Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization
Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assis...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 38; pp. 16735 - 16740 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.09.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings.
The ring cycle: Using the coordination delayed hydrolysis (CDH) strategy, a new family of aluminum molecular rings ranging from 8R to 16R is assembled. The monohydric alcohols used play a crucial role in the expansion of the rings. It is possible to tune the surface chemistry and properties through the judicious choice of functional groups of benzoate ligands. |
---|---|
AbstractList | Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings. Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al-rings from 8-ring to 16-ring is related to the monohydric alcohol structure-directing agents. Moreover, the organic ligands on the Al-rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al-rings from hydrophilicity to ultra-hydrophobicity. Importantly, 4-aminobenzoic acid bridged 16-ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al-rings, which reveal controllable ligand functionalization of these Al-rings.Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al-rings from 8-ring to 16-ring is related to the monohydric alcohol structure-directing agents. Moreover, the organic ligands on the Al-rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al-rings from hydrophilicity to ultra-hydrophobicity. Importantly, 4-aminobenzoic acid bridged 16-ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al-rings, which reveal controllable ligand functionalization of these Al-rings. Presented herein are the Al III molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al 3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings. Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al‐rings from 8‐ring to 16‐ring is related to the monohydric alcohol structure‐directing agents. Moreover, the organic ligands on the Al‐rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al‐rings from hydrophilicity to ultra‐hydrophobicity. Importantly, 4‐aminobenzoic acid bridged 16‐ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al‐rings, which reveal controllable ligand functionalization of these Al‐rings. The ring cycle: Using the coordination delayed hydrolysis (CDH) strategy, a new family of aluminum molecular rings ranging from 8R to 16R is assembled. The monohydric alcohols used play a crucial role in the expansion of the rings. It is possible to tune the surface chemistry and properties through the judicious choice of functional groups of benzoate ligands. |
Author | Geng, Lin Wang, San‐Tai Zhang, Jian Liu, Chen‐Hui Fang, Wei‐Hui |
Author_xml | – sequence: 1 givenname: Lin surname: Geng fullname: Geng, Lin organization: Chinese Academy of Sciences – sequence: 2 givenname: Chen‐Hui surname: Liu fullname: Liu, Chen‐Hui organization: Chinese Academy of Sciences – sequence: 3 givenname: San‐Tai surname: Wang fullname: Wang, San‐Tai organization: Chinese Academy of Sciences – sequence: 4 givenname: Wei‐Hui surname: Fang fullname: Fang, Wei‐Hui email: fwh@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Jian orcidid: 0000-0003-3373-9621 surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkF1LwzAUhoNMcJveel3wxpvOfDXpvBtz08H8QPS6pOnpyEjT2bTo_PW2mygMxKv3EJ7n5PAOUM-VDhA6J3hEMKZXyhkYUUwxllTiI9QnESUhk5L12pkzFso4Iido4P265eMYiz56ugFvVk6lFoKJbQrjmiK4Ly3oxqoqeDZu5a93Ecw-Nsp5U7pAuSxYmlUX88bpun1T1nyqbjhFx7myHs6-c4he57OX6V24fLxdTCfLULNY4pDrKJZCxFoIncuYj6mmqSZZRnka5TJSgmQp5AxwLiBTAjTQiOuUCg0izTgbosv93k1VvjXg66QwXoO1ykHZ-IRyQikhMSMtenGArsumak_uKI4FEwx31GhP6ar0voI82VSmUNU2ITjpCk66gpOfgluBHwja1LsO6koZ-7c23mvvxsL2n0-SycNi9ut-ARV6koQ |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c00798 crossref_primary_10_1002_anie_202116563 crossref_primary_10_1039_D3SC01260C crossref_primary_10_1039_D2CS00582D crossref_primary_10_1002_cjoc_202200592 crossref_primary_10_1016_j_jssc_2021_122803 crossref_primary_10_1039_D2QI01108E crossref_primary_10_1002_anie_202400161 crossref_primary_10_1016_j_jssc_2021_122763 crossref_primary_10_1039_D3CC03672C crossref_primary_10_1039_D4QI00976B crossref_primary_10_1002_anie_202010690 crossref_primary_10_1021_jacs_3c13244 crossref_primary_10_1002_adma_202306260 crossref_primary_10_1021_acs_inorgchem_4c01090 crossref_primary_10_1038_s41467_024_53471_3 crossref_primary_10_1002_anie_202012919 crossref_primary_10_1016_j_ccr_2024_215818 crossref_primary_10_1038_s41467_023_38164_7 crossref_primary_10_1002_agt2_264 crossref_primary_10_1002_ange_202116563 crossref_primary_10_1039_D3DT01321A crossref_primary_10_1002_agt2_506 crossref_primary_10_1002_ange_202010690 crossref_primary_10_1007_s11426_020_9924_7 crossref_primary_10_1002_ange_202400161 crossref_primary_10_1002_chem_202403634 crossref_primary_10_1039_D1CC00651G crossref_primary_10_1002_ange_202107227 crossref_primary_10_1002_ange_202417548 crossref_primary_10_1002_anie_202217864 crossref_primary_10_1007_s11426_022_1539_y crossref_primary_10_1002_smll_202306713 crossref_primary_10_1039_D3SC06046B crossref_primary_10_1002_ange_202012919 crossref_primary_10_1039_D4QI02507E crossref_primary_10_1021_acs_inorgchem_2c03397 crossref_primary_10_1038_s41467_022_34296_4 crossref_primary_10_1039_D2CC06524J crossref_primary_10_1021_acs_cgd_2c00350 crossref_primary_10_1039_D1CC00318F crossref_primary_10_1016_j_inoche_2021_108608 crossref_primary_10_1039_D2QI02461F crossref_primary_10_1038_s41467_024_51845_1 crossref_primary_10_1002_asia_202400381 crossref_primary_10_1039_D4SC05707D crossref_primary_10_1016_j_jssc_2020_121804 crossref_primary_10_1002_anie_202107227 crossref_primary_10_1002_ange_202217864 crossref_primary_10_1039_D3QI02008H crossref_primary_10_1021_acs_inorgchem_1c00232 crossref_primary_10_1021_acs_inorgchem_4c04832 crossref_primary_10_1021_acs_inorgchem_0c03816 crossref_primary_10_1002_ijch_202100102 crossref_primary_10_1039_D4QI01103A crossref_primary_10_1039_D1CC05919J crossref_primary_10_1039_D1QO01316E crossref_primary_10_1002_anie_202417548 crossref_primary_10_1039_D3QI00432E crossref_primary_10_1021_acs_accounts_4c00143 crossref_primary_10_1021_acs_inorgchem_1c02749 crossref_primary_10_1002_ejic_202200376 crossref_primary_10_1016_j_cclet_2023_108604 crossref_primary_10_1002_smll_202311083 crossref_primary_10_1039_D4QI02096K crossref_primary_10_1039_D1QI01451J crossref_primary_10_1021_jacs_0c11778 |
Cites_doi | 10.1002/1521-3757(20011001)113:19<3689::AID-ANGE3689>3.0.CO;2-G 10.1002/anie.200500682 10.1002/anie.200353352 10.1002/ange.201904680 10.1002/ange.201709096 10.1002/anie.200601979 10.1021/acs.accounts.8b00233 10.1002/ange.200602743 10.1002/anie.201901818 10.1002/anie.201402663 10.1038/16215 10.1002/ange.201106310 10.1002/9783527610846 10.1021/cr5005666 10.1021/cr040095d 10.1002/ange.200500682 10.1002/ange.201510455 10.1039/C7CS00511C 10.1039/b812721b 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N 10.1021/ja00082a001 10.1021/jacs.6b03489 10.1002/anie.201604305 10.1021/ic802124v 10.1002/ange.201901818 10.1002/anie.201709096 10.1002/ange.200352263 10.1021/ar040153h 10.1002/anie.201510455 10.1002/anie.201106310 10.1021/ja983042k 10.1039/B613877B 10.1021/jacs.6b00613 10.1002/(SICI)1521-3757(20000204)112:3<521::AID-ANGE521>3.0.CO;2-6 10.1002/anie.201702318 10.1021/ja4043609 10.1002/ange.201604305 10.1021/cm021113f 10.1002/anie.200352263 10.1002/anie.201007617 10.1021/ja908327w 10.1002/zaac.201700327 10.1021/jacs.7b09463 10.1021/jacs.9b10501 10.1021/ja993711 10.1039/C8TA10295C 10.1039/c0cs00137f 10.1126/science.1232097 10.1126/science.278.5346.2080 10.1002/ange.200353352 10.1002/1521-3773(20011001)40:19<3577::AID-ANIE3577>3.0.CO;2-A 10.1021/ja501606h 10.1002/ange.201702318 10.1016/j.watres.2015.11.018 10.1021/jacs.7b11112 10.1002/ange.200601979 10.1002/anie.201904680 10.1002/anie.200602743 10.1126/science.aaf9135 10.1039/C4DT00152D 10.1002/ange.201402663 10.1002/ange.201007617 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202007270 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 16740 |
ExternalDocumentID | 10_1002_anie_202007270 ANIE202007270 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771181; 21973096; 21935010 – fundername: Natural Science Foundation of Fujian Province funderid: 2017J05036 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: Youth Innovation Promotion Association CAS funderid: 2017345 – fundername: National Key Research and Development Program of China funderid: 2018YFA0208600 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3870-4c587668c66cf78492c2bc1dd24b5f75a61dbef3e0f6eda6ece254cb26ce6bd43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:56:22 EDT 2025 Fri Jul 25 10:17:13 EDT 2025 Tue Jul 01 01:17:42 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Wed Jan 22 16:32:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3870-4c587668c66cf78492c2bc1dd24b5f75a61dbef3e0f6eda6ece254cb26ce6bd43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3373-9621 |
PQID | 2440636301 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2412211831 proquest_journals_2440636301 crossref_primary_10_1002_anie_202007270 crossref_citationtrail_10_1002_anie_202007270 wiley_primary_10_1002_anie_202007270_ANIE202007270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 14, 2020 |
PublicationDateYYYYMMDD | 2020-09-14 |
PublicationDate_xml | – month: 09 year: 2020 text: September 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 278 2014 2014; 53 126 2019; 7 2002; 14 2004 2004; 43 116 1994; 116 2000 2000; 39 112 2018; 644 2011; 40 2009 1996 2007 2006 2003 2003; 42 115 1991 2017 2017; 56 129 2019; 141 2014; 136 2009; 48 2019 2019; 58 131 2014; 43 2017; 139 2018; 47 2006 2006; 45 118 2016 2016; 55 128 2015; 115 2002; 41 2013; 339 2010; 132 2016; 353 2017 2005 2005; 44 117 2013; 135 2016; 138 2011 2011; 50 123 2018; 51 2000; 122 1999; 397 2005; 38 2001 2001; 40 113 2006; 106 1998; 120 2016; 88 e_1_2_6_51_1 Müller A. (e_1_2_6_33_1) 2002; 41 e_1_2_6_51_2 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_32_2 Bertsch P. M. (e_1_2_6_6_1) 1996 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Mehring M. (e_1_2_6_3_1) 2017 e_1_2_6_9_1 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_35_2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_40_1 Bekkum H. (e_1_2_6_1_1) 1991 e_1_2_6_8_2 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 138 start-page: 2556 year: 2016 end-page: 2559 publication-title: J. Am. Chem. Soc. – volume: 44 117 start-page: 3777 3843 year: 2005 2005 end-page: 3780 3846 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 115 start-page: 7001 year: 2015 end-page: 7045 publication-title: Chem. Rev. – volume: 139 start-page: 18178 year: 2017 end-page: 18181 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 7022 7180 year: 2006 2006 end-page: 7026 7184 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 16845 year: 2017 end-page: 16851 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2732 year: 2002 end-page: 2740 publication-title: Chem. Mater. – volume: 353 start-page: 808 year: 2016 end-page: 811 publication-title: Science – volume: 120 start-page: 13389 year: 1998 end-page: 13397 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 7379 7539 year: 2006 2006 end-page: 7383 7543 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 115 start-page: 5607 5765 year: 2003 2003 end-page: 5610 5768 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 12497 year: 2013 end-page: 12499 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 16252 16470 year: 2017 2017 end-page: 16256 16474 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 1162 year: 2002 end-page: 1167 publication-title: Nature – volume: 122 start-page: 3777 year: 2000 end-page: 3778 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 5271 year: 2014 end-page: 5274 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 12325 12513 year: 2016 2016 end-page: 12329 12517 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 5160 5246 year: 2016 2016 end-page: 5165 5251 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 112 start-page: 511 521 year: 2000 2000 end-page: 514 524 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 62 year: 2009 end-page: 64 publication-title: Chem. Commun. – volume: 40 start-page: 1006 year: 2011 end-page: 1030 publication-title: Chem. Soc. Rev. – volume: 50 123 start-page: 12555 12763 year: 2011 2011 end-page: 12558 12766 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 10932 11048 year: 2019 2019 end-page: 10935 11051 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 7480 year: 2016 end-page: 7483 publication-title: J. Am. Chem. Soc. – volume: 339 start-page: 811 year: 2013 end-page: 813 publication-title: Science – volume: 47 start-page: 404 year: 2018 end-page: 421 publication-title: Chem. Soc. Rev. – start-page: 201 year: 2017 end-page: 268 – volume: 397 start-page: 48 year: 1999 end-page: 50 publication-title: Nature – volume: 51 start-page: 2047 year: 2018 end-page: 2063 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 10161 10295 year: 2017 2017 end-page: 10164 10298 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 5785 year: 2014 end-page: 5792 publication-title: Dalton Trans. – volume: 132 start-page: 5387 year: 2010 end-page: 5393 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 10867 10983 year: 2019 2019 end-page: 10872 10988 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1996 – volume: 53 126 start-page: 7188 7316 year: 2014 2014 end-page: 7191 7319 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 801 year: 2007 end-page: 803 publication-title: Chem. Commun. – volume: 40 113 start-page: 3577 3689 year: 2001 2001 end-page: 3581 3693 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 2677 year: 2019 end-page: 2685 publication-title: J. Mater. Chem. A – volume: 644 start-page: 2 year: 2018 end-page: 5 publication-title: Z. Anorg. Allg. Chem. – volume: 50 123 start-page: 5961 6083 year: 2011 2011 end-page: 5964 6087 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 88 start-page: 844 year: 2016 end-page: 851 publication-title: Water Res. – year: 2006 – volume: 38 start-page: 369 year: 2005 end-page: 378 publication-title: Acc. Chem. Res. – volume: 43 116 start-page: 2117 2169 year: 2004 2004 end-page: 2121 2173 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 823 year: 1994 end-page: 832 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 18862 year: 2019 end-page: 18869 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 3650 year: 2009 end-page: 3659 publication-title: Inorg. Chem. – year: 1991 – volume: 278 start-page: 2080 year: 1997 end-page: 2085 publication-title: Science – volume: 106 start-page: 1 year: 2006 end-page: 16 publication-title: Chem. Rev. – ident: e_1_2_6_11_2 doi: 10.1002/1521-3757(20011001)113:19<3689::AID-ANGE3689>3.0.CO;2-G – ident: e_1_2_6_25_1 doi: 10.1002/anie.200500682 – ident: e_1_2_6_31_1 doi: 10.1002/anie.200353352 – ident: e_1_2_6_24_2 doi: 10.1002/ange.201904680 – volume: 41 start-page: 1162 year: 2002 ident: e_1_2_6_33_1 publication-title: Nature – ident: e_1_2_6_35_2 doi: 10.1002/ange.201709096 – ident: e_1_2_6_13_1 doi: 10.1002/anie.200601979 – ident: e_1_2_6_28_1 doi: 10.1021/acs.accounts.8b00233 – ident: e_1_2_6_40_2 doi: 10.1002/ange.200602743 – ident: e_1_2_6_32_1 doi: 10.1002/anie.201901818 – ident: e_1_2_6_16_1 doi: 10.1002/anie.201402663 – ident: e_1_2_6_34_1 doi: 10.1038/16215 – ident: e_1_2_6_50_2 doi: 10.1002/ange.201106310 – ident: e_1_2_6_2_1 doi: 10.1002/9783527610846 – ident: e_1_2_6_27_1 doi: 10.1021/cr5005666 – ident: e_1_2_6_7_1 doi: 10.1021/cr040095d – ident: e_1_2_6_25_2 doi: 10.1002/ange.200500682 – start-page: 201 volume-title: Clusters—Contemporary Insight in Structure and Bonding year: 2017 ident: e_1_2_6_3_1 – ident: e_1_2_6_48_2 doi: 10.1002/ange.201510455 – ident: e_1_2_6_23_1 doi: 10.1039/C7CS00511C – ident: e_1_2_6_37_1 doi: 10.1039/b812721b – ident: e_1_2_6_8_1 doi: 10.1002/(SICI)1521-3773(20000204)39:3<511::AID-ANIE511>3.0.CO;2-N – ident: e_1_2_6_42_1 doi: 10.1021/ja00082a001 – ident: e_1_2_6_20_1 doi: 10.1021/jacs.6b03489 – ident: e_1_2_6_17_1 doi: 10.1002/anie.201604305 – ident: e_1_2_6_15_1 doi: 10.1021/ic802124v – ident: e_1_2_6_32_2 doi: 10.1002/ange.201901818 – ident: e_1_2_6_35_1 doi: 10.1002/anie.201709096 – ident: e_1_2_6_51_2 doi: 10.1002/ange.200352263 – ident: e_1_2_6_29_1 doi: 10.1021/ar040153h – ident: e_1_2_6_48_1 doi: 10.1002/anie.201510455 – ident: e_1_2_6_50_1 doi: 10.1002/anie.201106310 – volume-title: Introduction to Zeolite Science and Practice, Vol. 58 year: 1991 ident: e_1_2_6_1_1 – ident: e_1_2_6_4_1 doi: 10.1021/ja983042k – ident: e_1_2_6_39_1 doi: 10.1039/B613877B – volume-title: Aqueous Polynuclear Aluminium Species: The Environmental Chemistry of Aluminium year: 1996 ident: e_1_2_6_6_1 – ident: e_1_2_6_21_1 doi: 10.1021/jacs.6b00613 – ident: e_1_2_6_8_2 doi: 10.1002/(SICI)1521-3757(20000204)112:3<521::AID-ANGE521>3.0.CO;2-6 – ident: e_1_2_6_9_1 doi: 10.1002/anie.201702318 – ident: e_1_2_6_30_1 doi: 10.1021/ja4043609 – ident: e_1_2_6_17_2 doi: 10.1002/ange.201604305 – ident: e_1_2_6_47_1 doi: 10.1021/cm021113f – ident: e_1_2_6_51_1 doi: 10.1002/anie.200352263 – ident: e_1_2_6_26_1 doi: 10.1002/anie.201007617 – ident: e_1_2_6_41_1 doi: 10.1021/ja908327w – ident: e_1_2_6_14_1 doi: 10.1002/zaac.201700327 – ident: e_1_2_6_22_1 doi: 10.1021/jacs.7b09463 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.9b10501 – ident: e_1_2_6_10_1 doi: 10.1021/ja993711 – ident: e_1_2_6_19_1 doi: 10.1039/C8TA10295C – ident: e_1_2_6_49_1 doi: 10.1039/c0cs00137f – ident: e_1_2_6_38_1 doi: 10.1126/science.1232097 – ident: e_1_2_6_5_1 doi: 10.1126/science.278.5346.2080 – ident: e_1_2_6_31_2 doi: 10.1002/ange.200353352 – ident: e_1_2_6_11_1 doi: 10.1002/1521-3773(20011001)40:19<3577::AID-ANIE3577>3.0.CO;2-A – ident: e_1_2_6_45_1 doi: 10.1021/ja501606h – ident: e_1_2_6_9_2 doi: 10.1002/ange.201702318 – ident: e_1_2_6_12_1 doi: 10.1016/j.watres.2015.11.018 – ident: e_1_2_6_36_1 doi: 10.1021/jacs.7b11112 – ident: e_1_2_6_46_1 – ident: e_1_2_6_13_2 doi: 10.1002/ange.200601979 – ident: e_1_2_6_24_1 doi: 10.1002/anie.201904680 – ident: e_1_2_6_40_1 doi: 10.1002/anie.200602743 – ident: e_1_2_6_43_1 doi: 10.1126/science.aaf9135 – ident: e_1_2_6_18_1 doi: 10.1039/C4DT00152D – ident: e_1_2_6_16_2 doi: 10.1002/ange.201402663 – ident: e_1_2_6_26_2 doi: 10.1002/ange.201007617 |
SSID | ssj0028806 |
Score | 2.5602396 |
Snippet | Presented herein are the AlIII molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based on... Presented herein are the Al III molecular ring architectures from 8‐ring to 16‐ring. Although there are numerous reported cyclic coordination compounds based... Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16735 |
SubjectTerms | Alcohols Aluminum Benzoates Chemical synthesis Coordination compounds crystal structures cyclic coordination compounds Gallium Heavy metals Hydrophobicity Lanthanides ligand substitution Ligands Mass spectroscopy molecular rings Organic solvents Surface properties Transition metals |
Title | Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007270 https://www.proquest.com/docview/2440636301 https://www.proquest.com/docview/2412211831 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqKwie0jabzSbxVmpLFS1SLPQWso9IUVOxDYi_3pm82goi6CkJmc1jd2f2m9l5EHIhmaMU87UlW35gcQ-dAAxu8qqIOZEbc6EzL9-B6I_47dgdL0Xx5_khKoMbckYmr5HBIzlrLpKGYgQ26Hdoa2MeKu3osIWoaFjlj2IwOfPwIsexsAp9mbWxxZqrzVdXpQXUXAas2YrT2yZR-a25o8lzI53Lhvr8lsbxPz-zQ7YKOErb-fzZJWsm2SMbnbIK3D55uM5cPDDAirZBkE2S9JXelzV16RAN7VfZgXY_QLKg8Y1GiaZ3kyc89GDdzM2NRcDnARn1uo-dvlVUYbCUA8xsceWCxBS-EkLFns8DpphUttaMSzf23EjYWprYMa1YGB0JowwonUoyoYyQmjuHZD2ZJuaIUMMC7WkZa9DzuB34vgL8ASobPJUzT5sascpRCFWRohwrZbyEeXJlFmI_hVU_1chlRf-WJ-f4kbJeDmpYMOksBGQDAE2AiKuR8-o29C_umUSJmaZIYzPQkX0HaFg2gr-8KWwPbrrV1fFfGp2QTTxHrxSb18n6_D01pwB95vIsm95fSGr6Vg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHurFt1itGkHwlLbZbDapt1JbWm2LlBa8hewjUtRUtAHx1zuTV60ggp5Cktk8dndmZ2ZnviHkQlBbSuopUzS8pslcDALQuMkrA2oHTsi4SqJ8R7w3ZTf3Th5NiLkwKT5E4XBDzkjkNTI4OqTrS9RQTMEGAw-dbdQFq30dy3onVtW4QJCiMD3TBCPbNrEOfY7b2KD11far69JS2fyqsiZrTneLiPxr01CTx1q8EDX58Q3I8V-_s002M43UaKVTaIes6WiXlNt5Ibg9cnedRHlgjpXRAlk2i-JnY5iX1TXG6Gu_Sg5G5x2EC_rfjCBSxmD2gIcuLJ2pxzHL-dwn025n0u6ZWSEGU9rAzyaTDghN7knOZeh6rEklFdJSijLhhK4TcEsJHdq6EXKtAq6lBrtTCsql5kIx-4CUonmkD4mhaVO5SoQKTD1mNT1PggoCVhs8lVFX6Qox82HwZYZSjsUynvwUX5n62E9-0U8VclnQv6T4HD9SVvNR9TM-ffNBuQEdjYOUq5Dz4jb0L26bBJGex0hjUTCTPRtoaDKEv7zJb436neLs6C-Nzki5NxkO_EF_dHtMNvA6BqlYrEpKi9dYn4AmtBCnyVz_BPVz_nE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF5EQX3xFqtVIwg-pW02m03qW-lBq7WUYqFvIXtEipoWbUH89c7kaiuIoE9LktlsssfsN7NzEHItqC0l9ZQpKl7VZC4aAWg85JUBtQMnZFzFVr493h6yu5EzWvLiT-JD5Ao3XBkxv8YFPlVheRE0FD2wQb5DXRt1QWjfYByaQ1g0yANIUZidiX-RbZuYhj4L21ih5dX6q9vSAmsuI9Z4y2ntkiD72MTS5Lk0n4mS_PwWx_E_f7NHdlI8atSSCbRP1nR0QLbqWRq4Q9JvxDYe6GFl1ICTjaP5q_GQJdU1Bqhpv40Lo_kBrAW1b0YQKaM7fsKiBRtnom9MPT6PyLDVfKy3zTQNgyltWM0mkw6wTO5JzmXoeqxKJRXSUooy4YSuE3BLCR3auhJyrQKupQapUwrKpeZCMfuYrEeTSJ8QQ9OqcpUIFQh6zKp6ngQAAjIbvJVRV-kCMbNR8GUaoxxTZbz4SXRl6mM_-Xk_FchNTj9NonP8SFnMBtVPV-m7D9AGEBoHHlcgV_lj6F88NAkiPZkjjUVBSPZsoKHxCP7Skl_rdZr51elfKl2SzX6j5Xc7vfszso230ULFYkWyPnub63OAQTNxEc_0Lw7__Sk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Aluminum+Molecular+Rings%3A+Ring+Expansion+and+Ligand+Functionalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Geng%2C+Lin&rft.au=Liu%2C+Chen%E2%80%90Hui&rft.au=Wang%2C+San%E2%80%90Tai&rft.au=Fang%2C+Wei%E2%80%90Hui&rft.date=2020-09-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=38&rft.spage=16735&rft.epage=16740&rft_id=info:doi/10.1002%2Fanie.202007270&rft.externalDBID=10.1002%252Fanie.202007270&rft.externalDocID=ANIE202007270 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |