Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring

Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 46; no. 12; pp. 6980 - 6989
Main Authors Huang, Yiyi, Dong, Xiquan, Bailey, David A., Holland, Marika M., Xi, Baike, DuVivier, Alice K., Kay, Jennifer E., Landrum, Laura L., Deng, Yi
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water lead to stronger evaporation and promote cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere‐sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic. Plain Language Summary Arctic summer sea ice has declined by nearly 50%, leading to a larger exposed area of open water that persists longer than before. Clouds have large influences on Arctic sea ice long‐term trends and variability. Atmosphere and sea ice are believed to actively interact with each other in spring. But attributing cause and effect is difficult. Therefore, this study seeks to answer the following question: does the atmosphere primarily drive the sea ice changes or does the sea ice dominate changes in the atmosphere in spring? In this study, we isolated the atmospheric response to Arctic sea ice changes from coupled system through both observations and model simulations. It suggests that this relationship is initiated with active coupling in March. Spring clouds then become a driving force in the disappearance of sea ice from April to June. Overall, identifying the two‐way interactions between Arctic sea ice and atmosphere is a critical step to improve seasonal sea ice forecasts and future sea ice prediction. The sea ice coverage and length of the open water season is important for human activities and wildlife. The long‐term time series will inform future planning of military, civilian, and commercial infrastructure. Key Points Active coupling is found between the atmosphere and sea ice in early spring Clouds are one of important drivers for sea ice melting from April to June
AbstractList Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water lead to stronger evaporation and promote cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere‐sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic.
Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water lead to stronger evaporation and promote cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere‐sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic. Plain Language Summary Arctic summer sea ice has declined by nearly 50%, leading to a larger exposed area of open water that persists longer than before. Clouds have large influences on Arctic sea ice long‐term trends and variability. Atmosphere and sea ice are believed to actively interact with each other in spring. But attributing cause and effect is difficult. Therefore, this study seeks to answer the following question: does the atmosphere primarily drive the sea ice changes or does the sea ice dominate changes in the atmosphere in spring? In this study, we isolated the atmospheric response to Arctic sea ice changes from coupled system through both observations and model simulations. It suggests that this relationship is initiated with active coupling in March. Spring clouds then become a driving force in the disappearance of sea ice from April to June. Overall, identifying the two‐way interactions between Arctic sea ice and atmosphere is a critical step to improve seasonal sea ice forecasts and future sea ice prediction. The sea ice coverage and length of the open water season is important for human activities and wildlife. The long‐term time series will inform future planning of military, civilian, and commercial infrastructure. Key Points Active coupling is found between the atmosphere and sea ice in early spring Clouds are one of important drivers for sea ice melting from April to June
Abstract Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water lead to stronger evaporation and promote cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere‐sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic. Plain Language Summary Arctic summer sea ice has declined by nearly 50%, leading to a larger exposed area of open water that persists longer than before. Clouds have large influences on Arctic sea ice long‐term trends and variability. Atmosphere and sea ice are believed to actively interact with each other in spring. But attributing cause and effect is difficult. Therefore, this study seeks to answer the following question: does the atmosphere primarily drive the sea ice changes or does the sea ice dominate changes in the atmosphere in spring? In this study, we isolated the atmospheric response to Arctic sea ice changes from coupled system through both observations and model simulations. It suggests that this relationship is initiated with active coupling in March. Spring clouds then become a driving force in the disappearance of sea ice from April to June. Overall, identifying the two‐way interactions between Arctic sea ice and atmosphere is a critical step to improve seasonal sea ice forecasts and future sea ice prediction. The sea ice coverage and length of the open water season is important for human activities and wildlife. The long‐term time series will inform future planning of military, civilian, and commercial infrastructure. Key Points Active coupling is found between the atmosphere and sea ice in early spring Clouds are one of important drivers for sea ice melting from April to June
Author Xi, Baike
Landrum, Laura L.
Deng, Yi
Bailey, David A.
Kay, Jennifer E.
Huang, Yiyi
Holland, Marika M.
Dong, Xiquan
DuVivier, Alice K.
Author_xml – sequence: 1
  givenname: Yiyi
  orcidid: 0000-0001-5090-9712
  surname: Huang
  fullname: Huang, Yiyi
  organization: University of Arizona
– sequence: 2
  givenname: Xiquan
  orcidid: 0000-0002-3359-6117
  surname: Dong
  fullname: Dong, Xiquan
  email: xdong@email.arizona.edu
  organization: University of Arizona
– sequence: 3
  givenname: David A.
  orcidid: 0000-0002-6584-0663
  surname: Bailey
  fullname: Bailey, David A.
  organization: National Center for Atmospheric Research
– sequence: 4
  givenname: Marika M.
  orcidid: 0000-0001-5621-8939
  surname: Holland
  fullname: Holland, Marika M.
  organization: National Center for Atmospheric Research
– sequence: 5
  givenname: Baike
  orcidid: 0000-0001-6126-2010
  surname: Xi
  fullname: Xi, Baike
  organization: University of Arizona
– sequence: 6
  givenname: Alice K.
  orcidid: 0000-0001-6920-5926
  surname: DuVivier
  fullname: DuVivier, Alice K.
  organization: National Center for Atmospheric Research
– sequence: 7
  givenname: Jennifer E.
  orcidid: 0000-0002-3625-5377
  surname: Kay
  fullname: Kay, Jennifer E.
  organization: University of Colorado Boulder
– sequence: 8
  givenname: Laura L.
  orcidid: 0000-0002-6003-1146
  surname: Landrum
  fullname: Landrum, Laura L.
  organization: National Center for Atmospheric Research
– sequence: 9
  givenname: Yi
  orcidid: 0000-0003-0659-2767
  surname: Deng
  fullname: Deng, Yi
  organization: Georgia Institute of Technology
BookMark eNp9kM1KAzEUhYMo2FZ3PkDAraM3yfzFXalaCwOCreshk7mxU6eZmkyR7nwEn9EnMVIFVy4u9yy-c-_hDMmh7SwScsbgkgGXVxyYnBaQ80yyAzJgMo6jHCA7JAMAGTTP0mMy9H4FAAIEGxCzWDb6BR2dtN229lTZmo61xhad6jFop_tG0zkqOtNIb1C3jcVrulgiHffrzm-W6PDz_eOXmNk-WIOps542ls43rrHPJ-TIqNbj6c8ekae728XkPioeprPJuIi0yDMWmbRmptZKmsoIzYVAXuc8TVHrCvMqgTpVklccNVcJxgbCZBkDmSeVyqUSI3K-v7tx3esWfV-uuq2z4WXJeRrHScJFFqiLPaVd571DU4aQa-V2JYPyu8nyb5MB53v8rWlx9y9bTh-LRDJg4gtEpncK
CitedBy_id crossref_primary_10_1007_s13131_023_2296_9
crossref_primary_10_1017_aog_2020_60
crossref_primary_10_3390_rs13142808
crossref_primary_10_33265_polar_v42_9751
crossref_primary_10_1007_s00382_022_06621_6
crossref_primary_10_1007_s13131_021_1705_6
crossref_primary_10_1038_s43247_021_00114_w
crossref_primary_10_5194_tc_18_2897_2024
crossref_primary_10_1038_s41467_022_31182_x
crossref_primary_10_1017_aog_2020_66
crossref_primary_10_1029_2020EA001176
crossref_primary_10_1029_2019JC015934
crossref_primary_10_1175_JCLI_D_19_0761_1
crossref_primary_10_1016_j_eswa_2022_118547
crossref_primary_10_3389_feart_2021_709896
crossref_primary_10_1029_2023MS003702
crossref_primary_10_1525_elementa_2020_00083
crossref_primary_10_3389_feart_2021_651731
crossref_primary_10_1175_JCLI_D_19_0803_1
crossref_primary_10_3389_feart_2021_758361
crossref_primary_10_3389_fmars_2020_00606
crossref_primary_10_1029_2021MS002831
crossref_primary_10_1007_s00382_021_05648_5
crossref_primary_10_3389_fmars_2020_592337
crossref_primary_10_3390_rs15040970
crossref_primary_10_3390_rs13224555
crossref_primary_10_1007_s00376_022_2176_1
crossref_primary_10_1109_TGRS_2022_3185636
crossref_primary_10_1029_2023JD038824
crossref_primary_10_1371_journal_pone_0287960
crossref_primary_10_1029_2023GL105805
crossref_primary_10_1038_s41597_023_01987_6
crossref_primary_10_1525_elementa_2023_00056
crossref_primary_10_1007_s13131_022_2010_8
crossref_primary_10_1007_s00382_023_06785_9
crossref_primary_10_3390_atmos13091434
crossref_primary_10_3389_fdata_2021_642182
crossref_primary_10_1525_elementa_2022_00013
crossref_primary_10_5194_acp_22_5743_2022
crossref_primary_10_1016_j_rse_2020_111999
crossref_primary_10_1007_s11069_020_04064_y
crossref_primary_10_1088_1742_6596_2718_1_012011
crossref_primary_10_1029_2019JD031023
crossref_primary_10_1080_1088937X_2021_1987999
Cites_doi 10.1029/2009JD013489
10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2
10.1175/BAMS-D-12-00121.1
10.1029/2012JD017589
10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
10.1038/nclimate3241
10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
10.1029/2009JC005436
10.1109/TGRS.2011.2144601
10.1007/s00382-003-0332-6
10.1038/nclimate1884
10.1029/2018JD029142
10.1002/2016JD025099
10.1002/2017JD027248
10.1007/s40641-018-0113-2
10.1002/2015GL063775
10.1109/TGRS.2011.2144602
10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
10.1002/2016JD026020
10.1029/2009JD011773
10.1002/2015JD023258
10.1098/rsta.2014.0159
10.1002/2015JD023520
10.1175/JCLI-D-16-0666.1
10.1175/JCLI-D-16-0136.1
10.1007/s40641-016-0051-9
10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2
10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
10.1175/BAMS-D-14-00273.1
10.1007/s00382-013-1920-8
10.1175/JCLI-D-11-00469.1
10.1029/2007GL031972
10.1175/JCLI-D-16-0722.1
10.5194/tc-3-11-2009
10.1175/BAMS-D-13-00255.1
10.1002/2014JD022013
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2019GL082791
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 6989
ExternalDocumentID 10_1029_2019GL082791
GRL59101
Genre article
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GrantInformation_xml – fundername: DOC | National Oceanic and Atmospheric Administration (NOAA)
– fundername: National Aeronautics and Space Administration (NASA)
– fundername: NASA
  funderid: 15‐CCST15‐0025; 80NSSC19K0172; 80NSSC18K1339
– fundername: National Center for Atmospheric Research (NCAR)
  funderid: Cooperative Agreement No. 1852977
– fundername: National Science Foundation (NSF)
  funderid: AGS‐1445956; AGS‐1354402
– fundername: National Oceanic and Atmospheric Administration
  funderid: NA16NWS4680013
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
ALXUD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3871-f6d1fdca9fbf3c233e2d8266eccbe8b50d6a92b2ec2a5e4f0e4f7710985ba89a3
ISSN 0094-8276
IngestDate Wed Nov 06 07:28:23 EST 2024
Thu Sep 12 17:39:47 EDT 2024
Sat Aug 24 01:18:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3871-f6d1fdca9fbf3c233e2d8266eccbe8b50d6a92b2ec2a5e4f0e4f7710985ba89a3
ORCID 0000-0002-6584-0663
0000-0001-6920-5926
0000-0002-3359-6117
0000-0001-5090-9712
0000-0001-5621-8939
0000-0002-3625-5377
0000-0002-6003-1146
0000-0003-0659-2767
0000-0001-6126-2010
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1029/2019gl082791
PQID 2264455237
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2264455237
crossref_primary_10_1029_2019GL082791
wiley_primary_10_1029_2019GL082791_GRL59101
PublicationCentury 2000
PublicationDate 28 June 2019
PublicationDateYYYYMMDD 2019-06-28
PublicationDate_xml – month: 06
  year: 2019
  text: 28 June 2019
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2014; 119
2017; 7
2013; 3
2015; 96
2018; 123
2015; 120
2016; 97
1996
2019; 124
2016; 121
2008; 35
1992
2009; 114
2014; 43
1996; 77
2017; 30
2016; 2
1976; 33
2018; 4
2004; 17
2015; 42
2010; 115
2013; 94
2015; 373
1999; 12
2018
2015
2013; 2719‐2740
2016; 29
2017; 122
2012; 25
2009; 3
2011; 49
2012; 117
2003; 42
1996; 9
2003; 21
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Huang Y. (e_1_2_6_21_1) 2018
Kato S. (e_1_2_6_26_1) 2013; 2719
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – volume: 17
  start-page: 616
  issue: 3
  year: 2004
  end-page: 628
  article-title: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle
  publication-title: Journal of Climate
– volume: 77
  start-page: 853
  issue: 5
  year: 1996
  end-page: 868
  article-title: Clouds and the Earth's Radiant Energy System (CERES): An earth observing system experiment
  publication-title: Bulletin of the American Meteorological Society
– volume: 122
  start-page: 2179
  year: 2017
  end-page: 2193
  article-title: The footprints of 16 year trends of Arctic springtime cloud and radiation properties on September sea ice retreat
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 1
  year: 2018
  end-page: 16
  article-title: A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring
  publication-title: Climate Dynamics
– volume: 3
  start-page: 744
  issue: 8
  year: 2013
  end-page: 748
  article-title: Springtime atmospheric energy transport and the control of Arctic summer sea‐ice extent
  publication-title: Nature Climate Change
– volume: 49
  start-page: 4401
  issue: 11
  year: 2011
  end-page: 4430
  article-title: CERES edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 117
  year: 2012
  article-title: Arctic synoptic regimes: Comparing domain‐wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics
  publication-title: Journal of Geophysical Research
– volume: 120
  start-page: 12,656
  year: 2015
  end-page: 12,678
  article-title: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 43
  start-page: 53
  issue: 1‐2
  year: 2014
  end-page: 70
  article-title: Critical mechanisms for the formation of extreme arctic sea‐ice extent in the summers of 2007 and 1996
  publication-title: Climate Dynamics
– volume: 9
  start-page: 1731
  issue: 8
  year: 1996
  end-page: 1764
  article-title: Overview of Arctic cloud and radiation characteristics
  publication-title: Journal of Climate
– volume: 121
  start-page: 8525
  year: 2016
  end-page: 8548
  article-title: Evaluation of the Arctic surface radiation budget in CMIP5 models
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 1996
– volume: 2
  start-page: 159
  issue: 4
  year: 2016
  end-page: 169
  article-title: Recent advances in Arctic cloud and climate research
  publication-title: Current Climate Change Reports
– volume: 35
  year: 2008
  article-title: Accelerated decline in the Arctic Sea ice cover
  publication-title: Geophysical Research Letters
– volume: 120
  start-page: 6865
  year: 2015
  end-page: 6881
  article-title: Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 42
  start-page: 1369
  issue: 10
  year: 2003
  end-page: 1390
  article-title: Ice water path–optical depth relationships for cirrus and deep stratiform ice cloud layers
  publication-title: Journal of Applied Meteorology
– volume: 94
  start-page: 1339
  issue: 9
  year: 2013
  end-page: 1360
  article-title: The Community Earth System Model: A framework for collaborative research
  publication-title: Bulletin of the American Meteorological Society
– volume: 114
  year: 2009
  article-title: Cloud influence on and response to seasonal Arctic sea ice loss
  publication-title: Journal of Geophysical Research
– year: 1992
– volume: 33
  start-page: 1537
  issue: 8
  year: 1976
  end-page: 1553
  article-title: Formation and persistence of summertime Arctic stratus clouds
  publication-title: Journal of the Atmospheric Sciences
– volume: 42
  start-page: 4439
  year: 2015
  end-page: 4446
  article-title: The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 8007
  issue: 19
  year: 2017
  end-page: 8029
  article-title: Quantifying the uncertainties of reanalyzed Arctic cloud and radiation properties using satellite surface observations
  publication-title: Journal of Climate
– volume: 29
  start-page: 6581
  issue: 18
  year: 2016
  end-page: 6596
  article-title: The role of springtime Arctic clouds in determining autumn sea ice extent
  publication-title: Journal of Climate
– volume: 373
  issue: 2045
  year: 2015
  article-title: Arctic sea ice trends, variability and implications for seasonal ice forecasting
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 4
  start-page: 407
  issue: 4
  year: 2018
  end-page: 416
  article-title: The trajectory towards a seasonally ice‐free Arctic Ocean
  publication-title: Current Climate Change Reports
– volume: 25
  start-page: 5190
  issue: 15
  year: 2012
  end-page: 5207
  article-title: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators
  publication-title: Journal of Climate
– volume: 12
  start-page: 1990
  issue: 7
  year: 1999
  end-page: 2009
  article-title: The effective number of spatial degrees of freedom of a time‐varying field
  publication-title: Journal of Climate
– volume: 49
  start-page: 4374
  issue: 11
  year: 2011
  end-page: 4400
  article-title: CERES edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 7
  start-page: 289
  issue: 4
  year: 2017
  end-page: 295
  article-title: Influence of high‐latitude atmospheric circulation changes on summertime Arctic sea ice
  publication-title: Nature Climate Change
– volume: 115
  year: 2010
  article-title: A 10‐yr climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska
  publication-title: Journal of Geophysical Research
– volume: 96
  start-page: 1333
  issue: 8
  year: 2015
  end-page: 1349
  article-title: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability
  publication-title: Bulletin of the American Meteorological Society
– volume: 114
  year: 2009
  article-title: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length
  publication-title: Journal of Geophysical Research
– volume: 124
  start-page: 1003
  year: 2019
  end-page: 1020
  article-title: Cloud response to Arctic Sea ice loss and implications for future feedback in the CESM1 climate model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 97
  start-page: 907
  issue: 6
  year: 2016
  end-page: 916
  article-title: Arctic observation and reanalysis integrated system: A new data product for validation and climate study
  publication-title: Bulletin of the American Meteorological Society
– volume: 30
  start-page: 4477
  issue: 12
  year: 2017
  end-page: 4495
  article-title: Observational evidence linking arctic supercooled liquid cloud biases in CESM to snowfall processes
  publication-title: Journal of Climate
– volume: 119
  start-page: 11,087
  year: 2014
  end-page: 11,099
  article-title: Connecting early summer cloud‐controlled sunlight and late summer sea ice in the Arctic
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 21
  start-page: 221
  issue: 3–4
  year: 2003
  end-page: 232
  article-title: Polar amplification of climate change in coupled models
  publication-title: Climate Dynamics
– volume: 2719‐2740
  start-page: 26
  issue: 2013
  year: 2013
  article-title: Surface irradiances consistent with CERES‐derived top‐of‐atmosphere shortwave and longwave irradiances
  publication-title: Journal of Climate
– year: 2015
– volume: 123
  start-page: 473
  year: 2018
  end-page: 490
  article-title: Isolating the liquid cloud response to recent Arctic sea ice variability using spaceborne lidar observations
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 3
  start-page: 11
  issue: 1
  year: 2009
  end-page: 19
  article-title: The emergence of surface‐based Arctic amplification
  publication-title: The Cryosphere
– ident: e_1_2_6_16_1
  doi: 10.1029/2009JD013489
– ident: e_1_2_6_19_1
  doi: 10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2
– ident: e_1_2_6_24_1
  doi: 10.1175/BAMS-D-12-00121.1
– ident: e_1_2_6_2_1
  doi: 10.1029/2012JD017589
– ident: e_1_2_6_14_1
  doi: 10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2
– start-page: 1
  year: 2018
  ident: e_1_2_6_21_1
  article-title: A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring
  publication-title: Climate Dynamics
  contributor:
    fullname: Huang Y.
– ident: e_1_2_6_15_1
  doi: 10.1038/nclimate3241
– ident: e_1_2_6_6_1
  doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
– ident: e_1_2_6_31_1
  doi: 10.1029/2009JC005436
– ident: e_1_2_6_34_1
  doi: 10.1109/TGRS.2011.2144601
– ident: e_1_2_6_20_1
  doi: 10.1007/s00382-003-0332-6
– ident: e_1_2_6_25_1
  doi: 10.1038/nclimate1884
– ident: e_1_2_6_36_1
  doi: 10.1029/2018JD029142
– ident: e_1_2_6_7_1
– ident: e_1_2_6_3_1
  doi: 10.1002/2016JD025099
– volume: 2719
  start-page: 26
  issue: 2013
  year: 2013
  ident: e_1_2_6_26_1
  article-title: Surface irradiances consistent with CERES‐derived top‐of‐atmosphere shortwave and longwave irradiances
  publication-title: Journal of Climate
  contributor:
    fullname: Kato S.
– ident: e_1_2_6_35_1
  doi: 10.1002/2017JD027248
– ident: e_1_2_6_37_1
  doi: 10.1007/s40641-018-0113-2
– ident: e_1_2_6_4_1
  doi: 10.1002/2015GL063775
– ident: e_1_2_6_33_1
  doi: 10.1109/TGRS.2011.2144602
– ident: e_1_2_6_40_1
  doi: 10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
– ident: e_1_2_6_22_1
  doi: 10.1002/2016JD026020
– ident: e_1_2_6_28_1
  doi: 10.1029/2009JD011773
– ident: e_1_2_6_5_1
  doi: 10.1002/2015JD023258
– ident: e_1_2_6_39_1
  doi: 10.1098/rsta.2014.0159
– ident: e_1_2_6_41_1
  doi: 10.1002/2015JD023520
– ident: e_1_2_6_32_1
  doi: 10.1175/JCLI-D-16-0666.1
– ident: e_1_2_6_13_1
  doi: 10.1175/JCLI-D-16-0136.1
– ident: e_1_2_6_30_1
  doi: 10.1007/s40641-016-0051-9
– ident: e_1_2_6_18_1
  doi: 10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2
– ident: e_1_2_6_8_1
– ident: e_1_2_6_42_1
  doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
– ident: e_1_2_6_11_1
  doi: 10.1175/BAMS-D-14-00273.1
– ident: e_1_2_6_17_1
  doi: 10.1007/s00382-013-1920-8
– ident: e_1_2_6_9_1
– ident: e_1_2_6_29_1
  doi: 10.1175/JCLI-D-11-00469.1
– ident: e_1_2_6_12_1
  doi: 10.1029/2007GL031972
– ident: e_1_2_6_23_1
  doi: 10.1175/JCLI-D-16-0722.1
– ident: e_1_2_6_38_1
  doi: 10.5194/tc-3-11-2009
– ident: e_1_2_6_27_1
  doi: 10.1175/BAMS-D-13-00255.1
– ident: e_1_2_6_10_1
  doi: 10.1002/2014JD022013
SSID ssj0003031
Score 2.5472355
Snippet Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which...
Abstract Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 6980
SubjectTerms Arctic clouds
Arctic radiation
Arctic sea ice
Arctic sea ice retreat
Atmosphere
atmosphere‐sea ice coupling
Atmospheric models
atmospheric physical processes
cloud and radiation impact
Cloud cover
Cloud formation
Clouds
Computer simulation
Coupling
Earth
Evaporation
Ice
Ice cover
Ice environments
Ice melting
Radiation
Sea ice
Sea ice forecasting
Spring
Spring (season)
Temperature
Wildlife
Title Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere‐Sea Ice Interactions in Spring
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL082791
https://www.proquest.com/docview/2264455237
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWVkhcEL9iaUE-wGkVSJw4P9xCobuFpULQRQuXyHYcNaLstt3dQznxCDwCz8aTMLYnm1StKuCQyLIsK_J8Gc-Mvpkh5AmLuYr9MvGqSIODUqrAS0UmQRmqoNRSRIKbfOd3-_FoEr2Z8mmv96vDWlot5TP1_dK8kv-RKsyBXE2W7D9Idr0pTMAY5AtvkDC8_1LGtWFFDHaO5qvSFVvOlYKLxNR_gPGpSYACdSAGe8rwg5QtK4o8i3z5bb4wRQX0mvDQrLRhQpfxYOmyLvrXtWOHen7cSBjrBR0Ojmxq0KJFCsaiP9dn9dpgRgrwtD5ZtcB8KWqMnVuOfRtgHRmYYuNj8Oq_CozeYpzCpEbFTd63vUMuEoEusD0NzdFLWYK1sZ1GziKY811r3EZlY9QSock6CjjOXGMovMxNe8xLLwqfmTqr5juHY7CCEtcy7Hw97lH-sXj_arcY7-2_vUY2YVEIOnQz_zT5Mlnf9mACuK6M-OmYXAH7P-_uft7saX2ZrkdkTZqDW-Qm-iI0d8C6TXp6dodcH9pez2cwsuxgtbhLKgQadUCjIBHaARp1QKMAHwrwoQi0FxRgRluY_f7xs1nRBRitZ9QB7B6Z7L4-2Bl52KDDUyE42l4Vl0FVKpFVsgoVC0PNSnBXY1ALUqeS-2UsMiaZVkxwHVU-PIkh_6ZcijQT4X2yMZvP9ANCU1n5oC7CIOIqMlUHK1mC85cFImbgdes-edqcX3Hs6rAUlj_BsqJ7zn2y3RxugX_qojDJ4hHnLEz6ZGAP_Mo9iuGHMQczOnh49WZb5EYL9G2ysTxd6Udgoi7lY0TJH_v3jfc
link.rule.ids 315,783,787,27936,27937,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQEYIF8RTl6QEmFNE4cZqwRTzaQtsBWoRYIj9FJUhR0w5s_AR-I7-EuyQtZUFiiOTh4uHse_q-O0KOWcBVUNN1x_oGAhStXCcUkQRlqFxtpPAFR7xzpxs0-_7NI38s55wiFqboDzFLuKFk5PoaBRwT0mW3AWySCaYrarTBhNURvb7I8UmvQhbjh_5Tf6aMQUMXQ_Mi3wHKoKx9hx3O5v__bZV-XM15hzW3ONdrZLV0FWlcnO06WTDpBllq5KN432GVF2-qbJPY3vMAqyPoxctwojMqUk1jpcCgYB8IWI8QCEXvjaAtZeilQTikOadwRWg8fh1m2FrAfH18TinyNGGBeMjoIKVF9m-L9K-vehdNp5yf4CgP4iDHBtq1WonISusp5nmGaYgmAjg1aULJazoQEZPMKCa48W0NvjrWZoZcijAS3jappMPU7BAaSluD0_Rcnysfm8JZqcE3j1wRMAiKTJWcTPmXvBVtMpL8eZtFyTyfq2R_ytykFJYsQSyvzyEirlfJac7wP_dIGndtDl6Ou_sv6iOy3Ox12km71b3dIytIgyVfLNwnlfFoYg7AuRjLw_ICfQPyocZR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQFYgF8RSFAh5gQhGNE6cJW9TSB5QKQYMqlshPUQnSqmkHNn4Cv5FfwjlJS1mQGCJ5OHs423ffXe4-I3RGPCq8qqxZ2lUQoEhhWz4LOBhDYUvFmcuo6Xe-63ntyL0Z0EGRcDO9MDk_xCLhZm5GZq_NBR9LXZANGI5M8FxBqwserGaa10sANAic8FL4FD1HC1sMBjp_My9wLZD0itJ3WOFyef5vp_SDNJfxauZwmltos0CKOMy3dhutqGQHrbWyl3jfYZTVbop0F-n-y9AUR-D662gmU8wSiUMhwJ8YGggYT0wfFH5UDHeEwg1luiHVFYYTgsPp2yg1zALq6-NzLpFlCfOGhxQPE5wn__ZQ1Lzu19tW8XyCJRwIgyztSVtLwQLNtSOI4ygiQUcebBpXPqdV6bGAcKIEYVS5ugpfzZRm-pQzP2DOPlpNRok6QNjnugqb6dguFa7hhNNcAjQPbOYRiIlUGZ3P9RePc5aMOPu7TYJ4Wc9lVJkrNy7uShqbVl6XQkBcK6OLTOF_rhG3HroUQI59-C_pU7R-32jG3U7v9ghtGBFT8EX8ClqdTmbqGKDFlJ8U5-cb4qTFeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thicker+Clouds+and+Accelerated+Arctic+Sea+Ice+Decline%3A+The+Atmosphere%E2%80%90Sea+Ice+Interactions+in+Spring&rft.jtitle=Geophysical+research+letters&rft.au=Huang%2C+Yiyi&rft.au=Dong%2C+Xiquan&rft.au=Bailey%2C+David+A&rft.au=Holland%2C+Marika+M&rft.date=2019-06-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=12&rft.spage=6980&rft.epage=6989&rft_id=info:doi/10.1029%2F2019GL082791&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon