A determinant-based criterion for working correlation structure selection in generalized estimating equations
In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, i...
Saved in:
Published in | Statistics in medicine Vol. 35; no. 11; pp. 1819 - 1833 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
20.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.6821 |
Cover
Abstract | In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky‐Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model‐based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky‐Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model‐based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias‐corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
AbstractList | In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study.In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky-Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model-based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky-Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model-based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias-corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix. Correct specification of the working correlation structure ensures efficient estimators of the regression coefficients. Among the criteria used, in practice, for selecting working correlation structure, Rotnitzky‐Jewell, Quasi Information Criterion (QIC) and Correlation Information Criterion (CIC) are based on the fact that if the assumed working correlation structure is correct then the model‐based (naive) and the sandwich (robust) covariance estimators of the regression coefficient estimators should be close to each other. The sandwich covariance estimator, used in defining the Rotnitzky‐Jewell, QIC and CIC criteria, is biased downward and has a larger variability than the corresponding model‐based covariance estimator. Motivated by this fact, a new criterion is proposed in this paper based on the bias‐corrected sandwich covariance estimator for selecting an appropriate working correlation structure in GEE. A comparison of the proposed and the competing criteria is shown using simulation studies with correlated binary responses. The results revealed that the proposed criterion generally performs better than the competing criteria. An example of selecting the appropriate working correlation structure has also been shown using the data from Madras Schizophrenia Study. Copyright © 2015 John Wiley & Sons, Ltd. |
Author | Latif, Mahbub A. H. M. Bari, Wasimul Wahed, Abdus S. Jaman, Ajmery |
Author_xml | – sequence: 1 givenname: Ajmery surname: Jaman fullname: Jaman, Ajmery email: Correspondence to: Ajmery Jaman, Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh., ajaman@isrt.ac.bd organization: Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh – sequence: 2 givenname: Mahbub A. H. M. surname: Latif fullname: Latif, Mahbub A. H. M. organization: Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka-1000, Bangladesh – sequence: 3 givenname: Wasimul surname: Bari fullname: Bari, Wasimul organization: Department of Statistics Biostatistics & Informatics, University of Dhaka, Dhaka-1-000, Bangladesh – sequence: 4 givenname: Abdus S. surname: Wahed fullname: Wahed, Abdus S. organization: Department of Biostatistics, University of Pittsburgh, PA 15261, Pittsburgh, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26626276$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1PFTEUxRuDkQeY-BeYSdy4mWfb6dcs8UU-EtQFqImbptO5jxRmWmg7Afzr7TwQI5FVk5PfOb333B205YMHhN4QvCQY0w_JjUuhKHmBFgS3ssaUqy20wFTKWkjCt9FOShcYE8KpfIW2qRBUUCkWaNyvesgQR-eNz3VnEvSVja5ILvhqHWJ1E-Kl8-eVDTHCYPKspxwnm6cIVYIB7EZzvjoHD9EM7lcJgZTdWOjihOtpY0t76OXaDAleP7y76NvBp7PVUX3y9fB4tX9S20ZJUvdEAC_rgFGUMsN6i3vaWaNA9U2jyhbrrm3bBtOeMSaU7VWnWs46ipmhnWx20fv73KsYrqcyiR5dsjAMxkOYkiZSYT530Rb03RP0IkzRl-lminHBKaeFevtATd0Ivb6KZbd4p_8U-fdHG0NKEdaPCMF6vpEuN9LzjQq6fIJalzf95Gjc8D9DfW-4cQPcPRusT48__8u7lOH2kTfxUgvZSK5_fDnU7Ofp6vvq6KM-a34DL2mx9A |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1016_j_jemermed_2024_06_004 crossref_primary_10_1097_EDE_0000000000000889 crossref_primary_10_1093_biostatistics_kxx052 crossref_primary_10_1093_biomtc_ujae165 crossref_primary_10_1080_00031305_2022_2157874 crossref_primary_10_1080_03610918_2021_1871924 crossref_primary_10_1080_01621459_2021_1987251 crossref_primary_10_1080_10543406_2023_2281575 crossref_primary_10_1080_02664763_2018_1508560 crossref_primary_10_1080_03610918_2018_1484476 |
Cites_doi | 10.2307/2533686 10.1007/978-1-4899-3242-6 10.2307/2532642 10.1002/sim.3622 10.1080/03610919408813210 10.1093/biomet/83.3.551 10.1198/016214501753382309 10.1002/(SICI)1097-0258(19960830)15:16<1793::AID-SIM332>3.0.CO;2-2 10.1002/sim.3489 10.1080/03610918808812718 10.2307/2531733 10.1201/b16446 10.1093/oso/9780199296590.001.0001 10.1016/0167-9473(94)90161-9 10.1093/biomet/90.2.455 10.1093/biomet/73.1.13 10.1111/j.0006-341X.2001.00126.x 10.1093/oso/9780198524847.001.0001 10.1093/biomet/77.3.485 10.1111/j.0006-341X.2001.00120.x 10.1093/biomet/82.2.407 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. May 20, 2016 |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. May 20, 2016 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.6821 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1833 |
ExternalDocumentID | 4036167071 26626276 10_1002_sim_6821 SIM6821 ark_67375_WNG_4ZSCVCHB_T |
Genre | article Journal Article Feature |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP WWH AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3871-d16e5821ea8224a4dc0d2bca8e8d338115fb999302d44468cd8b8954b204a2b73 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Jul 10 19:12:03 EDT 2025 Sun Jul 13 05:22:35 EDT 2025 Thu Apr 03 06:59:25 EDT 2025 Thu Jul 03 08:26:50 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Wed Jan 22 16:21:48 EST 2025 Tue Sep 09 05:31:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | correlation information criterion Rotnitzky-Jewell criteria model-based covariance estimator bias-corrected sandwich covariance estimator |
Language | English |
License | Copyright © 2015 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3871-d16e5821ea8224a4dc0d2bca8e8d338115fb999302d44468cd8b8954b204a2b73 |
Notes | ark:/67375/WNG-4ZSCVCHB-T sup Info Item istex:169EE9A6E4BCE06648465585E1C62592059F0B16 ArticleID:SIM6821 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6911-7221 |
PMID | 26626276 |
PQID | 1784565252 |
PQPubID | 48361 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1780515279 proquest_journals_1784565252 pubmed_primary_26626276 crossref_primary_10_1002_sim_6821 crossref_citationtrail_10_1002_sim_6821 wiley_primary_10_1002_sim_6821_SIM6821 istex_primary_ark_67375_WNG_4ZSCVCHB_T |
PublicationCentury | 2000 |
PublicationDate | 2016-05-20 20 May 2016 2016-May-20 20160520 |
PublicationDateYYYYMMDD | 2016-05-20 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mancl LA, DeRouen TA. A covariance estimator for gee with improved small-sample properties. Biometrics. 2001; 57(1):126-134. Goldstein H, Sc B. The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change. Academic Press: London, 1979. Feng Z, McLerran D, Grizzle J. A comparison of statistical methods for clustered data analysis with gaussian error. Statistics in Medicine. 1996; 15(16):1793-1806. Preisser JS, Qaqish BF. Deletion diagnostics for generalised estimating equations. Biometrika. 1996; 83(3):551-562. Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika. 1990; 77(3):485-497. Paik MC. Repeated measurement analysis for nonnormal data in small samples. Communications in Statistics-Simulation and Computation. 1988; 17(4):1155-1171. Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics. 1998; 54(4):1622-1630. Atkinson A, Donev A, Tobias R. Optimum Experimental Designs, with SAS. Oxford University Press: New York, 2007. Wong WK. Comparing robust properties of a, d, e and g-optimal designs. Computational Statistics & Data Analysis. 1994; 18(4):441-448. Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001; 57(1):120-125. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986; 73(1):13-22. Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine. 2009; 28(4):642-658. Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika. 1995; 82(2):407-410. Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine. 2009; 28(18):2338-2355. Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association. 2001; 96(456):1387-1396. Prentice R, Zhao L. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics. 1991; 47(3):825-839. Shults J, Hilbe JM. Quasi-Least Squares Regression. CRC Press: Boca Raton, 2014. Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics-Simulation and Computation. 1994; 23(4):939-951. Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of Longitudinal Data. Oxford University Press: New York, 2002. Prentice R. Correlated binary regression with covariates specific to each binary observation.Biometrics. 1988; 44(4):1033-1048. Nesselroade JR, Baltes PB. Longitudinal Research in the Study of Behavior and Development. Academic Press: New York, 1979. McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Halls: London, 1989. Qaqish BF. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika. 2003; 90(2):455-463. 1990; 77 1995; 82 2003; 90 1991; 47 1986; 73 1988; 17 1994; 23 1996; 83 1988; 44 2007 1973 2014 1994; 18 2002 2001; 57 1998; 54 1996; 15 1979 2001; 96 1989 2009; 28 McCullagh (10.1002/sim.6821-BIB0015|sim6821-cit-0015) 1989 Qaqish (10.1002/sim.6821-BIB0024|sim6821-cit-0024) 2003; 90 Shults (10.1002/sim.6821-BIB0008|sim6821-cit-0008) 2009; 28 10.1002/sim.6821-BIB0005|sim6821-cit-0005 Shults (10.1002/sim.6821-BIB0010|sim6821-cit-0010) 1998; 54 Kauermann (10.1002/sim.6821-BIB0012|sim6821-cit-0012) 2001; 96 Goldstein (10.1002/sim.6821-BIB0001|sim6821-cit-0001) 1979 Pepe (10.1002/sim.6821-BIB0004|sim6821-cit-0004) 1994; 23 Hin (10.1002/sim.6821-BIB0007|sim6821-cit-0007) 2009; 28 Prentice (10.1002/sim.6821-BIB0022|sim6821-cit-0022) 1988; 44 Prentice (10.1002/sim.6821-BIB0016|sim6821-cit-0016) 1991; 47 Paik (10.1002/sim.6821-BIB0013|sim6821-cit-0013) 1988; 17 Atkinson (10.1002/sim.6821-BIB0019|sim6821-cit-0019) 2007 Feng (10.1002/sim.6821-BIB0014|sim6821-cit-0014) 1996; 15 Crowder (10.1002/sim.6821-BIB0023|sim6821-cit-0023) 1995; 82 Mancl (10.1002/sim.6821-BIB0011|sim6821-cit-0011) 2001; 57 Nesselroade (10.1002/sim.6821-BIB0002|sim6821-cit-0002) 1979 Rotnitzky (10.1002/sim.6821-BIB0009|sim6821-cit-0009) 1990; 77 Preisser (10.1002/sim.6821-BIB0018|sim6821-cit-0018) 1996; 83 Liang (10.1002/sim.6821-BIB0003|sim6821-cit-0003) 1986; 73 Shults (10.1002/sim.6821-BIB0017|sim6821-cit-0017) 2014 Diggle (10.1002/sim.6821-BIB0021|sim6821-cit-0021) 2002 Wong (10.1002/sim.6821-BIB0020|sim6821-cit-0020) 1994; 18 Pan (10.1002/sim.6821-BIB0006|sim6821-cit-0006) 2001; 57 |
References_xml | – reference: Wong WK. Comparing robust properties of a, d, e and g-optimal designs. Computational Statistics & Data Analysis. 1994; 18(4):441-448. – reference: Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986; 73(1):13-22. – reference: Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of Longitudinal Data. Oxford University Press: New York, 2002. – reference: Mancl LA, DeRouen TA. A covariance estimator for gee with improved small-sample properties. Biometrics. 2001; 57(1):126-134. – reference: McCullagh P, Nelder JA. Generalized Linear Models. Chapman and Halls: London, 1989. – reference: Shults J, Sun W, Tu X, Kim H, Amsterdam J, Hilbe JM, Ten-Have T. A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Statistics in Medicine. 2009; 28(18):2338-2355. – reference: Preisser JS, Qaqish BF. Deletion diagnostics for generalised estimating equations. Biometrika. 1996; 83(3):551-562. – reference: Prentice R, Zhao L. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics. 1991; 47(3):825-839. – reference: Goldstein H, Sc B. The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change. Academic Press: London, 1979. – reference: Prentice R. Correlated binary regression with covariates specific to each binary observation.Biometrics. 1988; 44(4):1033-1048. – reference: Feng Z, McLerran D, Grizzle J. A comparison of statistical methods for clustered data analysis with gaussian error. Statistics in Medicine. 1996; 15(16):1793-1806. – reference: Qaqish BF. A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations. Biometrika. 2003; 90(2):455-463. – reference: Hin LY, Wang YG. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine. 2009; 28(4):642-658. – reference: Paik MC. Repeated measurement analysis for nonnormal data in small samples. Communications in Statistics-Simulation and Computation. 1988; 17(4):1155-1171. – reference: Crowder M. On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika. 1995; 82(2):407-410. – reference: Pepe MS, Anderson GL. A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data. Communications in Statistics-Simulation and Computation. 1994; 23(4):939-951. – reference: Nesselroade JR, Baltes PB. Longitudinal Research in the Study of Behavior and Development. Academic Press: New York, 1979. – reference: Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association. 2001; 96(456):1387-1396. – reference: Atkinson A, Donev A, Tobias R. Optimum Experimental Designs, with SAS. Oxford University Press: New York, 2007. – reference: Rotnitzky A, Jewell NP. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika. 1990; 77(3):485-497. – reference: Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001; 57(1):120-125. – reference: Shults J, Chaganty NR. Analysis of serially correlated data using quasi-least squares. Biometrics. 1998; 54(4):1622-1630. – reference: Shults J, Hilbe JM. Quasi-Least Squares Regression. CRC Press: Boca Raton, 2014. – volume: 28 start-page: 2338 issue: 18 year: 2009 end-page: 2355 article-title: A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data publication-title: Statistics in Medicine – volume: 15 start-page: 1793 issue: 16 year: 1996 end-page: 1806 article-title: A comparison of statistical methods for clustered data analysis with gaussian error publication-title: Statistics in Medicine – volume: 77 start-page: 485 issue: 3 year: 1990 end-page: 497 article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data publication-title: Biometrika – volume: 54 start-page: 1622 issue: 4 year: 1998 end-page: 1630 article-title: Analysis of serially correlated data using quasi‐least squares publication-title: Biometrics – volume: 18 start-page: 441 issue: 4 year: 1994 end-page: 448 article-title: Comparing robust properties of a, d, e and g‐optimal designs publication-title: Computational Statistics & Data Analysis – volume: 47 start-page: 825 issue: 3 year: 1991 end-page: 839 article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses publication-title: Biometrics – year: 2002 – volume: 83 start-page: 551 issue: 3 year: 1996 end-page: 562 article-title: Deletion diagnostics for generalised estimating equations publication-title: Biometrika – year: 2007 – volume: 44 start-page: 1033 issue: 4 year: 1988 end-page: 1048 article-title: Correlated binary regression with covariates specific to each binary observation. publication-title: Biometrics – year: 1989 – volume: 73 start-page: 13 issue: 1 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 57 start-page: 120 issue: 1 year: 2001 end-page: 125 article-title: Akaike's information criterion in generalized estimating equations publication-title: Biometrics – volume: 57 start-page: 126 issue: 1 year: 2001 end-page: 134 article-title: A covariance estimator for gee with improved small‐sample properties publication-title: Biometrics – volume: 17 start-page: 1155 issue: 4 year: 1988 end-page: 1171 article-title: Repeated measurement analysis for nonnormal data in small samples publication-title: Communications in Statistics‐Simulation and Computation – start-page: 267 year: 1973 end-page: 281 – volume: 90 start-page: 455 issue: 2 year: 2003 end-page: 463 article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations publication-title: Biometrika – volume: 23 start-page: 939 issue: 4 year: 1994 end-page: 951 article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data publication-title: Communications in Statistics‐Simulation and Computation – volume: 96 start-page: 1387 issue: 456 year: 2001 end-page: 1396 article-title: A note on the efficiency of sandwich covariance matrix estimation publication-title: Journal of the American Statistical Association – year: 1979 – volume: 82 start-page: 407 issue: 2 year: 1995 end-page: 410 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika – year: 2014 – volume: 28 start-page: 642 issue: 4 year: 2009 end-page: 658 article-title: Working‐correlation‐structure identification in generalized estimating equations publication-title: Statistics in Medicine – volume: 54 start-page: 1622 issue: 4 year: 1998 ident: 10.1002/sim.6821-BIB0010|sim6821-cit-0010 article-title: Analysis of serially correlated data using quasi-least squares publication-title: Biometrics doi: 10.2307/2533686 – volume-title: Generalized Linear Models year: 1989 ident: 10.1002/sim.6821-BIB0015|sim6821-cit-0015 doi: 10.1007/978-1-4899-3242-6 – volume: 47 start-page: 825 issue: 3 year: 1991 ident: 10.1002/sim.6821-BIB0016|sim6821-cit-0016 article-title: Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses publication-title: Biometrics doi: 10.2307/2532642 – volume: 28 start-page: 2338 issue: 18 year: 2009 ident: 10.1002/sim.6821-BIB0008|sim6821-cit-0008 article-title: A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data publication-title: Statistics in Medicine doi: 10.1002/sim.3622 – volume: 23 start-page: 939 issue: 4 year: 1994 ident: 10.1002/sim.6821-BIB0004|sim6821-cit-0004 article-title: A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610919408813210 – volume: 83 start-page: 551 issue: 3 year: 1996 ident: 10.1002/sim.6821-BIB0018|sim6821-cit-0018 article-title: Deletion diagnostics for generalised estimating equations publication-title: Biometrika doi: 10.1093/biomet/83.3.551 – volume: 96 start-page: 1387 issue: 456 year: 2001 ident: 10.1002/sim.6821-BIB0012|sim6821-cit-0012 article-title: A note on the efficiency of sandwich covariance matrix estimation publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382309 – volume: 15 start-page: 1793 issue: 16 year: 1996 ident: 10.1002/sim.6821-BIB0014|sim6821-cit-0014 article-title: A comparison of statistical methods for clustered data analysis with gaussian error publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19960830)15:16<1793::AID-SIM332>3.0.CO;2-2 – volume: 28 start-page: 642 issue: 4 year: 2009 ident: 10.1002/sim.6821-BIB0007|sim6821-cit-0007 article-title: Working-correlation-structure identification in generalized estimating equations publication-title: Statistics in Medicine doi: 10.1002/sim.3489 – volume: 17 start-page: 1155 issue: 4 year: 1988 ident: 10.1002/sim.6821-BIB0013|sim6821-cit-0013 article-title: Repeated measurement analysis for nonnormal data in small samples publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918808812718 – volume: 44 start-page: 1033 issue: 4 year: 1988 ident: 10.1002/sim.6821-BIB0022|sim6821-cit-0022 article-title: Correlated binary regression with covariates specific to each binary observation. publication-title: Biometrics doi: 10.2307/2531733 – volume-title: Longitudinal Research in the Study of Behavior and Development year: 1979 ident: 10.1002/sim.6821-BIB0002|sim6821-cit-0002 – volume-title: Quasi-Least Squares Regression year: 2014 ident: 10.1002/sim.6821-BIB0017|sim6821-cit-0017 doi: 10.1201/b16446 – volume-title: Optimum Experimental Designs, with SAS year: 2007 ident: 10.1002/sim.6821-BIB0019|sim6821-cit-0019 doi: 10.1093/oso/9780199296590.001.0001 – ident: 10.1002/sim.6821-BIB0005|sim6821-cit-0005 – volume: 18 start-page: 441 issue: 4 year: 1994 ident: 10.1002/sim.6821-BIB0020|sim6821-cit-0020 article-title: Comparing robust properties of a, d, e and g-optimal designs publication-title: Computational Statistics & Data Analysis doi: 10.1016/0167-9473(94)90161-9 – volume: 90 start-page: 455 issue: 2 year: 2003 ident: 10.1002/sim.6821-BIB0024|sim6821-cit-0024 article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations publication-title: Biometrika doi: 10.1093/biomet/90.2.455 – volume-title: The Design and Analysis of Longitudinal Studies: Their Role in the Measurement of Change year: 1979 ident: 10.1002/sim.6821-BIB0001|sim6821-cit-0001 – volume: 73 start-page: 13 issue: 1 year: 1986 ident: 10.1002/sim.6821-BIB0003|sim6821-cit-0003 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 57 start-page: 126 issue: 1 year: 2001 ident: 10.1002/sim.6821-BIB0011|sim6821-cit-0011 article-title: A covariance estimator for gee with improved small-sample properties publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00126.x – volume-title: Analysis of Longitudinal Data year: 2002 ident: 10.1002/sim.6821-BIB0021|sim6821-cit-0021 doi: 10.1093/oso/9780198524847.001.0001 – volume: 77 start-page: 485 issue: 3 year: 1990 ident: 10.1002/sim.6821-BIB0009|sim6821-cit-0009 article-title: Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data publication-title: Biometrika doi: 10.1093/biomet/77.3.485 – volume: 57 start-page: 120 issue: 1 year: 2001 ident: 10.1002/sim.6821-BIB0006|sim6821-cit-0006 article-title: Akaike's information criterion in generalized estimating equations publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00120.x – volume: 82 start-page: 407 issue: 2 year: 1995 ident: 10.1002/sim.6821-BIB0023|sim6821-cit-0023 article-title: On the use of a working correlation matrix in using generalised linear models for repeated measures publication-title: Biometrika doi: 10.1093/biomet/82.2.407 |
SSID | ssj0011527 |
Score | 2.2497811 |
Snippet | In generalized estimating equations (GEE), the correlation between the repeated observations on a subject is specified with a working correlation matrix.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1819 |
SubjectTerms | bias-corrected sandwich covariance estimator Cluster Analysis Computer Simulation Correlation analysis correlation information criterion Estimating techniques Estimation bias Female Humans Logistic Models Longitudinal Studies Male Matrix model-based covariance estimator Models, Statistical Regression Analysis Rotnitzky-Jewell criteria Schizophrenia - diagnosis |
Title | A determinant-based criterion for working correlation structure selection in generalized estimating equations |
URI | https://api.istex.fr/ark:/67375/WNG-4ZSCVCHB-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.6821 https://www.ncbi.nlm.nih.gov/pubmed/26626276 https://www.proquest.com/docview/1784565252 https://www.proquest.com/docview/1780515279 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQkVAlxM8CZWlBRkJwyjZxHMd7LFvKgtQeaAsVHCz_Ba1Ks6XpqqgnHoFn5Ek6YyepioqEOEVKJrFjz9jf2ONvCHmRCzm2zJRJyrlPeFXJxBSVScpcWG6FL5gJAbI7YrrP3x8UB21UJZ6FifwQ_YIbWkYYr9HAtWnWL0lDm9nRSMhwhjzLBdLmb37omaOyLlsr7lCKMis63tmUrXcvXpmJbmKj_rgOZl5FrWHa2bpLvnQVjtEmh6PFqRnZ8z-4HP_vj-6ROy0apRtRfe6TG74ekFvb7X77gNyOq3o0HlYakGXEppHa-QGZb1B3GUzz--cvnBEdhWEI-Z_nNQU8TM_iYjy1mAUkxt3RyFm7OPG0CVl48N6spl8jA_bsHD6C3B-IpeFN_z2ykTcPyf7Wm73JNGnzNyQ2Bz8scRn0NfyP1xiqqrmzqWPGaumlA88Y-qgygE_zlDkOXqm0Tho5LrhhKdegP_kjslTPa_-YUHAMwe_UJfci5046WY2tEE5rLnMnbTokr7q-VLYlN8ccG99UpGVmChpXYeMOyfNe8jgSelwj8zKoQy-gTw4xAK4s1Kedt4p_3p18nExfq70hWev0RbW236islAiTWcGgrP4xWC1uxejazxdBBpPrsHI8JCtRz_rCADIxwUoBtQja8tdqqt1323h98q-Cq2QZ8J7A4AeWrpEl6G3_FDDVqXkWrOcCXsQfTQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5NmwSTEC_lrTDASAg-pUsdx3HFp1EYHaz9wDqYEJIVvwRVgxTWVaB94ifwG_kl3MVJpqEhIT5FSi6xY9_Zz9nn5wAeJVINLDdZFAvhI1EUKjJpYaIskVZY6VNuqgDZiRzti1cH6cEKPG3OwgR-iHbBjSyjGq_JwGlBevOUNXQx-9yTig6RrwnEGeR5PX_Tckf1m3yttEcps37aMM_GfLN588xctEbN-v08oHkWt1YTz_YV-NBUOcSbHPaWx6ZnT_5gc_zPf7oKl2tAyraCBl2DFV924MK43nLvwKWwsMfCeaUOrBM8DezO12G-xdxpPM2vHz9pUnQMRyKigJ6XDCEx-xbW45mlRCAh9I4F2trlkWeLKhEP3ZuV7GMgwZ6d4EeI_oPgNL7pvwZC8sUN2N9-MR2OojqFQ2QTdMUi18fuxv_xOUWr5sLZ2HFjc-WVQ-cYO6kwCFGTmDuBjqmyThk1SIXhschRhZKbsFrOS38bGPqG6HrmmfAyEU45VQyslC7PhUqcsnEXnjSdqW3Nb05pNj7pwMzMNTaupsbtwsNW8kvg9DhH5nGlD61AfnRIMXBZqt9NXmrxfm_4djh6pqdd2GgURtfmv9D9TBFS5inHstrHaLi0G5OXfr6sZCi_Ds8GXbgVFK0tDFETlzyTWItKXf5aTb23M6brnX8VfAAXR9Pxrt7dmby-C-sI_yTFQvB4A1ax5_09hFjH5n5lSr8BPp8jbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2hVqoqIS7LbaGAkRA8ZZt1HMf7WBaWLdAVoi1U5cGKL6lWLdnS7QrUJz6Bb-RLmImTVEVFQjxFSiaxY8_YZ-zxGYCniVQDy00WxUL4SBSFikxamChLpBVW-pSbKkB2Ise74s1euldHVdJZmMAP0S64kWVU4zUZ-LEr1s9JQ-fTLz2p6Az5spAIJAgQfWipo_pNulbaopRZP22IZ2O-3rx5YSpaplb9fhnOvAhbq3lndB0-NzUO4SaHvcWp6dmzP8gc_--XbsC1Go6yjaA_N-GKLzuwslVvuHfgaljWY-G0UgdWCZwGbudbMNtg7jya5tePnzQlOobjEBFAz0qGgJh9C6vxzFIakBB4xwJp7eLEs3mVhofuTUt2ECiwp2f4ESL_IDCNb_qvgY58fht2R692huOoTuAQ2QQdscj1sbPxf3xOsaq5cDZ23NhceeXQNcY-KgwC1CTmTqBbqqxTRg1SYXgsclSg5A4slbPS3wOGniE6nnkmvEyEU04VAyuly3OhEqds3IXnTV9qW7ObU5KNIx14mbnGxtXUuF140koeB0aPS2SeVerQCuQnhxQBl6X60-S1Fvvbw4_D8Qu904W1Rl90bfxz3c8U4WSeciyrfYxmS3sxeelni0qGsuvwbNCFu0HP2sIQM3HJM4m1qLTlr9XU25tbdL3_r4KPYeX9y5F-tzl5-wBWEftJCoTg8RosYcf7h4ivTs2jypB-A8MxIhs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+determinant-based+criterion+for+working+correlation+structure+selection+in+generalized+estimating+equations&rft.jtitle=Statistics+in+medicine&rft.au=Jaman%2C+Ajmery&rft.au=Latif%2C+Mahbub+AHM&rft.au=Bari%2C+Wasimul&rft.au=Wahed%2C+Abdus+S&rft.date=2016-05-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=35&rft.issue=11&rft.spage=1819&rft_id=info:doi/10.1002%2Fsim.6821&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4036167071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |