi: 10.1002/ange.201406810
– ident: e_1_2_2_24_1
  doi: 10.1080/00150197608236596
– ident: e_1_2_2_27_1
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_2_41_1
  doi: 10.1002/pssb.19660150224
– ident: e_1_2_2_42_1
  doi: 10.1002/adma.201601196
– ident: e_1_2_2_15_1
  doi: 10.1039/C5NR03400K
– ident: e_1_2_2_30_1
  doi: 10.1021/jacs.9b10919
– ident: e_1_2_2_28_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_2_43_1
  doi: 10.1021/acsnano.8b05162
– ident: e_1_2_2_16_1
  doi: 10.1002/adom.201800351
– ident: e_1_2_2_20_2
  doi: 10.1002/ange.201907660
– ident: e_1_2_2_29_1
  doi: 10.1002/anie.201601933
– ident: e_1_2_2_3_1
  doi: 10.1117/1.2829767
– ident: e_1_2_2_12_1
  doi: 10.1021/acsnano.9b03994
– ident: e_1_2_2_9_1
  doi: 10.1063/1.1841453
– ident: e_1_2_2_32_2
  doi: 10.1002/ange.201705836
– ident: e_1_2_2_6_1
  doi: 10.1002/adfm.201701342
– ident: e_1_2_2_35_1
  doi: 10.1002/anie.201915094
– ident: e_1_2_2_7_1
  doi: 10.1063/1.4978427
– ident: e_1_2_2_23_1
  doi: 10.1002/adma.201704908
– ident: e_1_2_2_40_1
  doi: 10.1107/S0567740878007098
– ident: e_1_2_2_31_1
  doi: 10.1002/adma.201505224
– ident: e_1_2_2_33_1
  doi: 10.1021/jacs.8b12948
– ident: e_1_2_2_45_1
  doi: 10.1007/978-3-642-81351-1
– volume: 31
  start-page: 1901841
  year: 2019
  ident: e_1_2_2_37_1
  publication-title: Adv. Mater.
– ident: e_1_2_2_1_1
  doi: 10.1126/science.1062340
– ident: e_1_2_2_14_1
  doi: 10.1002/adom.201500190
– ident: e_1_2_2_38_1
  doi: 10.1103/PhysRev.35.269
– ident: e_1_2_2_8_1
  doi: 10.3390/s100908604
– ident: e_1_2_2_10_1
  doi: 10.1002/adfm.201900411
– ident: e_1_2_2_35_2
  doi: 10.1002/ange.201915094
– ident: e_1_2_2_34_1
  doi: 10.1021/jacs.9b10048
– ident: e_1_2_2_2_1
  doi: 10.1038/nnano.2015.112
– ident: e_1_2_2_21_1
  doi: 10.1021/jacs.9b02558
SSID ssj0028806
Score 2.6352727
Snippet Polarization‐sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various...
Polarization-sensitive ultraviolet (UV) photodetection is highly indispensable in military and civilian applications and has been demonstrated with various...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18933
SubjectTerms bulk photovoltaic effect
Ferroelectricity
ferroelectrics
hybrid perovskites
Linear polarization
Military applications
Perovskites
Photometers
Photovoltaic effect
Photovoltaics
Polarization
polarization sensitivity
self-powered photodetection
Sensitivity
Ultraviolet radiation
Zinc oxide
Title Ferroelectricity‐Driven Self‐Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Two‐Dimensional Halide Hybrid Perovskite
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202005092
https://www.proquest.com/docview/2449916090
https://www.proquest.com/docview/2423803201
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LatwwFBUlm3aT9EkmnRYVClkpsWTZlpYhnWFaaBiSDGRn9HISMtjF42lpV_2ELvt9_ZLqyo9MCiXQ7iws-SHdKx097jkIvRXCepiaRkTGlBMuqSDC6JRwxnWa2sIkQabz40k6W_APF8nFRhR_yw8xLLiBZ4T-Ghxc6dXhLWkoRGD7-R0LDCbQCcOBLUBFpwN_FPPG2YYXxTEBFfqetTFih3eL3x2VbqHmJmANI850B6n-W9uDJjcH60YfmG9_0Dj-z888RtsdHMVHrf08QQ9c-RQ9PO5V4J6hn1NX11UrlnNtPGT_9f3Huxq6SHzmloVPzUFnzVm8WDa1Cvv8DZ5fVU1lXRPOeZUYFnvxGSy6X-I5zKW74E__iBLOjIF-Bb4uscLnXyp4AUgOtHQheOYnCtbh2VcILcNzV1efV7Di_BwtppPz4xnp1ByIiUXGiDGOJkIZZyQ1iYzSwinKbVYwamSkhAMuvyJ1XAOEUCyzTmRSq8zEHtLpIn6BtsqqdLsIe0hn_TAaW2E5twmTmc64yigNkDdWI0T61sxNR3UOihvLvCVpZjnUdz7U9wjtD_k_tSQff8057o0j75x9lXuEBCg7ktEIvRlu-3aCvRdVumoNeTw2ArF6OkIsWMI9b8qPTt5PhtTevxR6iR7BNYy0VI7RVlOv3SsPoRr9OrjJb4_KGCE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZVE2vBEDBYwEYuU2cZzXgkXV6ShD29GIzkjdBcd2oGKUoEyGqqz4BJb8Br_CJ_Al-DqPUiSEhNQFyyTOQ7ZvfO71vecAPIsiZWBq4NDYcznlsRvRSGYB5YxnQaBy6VuZzsNJkMz5q2P_eA2-dbUwDT9EH3BDy7D_azRwDEhvn7OGYgm2cfCYpTBhbV7lvj47NV7b8uV4aIb4OWOjvdluQlthASq9KGRUSu36kZBaxq70YyfItXC5CnPmytgRkUZauTzQPMPVTLBQ6SiMMxFKz6CLLPfMc6_AVZQRR7r-4euesYoZc2gKmjyPou59xxPpsO2L33txHTwHt79CZLvGjW7A9653mtSW91urOtuSn34jjvyvuu8mXG8RN9lpTOQWrOniNmzsdkJ3d-DrSFdV2egBnUjjlfz4_GVY4SpAjvQiN0dTlJLTiswXdSVsKkNNpu_KulS6tqlsBcF4NjnCfYW3ZIrhgra-1TyiwLQ4lOggJwURZHZa4gtQVaFhRCGJ8YWUJskZVs-Rqa7Kj0sMqt-F-aV0zD1YL8pC3wdiUKsySMFTkeJc-SwOs5CL0HUtqvfEAGg3fVLZsrmjqMgibXioWYrjm_bjO4AXffsPDY_JH1tudrMxbf9ny9SAQHQknNgZwNP-shkn3F4ShS5X2MbAP8cziHIAzE69v7wp3ZmM9_qjB_9y0xPYSGaHB-nBeLL_EK7heQQWbrwJ63W10o8MYqyzx9ZGCby57Fn9E7GUdzs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIkEv_FddKGAkEKe0ieP8HThU3a52Kawi2pV6C47tQMUqqbJZqnLiETjyGLwKr8CTMJO_UiSEhNQDxyTOj-yZ-Bt75vsAnoahRpjq21bkOsISkRNaoUp9S3CR-r7OlFfLdL6e-uOZeHnkHa3At64WpuGH6BfcyDPq_zU5-InOts9JQ6kCG-M7XjOY8Datct-cnWLQtngxGeIIP-N8tHe4O7ZaXQFLuWHALaWM44VSGRU5yotsPzPSETrIuKMiW4aGWOUy34iUJjPJA23CIEploFwEF2nm4nOvwFXh2xGJRQzf9IRVHL2hqWdyXYtk7zuaSJtvX_zei9PgObb9FSHXU9zoJnzvOqfJbPmwtazSLfXpN97I_6n3bsGNFm-zncZBbsOKye_A9d1O5u4ufB2ZsiwaNaBjhTHJj89fhiXNAezAzDM8iklIzmg2m1elrBMZKha_L6pCm6pOZMsZrWazA9pVeMdiWixoq1vxETklxZFABzvOmWSHpwW9gDQVGj4UNsZISBs2PqPaORabsvi4oCX1ezC7lI5Zh9W8yM0GMMSsGnGCq0MthPZ4FKSBkIHj1JjelQOwOutJVMvlTpIi86RhoeYJjW_Sj-8AnvftTxoWkz-23OyMMWn_ZosEISCFEWjuA3jSX8Zxos0lmZtiSW0Q_Nku4skB8Nry_vKmZGc62euP7v_LTY_hWjwcJa8m0_0HsEanCVU40SasVuXSPES4WKWPag9l8Payjfonyid16g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelectricity%E2%80%90Driven+Self%E2%80%90Powered+Ultraviolet+Photodetection+with+Strong+Polarization+Sensitivity+in+a+Two%E2%80%90Dimensional+Halide+Hybrid+Perovskite&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ji%2C+Chengmin&rft.au=Dey%2C+Dhananjay&rft.au=Yu%2C+Peng&rft.au=Liu%2C+Xitao&rft.date=2020-10-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=43&rft.spage=18933&rft.epage=18937&rft_id=info:doi/10.1002%2Fanie.202005092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon