Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization

Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assis...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 38; pp. 16735 - 16740
Main Authors Geng, Lin, Liu, Chen‐Hui, Wang, San‐Tai, Fang, Wei‐Hui, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.09.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings. The ring cycle: Using the coordination delayed hydrolysis (CDH) strategy, a new family of aluminum molecular rings ranging from 8R to 16R is assembled. The monohydric alcohols used play a crucial role in the expansion of the rings. It is possible to tune the surface chemistry and properties through the judicious choice of functional groups of benzoate ligands.
AbstractList Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings.
Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al-rings from 8-ring to 16-ring is related to the monohydric alcohol structure-directing agents. Moreover, the organic ligands on the Al-rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al-rings from hydrophilicity to ultra-hydrophobicity. Importantly, 4-aminobenzoic acid bridged 16-ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al-rings, which reveal controllable ligand functionalization of these Al-rings.Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al-rings from 8-ring to 16-ring is related to the monohydric alcohol structure-directing agents. Moreover, the organic ligands on the Al-rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al-rings from hydrophilicity to ultra-hydrophobicity. Importantly, 4-aminobenzoic acid bridged 16-ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al-rings, which reveal controllable ligand functionalization of these Al-rings.
Presented herein are the Al III molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al 3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings.
Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings. The ring cycle: Using the coordination delayed hydrolysis (CDH) strategy, a new family of aluminum molecular rings ranging from 8R to 16R is assembled. The monohydric alcohols used play a crucial role in the expansion of the rings. It is possible to tune the surface chemistry and properties through the judicious choice of functional groups of benzoate ligands.
Author Geng, Lin
Wang, San‐Tai
Zhang, Jian
Liu, Chen‐Hui
Fang, Wei‐Hui
Author_xml – sequence: 1
  givenname: Lin
  surname: Geng
  fullname: Geng, Lin
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Chen‐Hui
  surname: Liu
  fullname: Liu, Chen‐Hui
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: San‐Tai
  surname: Wang
  fullname: Wang, San‐Tai
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Wei‐Hui
  surname: Fang
  fullname: Fang, Wei‐Hui
  email: fwh@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Jian
  orcidid: 0000-0003-3373-9621
  surname: Zhang
  fullname: Zhang, Jian
  email: zhj@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkF1LwzAUhoNMcJveel3wxpvOfDXpvBtz08H8QPS6pOnpyEjT2bTo_PW2mygMxKv3EJ7n5PAOUM-VDhA6J3hEMKZXyhkYUUwxllTiI9QnESUhk5L12pkzFso4Iido4P265eMYiz56ugFvVk6lFoKJbQrjmiK4Ly3oxqoqeDZu5a93Ecw-Nsp5U7pAuSxYmlUX88bpun1T1nyqbjhFx7myHs6-c4he57OX6V24fLxdTCfLULNY4pDrKJZCxFoIncuYj6mmqSZZRnka5TJSgmQp5AxwLiBTAjTQiOuUCg0izTgbosv93k1VvjXg66QwXoO1ykHZ-IRyQikhMSMtenGArsumak_uKI4FEwx31GhP6ar0voI82VSmUNU2ITjpCk66gpOfgluBHwja1LsO6koZ-7c23mvvxsL2n0-SycNi9ut-ARV6koQ
CitedBy_id crossref_primary_10_1021_acs_inorgchem_3c00798
crossref_primary_10_1002_anie_202116563
crossref_primary_10_1039_D3SC01260C
crossref_primary_10_1039_D2CS00582D
crossref_primary_10_1002_cjoc_202200592
crossref_primary_10_1016_j_jssc_2021_122803
crossref_primary_10_1039_D2QI01108E
crossref_primary_10_1002_anie_202400161
crossref_primary_10_1016_j_jssc_2021_122763
crossref_primary_10_1039_D3CC03672C
crossref_primary_10_1039_D4QI00976B
crossref_primary_10_1002_anie_202010690
crossref_primary_10_1021_jacs_3c13244
crossref_primary_10_1002_adma_202306260
crossref_primary_10_1021_acs_inorgchem_4c01090
crossref_primary_10_1038_s41467_024_53471_3
crossref_primary_10_1002_anie_202012919
crossref_primary_10_1016_j_ccr_2024_215818
crossref_primary_10_1038_s41467_023_38164_7
crossref_primary_10_1002_agt2_264
crossref_primary_10_1002_ange_202116563
crossref_primary_10_1039_D3DT01321A
crossref_primary_10_1002_agt2_506
crossref_primary_10_1002_ange_202010690
crossref_primary_10_1007_s11426_020_9924_7
crossref_primary_10_1002_ange_202400161
crossref_primary_10_1002_chem_202403634
crossref_primary_10_1039_D1CC00651G
crossref_primary_10_1002_ange_202107227
crossref_primary_10_1002_ange_202417548
crossref_primary_10_1002_anie_202217864
crossref_primary_10_1007_s11426_022_1539_y
crossref_primary_10_1002_smll_202306713
crossref_primary_10_1039_D3SC06046B
crossref_primary_10_1002_ange_202012919
crossref_primary_10_1039_D4QI02507E
crossref_primary_10_1021_acs_inorgchem_2c03397
crossref_primary_10_1038_s41467_022_34296_4
crossref_primary_10_1039_D2CC06524J
crossref_primary_10_1021_acs_cgd_2c00350
crossref_primary_10_1039_D1CC00318F
crossref_primary_10_1016_j_inoche_2021_108608
crossref_primary_10_1039_D2QI02461F
crossref_primary_10_1038_s41467_024_51845_1
crossref_primary_10_1002_asia_202400381
crossref_primary_10_1039_D4SC05707D
crossref_primary_10_1016_j_jssc_2020_121804
crossref_primary_10_1002_anie_202107227
crossref_primary_10_1002_ange_202217864
crossref_primary_10_1039_D3QI02008H
crossref_primary_10_1021_acs_inorgchem_1c00232
crossref_primary_10_1021_acs_inorgchem_4c04832
crossref_primary_10_1021_acs_inorgchem_0c03816
crossref_primary_10_1002_ijch_202100102
crossref_primary_10_1039_D4QI01103A
crossref_primary_10_1039_D1CC05919J
crossref_primary_10_1039_D1QO01316E
crossref_primary_10_1002_anie_202417548
crossref_primary_10_1039_D3QI00432E
crossref_primary_10_1021_acs_accounts_4c00143
crossref_primary_10_1021_acs_inorgchem_1c02749
crossref_primary_10_1002_ejic_202200376
crossref_primary_10_1016_j_cclet_2023_108604
crossref_primary_10_1002_smll_202311083
crossref_primary_10_1039_D4QI02096K
crossref_primary_10_1039_D1QI01451J
crossref_primary_10_1021_jacs_0c11778
Cites_doi 10.1002/1521-3757(20011001)113:19<3689::AID-ANGE3689>3.0.CO;2-G
10.1002/anie.200500682
10.1002/anie.200353352
10.1002/ange.201904680
10.1002/ange.201709096
10.1002/anie.200601979
10.1021/acs.accounts.8b00233
10.1002/ange.200602743
10.1002/anie.201901818
10.1002/anie.201402663
10.1038/16215
10.1002/ange.201106310
10.1002/9783527610846
10.1021/cr5005666
10.1021/cr040095d
10.1002/ange.200500682
10.1002/ange.201510455
10.1039/C7CS00511C
10.1039/b812721b
10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
10.1021/ja00082a001
10.1021/jacs.6b03489
10.1002/anie.201604305
10.1021/ic802124v
10.1002/ange.201901818
10.1002/anie.201709096
10.1002/ange.200352263
10.1021/ar040153h
10.1002/anie.201510455
10.1002/anie.201106310
10.1021/ja983042k
10.1039/B613877B
10.1021/jacs.6b00613
10.1002/(SICI)1521-3757(20000204)112:3<521::AID-ANGE521>3.0.CO;2-6
10.1002/anie.201702318
10.1021/ja4043609
10.1002/ange.201604305
10.1021/cm021113f
10.1002/anie.200352263
10.1002/anie.201007617
10.1021/ja908327w
10.1002/zaac.201700327
10.1021/jacs.7b09463
10.1021/jacs.9b10501
10.1021/ja993711
10.1039/C8TA10295C
10.1039/c0cs00137f
10.1126/science.1232097
10.1126/science.278.5346.2080
10.1002/ange.200353352
10.1002/1521-3773(20011001)40:19<3577::AID-ANIE3577>3.0.CO;2-A
10.1021/ja501606h
10.1002/ange.201702318
10.1016/j.watres.2015.11.018
10.1021/jacs.7b11112
10.1002/ange.200601979
10.1002/anie.201904680
10.1002/anie.200602743
10.1126/science.aaf9135
10.1039/C4DT00152D
10.1002/ange.201402663
10.1002/ange.201007617
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202007270
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 16740
ExternalDocumentID 10_1002_anie_202007270
ANIE202007270
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771181; 21973096; 21935010
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2017J05036
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20000000
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2017345
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0208600
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c3870-4c587668c66cf78492c2bc1dd24b5f75a61dbef3e0f6eda6ece254cb26ce6bd43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:56:22 EDT 2025
Fri Jul 25 10:17:13 EDT 2025
Tue Jul 01 01:17:42 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Wed Jan 22 16:32:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3870-4c587668c66cf78492c2bc1dd24b5f75a61dbef3e0f6eda6ece254cb26ce6bd43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3373-9621
PQID 2440636301
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2412211831
proquest_journals_2440636301
crossref_primary_10_1002_anie_202007270
crossref_citationtrail_10_1002_anie_202007270
wiley_primary_10_1002_anie_202007270_ANIE202007270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 14, 2020
PublicationDateYYYYMMDD 2020-09-14
PublicationDate_xml – month: 09
  year: 2020
  text: September 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 278
2014 2014; 53 126
2019; 7
2002; 14
2004 2004; 43 116
1994; 116
2000 2000; 39 112
2018; 644
2011; 40
2009
1996
2007
2006
2003 2003; 42 115
1991
2017 2017; 56 129
2019; 141
2014; 136
2009; 48
2019 2019; 58 131
2014; 43
2017; 139
2018; 47
2006 2006; 45 118
2016 2016; 55 128
2015; 115
2002; 41
2013; 339
2010; 132
2016; 353
2017
2005 2005; 44 117
2013; 135
2016; 138
2011 2011; 50 123
2018; 51
2000; 122
1999; 397
2005; 38
2001 2001; 40 113
2006; 106
1998; 120
2016; 88
e_1_2_6_51_1
Müller A. (e_1_2_6_33_1) 2002; 41
e_1_2_6_51_2
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_32_2
Bertsch P. M. (e_1_2_6_6_1) 1996
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Mehring M. (e_1_2_6_3_1) 2017
e_1_2_6_9_1
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_35_2
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_40_1
Bekkum H. (e_1_2_6_1_1) 1991
e_1_2_6_8_2
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 138
  start-page: 2556
  year: 2016
  end-page: 2559
  publication-title: J. Am. Chem. Soc.
– volume: 44 117
  start-page: 3777 3843
  year: 2005 2005
  end-page: 3780 3846
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 115
  start-page: 7001
  year: 2015
  end-page: 7045
  publication-title: Chem. Rev.
– volume: 139
  start-page: 18178
  year: 2017
  end-page: 18181
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 7022 7180
  year: 2006 2006
  end-page: 7026 7184
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 16845
  year: 2017
  end-page: 16851
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2732
  year: 2002
  end-page: 2740
  publication-title: Chem. Mater.
– volume: 353
  start-page: 808
  year: 2016
  end-page: 811
  publication-title: Science
– volume: 120
  start-page: 13389
  year: 1998
  end-page: 13397
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 7379 7539
  year: 2006 2006
  end-page: 7383 7543
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42 115
  start-page: 5607 5765
  year: 2003 2003
  end-page: 5610 5768
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 12497
  year: 2013
  end-page: 12499
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 16252 16470
  year: 2017 2017
  end-page: 16256 16474
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 1162
  year: 2002
  end-page: 1167
  publication-title: Nature
– volume: 122
  start-page: 3777
  year: 2000
  end-page: 3778
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 5271
  year: 2014
  end-page: 5274
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 12325 12513
  year: 2016 2016
  end-page: 12329 12517
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 5160 5246
  year: 2016 2016
  end-page: 5165 5251
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39 112
  start-page: 511 521
  year: 2000 2000
  end-page: 514 524
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 62
  year: 2009
  end-page: 64
  publication-title: Chem. Commun.
– volume: 40
  start-page: 1006
  year: 2011
  end-page: 1030
  publication-title: Chem. Soc. Rev.
– volume: 50 123
  start-page: 12555 12763
  year: 2011 2011
  end-page: 12558 12766
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 10932 11048
  year: 2019 2019
  end-page: 10935 11051
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 7480
  year: 2016
  end-page: 7483
  publication-title: J. Am. Chem. Soc.
– volume: 339
  start-page: 811
  year: 2013
  end-page: 813
  publication-title: Science
– volume: 47
  start-page: 404
  year: 2018
  end-page: 421
  publication-title: Chem. Soc. Rev.
– start-page: 201
  year: 2017
  end-page: 268
– volume: 397
  start-page: 48
  year: 1999
  end-page: 50
  publication-title: Nature
– volume: 51
  start-page: 2047
  year: 2018
  end-page: 2063
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 10161 10295
  year: 2017 2017
  end-page: 10164 10298
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 5785
  year: 2014
  end-page: 5792
  publication-title: Dalton Trans.
– volume: 132
  start-page: 5387
  year: 2010
  end-page: 5393
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 10867 10983
  year: 2019 2019
  end-page: 10872 10988
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1996
– volume: 53 126
  start-page: 7188 7316
  year: 2014 2014
  end-page: 7191 7319
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 801
  year: 2007
  end-page: 803
  publication-title: Chem. Commun.
– volume: 40 113
  start-page: 3577 3689
  year: 2001 2001
  end-page: 3581 3693
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 2677
  year: 2019
  end-page: 2685
  publication-title: J. Mater. Chem. A
– volume: 644
  start-page: 2
  year: 2018
  end-page: 5
  publication-title: Z. Anorg. Allg. Chem.
– volume: 50 123
  start-page: 5961 6083
  year: 2011 2011
  end-page: 5964 6087
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 88
  start-page: 844
  year: 2016
  end-page: 851
  publication-title: Water Res.
– year: 2006
– volume: 38
  start-page: 369
  year: 2005
  end-page: 378
  publication-title: Acc. Chem. Res.
– volume: 43 116
  start-page: 2117 2169
  year: 2004 2004
  end-page: 2121 2173
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 823
  year: 1994
  end-page: 832
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 18862
  year: 2019
  end-page: 18869
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 3650
  year: 2009
  end-page: 3659
  publication-title: Inorg. Chem.
– year: 1991
– volume: 278
  start-page: 2080
  year: 1997
  end-page: 2085
  publication-title: Science
– volume: 106
  start-page: 1
  year: 2006
  end-page: 16
  publication-title: Chem. Rev.
– ident: e_1_2_6_11_2
  doi: 10.1002/1521-3757(20011001)113:19<3689::AID-ANGE3689>3.0.CO;2-G
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.200500682
– ident: e_1_2_6_31_1
  doi: 10.1002/anie.200353352
– ident: e_1_2_6_24_2
  doi: 10.1002/ange.201904680
– volume: 41
  start-page: 1162
  year: 2002
  ident: e_1_2_6_33_1
  publication-title: Nature
– ident: e_1_2_6_35_2
  doi: 10.1002/ange.201709096
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.200601979
– ident: e_1_2_6_28_1
  doi: 10.1021/acs.accounts.8b00233
– ident: e_1_2_6_40_2
  doi: 10.1002/ange.200602743
– ident: e_1_2_6_32_1
  doi: 10.1002/anie.201901818
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201402663
– ident: e_1_2_6_34_1
  doi: 10.1038/16215
– ident: e_1_2_6_50_2
  doi: 10.1002/ange.201106310
– ident: e_1_2_6_2_1
  doi: 10.1002/9783527610846
– ident: e_1_2_6_27_1
  doi: 10.1021/cr5005666
– ident: e_1_2_6_7_1
  doi: 10.1021/cr040095d
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.200500682
– start-page: 201
  volume-title: Clusters—Contemporary Insight in Structure and Bonding
  year: 2017
  ident: e_1_2_6_3_1
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.201510455
– ident: e_1_2_6_23_1
  doi: 10.1039/C7CS00511C
– ident: e_1_2_6_37_1
  doi: 10.1039/b812721b
– ident: e_1_2_6_8_1
  doi: 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N
– ident: e_1_2_6_42_1
  doi: 10.1021/ja00082a001
– ident: e_1_2_6_20_1
  doi: 10.1021/jacs.6b03489
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201604305
– ident: e_1_2_6_15_1
  doi: 10.1021/ic802124v
– ident: e_1_2_6_32_2
  doi: 10.1002/ange.201901818
– ident: e_1_2_6_35_1
  doi: 10.1002/anie.201709096
– ident: e_1_2_6_51_2
  doi: 10.1002/ange.200352263
– ident: e_1_2_6_29_1
  doi: 10.1021/ar040153h
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201510455
– ident: e_1_2_6_50_1
  doi: 10.1002/anie.201106310
– volume-title: Introduction to Zeolite Science and Practice, Vol. 58
  year: 1991
  ident: e_1_2_6_1_1
– ident: e_1_2_6_4_1
  doi: 10.1021/ja983042k
– ident: e_1_2_6_39_1
  doi: 10.1039/B613877B
– volume-title: Aqueous Polynuclear Aluminium Species: The Environmental Chemistry of Aluminium
  year: 1996
  ident: e_1_2_6_6_1
– ident: e_1_2_6_21_1
  doi: 10.1021/jacs.6b00613
– ident: e_1_2_6_8_2
  doi: 10.1002/(SICI)1521-3757(20000204)112:3<521::AID-ANGE521>3.0.CO;2-6
– ident: e_1_2_6_9_1
  doi: 10.1002/anie.201702318
– ident: e_1_2_6_30_1
  doi: 10.1021/ja4043609
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.201604305
– ident: e_1_2_6_47_1
  doi: 10.1021/cm021113f
– ident: e_1_2_6_51_1
  doi: 10.1002/anie.200352263
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.201007617
– ident: e_1_2_6_41_1
  doi: 10.1021/ja908327w
– ident: e_1_2_6_14_1
  doi: 10.1002/zaac.201700327
– ident: e_1_2_6_22_1
  doi: 10.1021/jacs.7b09463
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.9b10501
– ident: e_1_2_6_10_1
  doi: 10.1021/ja993711
– ident: e_1_2_6_19_1
  doi: 10.1039/C8TA10295C
– ident: e_1_2_6_49_1
  doi: 10.1039/c0cs00137f
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1232097
– ident: e_1_2_6_5_1
  doi: 10.1126/science.278.5346.2080
– ident: e_1_2_6_31_2
  doi: 10.1002/ange.200353352
– ident: e_1_2_6_11_1
  doi: 10.1002/1521-3773(20011001)40:19<3577::AID-ANIE3577>3.0.CO;2-A
– ident: e_1_2_6_45_1
  doi: 10.1021/ja501606h
– ident: e_1_2_6_9_2
  doi: 10.1002/ange.201702318
– ident: e_1_2_6_12_1
  doi: 10.1016/j.watres.2015.11.018
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.7b11112
– ident: e_1_2_6_46_1
– ident: e_1_2_6_13_2
  doi: 10.1002/ange.200601979
– ident: e_1_2_6_24_1
  doi: 10.1002/anie.201904680
– ident: e_1_2_6_40_1
  doi: 10.1002/anie.200602743
– ident: e_1_2_6_43_1
  doi: 10.1126/science.aaf9135
– ident: e_1_2_6_18_1
  doi: 10.1039/C4DT00152D
– ident: e_1_2_6_16_2
  doi: 10.1002/ange.201402663
– ident: e_1_2_6_26_2
  doi: 10.1002/ange.201007617
SSID ssj0028806
Score 2.5602396
Snippet Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on...
Presented herein are the Al III molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based...
Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16735
SubjectTerms Alcohols
Aluminum
Benzoates
Chemical synthesis
Coordination compounds
crystal structures
cyclic coordination compounds
Gallium
Heavy metals
Hydrophobicity
Lanthanides
ligand substitution
Ligands
Mass spectroscopy
molecular rings
Organic solvents
Surface properties
Transition metals
Title Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007270
https://www.proquest.com/docview/2440636301
https://www.proquest.com/docview/2412211831
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwie0jabzSbxVmpLFS1SLPQWso9IUVOxDYi_3pm82goi6CkJmc1jd2f2m9l5EHIhmaMU87UlW35gcQ-dAAxu8qqIOZEbc6EzL9-B6I_47dgdL0Xx5_khKoMbckYmr5HBIzlrLpKGYgQ26Hdoa2MeKu3osIWoaFjlj2IwOfPwIsexsAp9mbWxxZqrzVdXpQXUXAas2YrT2yZR-a25o8lzI53Lhvr8lsbxPz-zQ7YKOErb-fzZJWsm2SMbnbIK3D55uM5cPDDAirZBkE2S9JXelzV16RAN7VfZgXY_QLKg8Y1GiaZ3kyc89GDdzM2NRcDnARn1uo-dvlVUYbCUA8xsceWCxBS-EkLFns8DpphUttaMSzf23EjYWprYMa1YGB0JowwonUoyoYyQmjuHZD2ZJuaIUMMC7WkZa9DzuB34vgL8ASobPJUzT5sascpRCFWRohwrZbyEeXJlFmI_hVU_1chlRf-WJ-f4kbJeDmpYMOksBGQDAE2AiKuR8-o29C_umUSJmaZIYzPQkX0HaFg2gr-8KWwPbrrV1fFfGp2QTTxHrxSb18n6_D01pwB95vIsm95fSGr6Vg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHurFt1itGkHwlLbZbDapt1JbWm2LlBa8hewjUtRUtAHx1zuTV60ggp5Cktk8dndmZ2ZnviHkQlBbSuopUzS8pslcDALQuMkrA2oHTsi4SqJ8R7w3ZTf3Th5NiLkwKT5E4XBDzkjkNTI4OqTrS9RQTMEGAw-dbdQFq30dy3onVtW4QJCiMD3TBCPbNrEOfY7b2KD11far69JS2fyqsiZrTneLiPxr01CTx1q8EDX58Q3I8V-_s002M43UaKVTaIes6WiXlNt5Ibg9cnedRHlgjpXRAlk2i-JnY5iX1TXG6Gu_Sg5G5x2EC_rfjCBSxmD2gIcuLJ2pxzHL-dwn025n0u6ZWSEGU9rAzyaTDghN7knOZeh6rEklFdJSijLhhK4TcEsJHdq6EXKtAq6lBrtTCsql5kIx-4CUonmkD4mhaVO5SoQKTD1mNT1PggoCVhs8lVFX6Qox82HwZYZSjsUynvwUX5n62E9-0U8VclnQv6T4HD9SVvNR9TM-ffNBuQEdjYOUq5Dz4jb0L26bBJGex0hjUTCTPRtoaDKEv7zJb436neLs6C-Nzki5NxkO_EF_dHtMNvA6BqlYrEpKi9dYn4AmtBCnyVz_BPVz_nE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EQX3xFqtVIwg-pW02m03qW-lBq7WUYqFvIXtEipoWbUH89c7kaiuIoE9LktlsssfsN7NzEHItqC0l9ZQpKl7VZC4aAWg85JUBtQMnZFzFVr493h6yu5EzWvLiT-JD5Ao3XBkxv8YFPlVheRE0FD2wQb5DXRt1QWjfYByaQ1g0yANIUZidiX-RbZuYhj4L21ih5dX6q9vSAmsuI9Z4y2ntkiD72MTS5Lk0n4mS_PwWx_E_f7NHdlI8atSSCbRP1nR0QLbqWRq4Q9JvxDYe6GFl1ICTjaP5q_GQJdU1Bqhpv40Lo_kBrAW1b0YQKaM7fsKiBRtnom9MPT6PyLDVfKy3zTQNgyltWM0mkw6wTO5JzmXoeqxKJRXSUooy4YSuE3BLCR3auhJyrQKupQapUwrKpeZCMfuYrEeTSJ8QQ9OqcpUIFQh6zKp6ngQAAjIbvJVRV-kCMbNR8GUaoxxTZbz4SXRl6mM_-Xk_FchNTj9NonP8SFnMBtVPV-m7D9AGEBoHHlcgV_lj6F88NAkiPZkjjUVBSPZsoKHxCP7Skl_rdZr51elfKl2SzX6j5Xc7vfszso230ULFYkWyPnub63OAQTNxEc_0Lw7__Sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Aluminum+Molecular+Rings%3A+Ring+Expansion+and+Ligand+Functionalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Geng%2C+Lin&rft.au=Liu%2C+Chen%E2%80%90Hui&rft.au=Wang%2C+San%E2%80%90Tai&rft.au=Fang%2C+Wei%E2%80%90Hui&rft.date=2020-09-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=38&rft.spage=16735&rft.epage=16740&rft_id=info:doi/10.1002%2Fanie.202007270&rft.externalDBID=10.1002%252Fanie.202007270&rft.externalDocID=ANIE202007270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon