Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application

This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GB...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer research Vol. 29; no. 1
Main Authors Chang, Chao-Ching, Yu, Szu-Ting, Su, Jenn Fang, Cheng, Liao-Ping
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m −2  h −1 and a BSA rejection of 91%.
AbstractList This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m−2 h−1 and a BSA rejection of 91%.
This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m −2  h −1 and a BSA rejection of 91%.
This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/[gamma]-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L*m.sup.-2 h.sup.-1 and a BSA rejection of 91%.
ArticleNumber 23
Audience Academic
Author Chang, Chao-Ching
Cheng, Liao-Ping
Yu, Szu-Ting
Su, Jenn Fang
Author_xml – sequence: 1
  givenname: Chao-Ching
  surname: Chang
  fullname: Chang, Chao-Ching
  organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University
– sequence: 2
  givenname: Szu-Ting
  surname: Yu
  fullname: Yu, Szu-Ting
  organization: Department of Chemical and Materials Engineering, Tamkang University
– sequence: 3
  givenname: Jenn Fang
  orcidid: 0000-0002-8935-1151
  surname: Su
  fullname: Su, Jenn Fang
  email: jennfangsu@mail.tku.edu.tw
  organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University
– sequence: 4
  givenname: Liao-Ping
  surname: Cheng
  fullname: Cheng, Liao-Ping
  organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University
BookMark eNp9kU1rHSEUhqWk0Hz9ga6EbtrFpOrc0ZnlJaRNINBCmrV49ZgYHJ36QXLX_eM19xZCSwmiHuF9PL6-R-ggxAAIvafkjBIiPmdKJj50hNE2Ry46_gYd0kGwbpz64aDVhLFuEpy8Q0c5PxAyDIKPh-jXOm_nGUpyGqtg8MZ1OobiQo01-y3OJVVdagKDl-i3UO4h5epta48_fr-4-YRnmDdJBcj40ZV7nOsCycWEH1WBhK2vT9i2Y_UlKeue1-JiwGpZvNO7-gS9tcpnOP2zH6PbLxc_zi-7629fr87X153uR146qwzTMBrOe2XIZMYNM71WQvGBa9CWGRBCEzpaWHFiBktWxHBDhWGMUbD9Mfqwv3dJ8WeFXORDrCm0lpJxuhIT55S9qO6UB-mCje3JenZZy7Ug_bTidCBNdfYfVRsGZtd-EJpV-BsY94BOMecEVmpXdvYb6LykRD4nKfdJypak3CUpeUPZP-iS3KzS9nWo30O5icMdpBezr1C_AUTktec
CitedBy_id crossref_primary_10_1016_j_jclepro_2022_132858
crossref_primary_10_1007_s10965_024_04222_x
crossref_primary_10_1039_D2TA07200A
crossref_primary_10_1016_j_polymer_2022_124560
crossref_primary_10_1007_s10570_024_05760_9
crossref_primary_10_1016_j_polymer_2022_125607
crossref_primary_10_1016_j_giant_2023_100227
Cites_doi 10.1016/j.memsci.2019.01.033
10.2166/wqrj.2006.009
10.1016/j.apsusc.2015.04.214
10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3
10.1016/j.seppur.2019.04.057
10.1016/j.memsci.2017.06.044
10.1016/j.memsci.2012.10.039
10.1016/j.seppur.2019.05.077
10.1016/j.polymer.2020.122813
10.1016/j.seppur.2017.11.054
10.1039/b103708k
10.1016/j.pce.2013.09.021
10.1016/j.memsci.2004.02.017
10.1002/9781118359686
10.1016/j.chemosphere.2019.125446
10.1002/aic.15076
10.1016/0376-7388(95)00197-2
10.1039/C5RA05985B
10.1016/j.memsci.2006.08.033
10.1016/j.memsci.2012.08.029
10.1016/j.seppur.2016.10.060
10.1016/j.seppur.2020.117144
10.1016/j.memsci.2017.07.053
10.1016/j.renene.2019.10.177
10.1016/j.apsusc.2019.144553
10.1016/j.jiec.2019.12.028
10.1016/j.desal.2011.10.039
10.1016/j.desal.2011.02.037
10.1016/j.desal.2011.12.006
10.1016/j.memsci.2016.06.012
10.1002/app.1804
10.1016/j.desal.2012.01.013
10.1002/jctb.5034
10.1016/j.pmatsci.2012.07.002
10.1016/j.memsci.2011.08.023
10.1016/S0376-7388(97)00329-3
10.1016/j.polymer.2021.123451
10.1016/j.memsci.2014.07.026
10.1021/jp063338
10.1016/j.jtice.2020.07.019
ContentType Journal Article
Copyright The Polymer Society, Taipei 2021
COPYRIGHT 2022 Springer
The Polymer Society, Taipei 2021.
Copyright_xml – notice: The Polymer Society, Taipei 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Polymer Society, Taipei 2021.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1007/s10965-021-02867-6
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-8935
ExternalDocumentID A703946150
10_1007_s10965_021_02867_6
GrantInformation_xml – fundername: ministry of science and technology, taiwan
  grantid: 109-2221-E-032 -040 -MY2
  funderid: http://dx.doi.org/10.13039/501100004663
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
CZ9
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KC.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
ZMTXR
~8M
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SR
8FD
ABRTQ
JG9
ID FETCH-LOGICAL-c386t-fad2ce8d663ad09d8b2d3ca7a656cecf2de77c018fe460d5f040d6d17d2221ef3
IEDL.DBID U2A
ISSN 1022-9760
IngestDate Fri Jul 25 12:22:36 EDT 2025
Tue Jun 17 21:04:25 EDT 2025
Tue Jun 10 20:50:27 EDT 2025
Tue Jul 01 03:59:22 EDT 2025
Thu Apr 24 23:05:35 EDT 2025
Fri Feb 21 02:46:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Polyethersulfone
Membrane
Ultrafiltration
Water permeation flux
Nonsolvent induced phase separation
Asymmetric bi-continuous structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-fad2ce8d663ad09d8b2d3ca7a656cecf2de77c018fe460d5f040d6d17d2221ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8935-1151
PQID 2614796612
PQPubID 326246
ParticipantIDs proquest_journals_2614796612
gale_infotracmisc_A703946150
gale_infotracacademiconefile_A703946150
crossref_citationtrail_10_1007_s10965_021_02867_6
crossref_primary_10_1007_s10965_021_02867_6
springer_journals_10_1007_s10965_021_02867_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of polymer research
PublicationTitleAbbrev J Polym Res
PublicationYear 2022
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Gholami, Zinadini, Zinatizadeh, Abbasi (CR18) 2018; 194
Pan, Yu, Shi (CR39) 2017; 92
Kong, Lim, Shin (CR20) 2020; 84
Kim, Min, Park (CR24) 2001; 81
Ho, Su, Cheng (CR3) 2021; 217
Zareei, Hosseini (CR4) 2019; 226
Kusworo, Widayat, Utomo (CR37) 2020; 148
Borodko, Habas, Koebel (CR29) 2006; 110
Rajabi, Ghaemi, Madaeni (CR12) 2015; 349
Rahimpour, Jahanshahi, Khalili (CR25) 2012; 286
Vatsha, Ngila, Moutloali (CR14) 2014; 67–69
Ghaemi, Madaeni, Alizadeh (CR11) 2012; 290
Algamdi, Alsohaimi, Lawler (CR9) 2019; 223
CR10
Abdel-Karim, Gad-Allah, El-Kalliny (CR8) 2017; 175
Gao, Sun, Gao (CR19) 2017; 542
Zhang, Liu, Shi (CR38) 2016; 516
Kim, Kim, Lee, Drioli (CR5) 2016; 62
Huang, Zhang, Wang (CR32) 2012; 423–424
Dang, Narbaitz, Matsuura, Khulbe (CR16) 2006; 41
Qian, Yin, Feng (CR30) 2001; 11
Zhang, Liu, Li (CR35) 2020; 505
Tomietto, Carré, Loulergue (CR7) 2020; 204
Singh, Khulbe, Matsuura, Ramamurthy (CR34) 1998; 142
Lang, Shen, Zhang (CR27) 2013; 430
Yu, Liu, Shen (CR40) 2020; 243
Zhao, Xue, Ran, Sun (CR1) 2013; 58
McKelvey, Koros (CR22) 1996; 112
Alaei Shahmirzadi, Hosseini, Ruan, Tan (CR21) 2015; 5
Zhang, Cui, Hu (CR23) 2017; 540
Baker (CR2) 2012
Yuliwati, Ismail, Matsuura (CR31) 2011; 283
al Malek SA, Abu Seman MN, Johnson D, Hilal N (CR13) 2012; 288
Hossein Razzaghi, Safekordi, Tavakolmoghadam (CR26) 2014; 470
Wu, Sun, Wang (CR36) 2006; 285
Alexowsky, Bojarska, Ulbricht (CR6) 2019; 577
Li, Sun, Gao, Dong (CR17) 2020; 251
Kim, Choi, Tak (CR28) 1999; 74
Yoo, Kim, Jho (CR15) 2004; 236
Rohani, Hyland, Patterson (CR33) 2011; 382
DY Zhang (2867_CR38) 2016; 516
C Zhao (2867_CR1) 2013; 58
MA Alaei Shahmirzadi (2867_CR21) 2015; 5
XF Qian (2867_CR30) 2001; 11
E Yuliwati (2867_CR31) 2011; 283
SH Yoo (2867_CR15) 2004; 236
F Zareei (2867_CR4) 2019; 226
HT Dang (2867_CR16) 2006; 41
MS Algamdi (2867_CR9) 2019; 223
D Li (2867_CR17) 2020; 251
S Singh (2867_CR34) 1998; 142
RW Baker (2867_CR2) 2012
R Rohani (2867_CR33) 2011; 382
L Zhang (2867_CR23) 2017; 540
W-Z Lang (2867_CR27) 2013; 430
SA McKelvey (2867_CR22) 1996; 112
S Zhang (2867_CR35) 2020; 505
N Ghaemi (2867_CR11) 2012; 290
H Rajabi (2867_CR12) 2015; 349
JH Kim (2867_CR24) 2001; 81
C Alexowsky (2867_CR6) 2019; 577
JF Kim (2867_CR5) 2016; 62
B Vatsha (2867_CR14) 2014; 67–69
2867_CR10
A Rahimpour (2867_CR25) 2012; 286
P Tomietto (2867_CR7) 2020; 204
L Wu (2867_CR36) 2006; 285
C-C Ho (2867_CR3) 2021; 217
al Malek SA, Abu Seman MN, Johnson (2867_CR13) 2012; 288
J Huang (2867_CR32) 2012; 423–424
TD Kusworo (2867_CR37) 2020; 148
S Kong (2867_CR20) 2020; 84
M Hossein Razzaghi (2867_CR26) 2014; 470
W Yu (2867_CR40) 2020; 243
A Abdel-Karim (2867_CR8) 2017; 175
Y Pan (2867_CR39) 2017; 92
H Gao (2867_CR19) 2017; 542
F Gholami (2867_CR18) 2018; 194
IC Kim (2867_CR28) 1999; 74
Y Borodko (2867_CR29) 2006; 110
References_xml – volume: 577
  start-page: 69
  year: 2019
  end-page: 78
  ident: CR6
  article-title: Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2019.01.033
– volume: 41
  start-page: 84
  year: 2006
  end-page: 93
  ident: CR16
  article-title: A Comparison of Commercial and Experimental Ultrafiltration Membranes via Surface Property Analysis and Fouling Tests
  publication-title: Water Qual Res J
  doi: 10.2166/wqrj.2006.009
– volume: 349
  start-page: 66
  year: 2015
  end-page: 77
  ident: CR12
  article-title: Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.04.214
– volume: 74
  start-page: 2046
  year: 1999
  end-page: 2055
  ident: CR28
  article-title: Sulfonated polyethersulfone by heterogeneous method and its membrane performances
  publication-title: J Appl Polym Sci
  doi: 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3
– volume: 223
  start-page: 17
  year: 2019
  end-page: 23
  ident: CR9
  article-title: Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.04.057
– volume: 540
  start-page: 136
  year: 2017
  end-page: 145
  ident: CR23
  article-title: Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2017.06.044
– volume: 430
  start-page: 1
  year: 2013
  end-page: 10
  ident: CR27
  article-title: Preparation and characterizations of charged poly(vinyl butyral) hollow fiber ultrafiltration membranes with perfluorosulfonic acid as additive
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.10.039
– ident: CR10
– volume: 226
  start-page: 48
  year: 2019
  end-page: 58
  ident: CR4
  article-title: A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.077
– volume: 204
  year: 2020
  ident: CR7
  article-title: Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122813
– volume: 194
  start-page: 272
  year: 2018
  end-page: 280
  ident: CR18
  article-title: TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2017.11.054
– volume: 11
  start-page: 2504
  year: 2001
  end-page: 2506
  ident: CR30
  article-title: Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles
  publication-title: J Mater Chem
  doi: 10.1039/b103708k
– volume: 67–69
  start-page: 125
  year: 2014
  end-page: 131
  ident: CR14
  article-title: Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification
  publication-title: Phys Chem Earth Parts A/B/C
  doi: 10.1016/j.pce.2013.09.021
– volume: 236
  start-page: 203
  year: 2004
  end-page: 207
  ident: CR15
  article-title: Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.02.017
– year: 2012
  ident: CR2
  publication-title: Membrane technology and applications
  doi: 10.1002/9781118359686
– volume: 243
  year: 2020
  ident: CR40
  article-title: Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125446
– volume: 62
  start-page: 461
  year: 2016
  end-page: 490
  ident: CR5
  article-title: Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review
  publication-title: AIChE J
  doi: 10.1002/aic.15076
– volume: 112
  start-page: 29
  year: 1996
  end-page: 39
  ident: CR22
  article-title: Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes
  publication-title: J Membr Sci
  doi: 10.1016/0376-7388(95)00197-2
– volume: 5
  start-page: 49080
  year: 2015
  end-page: 49097
  ident: CR21
  article-title: Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters
  publication-title: RSC Adv
  doi: 10.1039/C5RA05985B
– volume: 285
  start-page: 290
  year: 2006
  end-page: 298
  ident: CR36
  article-title: Poly(vinylidene fluoride)/polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2006.08.033
– volume: 423–424
  start-page: 362
  year: 2012
  end-page: 370
  ident: CR32
  article-title: Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.08.029
– volume: 175
  start-page: 36
  year: 2017
  end-page: 46
  ident: CR8
  article-title: Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2016.10.060
– volume: 251
  year: 2020
  ident: CR17
  article-title: Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2020.117144
– volume: 542
  start-page: 81
  year: 2017
  end-page: 90
  ident: CR19
  article-title: Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2017.07.053
– volume: 148
  start-page: 935
  year: 2020
  end-page: 945
  ident: CR37
  article-title: Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.177
– volume: 505
  year: 2020
  ident: CR35
  article-title: Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.144553
– volume: 84
  start-page: 131
  year: 2020
  end-page: 140
  ident: CR20
  article-title: High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2019.12.028
– volume: 286
  start-page: 99
  year: 2012
  end-page: 107
  ident: CR25
  article-title: Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.10.039
– volume: 283
  start-page: 206
  year: 2011
  end-page: 213
  ident: CR31
  article-title: Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.02.037
– volume: 288
  start-page: 31
  year: 2012
  end-page: 39
  ident: CR13
  article-title: Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.12.006
– volume: 516
  start-page: 83
  year: 2016
  end-page: 93
  ident: CR38
  article-title: Antifouling polyimide membrane with surface-bound silver particles
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2016.06.012
– volume: 81
  start-page: 3481
  year: 2001
  end-page: 3488
  ident: CR24
  article-title: Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.1804
– volume: 290
  start-page: 99
  year: 2012
  end-page: 106
  ident: CR11
  article-title: Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: Characterization and performance in rejection of pesticides
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.01.013
– volume: 92
  start-page: 562
  year: 2017
  end-page: 572
  ident: CR39
  article-title: A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.5034
– volume: 58
  start-page: 76
  year: 2013
  end-page: 150
  ident: CR1
  article-title: Modification of polyethersulfone membranes - A review of methods
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2012.07.002
– volume: 382
  start-page: 278
  year: 2011
  end-page: 290
  ident: CR33
  article-title: A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2011.08.023
– volume: 142
  start-page: 111
  year: 1998
  end-page: 127
  ident: CR34
  article-title: Membrane characterization by solute transport and atomic force microscopy
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(97)00329-3
– volume: 217
  year: 2021
  ident: CR3
  article-title: Fabrication of high-flux asymmetric polyethersulfone (PES) ultrafiltration membranes by nonsolvent induced phase separation process: Effects of H2O contents in the dope
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123451
– volume: 470
  start-page: 547
  year: 2014
  end-page: 557
  ident: CR26
  article-title: Morphological and separation performance study of PVDF/CA blend membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2014.07.026
– volume: 110
  start-page: 23052
  year: 2006
  end-page: 23059
  ident: CR29
  article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV - Raman and FTIR
  publication-title: J Phys Chem B
  doi: 10.1021/jp063338
– volume: 505
  year: 2020
  ident: 2867_CR35
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.144553
– volume: 148
  start-page: 935
  year: 2020
  ident: 2867_CR37
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.177
– volume: 204
  year: 2020
  ident: 2867_CR7
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122813
– volume: 470
  start-page: 547
  year: 2014
  ident: 2867_CR26
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2014.07.026
– volume: 382
  start-page: 278
  year: 2011
  ident: 2867_CR33
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2011.08.023
– volume-title: Membrane technology and applications
  year: 2012
  ident: 2867_CR2
  doi: 10.1002/9781118359686
– volume: 112
  start-page: 29
  year: 1996
  ident: 2867_CR22
  publication-title: J Membr Sci
  doi: 10.1016/0376-7388(95)00197-2
– ident: 2867_CR10
  doi: 10.1016/j.jtice.2020.07.019
– volume: 349
  start-page: 66
  year: 2015
  ident: 2867_CR12
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.04.214
– volume: 251
  year: 2020
  ident: 2867_CR17
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2020.117144
– volume: 175
  start-page: 36
  year: 2017
  ident: 2867_CR8
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2016.10.060
– volume: 577
  start-page: 69
  year: 2019
  ident: 2867_CR6
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2019.01.033
– volume: 67–69
  start-page: 125
  year: 2014
  ident: 2867_CR14
  publication-title: Phys Chem Earth Parts A/B/C
  doi: 10.1016/j.pce.2013.09.021
– volume: 286
  start-page: 99
  year: 2012
  ident: 2867_CR25
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.10.039
– volume: 236
  start-page: 203
  year: 2004
  ident: 2867_CR15
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.02.017
– volume: 84
  start-page: 131
  year: 2020
  ident: 2867_CR20
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2019.12.028
– volume: 81
  start-page: 3481
  year: 2001
  ident: 2867_CR24
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.1804
– volume: 226
  start-page: 48
  year: 2019
  ident: 2867_CR4
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.077
– volume: 423–424
  start-page: 362
  year: 2012
  ident: 2867_CR32
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.08.029
– volume: 430
  start-page: 1
  year: 2013
  ident: 2867_CR27
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.10.039
– volume: 92
  start-page: 562
  year: 2017
  ident: 2867_CR39
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.5034
– volume: 288
  start-page: 31
  year: 2012
  ident: 2867_CR13
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.12.006
– volume: 290
  start-page: 99
  year: 2012
  ident: 2867_CR11
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.01.013
– volume: 516
  start-page: 83
  year: 2016
  ident: 2867_CR38
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2016.06.012
– volume: 542
  start-page: 81
  year: 2017
  ident: 2867_CR19
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2017.07.053
– volume: 58
  start-page: 76
  year: 2013
  ident: 2867_CR1
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2012.07.002
– volume: 5
  start-page: 49080
  year: 2015
  ident: 2867_CR21
  publication-title: RSC Adv
  doi: 10.1039/C5RA05985B
– volume: 110
  start-page: 23052
  year: 2006
  ident: 2867_CR29
  publication-title: J Phys Chem B
  doi: 10.1021/jp063338
– volume: 283
  start-page: 206
  year: 2011
  ident: 2867_CR31
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.02.037
– volume: 285
  start-page: 290
  year: 2006
  ident: 2867_CR36
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2006.08.033
– volume: 11
  start-page: 2504
  year: 2001
  ident: 2867_CR30
  publication-title: J Mater Chem
  doi: 10.1039/b103708k
– volume: 142
  start-page: 111
  year: 1998
  ident: 2867_CR34
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(97)00329-3
– volume: 41
  start-page: 84
  year: 2006
  ident: 2867_CR16
  publication-title: Water Qual Res J
  doi: 10.2166/wqrj.2006.009
– volume: 243
  year: 2020
  ident: 2867_CR40
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125446
– volume: 223
  start-page: 17
  year: 2019
  ident: 2867_CR9
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.04.057
– volume: 540
  start-page: 136
  year: 2017
  ident: 2867_CR23
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2017.06.044
– volume: 194
  start-page: 272
  year: 2018
  ident: 2867_CR18
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2017.11.054
– volume: 74
  start-page: 2046
  year: 1999
  ident: 2867_CR28
  publication-title: J Appl Polym Sci
  doi: 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3
– volume: 217
  year: 2021
  ident: 2867_CR3
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.123451
– volume: 62
  start-page: 461
  year: 2016
  ident: 2867_CR5
  publication-title: AIChE J
  doi: 10.1002/aic.15076
SSID ssj0055768
Score 2.3106022
Snippet This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using...
This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/[gamma]-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Asymmetry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Membranes
Original Paper
Penetration
Phase separation
Polyethersulfones
Polymer Sciences
Polyvinylpyrrolidone
Pore size
Povidone
Solvents
Ultrafiltration
Water
Title Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application
URI https://link.springer.com/article/10.1007/s10965-021-02867-6
https://www.proquest.com/docview/2614796612
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_i48Au04ChdUDlA9KYRqTEdeLkGKAFgYaQtkpwshx_SJXSFDWNWM_7x_ecJkBhIHHKwR-y8uzn389-72eAA51RyySNPMSiymPc-F6SMBfvIP0QWVDs11JKP6-i8yG7uAlvmqSwso12b68ka0_9JNktiVw2MdJfGuPyjlZhPUTu7gK5hjRt_W_oEHR9x4k0Czdbv0mV-X8fS9vRc6f84na03nQGn-BjgxZJujDvJqyYYgs2TtpH2rbhb1rOx2P3KpYistAkG3ku-HxUVMjo8zlZyMNWU6PJ3SSf19m9ZZXbSWHI4XX_13cyNmMkzOjwiDuSJWXlpI8nU3KPIHRKbF79IYhrSZXPptKO8kZllzy5-P4Mw0H_98m517yr4KleHM08KzVVJtYINqT2Ex1nVPeU5BKxnTLKUm04V34QW8MiX4cWF7qOdMA1gonA2N4OrBU4zi9ADOOZDCQy8ixgUrKMI1oP_R6nVgehiToQtL9XqEZ03L19kYtHuWRnEoEmEbVJBLb58dDmbiG58Wbtb85qwq1H7FnJJq0Ax-eUrUSKLi1hTva-A3tLNdFSarm4tbto1nEpkF8yjowwoB04aufCY_Hrw_r6vuq78IG6-Vqf7ezBGk4Os49oZ5Z1YTUenHVhPT0-PR6479ntZb9bT_l_Wkv7BA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVCiIhRZ8ALUIIiWOEyeHHlal1ZY-VImu1Jtx_JBWymarzUZlz_0r_FDG3oR2W0Di0LMfsjzjeXhmvgF4rwtqmaRpgLaoChg3YZDnzOU7yDBBLygLPZTSyWk6GLKvF8nFCvzsamF8tnsXkvSS-laxW566amJ0f2mGzzttUymPzPwKHbV69_ALUvUDpQf753uDoO0lEKg4S2eBlZoqk2lUsFKHuc4KqmMluUR7RhllqTacqzDKrGFpqBOLzK1THXGNCjQyNsZ9H8FjND4y93aGtN_J-8RZ7D6mim4dKvewLc3585mX1N9dJXAvGuuV3ME6PG2tU9JfsNMzWDHVc1jb65rCbcB1v56Px64LlyKy0qQYBS7ZfVQ1k6Yu52QBR9tMjSaXk3Luq4nrprSTypCds_1vH8nYjNFBRwFL3BcwqRsHtTyZkis0eqfEls0PgnY0acrZVNpR2aL6kluB9hcwfJC7fwmrFZ7zFRDDeCEjaYq4iJiUrODoHSRhzKnVUWLSHkTd9QrVgpy7XhuluIFndiQRSBLhSSJwzaffay4XEB__nL3tqCbc-8edlWzLGPB8DklL9FGE5szB7Pdgc2kmUkotD3d0F63cqAX6s4yjBxrRHnzueOFm-O_Hev1_09_B2uD85FgcH54evYEn1PGu_1fahFVkFLOFltaseOsZncD3h35ZvwBY9TYq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVcUEtbsUDBB1BbtRGJ48TJgcMKWPFoEVK7EjfX8UNaKZtdbTaie-4f4icyzibA9iX1wNkPjTzjeXg83wDs6oxaJmnsoS-qPMaN76Upc_8dpB9hFJT4NZTSl4v4pM_OrqKrJbhpa2Hq3-5tSnJe0-BQmorp_ljb_QeFb2nsKosxFKYJXvW4-VZ5bmbXGLSVB6dHyOE9SnvH3w5PvKavgKfCJJ56VmqqTKLR2ErtpzrJqA6V5BJ9G2WUpdpwrvwgsYbFvo4sCrqOdcA1GtPA2BD3fQJPmas-xhvUp91W90fOe6_zqxjioaH3mzKdP9O8YAp_NQi_ZWZrg9d7AauNp0q6c9F6CUumWIPnh22DuFfws1vOhkPXkUsRWWiSDTx3ioOiGlVlPiNzaNpqYjQZj_JZXVlcVrkdFYa8vzz--oEMzRCDdVS2xD0Hk7JysMujCblGB3hCbF79IOhTkyqfTqQd5A3CL3mQdH8N_Uc5-zewXCCd60AM45kMpMnCLGBSsoxjpBD5IadWB5GJOxC0xytUA3ju-m7k4h6q2bFEIEtEzRKBaz7erRnP4T7-Ofud45pwugB3VrIpaUD6HKqW6KI6TZmD3O_A1sJM5JRaHG75LhodUgqMbRnHaDSgHfjUysL98N_J2vi_6Tvw7PKoJz6fXpxvwgp1ols_MW3BMsqJeYtO1zTbruWcwPfHvli3_fY6XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+and+bi-continuously+structured+polyethersulfone+%28PES%29+membranes+with+superior+water+flux+for+ultrafiltration+application&rft.jtitle=Journal+of+polymer+research&rft.au=Chang%2C+Chao-Ching&rft.au=Yu%2C+Szu-Ting&rft.au=Su%2C+Jenn+Fang&rft.au=Cheng%2C+Liao-Ping&rft.date=2022-01-01&rft.issn=1022-9760&rft.eissn=1572-8935&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs10965-021-02867-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10965_021_02867_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-9760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-9760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-9760&client=summon