A determinant-based criterion for working correlation structure selection in generalized estimating equations

In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, i...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 35; no. 11; pp. 1819 - 1833
Main Authors Jaman, Ajmery, Latif, Mahbub A. H. M., Bari, Wasimul, Wahed, Abdus S.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 20.05.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.6821

Cover

Abstract In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky‐Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model‐based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky‐Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model‐based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias‐corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study.
In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study.In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study.
In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky‐Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model‐based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky‐Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model‐based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias‐corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd.
Author Latif, Mahbub A. H. M.
Bari, Wasimul
Wahed, Abdus S.
Jaman, Ajmery
Author_xml – sequence: 1
  givenname: Ajmery
  surname: Jaman
  fullname: Jaman, Ajmery
  email: Correspondence to: Ajmery Jaman, Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh., ajaman@isrt.ac.bd
  organization: Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh
– sequence: 2
  givenname: Mahbub A. H. M.
  surname: Latif
  fullname: Latif, Mahbub A. H. M.
  organization: Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh
– sequence: 3
  givenname: Wasimul
  surname: Bari
  fullname: Bari, Wasimul
  organization: Department of Statistics Biostatistics & Informatics, University of Dhaka, Dhaka-1-000, Bangladesh
– sequence: 4
  givenname: Abdus S.
  surname: Wahed
  fullname: Wahed, Abdus S.
  organization: Department of Biostatistics, University of Pittsburgh, PA 15261, Pittsburgh, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26626276$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PFTEUxRuDkQeY-BeYSdy4mWfb6dcs8UU-EtQFqImbptO5jxRmWmg7Afzr7TwQI5FVk5PfOb333B205YMHhN4QvCQY0w_JjUuhKHmBFgS3ssaUqy20wFTKWkjCt9FOShcYE8KpfIW2qRBUUCkWaNyvesgQR-eNz3VnEvSVja5ILvhqHWJ1E-Kl8-eVDTHCYPKspxwnm6cIVYIB7EZzvjoHD9EM7lcJgZTdWOjihOtpY0t76OXaDAleP7y76NvBp7PVUX3y9fB4tX9S20ZJUvdEAC_rgFGUMsN6i3vaWaNA9U2jyhbrrm3bBtOeMSaU7VWnWs46ipmhnWx20fv73KsYrqcyiR5dsjAMxkOYkiZSYT530Rb03RP0IkzRl-lminHBKaeFevtATd0Ivb6KZbd4p_8U-fdHG0NKEdaPCMF6vpEuN9LzjQq6fIJalzf95Gjc8D9DfW-4cQPcPRusT48__8u7lOH2kTfxUgvZSK5_fDnU7Ofp6vvq6KM-a34DL2mx9A
CODEN SMEDDA
CitedBy_id crossref_primary_10_1016_j_jemermed_2024_06_004
crossref_primary_10_1097_EDE_0000000000000889
crossref_primary_10_1093_biostatistics_kxx052
crossref_primary_10_1093_biomtc_ujae165
crossref_primary_10_1080_00031305_2022_2157874
crossref_primary_10_1080_03610918_2021_1871924
crossref_primary_10_1080_01621459_2021_1987251
crossref_primary_10_1080_10543406_2023_2281575
crossref_primary_10_1080_02664763_2018_1508560
crossref_primary_10_1080_03610918_2018_1484476
Cites_doi 10.2307/2533686
10.1007/978-1-4899-3242-6
10.2307/2532642
10.1002/sim.3622
10.1080/03610919408813210
10.1093/biomet/83.3.551
10.1198/016214501753382309
10.1002/(SICI)1097-0258(19960830)15:16<1793::AID-SIM332>3.0.CO;2-2
10.1002/sim.3489
10.1080/03610918808812718
10.2307/2531733
10.1201/b16446
10.1093/oso/9780199296590.001.0001
10.1016/0167-9473(94)90161-9
10.1093/biomet/90.2.455
10.1093/biomet/73.1.13
10.1111/j.0006-341X.2001.00126.x
10.1093/oso/9780198524847.001.0001
10.1093/biomet/77.3.485
10.1111/j.0006-341X.2001.00120.x
10.1093/biomet/82.2.407
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. May 20, 2016
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. May 20, 2016
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.6821
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1833
ExternalDocumentID 4036167071
26626276
10_1002_sim_6821
SIM6821
ark_67375_WNG_4ZSCVCHB_T
Genre article
Journal Article
Feature
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c3871-d16e5821ea8224a4dc0d2bca8e8d338115fb999302d44468cd8b8954b204a2b73
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Jul 10 19:12:03 EDT 2025
Sun Jul 13 05:22:35 EDT 2025
Thu Apr 03 06:59:25 EDT 2025
Thu Jul 03 08:26:50 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Wed Jan 22 16:21:48 EST 2025
Tue Sep 09 05:31:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords correlation information criterion
Rotnitzky-Jewell criteria
model-based covariance estimator
bias-corrected sandwich covariance estimator
Language English
License Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3871-d16e5821ea8224a4dc0d2bca8e8d338115fb999302d44468cd8b8954b204a2b73
Notes ark:/67375/WNG-4ZSCVCHB-T
sup Info Item
istex:169EE9A6E4BCE06648465585E1C62592059F0B16
ArticleID:SIM6821
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6911-7221
PMID 26626276
PQID 1784565252
PQPubID 48361
PageCount 15
ParticipantIDs proquest_miscellaneous_1780515279
proquest_journals_1784565252
pubmed_primary_26626276
crossref_primary_10_1002_sim_6821
crossref_citationtrail_10_1002_sim_6821
wiley_primary_10_1002_sim_6821_SIM6821
istex_primary_ark_67375_WNG_4ZSCVCHB_T
PublicationCentury 2000
PublicationDate 2016-05-20
20 May 2016
2016-May-20
20160520
PublicationDateYYYYMMDD 2016-05-20
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mancl LA, DeRouen TA. A covariance estimator for gee with improved small-sample properties. Biometrics. 2001; 57(1):126-134.
Goldstein H, Sc B. The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change. Academic Press: London, 1979.
Feng Z, McLerran D, Grizzle J. A comparison of statistical methods for clustered data analysis with gaussian error. Statistics in Medicine. 1996; 15(16):1793-1806.
Preisser JS, Qaqish BF. Deletion diagnostics for generalised estimating equations. Biometrika. 1996; 83(3):551-562.
Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika. 1990; 77(3):485-497.
Paik MC. Repeated measurement analysis for nonnormal data in small samples. Communications in Statistics-Simulation and Computation. 1988; 17(4):1155-1171.
Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics. 1998; 54(4):1622-1630.
Atkinson A, Donev A, Tobias R. Optimum Experimental Designs, with SAS. Oxford University Press: New York, 2007.
Wong WK. Comparing robust properties of a, d, e and g-optimal designs. Computational Statistics & Data Analysis. 1994; 18(4):441-448.
Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001; 57(1):120-125.
Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986; 73(1):13-22.
Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine. 2009; 28(4):642-658.
Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika. 1995; 82(2):407-410.
Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine. 2009; 28(18):2338-2355.
Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association. 2001; 96(456):1387-1396.
Prentice R, Zhao L. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics. 1991; 47(3):825-839.
Shults J, Hilbe JM. Quasi-Least Squares Regression. CRC Press: Boca Raton, 2014.
Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics-Simulation and Computation. 1994; 23(4):939-951.
Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of Longitudinal Data. Oxford University Press: New York, 2002.
Prentice R. Correlated binary regression with covariates specific to each binary observation.Biometrics. 1988; 44(4):1033-1048.
Nesselroade JR, Baltes PB. Longitudinal Research in the Study of Behavior and Development. Academic Press: New York, 1979.
McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Halls: London, 1989.
Qaqish BF. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika. 2003; 90(2):455-463.
1990; 77
1995; 82
2003; 90
1991; 47
1986; 73
1988; 17
1994; 23
1996; 83
1988; 44
2007
1973
2014
1994; 18
2002
2001; 57
1998; 54
1996; 15
1979
2001; 96
1989
2009; 28
McCullagh (10.1002/sim.6821-BIB0015|sim6821-cit-0015) 1989
Qaqish (10.1002/sim.6821-BIB0024|sim6821-cit-0024) 2003; 90
Shults (10.1002/sim.6821-BIB0008|sim6821-cit-0008) 2009; 28
10.1002/sim.6821-BIB0005|sim6821-cit-0005
Shults (10.1002/sim.6821-BIB0010|sim6821-cit-0010) 1998; 54
Kauermann (10.1002/sim.6821-BIB0012|sim6821-cit-0012) 2001; 96
Goldstein (10.1002/sim.6821-BIB0001|sim6821-cit-0001) 1979
Pepe (10.1002/sim.6821-BIB0004|sim6821-cit-0004) 1994; 23
Hin (10.1002/sim.6821-BIB0007|sim6821-cit-0007) 2009; 28
Prentice (10.1002/sim.6821-BIB0022|sim6821-cit-0022) 1988; 44
Prentice (10.1002/sim.6821-BIB0016|sim6821-cit-0016) 1991; 47
Paik (10.1002/sim.6821-BIB0013|sim6821-cit-0013) 1988; 17
Atkinson (10.1002/sim.6821-BIB0019|sim6821-cit-0019) 2007
Feng (10.1002/sim.6821-BIB0014|sim6821-cit-0014) 1996; 15
Crowder (10.1002/sim.6821-BIB0023|sim6821-cit-0023) 1995; 82
Mancl (10.1002/sim.6821-BIB0011|sim6821-cit-0011) 2001; 57
Nesselroade (10.1002/sim.6821-BIB0002|sim6821-cit-0002) 1979
Rotnitzky (10.1002/sim.6821-BIB0009|sim6821-cit-0009) 1990; 77
Preisser (10.1002/sim.6821-BIB0018|sim6821-cit-0018) 1996; 83
Liang (10.1002/sim.6821-BIB0003|sim6821-cit-0003) 1986; 73
Shults (10.1002/sim.6821-BIB0017|sim6821-cit-0017) 2014
Diggle (10.1002/sim.6821-BIB0021|sim6821-cit-0021) 2002
Wong (10.1002/sim.6821-BIB0020|sim6821-cit-0020) 1994; 18
Pan (10.1002/sim.6821-BIB0006|sim6821-cit-0006) 2001; 57
References_xml – reference: Wong WK. Comparing robust properties of a, d, e and g-optimal designs. Computational Statistics & Data Analysis. 1994; 18(4):441-448.
– reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986; 73(1):13-22.
– reference: Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of Longitudinal Data. Oxford University Press: New York, 2002.
– reference: Mancl LA, DeRouen TA. A covariance estimator for gee with improved small-sample properties. Biometrics. 2001; 57(1):126-134.
– reference: McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Halls: London, 1989.
– reference: Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine. 2009; 28(18):2338-2355.
– reference: Preisser JS, Qaqish BF. Deletion diagnostics for generalised estimating equations. Biometrika. 1996; 83(3):551-562.
– reference: Prentice R, Zhao L. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics. 1991; 47(3):825-839.
– reference: Goldstein H, Sc B. The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change. Academic Press: London, 1979.
– reference: Prentice R. Correlated binary regression with covariates specific to each binary observation.Biometrics. 1988; 44(4):1033-1048.
– reference: Feng Z, McLerran D, Grizzle J. A comparison of statistical methods for clustered data analysis with gaussian error. Statistics in Medicine. 1996; 15(16):1793-1806.
– reference: Qaqish BF. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika. 2003; 90(2):455-463.
– reference: Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine. 2009; 28(4):642-658.
– reference: Paik MC. Repeated measurement analysis for nonnormal data in small samples. Communications in Statistics-Simulation and Computation. 1988; 17(4):1155-1171.
– reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika. 1995; 82(2):407-410.
– reference: Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics-Simulation and Computation. 1994; 23(4):939-951.
– reference: Nesselroade JR, Baltes PB. Longitudinal Research in the Study of Behavior and Development. Academic Press: New York, 1979.
– reference: Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association. 2001; 96(456):1387-1396.
– reference: Atkinson A, Donev A, Tobias R. Optimum Experimental Designs, with SAS. Oxford University Press: New York, 2007.
– reference: Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika. 1990; 77(3):485-497.
– reference: Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001; 57(1):120-125.
– reference: Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics. 1998; 54(4):1622-1630.
– reference: Shults J, Hilbe JM. Quasi-Least Squares Regression. CRC Press: Boca Raton, 2014.
– volume: 28
  start-page: 2338
  issue: 18
  year: 2009
  end-page: 2355
  article-title: A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
  publication-title: Statistics in Medicine
– volume: 15
  start-page: 1793
  issue: 16
  year: 1996
  end-page: 1806
  article-title: A comparison of statistical methods for clustered data analysis with gaussian error
  publication-title: Statistics in Medicine
– volume: 77
  start-page: 485
  issue: 3
  year: 1990
  end-page: 497
  article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
  publication-title: Biometrika
– volume: 54
  start-page: 1622
  issue: 4
  year: 1998
  end-page: 1630
  article-title: Analysis of serially correlated data using quasi‐least squares
  publication-title: Biometrics
– volume: 18
  start-page: 441
  issue: 4
  year: 1994
  end-page: 448
  article-title: Comparing robust properties of a, d, e and g‐optimal designs
  publication-title: Computational Statistics & Data Analysis
– volume: 47
  start-page: 825
  issue: 3
  year: 1991
  end-page: 839
  article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses
  publication-title: Biometrics
– year: 2002
– volume: 83
  start-page: 551
  issue: 3
  year: 1996
  end-page: 562
  article-title: Deletion diagnostics for generalised estimating equations
  publication-title: Biometrika
– year: 2007
– volume: 44
  start-page: 1033
  issue: 4
  year: 1988
  end-page: 1048
  article-title: Correlated binary regression with covariates specific to each binary observation.
  publication-title: Biometrics
– year: 1989
– volume: 73
  start-page: 13
  issue: 1
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 57
  start-page: 120
  issue: 1
  year: 2001
  end-page: 125
  article-title: Akaike's information criterion in generalized estimating equations
  publication-title: Biometrics
– volume: 57
  start-page: 126
  issue: 1
  year: 2001
  end-page: 134
  article-title: A covariance estimator for gee with improved small‐sample properties
  publication-title: Biometrics
– volume: 17
  start-page: 1155
  issue: 4
  year: 1988
  end-page: 1171
  article-title: Repeated measurement analysis for nonnormal data in small samples
  publication-title: Communications in Statistics‐Simulation and Computation
– start-page: 267
  year: 1973
  end-page: 281
– volume: 90
  start-page: 455
  issue: 2
  year: 2003
  end-page: 463
  article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations
  publication-title: Biometrika
– volume: 23
  start-page: 939
  issue: 4
  year: 1994
  end-page: 951
  article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
  publication-title: Communications in Statistics‐Simulation and Computation
– volume: 96
  start-page: 1387
  issue: 456
  year: 2001
  end-page: 1396
  article-title: A note on the efficiency of sandwich covariance matrix estimation
  publication-title: Journal of the American Statistical Association
– year: 1979
– volume: 82
  start-page: 407
  issue: 2
  year: 1995
  end-page: 410
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
– year: 2014
– volume: 28
  start-page: 642
  issue: 4
  year: 2009
  end-page: 658
  article-title: Working‐correlation‐structure identification in generalized estimating equations
  publication-title: Statistics in Medicine
– volume: 54
  start-page: 1622
  issue: 4
  year: 1998
  ident: 10.1002/sim.6821-BIB0010|sim6821-cit-0010
  article-title: Analysis of serially correlated data using quasi-least squares
  publication-title: Biometrics
  doi: 10.2307/2533686
– volume-title: Generalized Linear Models
  year: 1989
  ident: 10.1002/sim.6821-BIB0015|sim6821-cit-0015
  doi: 10.1007/978-1-4899-3242-6
– volume: 47
  start-page: 825
  issue: 3
  year: 1991
  ident: 10.1002/sim.6821-BIB0016|sim6821-cit-0016
  article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses
  publication-title: Biometrics
  doi: 10.2307/2532642
– volume: 28
  start-page: 2338
  issue: 18
  year: 2009
  ident: 10.1002/sim.6821-BIB0008|sim6821-cit-0008
  article-title: A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3622
– volume: 23
  start-page: 939
  issue: 4
  year: 1994
  ident: 10.1002/sim.6821-BIB0004|sim6821-cit-0004
  article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610919408813210
– volume: 83
  start-page: 551
  issue: 3
  year: 1996
  ident: 10.1002/sim.6821-BIB0018|sim6821-cit-0018
  article-title: Deletion diagnostics for generalised estimating equations
  publication-title: Biometrika
  doi: 10.1093/biomet/83.3.551
– volume: 96
  start-page: 1387
  issue: 456
  year: 2001
  ident: 10.1002/sim.6821-BIB0012|sim6821-cit-0012
  article-title: A note on the efficiency of sandwich covariance matrix estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382309
– volume: 15
  start-page: 1793
  issue: 16
  year: 1996
  ident: 10.1002/sim.6821-BIB0014|sim6821-cit-0014
  article-title: A comparison of statistical methods for clustered data analysis with gaussian error
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19960830)15:16<1793::AID-SIM332>3.0.CO;2-2
– volume: 28
  start-page: 642
  issue: 4
  year: 2009
  ident: 10.1002/sim.6821-BIB0007|sim6821-cit-0007
  article-title: Working-correlation-structure identification in generalized estimating equations
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3489
– volume: 17
  start-page: 1155
  issue: 4
  year: 1988
  ident: 10.1002/sim.6821-BIB0013|sim6821-cit-0013
  article-title: Repeated measurement analysis for nonnormal data in small samples
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918808812718
– volume: 44
  start-page: 1033
  issue: 4
  year: 1988
  ident: 10.1002/sim.6821-BIB0022|sim6821-cit-0022
  article-title: Correlated binary regression with covariates specific to each binary observation.
  publication-title: Biometrics
  doi: 10.2307/2531733
– volume-title: Longitudinal Research in the Study of Behavior and Development
  year: 1979
  ident: 10.1002/sim.6821-BIB0002|sim6821-cit-0002
– volume-title: Quasi-Least Squares Regression
  year: 2014
  ident: 10.1002/sim.6821-BIB0017|sim6821-cit-0017
  doi: 10.1201/b16446
– volume-title: Optimum Experimental Designs, with SAS
  year: 2007
  ident: 10.1002/sim.6821-BIB0019|sim6821-cit-0019
  doi: 10.1093/oso/9780199296590.001.0001
– ident: 10.1002/sim.6821-BIB0005|sim6821-cit-0005
– volume: 18
  start-page: 441
  issue: 4
  year: 1994
  ident: 10.1002/sim.6821-BIB0020|sim6821-cit-0020
  article-title: Comparing robust properties of a, d, e and g-optimal designs
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/0167-9473(94)90161-9
– volume: 90
  start-page: 455
  issue: 2
  year: 2003
  ident: 10.1002/sim.6821-BIB0024|sim6821-cit-0024
  article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.455
– volume-title: The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change
  year: 1979
  ident: 10.1002/sim.6821-BIB0001|sim6821-cit-0001
– volume: 73
  start-page: 13
  issue: 1
  year: 1986
  ident: 10.1002/sim.6821-BIB0003|sim6821-cit-0003
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 57
  start-page: 126
  issue: 1
  year: 2001
  ident: 10.1002/sim.6821-BIB0011|sim6821-cit-0011
  article-title: A covariance estimator for gee with improved small-sample properties
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00126.x
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: 10.1002/sim.6821-BIB0021|sim6821-cit-0021
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 77
  start-page: 485
  issue: 3
  year: 1990
  ident: 10.1002/sim.6821-BIB0009|sim6821-cit-0009
  article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data
  publication-title: Biometrika
  doi: 10.1093/biomet/77.3.485
– volume: 57
  start-page: 120
  issue: 1
  year: 2001
  ident: 10.1002/sim.6821-BIB0006|sim6821-cit-0006
  article-title: Akaike's information criterion in generalized estimating equations
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00120.x
– volume: 82
  start-page: 407
  issue: 2
  year: 1995
  ident: 10.1002/sim.6821-BIB0023|sim6821-cit-0023
  article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures
  publication-title: Biometrika
  doi: 10.1093/biomet/82.2.407
SSID ssj0011527
Score 2.2497811
Snippet In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1819
SubjectTerms bias-corrected sandwich covariance estimator
Cluster Analysis
Computer Simulation
Correlation analysis
correlation information criterion
Estimating techniques
Estimation bias
Female
Humans
Logistic Models
Longitudinal Studies
Male
Matrix
model-based covariance estimator
Models, Statistical
Regression Analysis
Rotnitzky-Jewell criteria
Schizophrenia - diagnosis
Title A determinant-based criterion for working correlation structure selection in generalized estimating equations
URI https://api.istex.fr/ark:/67375/WNG-4ZSCVCHB-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6821
https://www.ncbi.nlm.nih.gov/pubmed/26626276
https://www.proquest.com/docview/1784565252
https://www.proquest.com/docview/1780515279
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkVAlxM8CZWlBRkJwyjZxHMd7LFvKgtQeaAsVHCz_Ba1Ks6XpqqgnHoFn5Ek6YyepioqEOEVKJrFjz9jf2ONvCHmRCzm2zJRJyrlPeFXJxBSVScpcWG6FL5gJAbI7YrrP3x8UB21UJZ6FifwQ_YIbWkYYr9HAtWnWL0lDm9nRSMhwhjzLBdLmb37omaOyLlsr7lCKMis63tmUrXcvXpmJbmKj_rgOZl5FrWHa2bpLvnQVjtEmh6PFqRnZ8z-4HP_vj-6ROy0apRtRfe6TG74ekFvb7X77gNyOq3o0HlYakGXEppHa-QGZb1B3GUzz--cvnBEdhWEI-Z_nNQU8TM_iYjy1mAUkxt3RyFm7OPG0CVl48N6spl8jA_bsHD6C3B-IpeFN_z2ykTcPyf7Wm73JNGnzNyQ2Bz8scRn0NfyP1xiqqrmzqWPGaumlA88Y-qgygE_zlDkOXqm0Tho5LrhhKdegP_kjslTPa_-YUHAMwe_UJfci5046WY2tEE5rLnMnbTokr7q-VLYlN8ccG99UpGVmChpXYeMOyfNe8jgSelwj8zKoQy-gTw4xAK4s1Kedt4p_3p18nExfq70hWev0RbW236islAiTWcGgrP4xWC1uxejazxdBBpPrsHI8JCtRz_rCADIxwUoBtQja8tdqqt1323h98q-Cq2QZ8J7A4AeWrpEl6G3_FDDVqXkWrOcCXsQfTQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5NmwSTEC_lrTDASAg-pUsdx3HFp1EYHaz9wDqYEJIVvwRVgxTWVaB94ifwG_kl3MVJpqEhIT5FSi6xY9_Zz9nn5wAeJVINLDdZFAvhI1EUKjJpYaIskVZY6VNuqgDZiRzti1cH6cEKPG3OwgR-iHbBjSyjGq_JwGlBevOUNXQx-9yTig6RrwnEGeR5PX_Tckf1m3yttEcps37aMM_GfLN588xctEbN-v08oHkWt1YTz_YV-NBUOcSbHPaWx6ZnT_5gc_zPf7oKl2tAyraCBl2DFV924MK43nLvwKWwsMfCeaUOrBM8DezO12G-xdxpPM2vHz9pUnQMRyKigJ6XDCEx-xbW45mlRCAh9I4F2trlkWeLKhEP3ZuV7GMgwZ6d4EeI_oPgNL7pvwZC8sUN2N9-MR2OojqFQ2QTdMUi18fuxv_xOUWr5sLZ2HFjc-WVQ-cYO6kwCFGTmDuBjqmyThk1SIXhschRhZKbsFrOS38bGPqG6HrmmfAyEU45VQyslC7PhUqcsnEXnjSdqW3Nb05pNj7pwMzMNTaupsbtwsNW8kvg9DhH5nGlD61AfnRIMXBZqt9NXmrxfm_4djh6pqdd2GgURtfmv9D9TBFS5inHstrHaLi0G5OXfr6sZCi_Ds8GXbgVFK0tDFETlzyTWItKXf5aTb23M6brnX8VfAAXR9Pxrt7dmby-C-sI_yTFQvB4A1ax5_09hFjH5n5lSr8BPp8jbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2hVqoqIS7LbaGAkRA8ZZt1HMf7WBaWLdAVoi1U5cGKL6lWLdnS7QrUJz6Bb-RLmImTVEVFQjxFSiaxY8_YZ-zxGYCniVQDy00WxUL4SBSFikxamChLpBVW-pSbKkB2Ise74s1euldHVdJZmMAP0S64kWVU4zUZ-LEr1s9JQ-fTLz2p6Az5spAIJAgQfWipo_pNulbaopRZP22IZ2O-3rx5YSpaplb9fhnOvAhbq3lndB0-NzUO4SaHvcWp6dmzP8gc_--XbsC1Go6yjaA_N-GKLzuwslVvuHfgaljWY-G0UgdWCZwGbudbMNtg7jya5tePnzQlOobjEBFAz0qGgJh9C6vxzFIakBB4xwJp7eLEs3mVhofuTUt2ECiwp2f4ESL_IDCNb_qvgY58fht2R692huOoTuAQ2QQdscj1sbPxf3xOsaq5cDZ23NhceeXQNcY-KgwC1CTmTqBbqqxTRg1SYXgsclSg5A4slbPS3wOGniE6nnkmvEyEU04VAyuly3OhEqds3IXnTV9qW7ObU5KNIx14mbnGxtXUuF140koeB0aPS2SeVerQCuQnhxQBl6X60-S1Fvvbw4_D8Qu904W1Rl90bfxz3c8U4WSeciyrfYxmS3sxeelni0qGsuvwbNCFu0HP2sIQM3HJM4m1qLTlr9XU25tbdL3_r4KPYeX9y5F-tzl5-wBWEftJCoTg8RosYcf7h4ivTs2jypB-A8MxIhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+determinant-based+criterion+for+working+correlation+structure+selection+in+generalized+estimating+equations&rft.jtitle=Statistics+in+medicine&rft.au=Jaman%2C+Ajmery&rft.au=Latif%2C+Mahbub+AHM&rft.au=Bari%2C+Wasimul&rft.au=Wahed%2C+Abdus+S&rft.date=2016-05-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=11&rft.spage=1819&rft_id=info:doi/10.1002%2Fsim.6821&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4036167071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon