Alternative tree-cover states of the boreal ecosystem A conceptual model

Aim Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with potentially alternative tree‐cover states. This paper aims at investigating the causes of multimodality and multistability of the boreal forest, the...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 28; no. 5; pp. 612 - 627
Main Authors Abis, Beniamino, Brovkin, Victor
Format Journal Article
LanguageEnglish
Published Oxford Wiley 01.05.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1466-822X
1466-8238
DOI10.1111/geb.12880

Cover

Loading…
Abstract Aim Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with potentially alternative tree‐cover states. This paper aims at investigating the causes of multimodality and multistability of the boreal forest, their influence on the asymmetric tree species distribution between Eurasia and North America, and whether multistability could be associated with recent greening trends in leaf area index (LAI) and normalized difference vegetation index (NDVI). Location Eurasian and North American boreal forests. Time period 2000–2010. Major taxa studied Boreal forest plant functional types. Methods We employ a conceptual model based on tree species competition to simulate the sensitivity of tree cover to stochastic disturbances and to changes in environmental factors. We include different plant functional types based on survival adaptations, and force the model with remotely sensed environmental data. We analyse the model as a dynamical system. We use metrics from statistics and information theory to compare the detection of alternative tree‐cover states and greening trends in LAI and NDVI. Results We find that multimodality and multistability can emerge through competition between different plant functional types. Additionally, our model is able to reproduce the asymmetry in tree species distribution between Eurasia and North America. Moreover, changes in permafrost distribution can be associated with phenomenological bifurcation points of the model. Finally, we find that the detection of multistable areas is not affected by recent vegetation trends, whereas shifts between alternative states could have affected the greening trends. Main conclusions Tree‐cover multistability in the boreal region can emerge through competition between species subject to periodic disturbances. Changes in permafrost thaw and distribution could be responsible for the asymmetry in tree species distribution between North America and Eurasia. Climate change and permafrost degradation could cause shifts in tree‐cover states and dominant species. Recent vegetation greening trends in multistable areas could have been affected by shifts between alternative states.
AbstractList AIM: Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with potentially alternative tree‐cover states. This paper aims at investigating the causes of multimodality and multistability of the boreal forest, their influence on the asymmetric tree species distribution between Eurasia and North America, and whether multistability could be associated with recent greening trends in leaf area index (LAI) and normalized difference vegetation index (NDVI). LOCATION: Eurasian and North American boreal forests. TIME PERIOD: 2000–2010. MAJOR TAXA STUDIED: Boreal forest plant functional types. METHODS: We employ a conceptual model based on tree species competition to simulate the sensitivity of tree cover to stochastic disturbances and to changes in environmental factors. We include different plant functional types based on survival adaptations, and force the model with remotely sensed environmental data. We analyse the model as a dynamical system. We use metrics from statistics and information theory to compare the detection of alternative tree‐cover states and greening trends in LAI and NDVI. RESULTS: We find that multimodality and multistability can emerge through competition between different plant functional types. Additionally, our model is able to reproduce the asymmetry in tree species distribution between Eurasia and North America. Moreover, changes in permafrost distribution can be associated with phenomenological bifurcation points of the model. Finally, we find that the detection of multistable areas is not affected by recent vegetation trends, whereas shifts between alternative states could have affected the greening trends. MAIN CONCLUSIONS: Tree‐cover multistability in the boreal region can emerge through competition between species subject to periodic disturbances. Changes in permafrost thaw and distribution could be responsible for the asymmetry in tree species distribution between North America and Eurasia. Climate change and permafrost degradation could cause shifts in tree‐cover states and dominant species. Recent vegetation greening trends in multistable areas could have been affected by shifts between alternative states.
Aim Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with potentially alternative tree‐cover states. This paper aims at investigating the causes of multimodality and multistability of the boreal forest, their influence on the asymmetric tree species distribution between Eurasia and North America, and whether multistability could be associated with recent greening trends in leaf area index (LAI) and normalized difference vegetation index (NDVI). Location Eurasian and North American boreal forests. Time period 2000–2010. Major taxa studied Boreal forest plant functional types. Methods We employ a conceptual model based on tree species competition to simulate the sensitivity of tree cover to stochastic disturbances and to changes in environmental factors. We include different plant functional types based on survival adaptations, and force the model with remotely sensed environmental data. We analyse the model as a dynamical system. We use metrics from statistics and information theory to compare the detection of alternative tree‐cover states and greening trends in LAI and NDVI. Results We find that multimodality and multistability can emerge through competition between different plant functional types. Additionally, our model is able to reproduce the asymmetry in tree species distribution between Eurasia and North America. Moreover, changes in permafrost distribution can be associated with phenomenological bifurcation points of the model. Finally, we find that the detection of multistable areas is not affected by recent vegetation trends, whereas shifts between alternative states could have affected the greening trends. Main conclusions Tree‐cover multistability in the boreal region can emerge through competition between species subject to periodic disturbances. Changes in permafrost thaw and distribution could be responsible for the asymmetry in tree species distribution between North America and Eurasia. Climate change and permafrost degradation could cause shifts in tree‐cover states and dominant species. Recent vegetation greening trends in multistable areas could have been affected by shifts between alternative states.
AimPrevious analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with potentially alternative tree‐cover states. This paper aims at investigating the causes of multimodality and multistability of the boreal forest, their influence on the asymmetric tree species distribution between Eurasia and North America, and whether multistability could be associated with recent greening trends in leaf area index (LAI) and normalized difference vegetation index (NDVI).LocationEurasian and North American boreal forests.Time period2000–2010.Major taxa studiedBoreal forest plant functional types.MethodsWe employ a conceptual model based on tree species competition to simulate the sensitivity of tree cover to stochastic disturbances and to changes in environmental factors. We include different plant functional types based on survival adaptations, and force the model with remotely sensed environmental data. We analyse the model as a dynamical system. We use metrics from statistics and information theory to compare the detection of alternative tree‐cover states and greening trends in LAI and NDVI.ResultsWe find that multimodality and multistability can emerge through competition between different plant functional types. Additionally, our model is able to reproduce the asymmetry in tree species distribution between Eurasia and North America. Moreover, changes in permafrost distribution can be associated with phenomenological bifurcation points of the model. Finally, we find that the detection of multistable areas is not affected by recent vegetation trends, whereas shifts between alternative states could have affected the greening trends.Main conclusionsTree‐cover multistability in the boreal region can emerge through competition between species subject to periodic disturbances. Changes in permafrost thaw and distribution could be responsible for the asymmetry in tree species distribution between North America and Eurasia. Climate change and permafrost degradation could cause shifts in tree‐cover states and dominant species. Recent vegetation greening trends in multistable areas could have been affected by shifts between alternative states.
Author Abis, Beniamino
Brovkin, Victor
Author_xml – sequence: 1
  givenname: Beniamino
  surname: Abis
  fullname: Abis, Beniamino
– sequence: 2
  givenname: Victor
  surname: Brovkin
  fullname: Brovkin, Victor
BookMark eNp1kE1PAjEQhhuDiYAe_AEmm3jRw0I_tt3uEQmiCYkXTbw1bZnVJcsW26Lh37sIciA6l5nD87zJvD3UaVwDCF0SPCDtDN_ADAiVEp-gLsmESCVlsnO46esZ6oWwwBjzjIsu4qM6gm90rD4hiR4gte4TfBKijhASVybxHRLjPOg6AevCJkRYnqPTUtcBLva7j17uJ8_jh3T2NH0cj2apZTLHKeEkAyEtCG3mhFANUtiCzQvJpeVMU6MLAdRgURbAOKGlyUGaDGML2mDL-uhml7vy7mMNIaplFSzUtW7ArYOilDPKspzxFr0-Qhdu3T5WbymSSUElyVpquKOsdyF4KJWt2k8r10Svq1oRrLY1qrZG9VNja9weGStfLbXf_Mnu07-qGjb_g2o6ufs1rnbGIkTnDwYVeSFzQtg34-OL8Q
CitedBy_id crossref_primary_10_1111_jbi_14456
crossref_primary_10_1111_nph_16252
crossref_primary_10_1086_725391
crossref_primary_10_1016_j_agrformet_2023_109497
crossref_primary_10_1007_s12080_020_00476_5
crossref_primary_10_1016_j_gloplacha_2023_104263
crossref_primary_10_1016_j_scitotenv_2023_165650
crossref_primary_10_5194_esd_15_1117_2024
crossref_primary_10_1007_s10712_024_09863_7
crossref_primary_10_1088_1755_1315_606_1_012052
crossref_primary_10_1126_science_abn7950
Cites_doi 10.1029/2006JF000578
10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2
10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
10.1016/B978-0-08-092593-6.50010-4
10.1007/s11027-005-9019-0
10.2136/sssaj1990.03615995005400060018x
10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2
10.1038/nature14967
10.1139/X10-061
10.1017/CBO9780511565489
10.1002/2016GL069365
10.1111/j.1365-2486.2011.02412.x
10.1073/pnas.1219844110
10.1093/treephys/tpq015
10.1126/science.aaa9092
10.1038/nature06272
10.1080/17538947.2013.786146
10.1007/3-540-26599-6_15
10.1046/j.1523-1739.2001.01005.x
10.1016/0378-1127(95)03601-6
10.5194/tc-6-221-2012
10.1017/CBO9780511565847
10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4
10.1016/j.ecolmodel.2008.03.028
10.1002/jgrg.20042
10.1029/2009GL037543
10.1111/geb.12592
10.1007/BF00131174
10.14430/arctic3898
10.1139/x26-211
10.1007/s00442-005-0173-6
10.1016/S0167-8809(00)00232-2
10.1111/gcb.12398
10.1038/nature08031
10.1639/0044-7447(2004)033[0361:GCATBF]2.0.CO;2
10.1016/S0304-3800(00)00355-0
10.1007/s10584-005-5935-y
10.1016/j.jsc.2007.01.007
10.2307/2288805
10.1029/2004GL020805
10.1016/0033-5894(73)90008-2
10.1111/1365-2745.12337
10.1038/nclimate3004
10.1111/geb.12122
10.1111/j.1365-2486.2008.01679.x
10.1093/oso/9780195154313.003.0026
10.1371/journal.pone.0143014
10.1029/2002JD003114
10.1146/annurev.es.20.110189.000245
10.1088/1748-9326/aa9b88
10.1038/ngeo2360
10.2307/213287
10.1007/BF00044848
10.1016/j.foreco.2012.07.033
10.1086/285186
10.1111/j.1461-0248.2007.01139.x
10.5194/bg-14-511-2017
10.2307/3546091
10.1111/j.1472-4642.2007.00381.x
10.1086/338995
10.1016/j.gloplacha.2006.07.028
10.1007/978-1-4612-5950-3_13
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1016/0033-5894(73)90009-4
10.1038/ngeo2352
10.1007/s10584-005-4785-y
10.1038/nclimate1452
10.1046/j.1365-2664.2000.00487.x
10.1007/BF00333714
10.1073/pnas.1409316111
10.1046/j.1440-1703.2002.00506.x
10.1515/9781400847303.9
10.1088/1748-9326/6/4/045509
10.1080/01431160118269
10.1111/j.2006.0030-1299.14264.x
10.1007/s10584-011-0122-9
10.1073/pnas.1517382112
10.1046/j.1365-2486.2003.00661.x
10.1139/cjfr-2013-0401
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors. Published by John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors. Published by John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.12880
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
Statistics
EISSN 1466-8238
EndPage 627
ExternalDocumentID 10_1111_geb_12880
GEB12880
26798711
Genre article
GeographicLocations Eurasia
North America
GeographicLocations_xml – name: Eurasia
– name: North America
GrantInformation_xml – fundername: International Max Planck Research School for Earth System Modelling
GroupedDBID -~X
.3N
.GA
0R~
10A
1OC
29I
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ACAHQ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
G-S
GODZA
HGLYW
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
.Y3
24P
31~
AAHHS
AAISJ
AANHP
ABXSQ
ACBWZ
ACCFJ
ACHIC
ACRPL
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
LW6
VQP
WRC
AAYXX
ABSQW
AGQPQ
AGUYK
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c3870-1514e68ce6abd112ae86c93d9858c53a2ba96e2b06f9e3512fb7e8b400ceab0c3
IEDL.DBID 24P
ISSN 1466-822X
IngestDate Fri Jul 11 18:36:22 EDT 2025
Fri Jul 25 09:19:52 EDT 2025
Tue Jul 01 02:37:33 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Wed Jan 22 16:29:25 EST 2025
Thu Jul 03 21:32:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3870-1514e68ce6abd112ae86c93d9858c53a2ba96e2b06f9e3512fb7e8b400ceab0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3060-5943
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12880
PQID 2214862814
PQPubID 1066347
PageCount 16
ParticipantIDs proquest_miscellaneous_2253234735
proquest_journals_2214862814
crossref_citationtrail_10_1111_geb_12880
crossref_primary_10_1111_geb_12880
wiley_primary_10_1111_geb_12880_GEB12880
jstor_primary_26798711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190501
May 2019
2019-05-00
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 5
  year: 2019
  text: 20190501
  day: 1
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2002; 17
2010; 11
1990; 54
2000; 135
2005; 176
2015; 103
1995; 79
2002; 159
1988; 79
1972
2015; 349
2011; 17
2013; 6
2014; 23
1996; 108
2005; 68
1996; 77
2014; 20
2004; 33
2004; 31
1987; 82
2001
2005; 146
2003; 7
2013; 118
2007; 450
2003; 9
1997; 12
2016; 43
1987
1999; 10
2001; 15
1983
1981
2005; 72
1996; 26
2010; 30
2009; 15
1989; 3
1989; 20
2015; 3
2017; 26
2010
2006; 11
2015; 10
1997
1995
2006
2008; 11
2015; 525
1992
2002
2009; 459
2001; 22
2014; 111
2015; 8
2011; 6
2007; 56
2007; 13
2014; 44
2010; 40
2012; 109
2006; 114
1998; 251
2009; 36
2007; 112
2016; 6
2012; 2
2012; 110
2003; 108
2017; 14
2000; 37
2015; 112
1997; 78
1952; 5
2008; 216
2000; 82
2016
2013; 294
2015
2014
2005; 3
2013
2012; 6
2007; 42
1973; 3
2018; 13
Kenkel N. C. (e_1_2_8_46_1) 1997; 12
Townshend J. R. (e_1_2_8_78_1) 2010
e_1_2_8_24_1
e_1_2_8_47_1
Osterkamp T. (e_1_2_8_57_1) 2007; 112
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Maple Inc (e_1_2_8_50_1) 2015
IPCC (e_1_2_8_40_1) 2013
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
Gill A. M. (e_1_2_8_28_1) 1981
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Wolfram Research, Inc (e_1_2_8_90_1) 2016
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
Canadian Forest Service (e_1_2_8_16_1) 2014
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
Ustin S. (e_1_2_8_79_1) 2001; 22
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
Svirezhev Y. M. (e_1_2_8_76_1) 1983
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
Arno S. F. (e_1_2_8_3_1) 1995
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
Heinselman M. L. (e_1_2_8_36_1) 1981
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
Harris I. (e_1_2_8_34_1) 2014
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
Vinh N. X. (e_1_2_8_85_1) 2010; 11
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_1
References_xml – volume: 10
  start-page: e0143014
  issue: 11
  year: 2015
  article-title: A changing number of alternative states in the boreal biome: Reproducibility risks of replacing remote sensing products
  publication-title: PLoS ONE
– volume: 251
  year: 1998
– volume: 33
  start-page: 361
  issue: 6
  year: 2004
  end-page: 365
  article-title: Global change and the boreal forest: Thresholds, shifting states or gradual change?
  publication-title: AMBIO: A Journal of the Human Environment
– start-page: 95
  year: 1995
  end-page: 124
– volume: 135
  start-page: 135
  issue: 2
  year: 2000
  end-page: 146
  article-title: Lotka–Volterra models and the global vegetation pattern
  publication-title: Ecological Modelling
– volume: 6
  start-page: 045509
  issue: 4
  year: 2011
  article-title: Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities
  publication-title: Environmental Research Letters
– volume: 9
  start-page: 1401
  issue: 10
  year: 2003
  end-page: 1409
  article-title: Non‐equilibrium succession dynamics indicate continued northern migration of lodgepole pine
  publication-title: Global Change Biology
– volume: 3
  start-page: 421
  issue: 8
  year: 2005
  end-page: 428
  article-title: Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest
  publication-title: Frontiers in Ecology and the Environment
– volume: 3
  start-page: 228
  year: 2015
  end-page: 234
  article-title: Influence of tree species on continental differences in boreal fires and climate feedbacks
  publication-title: Nature Geoscience, 8
– volume: 44
  start-page: 521
  issue: 5
  year: 2014
  end-page: 532
  article-title: Mapping attributes of Canada’s forests at moderate resolution through NN and MODIS imagery
  publication-title: Canadian Journal of Forest Research
– volume: 8
  start-page: 167
  issue: March
  year: 2015
  end-page: 168
  article-title: Fire evolution split by continent
  publication-title: Nature Geoscience
– start-page: 208
  year: 1981
  end-page: 230
– volume: 26
  start-page: 854
  issue: 7
  year: 2017
  end-page: 859
  article-title: MODIS VCF should not be used to detect discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015)
  publication-title: Global Ecology and Biogeography
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  end-page: 472
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– start-page: 333
  year: 1972
  end-page: 365
  article-title: The boreal bioclimates
  publication-title: Geographical Review
– volume: 112
  start-page: F02S02
  year: 2007
  article-title: Characteristics of the recent warming of permafrost in Alaska
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 15
  start-page: 1554
  issue: 6
  year: 2001
  end-page: 1557
  article-title: Wildfire regime in the boreal forest and the idea of suppression and fuel buildup
  publication-title: Conservation Biology
– volume: 7
  start-page: 1
  issue: 10
  year: 2003
  end-page: 15
  article-title: Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm
  publication-title: Earth Interactions
– year: 2014
– volume: 159
  start-page: 396
  issue: 4
  year: 2002
  end-page: 419
  article-title: Toward a causal explanation of plant invasiveness: Seedling growth and life‐history strategies of 29 pine ( ) species
  publication-title: The American Naturalist
– volume: 108
  start-page: 8617
  issue: D16
  year: 2003
  article-title: Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001
  publication-title: Journal of Geophysical Research
– volume: 294
  start-page: 23
  year: 2013
  end-page: 34
  article-title: A comparison of Canadian and Russian boreal forest fire regimes
  publication-title: Forest Ecology and Management
– volume: 72
  start-page: 1
  issue: 1–2
  year: 2005
  end-page: 16
  article-title: Future area burned in Canada
  publication-title: Climatic Change
– volume: 40
  start-page: 1302
  issue: 7
  year: 2010
  end-page: 1312
  article-title: Fire, climate change, and forest resilience in interior Alaska
  publication-title: Canadian Journal of Forest Research
– volume: 3
  start-page: 111
  issue: 2
  year: 1989
  end-page: 130
  article-title: Environmental factors and ecological processes controlling vegetation patterns in boreal forests
  publication-title: Landscape Ecology
– volume: 22
  start-page: 1779
  issue: 9
  year: 2001
  end-page: 1797
  article-title: Mapping successional boreal forests in interior central Alaska
  publication-title: International Journal of Remote Sensing
– volume: 37
  start-page: 247
  issue: 2
  year: 2000
  end-page: 255
  article-title: Response of a herbivore community to increased food quality and quantity: An experiment with nitrogen fertilizer in a boreal forest
  publication-title: Journal of Applied Ecology
– volume: 17
  start-page: 2853
  issue: 9
  year: 2011
  end-page: 2866
  article-title: The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo
  publication-title: Global Change Biology
– volume: 36
  start-page: L07405
  year: 2009
  article-title: Global biogeophysical interactions between forest and climate
  publication-title: Geophysical Research Letters
– volume: 110
  start-page: 669
  issue: 3–4
  year: 2012
  end-page: 696
  article-title: Global changes in extreme events: Regional and seasonal dimension
  publication-title: Climatic Change
– volume: 56
  start-page: 274
  issue: 3
  year: 2007
  end-page: 296
  article-title: Climate‐induced boreal forest change: Predictions versus current observations
  publication-title: Global and Planetary Change
– volume: 3
  start-page: 444
  issue: 3
  year: 1973
  end-page: 464
  article-title: Fire in the boreal forest
  publication-title: Quaternary Research
– volume: 30
  start-page: 669
  issue: 6
  year: 2010
  end-page: 688
  article-title: Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data
  publication-title: Tree Physiology
– volume: 78
  start-page: 1966
  issue: 7
  year: 1997
  end-page: 1975
  article-title: The interplay of facilitation and competition in plant communities
  publication-title: Ecology
– volume: 79
  start-page: 51
  issue: 1
  year: 1988
  end-page: 63
  article-title: Succession in the southern part of the Canadian boreal forest
  publication-title: Plant Ecology
– volume: 23
  start-page: 259
  issue: 3
  year: 2014
  end-page: 263
  article-title: Analysis of stable states in global savannas: Is the CART pulling the horse?
  publication-title: Global Ecology and Biogeography
– volume: 13
  start-page: 633
  issue: 5
  year: 2007
  end-page: 644
  article-title: Invasive plants and their ecological strategies: Prediction and explanation of woody plant invasion in New England
  publication-title: Diversity and Distributions
– volume: 82
  start-page: 283
  issue: 1
  year: 2000
  end-page: 294
  article-title: Climate change and impacts of boreal forest insects
  publication-title: Agriculture, Ecosystems and Environment
– volume: 6
  start-page: 221
  issue: 1
  year: 2012
  end-page: 233
  article-title: Derivation and analysis of a high‐resolution estimate of global permafrost zonation
  publication-title: The Cryosphere
– start-page: 7
  year: 1981
  end-page: 57
– volume: 111
  start-page: 13888
  issue: 38
  year: 2014
  end-page: 13893
  article-title: Resistance of the boreal forest to high burn rates
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 459
  start-page: 556
  issue: 7246
  year: 2009
  end-page: 559
  article-title: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
  publication-title: Nature
– volume: 14
  start-page: 511
  issue: 3
  year: 2017
  end-page: 527
  article-title: Environmental conditions for alternative tree‐cover states in high latitudes
  publication-title: Biogeosciences
– year: 2015
– volume: 54
  start-page: 1619
  issue: 6
  year: 1990
  end-page: 1625
  article-title: Steady‐state aerobic microbial activity as a function of soil water content
  publication-title: Soil Science Society of America Journal
– volume: 349
  start-page: 819
  issue: 6250
  year: 2015
  end-page: 822
  article-title: Boreal forest health and global change
  publication-title: Science
– volume: 118
  start-page: 317
  issue: 1
  year: 2013
  end-page: 328
  article-title: Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (gfed4)
  publication-title: Journal of Geophysical Research Biogeosciences
– year: 1983
– volume: 11
  start-page: 296
  issue: 3
  year: 2008
  end-page: 310
  article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 13
  start-page: 014007
  issue: 1
  year: 2018
  article-title: Canadian boreal forest greening and browning trends: An analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers
  publication-title: Environmental Research Letters
– volume: 114
  start-page: 177
  issue: 1
  year: 2006
  end-page: 186
  article-title: Do herbivores cause habitat degradation or vegetation state transition? evidence from the tundra
  publication-title: Oikos
– volume: 176
  start-page: 309
  year: 2005
  end-page: 344
– year: 1987
– start-page: 9
  year: 2001
  end-page: 41
– volume: 42
  start-page: 636
  issue: 6
  year: 2007
  end-page: 667
  article-title: Solving parametric polynomial systems
  publication-title: Journal of Symbolic Computation
– volume: 79
  start-page: 217
  issue: 3
  year: 1995
  end-page: 226
  article-title: Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation
  publication-title: Forest Ecology and Management
– volume: 10
  start-page: 17
  issue: 1
  year: 1999
  end-page: 37
  article-title: Evidence for warming and thawing of discontinuous permafrost in Alaska
  publication-title: Permafrost and Periglacial Processes
– start-page: 130
  year: 1995
  end-page: 135
– volume: 525
  start-page: 201
  issue: 7568
  year: 2015
  end-page: 205
  article-title: Mapping tree density at a global scale
  publication-title: Nature
– volume: 2
  start-page: 491
  issue: 7
  year: 2012
  end-page: 496
  article-title: A decade of weather extremes
  publication-title: Nature Climate Change
– start-page: 69
  year: 1997
  end-page: 76
  article-title: Alternate stable states and threshold effects in semi‐arid grazing systems
  publication-title: Oikos
– start-page: 185
  year: 1981
  end-page: 211
– volume: 450
  start-page: 89
  issue: 7166
  year: 2007
  article-title: Fire as the dominant driver of central Canadian boreal forest carbon balance
  publication-title: Nature
– volume: 112
  start-page: 12992
  issue: 42
  year: 2015
  end-page: 12996
  article-title: Relation between rainfall intensity and savanna tree abundance explained by water use strategies
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 2016
– volume: 6
  start-page: 427
  issue: 5
  year: 2013
  end-page: 448
  article-title: Global, 30‐m resolution continuous fields of tree cover: Landsat‐based rescaling of MODIS vegetation continuous fields with lidar‐based estimates of error
  publication-title: International Journal of Digital Earth
– volume: 103
  start-page: 5
  issue: 1
  year: 2015
  end-page: 15
  article-title: Forest resilience and tipping points at different spatio‐temporal scales: Approaches and challenges
  publication-title: Journal of Ecology
– volume: 109
  start-page: 21384
  issue: 52
  year: 2012
  end-page: 21389
  article-title: Thresholds for boreal biome transitions
  publication-title: Proceedings of the National Academy of Sciences USA
– year: 1992
– volume: 11
  start-page: 861
  issue: 4
  year: 2006
  end-page: 882
  article-title: Impacts of climate change on the distribution of . and and their climatypes in Siberia
  publication-title: Mitigation and Adaptation Strategies for Global Change
– volume: 82
  start-page: 918
  issue: 399
  year: 1987
  end-page: 924
  article-title: K‐sample Anderson–Darling tests
  publication-title: Journal of the American Statistical Association
– year: 2010
– volume: 12
  start-page: 97
  issue: 2–3
  year: 1997
  end-page: 108
  article-title: Vegetation dynamics in boreal forest ecosystems
  publication-title: Coenoses
– volume: 3
  start-page: 465
  issue: 3
  year: 1973
  end-page: 495
  article-title: Wildfire in the taiga of Alaska
  publication-title: Quaternary Research
– volume: 31
  issue: 20
  year: 2004
  article-title: Boreal forest fires burn less intensely in Russia than in North America
  publication-title: Geophysical Research Letters
– start-page: 100
  year: 2006
  end-page: 120
– volume: 216
  start-page: 89
  issue: 2
  year: 2008
  end-page: 101
  article-title: Nonlinearities in mathematical ecology: Phenomena and models: Would we live in Volterra’s world?
  publication-title: Ecological Modelling
– year: 2002
– volume: 108
  start-page: 389
  issue: 3
  year: 1996
  end-page: 411
  article-title: A global analysis of root distributions for terrestrial biomes
  publication-title: Oecologia
– volume: 43
  start-page: 6324
  issue: 12
  year: 2016
  end-page: 6331
  article-title: Multiple stable states of tree cover in a global land surface model due to a fire‐vegetation feedback
  publication-title: Geophysical Research Letters
– volume: 17
  start-page: 493
  issue: 4
  year: 2002
  end-page: 503
  article-title: Importance of permafrost as a source of water for plants in east Siberian taiga
  publication-title: Ecological Research
– volume: 20
  start-page: 1016
  issue: 3
  year: 2014
  end-page: 1021
  article-title: Tipping points in tropical tree cover: Linking theory to data
  publication-title: Global Change Biology
– volume: 6
  start-page: 791
  issue: 8
  year: 2016
  end-page: 795
  article-title: Greening of the earth and its drivers
  publication-title: Nature Climate Change
– volume: 20
  start-page: 1
  issue: 1
  year: 1989
  end-page: 28
  article-title: Environmental factors and ecological processes in boreal forests
  publication-title: Annual Review of Ecology and Systematics
– volume: 68
  start-page: 135
  issue: 1
  year: 2005
  end-page: 152
  article-title: Permafrost thaw accelerates in boreal peatlands during late‐20th century climate warming
  publication-title: Climatic Change
– volume: 15
  start-page: 578
  issue: 3
  year: 2009
  end-page: 600
  article-title: Assessing the response of area burned to changing climate in western boreal North America using a multivariate adaptive regression splines (MARS) approach
  publication-title: Global Change Biology
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: Journal of Machine Learning Research
– volume: 26
  start-page: 1859
  issue: 10
  year: 1996
  end-page: 1874
  article-title: Synoptic climatology of lightning‐caused forest fires in subalpine and boreal forests
  publication-title: Canadian Journal of Forest Research
– volume: 146
  start-page: 77
  issue: 1
  year: 2005
  end-page: 88
  article-title: Succession after stand replacing disturbances by fire, wind throw, and insects in the dark taiga of central Siberia
  publication-title: Oecologia
– volume: 5
  start-page: 34
  issue: 1
  year: 1952
  end-page: 44
  article-title: Interaction of vegetation and soil frost phenomena
  publication-title: Arctic
– year: 2013
– volume: 112
  start-page: F02S02
  year: 2007
  ident: e_1_2_8_57_1
  article-title: Characteristics of the recent warming of permafrost in Alaska
  publication-title: Journal of Geophysical Research: Earth Surface
  doi: 10.1029/2006JF000578
– ident: e_1_2_8_39_1
  doi: 10.1890/0012-9658(1997)078[1966:TIOFAC]2.0.CO;2
– ident: e_1_2_8_32_1
  doi: 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2
– ident: e_1_2_8_35_1
  doi: 10.1016/B978-0-08-092593-6.50010-4
– ident: e_1_2_8_53_1
  doi: 10.1007/s11027-005-9019-0
– ident: e_1_2_8_70_1
  doi: 10.2136/sssaj1990.03615995005400060018x
– ident: e_1_2_8_55_1
  doi: 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2
– ident: e_1_2_8_20_1
  doi: 10.1038/nature14967
– ident: e_1_2_8_44_1
  doi: 10.1139/X10-061
– ident: e_1_2_8_69_1
  doi: 10.1017/CBO9780511565489
– ident: e_1_2_8_47_1
  doi: 10.1002/2016GL069365
– ident: e_1_2_8_22_1
– volume-title: Mathematica, Version 11.0
  year: 2016
  ident: e_1_2_8_90_1
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1365-2486.2011.02412.x
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1219844110
– ident: e_1_2_8_88_1
  doi: 10.1093/treephys/tpq015
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aaa9092
– ident: e_1_2_8_12_1
  doi: 10.1038/nature06272
– volume-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_8_40_1
– ident: e_1_2_8_68_1
  doi: 10.1080/17538947.2013.786146
– ident: e_1_2_8_89_1
  doi: 10.1007/3-540-26599-6_15
– ident: e_1_2_8_42_1
  doi: 10.1046/j.1523-1739.2001.01005.x
– ident: e_1_2_8_49_1
  doi: 10.1016/0378-1127(95)03601-6
– ident: e_1_2_8_30_1
  doi: 10.5194/tc-6-221-2012
– ident: e_1_2_8_14_1
  doi: 10.1017/CBO9780511565847
– volume-title: Canadian national fire database—Agency fire data
  year: 2014
  ident: e_1_2_8_16_1
– ident: e_1_2_8_58_1
  doi: 10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4
– volume: 12
  start-page: 97
  issue: 2
  year: 1997
  ident: e_1_2_8_46_1
  article-title: Vegetation dynamics in boreal forest ecosystems
  publication-title: Coenoses
– ident: e_1_2_8_75_1
  doi: 10.1016/j.ecolmodel.2008.03.028
– ident: e_1_2_8_27_1
  doi: 10.1002/jgrg.20042
– ident: e_1_2_8_13_1
  doi: 10.1029/2009GL037543
– ident: e_1_2_8_26_1
  doi: 10.1111/geb.12592
– ident: e_1_2_8_10_1
  doi: 10.1007/BF00131174
– ident: e_1_2_8_8_1
  doi: 10.14430/arctic3898
– volume-title: Vegetation continuous fields mod44b, 2010 percent tree cover, collection 5, version 1
  year: 2010
  ident: e_1_2_8_78_1
– ident: e_1_2_8_54_1
  doi: 10.1139/x26-211
– ident: e_1_2_8_66_1
  doi: 10.1007/s00442-005-0173-6
– ident: e_1_2_8_86_1
  doi: 10.1016/S0167-8809(00)00232-2
– ident: e_1_2_8_64_1
– ident: e_1_2_8_83_1
  doi: 10.1111/gcb.12398
– ident: e_1_2_8_67_1
  doi: 10.1038/nature08031
– ident: e_1_2_8_17_1
  doi: 10.1639/0044-7447(2004)033[0361:GCATBF]2.0.CO;2
– ident: e_1_2_8_74_1
  doi: 10.1016/S0304-3800(00)00355-0
– ident: e_1_2_8_24_1
  doi: 10.1007/s10584-005-5935-y
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jsc.2007.01.007
– ident: e_1_2_8_65_1
  doi: 10.2307/2288805
– ident: e_1_2_8_92_1
  doi: 10.1029/2004GL020805
– start-page: 208
  volume-title: Fire regimes and ecosystem properties
  year: 1981
  ident: e_1_2_8_28_1
– ident: e_1_2_8_62_1
  doi: 10.1016/0033-5894(73)90008-2
– volume-title: Maple, Version 2015
  year: 2015
  ident: e_1_2_8_50_1
– start-page: 7
  volume-title: Fire regimes and ecosystem properties
  year: 1981
  ident: e_1_2_8_36_1
– ident: e_1_2_8_59_1
  doi: 10.1111/1365-2745.12337
– ident: e_1_2_8_95_1
  doi: 10.1038/nclimate3004
– ident: e_1_2_8_31_1
  doi: 10.1111/geb.12122
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-2486.2008.01679.x
– ident: e_1_2_8_18_1
  doi: 10.1093/oso/9780195154313.003.0026
– ident: e_1_2_8_93_1
  doi: 10.1371/journal.pone.0143014
– ident: e_1_2_8_81_1
  doi: 10.1029/2002JD003114
– ident: e_1_2_8_11_1
  doi: 10.1146/annurev.es.20.110189.000245
– volume: 11
  start-page: 2837
  year: 2010
  ident: e_1_2_8_85_1
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_73_1
  doi: 10.1088/1748-9326/aa9b88
– ident: e_1_2_8_23_1
  doi: 10.1038/ngeo2360
– ident: e_1_2_8_33_1
  doi: 10.2307/213287
– ident: e_1_2_8_9_1
  doi: 10.1007/BF00044848
– ident: e_1_2_8_21_1
  doi: 10.1016/j.foreco.2012.07.033
– ident: e_1_2_8_91_1
  doi: 10.1086/285186
– ident: e_1_2_8_82_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_8_2_1
  doi: 10.5194/bg-14-511-2017
– ident: e_1_2_8_60_1
  doi: 10.2307/3546091
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1472-4642.2007.00381.x
– ident: e_1_2_8_29_1
  doi: 10.1086/338995
– ident: e_1_2_8_71_1
  doi: 10.1016/j.gloplacha.2006.07.028
– start-page: 130
  volume-title: Ecology and management of Larix forests; symposium proceedings; 1992 October 5‐9; Whitefish, MT. Gen. Tech. Rep. INT‐319
  year: 1995
  ident: e_1_2_8_3_1
– ident: e_1_2_8_80_1
  doi: 10.1007/978-1-4612-5950-3_13
– ident: e_1_2_8_45_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_8_52_1
– ident: e_1_2_8_84_1
  doi: 10.1016/0033-5894(73)90009-4
– ident: e_1_2_8_61_1
  doi: 10.1038/ngeo2352
– ident: e_1_2_8_15_1
  doi: 10.1007/s10584-005-4785-y
– volume-title: Cru ts3.22: Climatic research unit (CRU) time‐series (TS) version 3.22 of high resolution gridded data of month‐by‐month variation in climate (Jan. 1901–Dec. 2013)
  year: 2014
  ident: e_1_2_8_34_1
– ident: e_1_2_8_19_1
  doi: 10.1038/nclimate1452
– ident: e_1_2_8_4_1
  doi: 10.1046/j.1365-2664.2000.00487.x
– ident: e_1_2_8_41_1
  doi: 10.1007/BF00333714
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.1409316111
– ident: e_1_2_8_72_1
  doi: 10.1046/j.1440-1703.2002.00506.x
– ident: e_1_2_8_77_1
  doi: 10.1515/9781400847303.9
– ident: e_1_2_8_51_1
  doi: 10.1088/1748-9326/6/4/045509
– volume: 22
  start-page: 1779
  issue: 9
  year: 2001
  ident: e_1_2_8_79_1
  article-title: Mapping successional boreal forests in interior central Alaska
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160118269
– ident: e_1_2_8_87_1
  doi: 10.1111/j.2006.0030-1299.14264.x
– ident: e_1_2_8_56_1
  doi: 10.1007/s10584-011-0122-9
– ident: e_1_2_8_94_1
  doi: 10.1073/pnas.1517382112
– ident: e_1_2_8_43_1
  doi: 10.1046/j.1365-2486.2003.00661.x
– ident: e_1_2_8_6_1
  doi: 10.1139/cjfr-2013-0401
– volume-title: Stability of biological communities
  year: 1983
  ident: e_1_2_8_76_1
SSID ssj0005456
Score 2.3265347
Snippet Aim Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with...
AimPrevious analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with...
AIM: Previous analyses of remotely sensed data detected the multimodality of the tree‐cover distribution of the boreal forest, and identified areas with...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 612
SubjectTerms Adaptation
alternative stable states
Asymmetry
Bifurcations
boreal forest
Boreal forests
Climate change
Competition
Computer simulation
conceptual model
Disturbances
Dominant species
ecosystem shifts
ecosystems
Environmental changes
Environmental factors
Eurasia
Forests
geographical distribution
Greening
greening trends
Information theory
Leaf area
Leaf area index
mathematical theory
multistability
normalized difference vegetation index
Normalized difference vegetative index
North America
Permafrost
Permafrost thaws
Plant species
Remote sensing
Research Papers
Soil degradation
statistics
Taiga
tree cover
Trees
Trends
Vegetation
Vegetation index
Subtitle A conceptual model
Title Alternative tree-cover states of the boreal ecosystem
URI https://www.jstor.org/stable/26798711
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12880
https://www.proquest.com/docview/2214862814
https://www.proquest.com/docview/2253234735
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5EEbyIri6uL6J48FLZ5tVUT6uuiqKIKOytJGnqZdkV1xW8-RP8jf4SJ2m3rqDgpZR2-iCTL_NNMjMB2EOb7JyxcZQW7SLiKuWRSk0SSa3R-mqaWOHzna9v5MUDv-yJ3gwcTXJhyvoQ9YSbR0YYrz3AtRlNgfzRmQMcXBX663M-tdZ3cspvv-M7uKhSi2SEVrBXlRXyYTz1oz-MURmP-INpTvPVYHDOlmCxYoqkU6p2GWbcoAHz3VBl-q0Bze53ihqKVRgdrcBVp19N8r064tecP98_rA_UJCF5aESGBUHWR1D5SBIJup9lNedD0iG2TGIc4_WwRc4qPJx1708uomrLhMgyRF6E9ps7qayT2uRIpbRT0qYsT5VQVjBNjU6lo6Yti9QxNPaFSZwyCGTrtGlb1oTZwXDg1oDga7gQTPI8Fzy2Vtm8LZSSOuF5XLCkBfuTtstsVU_cb2vRzyZ-BTZzFpq5Bbu16FNZROM3oWZQQC1B_QJREsct2JxoJKsANsooRT9OUhXzFuzUtxEafr1DD9xw7GUEo8zvrYz_GjT599ez8-5xOFn_v-gGLCB9Ssvwx02YfXkeuy2kKC9mO3RFPJ7e0S8iPOHE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5EEb2Ir8X1GcWDl8o2r6biZZXV9YkHhb2VJE29yK64ruDNn-Bv9Jc4SbtVQcFbaacPMv0y3yTzANhFm-ycsXGUFq0i4irlkUpNEkmt0fpqmljh852vrmX3jp_3RG8CDse5MGV9iHrBzSMjzNce4H5B-hvK753Zx9lVocM-xSVNfOMGym--Ajy4qHKLZIRmsFfVFfJxPPWtP6xRGZD4g2p-J6zB4pzMw1xFFUm71O0CTLj-Ikx3Qpnp10VodL5y1FCsAulwCS7aD9Uq34sjftP54-3d-khNErKHhmRQEKR9BLWPLJGg_1mWcz4gbWLLLMYRng89cpbh7qRze9yNqp4JkWUIvQgNOHdSWSe1yZFLaaekTVmeKqGsYJoanUpHTUsWqWNo7QuTOGUQydZp07KsAZP9Qd-tAMHHcCGY5HkueGytsnlLKCV1wvO4YEkT9sZjl9mqoLjva_GQjR0LHOYsDHMTdmrRx7KKxm9CjaCAWoL6HaIkjpuwPtZIViFsmFGKjpykKuZN2K4vIzb8hofuu8HIywhGmW-ujN8aNPn327PTzlE4WP2_6BbMdG-vLrPLs-uLNZhFLpWWsZDrMPn8NHIbyFeezWb4LT8BBfjkRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB5VXS3aywoK1RYKeBEHLkGNX3HgVKDdQqHqgUq9RbbjcKnaatsiceMn8Bv3lzB20rSVQNpblEwe8vjLfON5GOA12mTnjI2jtOgVEVcpj1RqkkhqjdZX08QKX-_8bSJHM_5lLuYNeL-vhSn7Q9QLbh4Z4X_tAb7OiyOQ_3DmLf5cFfrrZz7Y56c35dNDfgcXVWmRjNAKzqu2Qj6Np771xBiV-YgnTPOYrwaDM3wIlxVTJP1StY-g4ZYtOB-ELtO_WtAeHErUUKzC6OYxjPuLapHvpyM-5nz3-4_1iZokFA9tyKogyPoIKh9JIkH3s-zm_I70iS2LGHd4PmyR8wRmw8H3j6Oo2jIhsgyRF6H95k4q66Q2OVIp7ZS0KctTJZQVTFOjU-mo6ckidQyNfWESpwwC2Tptepa1oblcLd0VEHwMF4JJnueCx9Yqm_eEUlInPI8LlnTgzX7sMlv1E_fbWiyyvV-Bw5yFYe7Aq1p0XTbR-JdQOyiglqA-QJTEcQe6e41kFcA2GaXox0mqYt6B6_oyQsPHO_TSrXZeRjDK_N7K-K1Bk_9_e3Yz-BAOnt5f9CU8mH4aZl8_T8bP4AKZVFpmQnahub3duefIVrbmRZiVfwHI1ON5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+tree%E2%80%90cover+states+of+the+boreal+ecosystem%3A+A+conceptual+model&rft.jtitle=Global+ecology+and+biogeography&rft.au=Abis%2C+Beniamino&rft.au=Brovkin%2C+Victor&rft.date=2019-05-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=28&rft.issue=5&rft.spage=612&rft.epage=627&rft_id=info:doi/10.1111%2Fgeb.12880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon