Dietary l -tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model
The intestinal epithelial layer forms a barrier through cell–cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the ef...
Saved in:
Published in | Food & function Vol. 10; no. 5; pp. 2390 - 2398 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
22.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intestinal epithelial layer forms a barrier through cell–cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the effect of tryptophan on the intestinal barrier has been controversial. Here, an
in vitro
Caco-2 cell model was built to investigate the protective and reparative effects of different concentrations of dietary
l
-Tryptophan (
l
-Trp) on lipopolysaccharide (LPS)-induced intestinal tight junction injury. Lower concentrations (40 μM) of dietary
l
-Trp protected and repaired the integrity and permeability injury of the intestinal tight junction induced by LPS, while high concentrations (80 μM) may not have a positive effect. LPS-induced injury led to increased (
P
< 0.05) mRNA expression of Nuclear factor-kappa B (NFκB) and Myosin light-chain kinase (MLCK), and decreased (
P
< 0.05) the mRNA expression of extracellular regulated protein kinase 1/2 (ERK1/2) and Mitogen-activated protein (MAP), and the treatment of dietary
l
-Trp alleviated those regulations in different concentrations, which suggests that dietary
l
-Trp may attenuate LPS-induced injury to tight junctions
via
inhibiting the NFκB-MLCK signaling pathway and activating the ERK1/2-MAP signaling pathway. And the mRNA and protein expressions of claudin-1, occludin and ZO-1 in LPS-induced injury were all down-regulated to varying degrees, and dietary
l
-Trp weakened the down-regulation of claudin-1 (
P
< 0.05) with no significant regulation of the protein expression of occludin and ZO-1 (
P
> 0.05). |
---|---|
AbstractList | The intestinal epithelial layer forms a barrier through cell-cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the effect of tryptophan on the intestinal barrier has been controversial. Here, an in vitro Caco-2 cell model was built to investigate the protective and reparative effects of different concentrations of dietary l-Tryptophan (l-Trp) on lipopolysaccharide (LPS)-induced intestinal tight junction injury. Lower concentrations (40 μM) of dietary l-Trp protected and repaired the integrity and permeability injury of the intestinal tight junction induced by LPS, while high concentrations (80 μM) may not have a positive effect. LPS-induced injury led to increased (P < 0.05) mRNA expression of Nuclear factor-kappa B (NFκB) and Myosin light-chain kinase (MLCK), and decreased (P < 0.05) the mRNA expression of extracellular regulated protein kinase 1/2 (ERK1/2) and Mitogen-activated protein (MAP), and the treatment of dietary l-Trp alleviated those regulations in different concentrations, which suggests that dietary l-Trp may attenuate LPS-induced injury to tight junctions via inhibiting the NFκB-MLCK signaling pathway and activating the ERK1/2-MAP signaling pathway. And the mRNA and protein expressions of claudin-1, occludin and ZO-1 in LPS-induced injury were all down-regulated to varying degrees, and dietary l-Trp weakened the down-regulation of claudin-1 (P < 0.05) with no significant regulation of the protein expression of occludin and ZO-1 (P > 0.05).The intestinal epithelial layer forms a barrier through cell-cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the effect of tryptophan on the intestinal barrier has been controversial. Here, an in vitro Caco-2 cell model was built to investigate the protective and reparative effects of different concentrations of dietary l-Tryptophan (l-Trp) on lipopolysaccharide (LPS)-induced intestinal tight junction injury. Lower concentrations (40 μM) of dietary l-Trp protected and repaired the integrity and permeability injury of the intestinal tight junction induced by LPS, while high concentrations (80 μM) may not have a positive effect. LPS-induced injury led to increased (P < 0.05) mRNA expression of Nuclear factor-kappa B (NFκB) and Myosin light-chain kinase (MLCK), and decreased (P < 0.05) the mRNA expression of extracellular regulated protein kinase 1/2 (ERK1/2) and Mitogen-activated protein (MAP), and the treatment of dietary l-Trp alleviated those regulations in different concentrations, which suggests that dietary l-Trp may attenuate LPS-induced injury to tight junctions via inhibiting the NFκB-MLCK signaling pathway and activating the ERK1/2-MAP signaling pathway. And the mRNA and protein expressions of claudin-1, occludin and ZO-1 in LPS-induced injury were all down-regulated to varying degrees, and dietary l-Trp weakened the down-regulation of claudin-1 (P < 0.05) with no significant regulation of the protein expression of occludin and ZO-1 (P > 0.05). The intestinal epithelial layer forms a barrier through cell–cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the effect of tryptophan on the intestinal barrier has been controversial. Here, an in vitro Caco-2 cell model was built to investigate the protective and reparative effects of different concentrations of dietary l -Tryptophan ( l -Trp) on lipopolysaccharide (LPS)-induced intestinal tight junction injury. Lower concentrations (40 μM) of dietary l -Trp protected and repaired the integrity and permeability injury of the intestinal tight junction induced by LPS, while high concentrations (80 μM) may not have a positive effect. LPS-induced injury led to increased ( P < 0.05) mRNA expression of Nuclear factor-kappa B (NFκB) and Myosin light-chain kinase (MLCK), and decreased ( P < 0.05) the mRNA expression of extracellular regulated protein kinase 1/2 (ERK1/2) and Mitogen-activated protein (MAP), and the treatment of dietary l -Trp alleviated those regulations in different concentrations, which suggests that dietary l -Trp may attenuate LPS-induced injury to tight junctions via inhibiting the NFκB-MLCK signaling pathway and activating the ERK1/2-MAP signaling pathway. And the mRNA and protein expressions of claudin-1, occludin and ZO-1 in LPS-induced injury were all down-regulated to varying degrees, and dietary l -Trp weakened the down-regulation of claudin-1 ( P < 0.05) with no significant regulation of the protein expression of occludin and ZO-1 ( P > 0.05). The intestinal epithelial layer forms a barrier through cell-cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious pathological consequences, including infection and inflammation. Various amino acids have been shown to improve the intestinal tract, but the effect of tryptophan on the intestinal barrier has been controversial. Here, an in vitro Caco-2 cell model was built to investigate the protective and reparative effects of different concentrations of dietary l-Tryptophan (l-Trp) on lipopolysaccharide (LPS)-induced intestinal tight junction injury. Lower concentrations (40 μM) of dietary l-Trp protected and repaired the integrity and permeability injury of the intestinal tight junction induced by LPS, while high concentrations (80 μM) may not have a positive effect. LPS-induced injury led to increased (P < 0.05) mRNA expression of Nuclear factor-kappa B (NFκB) and Myosin light-chain kinase (MLCK), and decreased (P < 0.05) the mRNA expression of extracellular regulated protein kinase 1/2 (ERK1/2) and Mitogen-activated protein (MAP), and the treatment of dietary l-Trp alleviated those regulations in different concentrations, which suggests that dietary l-Trp may attenuate LPS-induced injury to tight junctions via inhibiting the NFκB-MLCK signaling pathway and activating the ERK1/2-MAP signaling pathway. And the mRNA and protein expressions of claudin-1, occludin and ZO-1 in LPS-induced injury were all down-regulated to varying degrees, and dietary l-Trp weakened the down-regulation of claudin-1 (P < 0.05) with no significant regulation of the protein expression of occludin and ZO-1 (P > 0.05). |
Author | Chen, Mengdie Liu, Yuyu Wu, Moucheng Li, Bin Hu, Xiaobo Xiong, Shanbai Ruan, Zheng |
Author_xml | – sequence: 1 givenname: Mengdie orcidid: 0000-0003-4445-1914 surname: Chen fullname: Chen, Mengdie organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Key Laboratory of Environment Correlative Dietology – sequence: 2 givenname: Yuyu surname: Liu fullname: Liu, Yuyu organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Key Laboratory of Environment Correlative Dietology – sequence: 3 givenname: Shanbai surname: Xiong fullname: Xiong, Shanbai organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Key Laboratory of Environment Correlative Dietology – sequence: 4 givenname: Moucheng surname: Wu fullname: Wu, Moucheng organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China – sequence: 5 givenname: Bin orcidid: 0000-0001-7763-4245 surname: Li fullname: Li, Bin organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Key Laboratory of Environment Correlative Dietology – sequence: 6 givenname: Zheng surname: Ruan fullname: Ruan, Zheng organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China – sequence: 7 givenname: Xiaobo surname: Hu fullname: Hu, Xiaobo organization: College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China, Key Laboratory of Environment Correlative Dietology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30977499$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctqGzEUhkVJaC71pg9QtCyFSXSbGWkZ3OYCBgfSQnfDGY3syGgkV9IU_AB578gkaSFkEW10OPr-w9H_n6ADH7xB6DMlZ5RwdT5Xl0tCKOMXH9AxI4JVTU1-H7zUQjVHaJbShpTDlZJKfkRHnKi2FUodo4fv1mSIO-xwleNum8P2HjwG58xfC9kMeHF7V1k_TLrU1meTsvXgcA8xWhNLazMVeb_D0awnB-V1jbNd32e8mbzONvhUIAx4DjpUDGvjHB6DDw52RT-GwbhP6HAFLpnZ832Kfl3--Dm_rhbLq5v5xaLSXDa5Wula92LQUve84YJJLVaCK1AUhK6hV4Qa2WrJWj2wWqreFGcG2lMpeGsE5afo69PcbQx_pvKVbrRpvxB4E6bUMVZz1jBC23egRNVKCcYL-uUZnfrRDN022rFY2r24XIBvT4COIaVoVv8QSrp9it3_FAtMXsHaZtj7mCNY95bkESTtnro |
CitedBy_id | crossref_primary_10_3390_nu15234860 crossref_primary_10_1039_D1FO01293B crossref_primary_10_1016_j_fbio_2024_105316 crossref_primary_10_3390_antiox10111840 crossref_primary_10_1016_j_fct_2021_112098 crossref_primary_10_4014_jmb_2209_09026 crossref_primary_10_3390_ijms242417434 crossref_primary_10_1016_j_jff_2020_104079 crossref_primary_10_3389_fvets_2022_833842 crossref_primary_10_1016_j_foodres_2022_111289 crossref_primary_10_1039_D1FO01164B crossref_primary_10_1007_s00005_021_00611_y crossref_primary_10_1016_j_jff_2022_105030 crossref_primary_10_1016_j_phymed_2025_156559 crossref_primary_10_1016_j_jep_2023_117105 crossref_primary_10_4162_nrp_2023_17_4_616 crossref_primary_10_1016_j_carbpol_2023_121722 crossref_primary_10_1021_acs_jafc_3c00227 crossref_primary_10_1016_j_aninu_2023_08_002 crossref_primary_10_1128_msystems_00738_22 crossref_primary_10_3390_foods10112765 crossref_primary_10_1016_j_ejphar_2021_174375 crossref_primary_10_1021_acs_jafc_2c05128 crossref_primary_10_1080_21655979_2021_1972782 crossref_primary_10_1021_acs_jproteome_3c00008 crossref_primary_10_3390_microorganisms9102071 crossref_primary_10_1097_IM9_0000000000000060 crossref_primary_10_1111_ijfs_14977 crossref_primary_10_1155_2021_6635452 crossref_primary_10_1016_j_carbpol_2021_117876 crossref_primary_10_1039_D1FO04419B crossref_primary_10_1021_acs_jafc_3c06183 crossref_primary_10_3389_fnut_2022_1054089 crossref_primary_10_1016_j_jff_2024_106232 crossref_primary_10_1016_j_foodres_2021_110699 crossref_primary_10_1016_j_foodres_2022_111502 crossref_primary_10_1016_j_jff_2019_103580 crossref_primary_10_3390_nu17040694 crossref_primary_10_1021_acs_jafc_2c04101 crossref_primary_10_1039_D0FO03080E crossref_primary_10_14336_AD_2023_0727 crossref_primary_10_1016_j_fsi_2024_109376 crossref_primary_10_1016_j_foodchem_2022_132868 crossref_primary_10_1016_j_intimp_2021_107834 crossref_primary_10_1021_acs_jafc_2c00102 crossref_primary_10_1021_acs_jafc_1c05820 crossref_primary_10_1016_j_fct_2023_113870 crossref_primary_10_1039_D3CC00577A crossref_primary_10_1016_j_jff_2024_106588 crossref_primary_10_1016_j_talanta_2021_122097 crossref_primary_10_1155_2021_5514075 crossref_primary_10_1142_S0192415X24500885 crossref_primary_10_1016_j_fbio_2024_105226 crossref_primary_10_1016_j_fbio_2023_103020 crossref_primary_10_1021_acs_jafc_1c00706 crossref_primary_10_1111_jpn_13612 crossref_primary_10_1016_j_foodres_2024_113938 crossref_primary_10_1016_j_phymed_2023_155122 crossref_primary_10_1002_eji_202149401 crossref_primary_10_1039_D3FO03954D crossref_primary_10_1016_j_phymed_2023_155292 crossref_primary_10_1021_acs_jafc_4c03733 crossref_primary_10_3390_ijms231911162 crossref_primary_10_1186_s11658_024_00603_8 crossref_primary_10_2991_efood_k_210409_001 crossref_primary_10_1021_acs_jafc_1c05830 |
Cites_doi | 10.1007/s00011-007-7101-7 10.1016/j.ajpath.2017.08.005 10.3389/fmicb.2018.01736 10.1016/j.ajpath.2012.10.014 10.3945/jn.114.209817 10.1111/j.1582-4934.2008.00302.x 10.1039/C8FO00525G 10.1126/science.aat0835 10.2527/jas.2010-3372 10.1007/s00726-018-2586-7 10.1242/jcs.113399 10.1007/s00394-017-1442-y 10.7150/ijms.23786 10.1016/j.semcdb.2014.08.011 10.3945/jn.115.217661 10.1073/pnas.0906112107 10.1038/s12276-018-0126-x 10.1016/j.jss.2018.08.057 10.2527/jas.2007-0732 10.1182/blood-2018-03-838193 10.1093/jn/138.1.24 10.1016/j.bbr.2014.07.027 10.3945/jn.115.224857 10.1093/jb/mvx077 10.3945/jn.114.202515 10.2527/jas.2014-8580 10.1007/s00726-017-2424-3 10.1093/jas/skz078 10.1128/IAI.68.10.5998-6004.2000 10.1007/s00726-009-0334-8 10.3390/pharmaceutics10040182 10.1016/j.aquaculture.2018.08.021 10.3382/ps/pey123 10.1101/cshperspect.a029181 10.3390/md12125881 10.1111/j.1740-0929.2011.00941.x 10.1177/2211068214561025 10.1039/C6FO01347C 10.1371/journal.pone.0080604 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1039/C9FO00123A |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 2042-650X |
EndPage | 2398 |
ExternalDocumentID | 30977499 10_1039_C9FO00123A |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 4.4 53G 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF -JG AGSTE NPM RRC 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c386t-fc5cb4dc8cb363428c4f439a91a4c5ab901e87c827cd2589be001d1b18437e413 |
ISSN | 2042-6496 2042-650X |
IngestDate | Fri Jul 11 05:26:17 EDT 2025 Thu Jul 10 22:43:34 EDT 2025 Wed Feb 19 02:35:26 EST 2025 Thu Apr 24 22:52:39 EDT 2025 Tue Jul 01 03:02:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-fc5cb4dc8cb363428c4f439a91a4c5ab901e87c827cd2589be001d1b18437e413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7763-4245 0000-0003-4445-1914 |
PMID | 30977499 |
PQID | 2209599423 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2253262017 proquest_miscellaneous_2209599423 pubmed_primary_30977499 crossref_primary_10_1039_C9FO00123A crossref_citationtrail_10_1039_C9FO00123A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190522 |
PublicationDateYYYYMMDD | 2019-05-22 |
PublicationDate_xml | – month: 05 year: 2019 text: 20190522 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food & function |
PublicationTitleAlternate | Food Funct |
PublicationYear | 2019 |
References | Ye (C9FO00123A-(cit20)/*[position()=1]) 2016; 290 Chen (C9FO00123A-(cit38)/*[position()=1]) 2019 Wang (C9FO00123A-(cit15)/*[position()=1]) 2015; 145 Yue (C9FO00123A-(cit17)/*[position()=1]) 2017; 49 Silva (C9FO00123A-(cit29)/*[position()=1]) 2014; 12 Citi (C9FO00123A-(cit1)/*[position()=1]) 2018; 359 Jiao (C9FO00123A-(cit6)/*[position()=1]) 2015; 145 Czerucka (C9FO00123A-(cit35)/*[position()=1]) 2000; 68 Jin (C9FO00123A-(cit22)/*[position()=1]) 2019; 235 Liu (C9FO00123A-(cit32)/*[position()=1]) 2018; 497 Guo (C9FO00123A-(cit12)/*[position()=1]) 2013; 182 Trevisi (C9FO00123A-(cit26)/*[position()=1]) 2009; 87 Corl (C9FO00123A-(cit43)/*[position()=1]) 2008; 138 Wu (C9FO00123A-(cit8)/*[position()=1]) 2018; 97 Zheng (C9FO00123A-(cit24)/*[position()=1]) 2018; 15 Itallie (C9FO00123A-(cit3)/*[position()=1]) 2014; 36 Garcia (C9FO00123A-(cit4)/*[position()=1]) 2018; 10 Srinivasan (C9FO00123A-(cit25)/*[position()=1]) 2015; 20 Tan (C9FO00123A-(cit9)/*[position()=1]) 2010; 38 Seth (C9FO00123A-(cit34)/*[position()=1]) 2008; 294 Wang (C9FO00123A-(cit7)/*[position()=1]) 2015; 145 Liang (C9FO00123A-(cit42)/*[position()=1]) 2018; 9 Yi (C9FO00123A-(cit44)/*[position()=1]) 2018; 50 O'Mahony (C9FO00123A-(cit16)/*[position()=1]) 2015; 277 Tossou (C9FO00123A-(cit18)/*[position()=1]) 2016; 2017 Varasteh (C9FO00123A-(cit19)/*[position()=1]) 2018; 57 Shigetomi (C9FO00123A-(cit2)/*[position()=1]) 2018; 163 Wu (C9FO00123A-(cit23)/*[position()=1]) 2018; 9 Song (C9FO00123A-(cit33)/*[position()=1]) 2015; 93 Yang (C9FO00123A-(cit37)/*[position()=1]) 2019; 97 Wang (C9FO00123A-(cit21)/*[position()=1]) 2016; 146 Chen (C9FO00123A-(cit30)/*[position()=1]) 2008; 57 Rodgers (C9FO00123A-(cit5)/*[position()=1]) 2013; 126 Shimada (C9FO00123A-(cit41)/*[position()=1]) 2013; 8 Koopmans (C9FO00123A-(cit28)/*[position()=1]) 2012; 90 Chelakkot (C9FO00123A-(cit11)/*[position()=1]) 2018; 50 Chen (C9FO00123A-(cit27)/*[position()=1]) 2017; 8 Swimm (C9FO00123A-(cit40)/*[position()=1]) 2018; 132 Wang (C9FO00123A-(cit10)/*[position()=1]) 2010; 83 Stephan (C9FO00123A-(cit36)/*[position()=1]) 2006; 290 Kamei (C9FO00123A-(cit14)/*[position()=1]) 2018; 10 Ye (C9FO00123A-(cit31)/*[position()=1]) 2008; 12 Bansal (C9FO00123A-(cit39)/*[position()=1]) 2010; 107 Nighot (C9FO00123A-(cit13)/*[position()=1]) 2017; 187 |
References_xml | – volume: 294 start-page: G1060 year: 2008 ident: C9FO00123A-(cit34)/*[position()=1] publication-title: Am. J. Physiol.: Gastrointest. Liver Physiol. – volume: 57 start-page: 57 year: 2008 ident: C9FO00123A-(cit30)/*[position()=1] publication-title: Inflammation Res. doi: 10.1007/s00011-007-7101-7 – volume: 187 start-page: 2698 year: 2017 ident: C9FO00123A-(cit13)/*[position()=1] publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2017.08.005 – volume: 290 start-page: G496 year: 2016 ident: C9FO00123A-(cit20)/*[position()=1] publication-title: Am. J. Physiol.: Gastrointest. Liver Physiol. – start-page: 1 year: 2019 ident: C9FO00123A-(cit38)/*[position()=1] publication-title: Fish Physiol. Biochem. – volume: 9 start-page: 1736 year: 2018 ident: C9FO00123A-(cit42)/*[position()=1] publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01736 – volume: 182 start-page: 375 year: 2013 ident: C9FO00123A-(cit12)/*[position()=1] publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.10.014 – volume: 145 start-page: 1156 year: 2015 ident: C9FO00123A-(cit15)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.114.209817 – volume: 12 start-page: 1331 year: 2008 ident: C9FO00123A-(cit31)/*[position()=1] publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00302.x – volume: 9 start-page: 3321 year: 2018 ident: C9FO00123A-(cit23)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C8FO00525G – volume: 359 start-page: 1097 year: 2018 ident: C9FO00123A-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aat0835 – volume: 90 start-page: 241 year: 2012 ident: C9FO00123A-(cit28)/*[position()=1] publication-title: J. Anim. Sci. doi: 10.2527/jas.2010-3372 – volume: 50 start-page: 1089 year: 2018 ident: C9FO00123A-(cit44)/*[position()=1] publication-title: Amino Acids doi: 10.1007/s00726-018-2586-7 – volume: 126 start-page: 1565 year: 2013 ident: C9FO00123A-(cit5)/*[position()=1] publication-title: J. Cell Sci. doi: 10.1242/jcs.113399 – volume: 57 start-page: 1577 year: 2018 ident: C9FO00123A-(cit19)/*[position()=1] publication-title: Eur. J. Nutr. doi: 10.1007/s00394-017-1442-y – volume: 15 start-page: 595 year: 2018 ident: C9FO00123A-(cit24)/*[position()=1] publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.23786 – volume: 36 start-page: 157 year: 2014 ident: C9FO00123A-(cit3)/*[position()=1] publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.08.011 – volume: 2017 start-page: 8309364 year: 2016 ident: C9FO00123A-(cit18)/*[position()=1] publication-title: BioMed. Res. Int. – volume: 145 start-page: 2258 year: 2015 ident: C9FO00123A-(cit6)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.115.217661 – volume: 107 start-page: 228 year: 2010 ident: C9FO00123A-(cit39)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0906112107 – volume: 50 start-page: 103 year: 2018 ident: C9FO00123A-(cit11)/*[position()=1] publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0126-x – volume: 235 start-page: 83 year: 2019 ident: C9FO00123A-(cit22)/*[position()=1] publication-title: J. Surg. Res. doi: 10.1016/j.jss.2018.08.057 – volume: 87 start-page: 148 year: 2009 ident: C9FO00123A-(cit26)/*[position()=1] publication-title: J. Anim. Sci. doi: 10.2527/jas.2007-0732 – volume: 132 start-page: 2506 year: 2018 ident: C9FO00123A-(cit40)/*[position()=1] publication-title: Blood doi: 10.1182/blood-2018-03-838193 – volume: 138 start-page: 24 year: 2008 ident: C9FO00123A-(cit43)/*[position()=1] publication-title: J. Nutr. doi: 10.1093/jn/138.1.24 – volume: 277 start-page: 32 year: 2015 ident: C9FO00123A-(cit16)/*[position()=1] publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2014.07.027 – volume: 146 start-page: 501 year: 2016 ident: C9FO00123A-(cit21)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.115.224857 – volume: 163 start-page: 265 year: 2018 ident: C9FO00123A-(cit2)/*[position()=1] publication-title: J. Biochem. doi: 10.1093/jb/mvx077 – volume: 145 start-page: 25 year: 2015 ident: C9FO00123A-(cit7)/*[position()=1] publication-title: J. Nutr. doi: 10.3945/jn.114.202515 – volume: 93 start-page: 1599 year: 2015 ident: C9FO00123A-(cit33)/*[position()=1] publication-title: J. Anim. doi: 10.2527/jas.2014-8580 – volume: 49 start-page: 1227 year: 2017 ident: C9FO00123A-(cit17)/*[position()=1] publication-title: Amino Acids doi: 10.1007/s00726-017-2424-3 – volume: 97 start-page: 1679 year: 2019 ident: C9FO00123A-(cit37)/*[position()=1] publication-title: J. Anim. Sci. doi: 10.1093/jas/skz078 – volume: 68 start-page: 5998 year: 2000 ident: C9FO00123A-(cit35)/*[position()=1] publication-title: Infect. Immun. doi: 10.1128/IAI.68.10.5998-6004.2000 – volume: 38 start-page: 1227 year: 2010 ident: C9FO00123A-(cit9)/*[position()=1] publication-title: Amino Acids doi: 10.1007/s00726-009-0334-8 – volume: 10 start-page: 182 year: 2018 ident: C9FO00123A-(cit14)/*[position()=1] publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10040182 – volume: 497 start-page: 510 year: 2018 ident: C9FO00123A-(cit32)/*[position()=1] publication-title: Aquaculture doi: 10.1016/j.aquaculture.2018.08.021 – volume: 97 start-page: 2675 year: 2018 ident: C9FO00123A-(cit8)/*[position()=1] publication-title: Poult. Sci. doi: 10.3382/ps/pey123 – volume: 10 start-page: a029181 year: 2018 ident: C9FO00123A-(cit4)/*[position()=1] publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a029181 – volume: 12 start-page: 5881 year: 2014 ident: C9FO00123A-(cit29)/*[position()=1] publication-title: Mar. Drugs doi: 10.3390/md12125881 – volume: 83 start-page: 148 year: 2010 ident: C9FO00123A-(cit10)/*[position()=1] publication-title: Anim. Sci. J. doi: 10.1111/j.1740-0929.2011.00941.x – volume: 290 start-page: G827 year: 2006 ident: C9FO00123A-(cit36)/*[position()=1] publication-title: Am. J. Physiol.: Gastrointest. Liver Physiol. – volume: 20 start-page: 107 year: 2015 ident: C9FO00123A-(cit25)/*[position()=1] publication-title: J. Lab. Autom. doi: 10.1177/2211068214561025 – volume: 8 start-page: 1144 year: 2017 ident: C9FO00123A-(cit27)/*[position()=1] publication-title: Food Funct. doi: 10.1039/C6FO01347C – volume: 8 start-page: e80604 year: 2013 ident: C9FO00123A-(cit41)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0080604 |
SSID | ssj0000399898 |
Score | 2.4717007 |
Snippet | The intestinal epithelial layer forms a barrier through cell–cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious... The intestinal epithelial layer forms a barrier through cell-cell tight junctions and breaking or even slightly disrupting this barrier can lead to serious... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2390 |
SubjectTerms | epithelium gene expression gene expression regulation human cell lines inflammation intestines lipopolysaccharides messenger RNA myosin occludins permeability protein kinases protein synthesis signal transduction tight junctions transcription factor NF-kappa B tryptophan |
Title | Dietary l -tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30977499 https://www.proquest.com/docview/2209599423 https://www.proquest.com/docview/2253262017 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage-GCeFNeMgIhoSqQxnETH0vZsoJuF2lb0VsUO66UVZWuSoJUzvxwZmzngSho4RJVlpuH54vnG2c8HyEvU8Z9zRUwN1-ihBmTnoiE9EIN5FlxnY1MBb7T-ehkGX5c8VWbOmR2l5Tyjfp-cF_J_1gV2sCuuEv2HyzbnBQa4DfYF45gYTheycbvc11i1tvGK3f7SywRAG8riqN8gwEHJjn7fO5BzF3hN36sCwGvM5JPme6MTl1eXMCIIgHdWUV6s3UKo_XBBbi7Jss8HUxg3vSCAa7yD-DpIBwGpm5VdLrsdoolkhFLa_f3NnnAzm6YQ5vlDZZmeWVcQLWv6qZV7nKEz-FZZJo3TsP0PN1WADLnbN1aBW6P4l7QWb4McDMQcMKV9T4H2uo52e9gj3cnWGbVRX-b-X2GhVOVWG8NTez4t_qb_vwsmS5ns2RxvFpcJ0cBxBVBjxyNP7378KVZloPToKImShLW91UXtWXibXv6X2nMH2ITw1EWt8hNF1zQsUXKbXJNF3dIH1FCX1FXAXZD57UAw13ywyGIdhFEWwTRDoJoiyDqEEQtgqjc0xZB1CCINgiCTjSlFkEUEUQbBFGDoHtkOT1eTE48p8vhKRaPSm-tuJJhpmIl2YhB_KrCNfDaVAzTUPFUAsXUcaTiIFJZwGMhNYxZNpQoLRRpYE33Sa_YFvohoXHG_SyKIQjIYiD2UnAmFCq2MgnOIQv65HU9zIlyRetRO2WTmOQJJpKJmJ4Zk4z75EXT99KWajnY63ltrQRmUnzstNDb6msSBLgmLuA2_taHM5RwGEZ98sCaurkW8zGWEuLRFa7wmNxo348npFfuKv0U2G0pnzlE_gQ78qkv |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+l-tryptophan+alleviated+LPS-induced+intestinal+barrier+injury+by+regulating+tight+junctions+in+a+Caco-2+cell+monolayer+model&rft.jtitle=Food+%26+function&rft.au=Chen%2C+Mengdie&rft.au=Liu%2C+Yuyu&rft.au=Xiong%2C+Shanbai&rft.au=Wu%2C+Moucheng&rft.date=2019-05-22&rft.issn=2042-650X&rft.eissn=2042-650X&rft.volume=10&rft.issue=5&rft.spage=2390&rft_id=info:doi/10.1039%2Fc9fo00123a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon |