Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application
This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GB...
Saved in:
Published in | Journal of polymer research Vol. 29; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m
−2
h
−1
and a BSA rejection of 91%. |
---|---|
AbstractList | This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m−2 h−1 and a BSA rejection of 91%. This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L•m −2 h −1 and a BSA rejection of 91%. This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/[gamma]-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using non-solvent induced phase separation (NIPS) process. Different amounts of PVP and PES are added into the environmentally friendly solvent, GBL, to form the dope solutions and their effects on the morphological, physical, permeation, and filtration properties of formed membranes are systematically studied. The results demonstrate that the pore size on the top surface and the size of macrovoids in the bulk increase with increasing PVP content and decreasing PES amount in the dope. In the optimal conditions (PVP/PES ratio approaches 1, in particular), the macrovoids disappears and the pores evolve into three-dimensional pore networks in PES matrix. This unique bi-continuous membrane exhibits a remarkable water permeation flux of nearly 1000 L*m.sup.-2 h.sup.-1 and a BSA rejection of 91%. |
ArticleNumber | 23 |
Audience | Academic |
Author | Chang, Chao-Ching Cheng, Liao-Ping Yu, Szu-Ting Su, Jenn Fang |
Author_xml | – sequence: 1 givenname: Chao-Ching surname: Chang fullname: Chang, Chao-Ching organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University – sequence: 2 givenname: Szu-Ting surname: Yu fullname: Yu, Szu-Ting organization: Department of Chemical and Materials Engineering, Tamkang University – sequence: 3 givenname: Jenn Fang orcidid: 0000-0002-8935-1151 surname: Su fullname: Su, Jenn Fang email: jennfangsu@mail.tku.edu.tw organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University – sequence: 4 givenname: Liao-Ping surname: Cheng fullname: Cheng, Liao-Ping organization: Department of Chemical and Materials Engineering, Tamkang University, Energy and Opto-Electronic Materials Research Center, Tamkang University |
BookMark | eNp9kU1rHSEUhqWk0Hz9ga6EbtrFpOrc0ZnlJaRNINBCmrV49ZgYHJ36QXLX_eM19xZCSwmiHuF9PL6-R-ggxAAIvafkjBIiPmdKJj50hNE2Ry46_gYd0kGwbpz64aDVhLFuEpy8Q0c5PxAyDIKPh-jXOm_nGUpyGqtg8MZ1OobiQo01-y3OJVVdagKDl-i3UO4h5epta48_fr-4-YRnmDdJBcj40ZV7nOsCycWEH1WBhK2vT9i2Y_UlKeue1-JiwGpZvNO7-gS9tcpnOP2zH6PbLxc_zi-7629fr87X153uR146qwzTMBrOe2XIZMYNM71WQvGBa9CWGRBCEzpaWHFiBktWxHBDhWGMUbD9Mfqwv3dJ8WeFXORDrCm0lpJxuhIT55S9qO6UB-mCje3JenZZy7Ug_bTidCBNdfYfVRsGZtd-EJpV-BsY94BOMecEVmpXdvYb6LykRD4nKfdJypak3CUpeUPZP-iS3KzS9nWo30O5icMdpBezr1C_AUTktec |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2022_132858 crossref_primary_10_1007_s10965_024_04222_x crossref_primary_10_1039_D2TA07200A crossref_primary_10_1016_j_polymer_2022_124560 crossref_primary_10_1007_s10570_024_05760_9 crossref_primary_10_1016_j_polymer_2022_125607 crossref_primary_10_1016_j_giant_2023_100227 |
Cites_doi | 10.1016/j.memsci.2019.01.033 10.2166/wqrj.2006.009 10.1016/j.apsusc.2015.04.214 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3 10.1016/j.seppur.2019.04.057 10.1016/j.memsci.2017.06.044 10.1016/j.memsci.2012.10.039 10.1016/j.seppur.2019.05.077 10.1016/j.polymer.2020.122813 10.1016/j.seppur.2017.11.054 10.1039/b103708k 10.1016/j.pce.2013.09.021 10.1016/j.memsci.2004.02.017 10.1002/9781118359686 10.1016/j.chemosphere.2019.125446 10.1002/aic.15076 10.1016/0376-7388(95)00197-2 10.1039/C5RA05985B 10.1016/j.memsci.2006.08.033 10.1016/j.memsci.2012.08.029 10.1016/j.seppur.2016.10.060 10.1016/j.seppur.2020.117144 10.1016/j.memsci.2017.07.053 10.1016/j.renene.2019.10.177 10.1016/j.apsusc.2019.144553 10.1016/j.jiec.2019.12.028 10.1016/j.desal.2011.10.039 10.1016/j.desal.2011.02.037 10.1016/j.desal.2011.12.006 10.1016/j.memsci.2016.06.012 10.1002/app.1804 10.1016/j.desal.2012.01.013 10.1002/jctb.5034 10.1016/j.pmatsci.2012.07.002 10.1016/j.memsci.2011.08.023 10.1016/S0376-7388(97)00329-3 10.1016/j.polymer.2021.123451 10.1016/j.memsci.2014.07.026 10.1021/jp063338 10.1016/j.jtice.2020.07.019 |
ContentType | Journal Article |
Copyright | The Polymer Society, Taipei 2021 COPYRIGHT 2022 Springer The Polymer Society, Taipei 2021. |
Copyright_xml | – notice: The Polymer Society, Taipei 2021 – notice: COPYRIGHT 2022 Springer – notice: The Polymer Society, Taipei 2021. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1007/s10965-021-02867-6 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-8935 |
ExternalDocumentID | A703946150 10_1007_s10965_021_02867_6 |
GrantInformation_xml | – fundername: ministry of science and technology, taiwan grantid: 109-2221-E-032 -040 -MY2 funderid: http://dx.doi.org/10.13039/501100004663 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KC. KDC KOV KOW LAK LLZTM M4Y MA- ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z ZMTXR ~8M ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB 7SR 8FD ABRTQ JG9 |
ID | FETCH-LOGICAL-c386t-fad2ce8d663ad09d8b2d3ca7a656cecf2de77c018fe460d5f040d6d17d2221ef3 |
IEDL.DBID | U2A |
ISSN | 1022-9760 |
IngestDate | Fri Jul 25 12:22:36 EDT 2025 Tue Jun 17 21:04:25 EDT 2025 Tue Jun 10 20:50:27 EDT 2025 Tue Jul 01 03:59:22 EDT 2025 Thu Apr 24 23:05:35 EDT 2025 Fri Feb 21 02:46:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Polyethersulfone Membrane Ultrafiltration Water permeation flux Nonsolvent induced phase separation Asymmetric bi-continuous structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-fad2ce8d663ad09d8b2d3ca7a656cecf2de77c018fe460d5f040d6d17d2221ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8935-1151 |
PQID | 2614796612 |
PQPubID | 326246 |
ParticipantIDs | proquest_journals_2614796612 gale_infotracmisc_A703946150 gale_infotracacademiconefile_A703946150 crossref_citationtrail_10_1007_s10965_021_02867_6 crossref_primary_10_1007_s10965_021_02867_6 springer_journals_10_1007_s10965_021_02867_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of polymer research |
PublicationTitleAbbrev | J Polym Res |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | Gholami, Zinadini, Zinatizadeh, Abbasi (CR18) 2018; 194 Pan, Yu, Shi (CR39) 2017; 92 Kong, Lim, Shin (CR20) 2020; 84 Kim, Min, Park (CR24) 2001; 81 Ho, Su, Cheng (CR3) 2021; 217 Zareei, Hosseini (CR4) 2019; 226 Kusworo, Widayat, Utomo (CR37) 2020; 148 Borodko, Habas, Koebel (CR29) 2006; 110 Rajabi, Ghaemi, Madaeni (CR12) 2015; 349 Rahimpour, Jahanshahi, Khalili (CR25) 2012; 286 Vatsha, Ngila, Moutloali (CR14) 2014; 67–69 Ghaemi, Madaeni, Alizadeh (CR11) 2012; 290 Algamdi, Alsohaimi, Lawler (CR9) 2019; 223 CR10 Abdel-Karim, Gad-Allah, El-Kalliny (CR8) 2017; 175 Gao, Sun, Gao (CR19) 2017; 542 Zhang, Liu, Shi (CR38) 2016; 516 Kim, Kim, Lee, Drioli (CR5) 2016; 62 Huang, Zhang, Wang (CR32) 2012; 423–424 Dang, Narbaitz, Matsuura, Khulbe (CR16) 2006; 41 Qian, Yin, Feng (CR30) 2001; 11 Zhang, Liu, Li (CR35) 2020; 505 Tomietto, Carré, Loulergue (CR7) 2020; 204 Singh, Khulbe, Matsuura, Ramamurthy (CR34) 1998; 142 Lang, Shen, Zhang (CR27) 2013; 430 Yu, Liu, Shen (CR40) 2020; 243 Zhao, Xue, Ran, Sun (CR1) 2013; 58 McKelvey, Koros (CR22) 1996; 112 Alaei Shahmirzadi, Hosseini, Ruan, Tan (CR21) 2015; 5 Zhang, Cui, Hu (CR23) 2017; 540 Baker (CR2) 2012 Yuliwati, Ismail, Matsuura (CR31) 2011; 283 al Malek SA, Abu Seman MN, Johnson D, Hilal N (CR13) 2012; 288 Hossein Razzaghi, Safekordi, Tavakolmoghadam (CR26) 2014; 470 Wu, Sun, Wang (CR36) 2006; 285 Alexowsky, Bojarska, Ulbricht (CR6) 2019; 577 Li, Sun, Gao, Dong (CR17) 2020; 251 Kim, Choi, Tak (CR28) 1999; 74 Yoo, Kim, Jho (CR15) 2004; 236 Rohani, Hyland, Patterson (CR33) 2011; 382 DY Zhang (2867_CR38) 2016; 516 C Zhao (2867_CR1) 2013; 58 MA Alaei Shahmirzadi (2867_CR21) 2015; 5 XF Qian (2867_CR30) 2001; 11 E Yuliwati (2867_CR31) 2011; 283 SH Yoo (2867_CR15) 2004; 236 F Zareei (2867_CR4) 2019; 226 HT Dang (2867_CR16) 2006; 41 MS Algamdi (2867_CR9) 2019; 223 D Li (2867_CR17) 2020; 251 S Singh (2867_CR34) 1998; 142 RW Baker (2867_CR2) 2012 R Rohani (2867_CR33) 2011; 382 L Zhang (2867_CR23) 2017; 540 W-Z Lang (2867_CR27) 2013; 430 SA McKelvey (2867_CR22) 1996; 112 S Zhang (2867_CR35) 2020; 505 N Ghaemi (2867_CR11) 2012; 290 H Rajabi (2867_CR12) 2015; 349 JH Kim (2867_CR24) 2001; 81 C Alexowsky (2867_CR6) 2019; 577 JF Kim (2867_CR5) 2016; 62 B Vatsha (2867_CR14) 2014; 67–69 2867_CR10 A Rahimpour (2867_CR25) 2012; 286 P Tomietto (2867_CR7) 2020; 204 L Wu (2867_CR36) 2006; 285 C-C Ho (2867_CR3) 2021; 217 al Malek SA, Abu Seman MN, Johnson (2867_CR13) 2012; 288 J Huang (2867_CR32) 2012; 423–424 TD Kusworo (2867_CR37) 2020; 148 S Kong (2867_CR20) 2020; 84 M Hossein Razzaghi (2867_CR26) 2014; 470 W Yu (2867_CR40) 2020; 243 A Abdel-Karim (2867_CR8) 2017; 175 Y Pan (2867_CR39) 2017; 92 H Gao (2867_CR19) 2017; 542 F Gholami (2867_CR18) 2018; 194 IC Kim (2867_CR28) 1999; 74 Y Borodko (2867_CR29) 2006; 110 |
References_xml | – volume: 577 start-page: 69 year: 2019 end-page: 78 ident: CR6 article-title: Porous poly(vinylidene fluoride) membranes with tailored properties by fast and scalable non-solvent vapor induced phase separation publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.01.033 – volume: 41 start-page: 84 year: 2006 end-page: 93 ident: CR16 article-title: A Comparison of Commercial and Experimental Ultrafiltration Membranes via Surface Property Analysis and Fouling Tests publication-title: Water Qual Res J doi: 10.2166/wqrj.2006.009 – volume: 349 start-page: 66 year: 2015 end-page: 77 ident: CR12 article-title: Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: Influence of nanofiller shape on characterization and fouling resistance publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.04.214 – volume: 74 start-page: 2046 year: 1999 end-page: 2055 ident: CR28 article-title: Sulfonated polyethersulfone by heterogeneous method and its membrane performances publication-title: J Appl Polym Sci doi: 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3 – volume: 223 start-page: 17 year: 2019 end-page: 23 ident: CR9 article-title: Fabrication of graphene oxide incorporated polyethersulfone hybrid ultrafiltration membranes for humic acid removal publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.04.057 – volume: 540 start-page: 136 year: 2017 end-page: 145 ident: CR23 article-title: Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation publication-title: J Membr Sci doi: 10.1016/j.memsci.2017.06.044 – volume: 430 start-page: 1 year: 2013 end-page: 10 ident: CR27 article-title: Preparation and characterizations of charged poly(vinyl butyral) hollow fiber ultrafiltration membranes with perfluorosulfonic acid as additive publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.10.039 – ident: CR10 – volume: 226 start-page: 48 year: 2019 end-page: 58 ident: CR4 article-title: A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.077 – volume: 204 year: 2020 ident: CR7 article-title: Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process publication-title: Polymer doi: 10.1016/j.polymer.2020.122813 – volume: 194 start-page: 272 year: 2018 end-page: 280 ident: CR18 article-title: TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2017.11.054 – volume: 11 start-page: 2504 year: 2001 end-page: 2506 ident: CR30 article-title: Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles publication-title: J Mater Chem doi: 10.1039/b103708k – volume: 67–69 start-page: 125 year: 2014 end-page: 131 ident: CR14 article-title: Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification publication-title: Phys Chem Earth Parts A/B/C doi: 10.1016/j.pce.2013.09.021 – volume: 236 start-page: 203 year: 2004 end-page: 207 ident: CR15 article-title: Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.02.017 – year: 2012 ident: CR2 publication-title: Membrane technology and applications doi: 10.1002/9781118359686 – volume: 243 year: 2020 ident: CR40 article-title: Magnetic field assisted preparation of PES-Ni@MWCNTs membrane with enhanced permeability and antifouling performance publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125446 – volume: 62 start-page: 461 year: 2016 end-page: 490 ident: CR5 article-title: Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review publication-title: AIChE J doi: 10.1002/aic.15076 – volume: 112 start-page: 29 year: 1996 end-page: 39 ident: CR22 article-title: Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes publication-title: J Membr Sci doi: 10.1016/0376-7388(95)00197-2 – volume: 5 start-page: 49080 year: 2015 end-page: 49097 ident: CR21 article-title: Tailoring PES nanofiltration membranes through systematic investigations of prominent design, fabrication and operational parameters publication-title: RSC Adv doi: 10.1039/C5RA05985B – volume: 285 start-page: 290 year: 2006 end-page: 298 ident: CR36 article-title: Poly(vinylidene fluoride)/polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology publication-title: J Membr Sci doi: 10.1016/j.memsci.2006.08.033 – volume: 423–424 start-page: 362 year: 2012 end-page: 370 ident: CR32 article-title: Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.08.029 – volume: 175 start-page: 36 year: 2017 end-page: 46 ident: CR8 article-title: Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2016.10.060 – volume: 251 year: 2020 ident: CR17 article-title: Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.117144 – volume: 542 start-page: 81 year: 2017 end-page: 90 ident: CR19 article-title: Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection publication-title: J Membr Sci doi: 10.1016/j.memsci.2017.07.053 – volume: 148 start-page: 935 year: 2020 end-page: 945 ident: CR37 article-title: Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.177 – volume: 505 year: 2020 ident: CR35 article-title: Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.144553 – volume: 84 start-page: 131 year: 2020 end-page: 140 ident: CR20 article-title: High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.12.028 – volume: 286 start-page: 99 year: 2012 end-page: 107 ident: CR25 article-title: Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane publication-title: Desalination doi: 10.1016/j.desal.2011.10.039 – volume: 283 start-page: 206 year: 2011 end-page: 213 ident: CR31 article-title: Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation publication-title: Desalination doi: 10.1016/j.desal.2011.02.037 – volume: 288 start-page: 31 year: 2012 end-page: 39 ident: CR13 article-title: Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone publication-title: Desalination doi: 10.1016/j.desal.2011.12.006 – volume: 516 start-page: 83 year: 2016 end-page: 93 ident: CR38 article-title: Antifouling polyimide membrane with surface-bound silver particles publication-title: J Membr Sci doi: 10.1016/j.memsci.2016.06.012 – volume: 81 start-page: 3481 year: 2001 end-page: 3488 ident: CR24 article-title: Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion publication-title: J Appl Polym Sci doi: 10.1002/app.1804 – volume: 290 start-page: 99 year: 2012 end-page: 106 ident: CR11 article-title: Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: Characterization and performance in rejection of pesticides publication-title: Desalination doi: 10.1016/j.desal.2012.01.013 – volume: 92 start-page: 562 year: 2017 end-page: 572 ident: CR39 article-title: A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5034 – volume: 58 start-page: 76 year: 2013 end-page: 150 ident: CR1 article-title: Modification of polyethersulfone membranes - A review of methods publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2012.07.002 – volume: 382 start-page: 278 year: 2011 end-page: 290 ident: CR33 article-title: A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.08.023 – volume: 142 start-page: 111 year: 1998 end-page: 127 ident: CR34 article-title: Membrane characterization by solute transport and atomic force microscopy publication-title: J Membr Sci doi: 10.1016/S0376-7388(97)00329-3 – volume: 217 year: 2021 ident: CR3 article-title: Fabrication of high-flux asymmetric polyethersulfone (PES) ultrafiltration membranes by nonsolvent induced phase separation process: Effects of H2O contents in the dope publication-title: Polymer doi: 10.1016/j.polymer.2021.123451 – volume: 470 start-page: 547 year: 2014 end-page: 557 ident: CR26 article-title: Morphological and separation performance study of PVDF/CA blend membranes publication-title: J Membr Sci doi: 10.1016/j.memsci.2014.07.026 – volume: 110 start-page: 23052 year: 2006 end-page: 23059 ident: CR29 article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV - Raman and FTIR publication-title: J Phys Chem B doi: 10.1021/jp063338 – volume: 505 year: 2020 ident: 2867_CR35 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.144553 – volume: 148 start-page: 935 year: 2020 ident: 2867_CR37 publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.177 – volume: 204 year: 2020 ident: 2867_CR7 publication-title: Polymer doi: 10.1016/j.polymer.2020.122813 – volume: 470 start-page: 547 year: 2014 ident: 2867_CR26 publication-title: J Membr Sci doi: 10.1016/j.memsci.2014.07.026 – volume: 382 start-page: 278 year: 2011 ident: 2867_CR33 publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.08.023 – volume-title: Membrane technology and applications year: 2012 ident: 2867_CR2 doi: 10.1002/9781118359686 – volume: 112 start-page: 29 year: 1996 ident: 2867_CR22 publication-title: J Membr Sci doi: 10.1016/0376-7388(95)00197-2 – ident: 2867_CR10 doi: 10.1016/j.jtice.2020.07.019 – volume: 349 start-page: 66 year: 2015 ident: 2867_CR12 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.04.214 – volume: 251 year: 2020 ident: 2867_CR17 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.117144 – volume: 175 start-page: 36 year: 2017 ident: 2867_CR8 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2016.10.060 – volume: 577 start-page: 69 year: 2019 ident: 2867_CR6 publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.01.033 – volume: 67–69 start-page: 125 year: 2014 ident: 2867_CR14 publication-title: Phys Chem Earth Parts A/B/C doi: 10.1016/j.pce.2013.09.021 – volume: 286 start-page: 99 year: 2012 ident: 2867_CR25 publication-title: Desalination doi: 10.1016/j.desal.2011.10.039 – volume: 236 start-page: 203 year: 2004 ident: 2867_CR15 publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.02.017 – volume: 84 start-page: 131 year: 2020 ident: 2867_CR20 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.12.028 – volume: 81 start-page: 3481 year: 2001 ident: 2867_CR24 publication-title: J Appl Polym Sci doi: 10.1002/app.1804 – volume: 226 start-page: 48 year: 2019 ident: 2867_CR4 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.077 – volume: 423–424 start-page: 362 year: 2012 ident: 2867_CR32 publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.08.029 – volume: 430 start-page: 1 year: 2013 ident: 2867_CR27 publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.10.039 – volume: 92 start-page: 562 year: 2017 ident: 2867_CR39 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5034 – volume: 288 start-page: 31 year: 2012 ident: 2867_CR13 publication-title: Desalination doi: 10.1016/j.desal.2011.12.006 – volume: 290 start-page: 99 year: 2012 ident: 2867_CR11 publication-title: Desalination doi: 10.1016/j.desal.2012.01.013 – volume: 516 start-page: 83 year: 2016 ident: 2867_CR38 publication-title: J Membr Sci doi: 10.1016/j.memsci.2016.06.012 – volume: 542 start-page: 81 year: 2017 ident: 2867_CR19 publication-title: J Membr Sci doi: 10.1016/j.memsci.2017.07.053 – volume: 58 start-page: 76 year: 2013 ident: 2867_CR1 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2012.07.002 – volume: 5 start-page: 49080 year: 2015 ident: 2867_CR21 publication-title: RSC Adv doi: 10.1039/C5RA05985B – volume: 110 start-page: 23052 year: 2006 ident: 2867_CR29 publication-title: J Phys Chem B doi: 10.1021/jp063338 – volume: 283 start-page: 206 year: 2011 ident: 2867_CR31 publication-title: Desalination doi: 10.1016/j.desal.2011.02.037 – volume: 285 start-page: 290 year: 2006 ident: 2867_CR36 publication-title: J Membr Sci doi: 10.1016/j.memsci.2006.08.033 – volume: 11 start-page: 2504 year: 2001 ident: 2867_CR30 publication-title: J Mater Chem doi: 10.1039/b103708k – volume: 142 start-page: 111 year: 1998 ident: 2867_CR34 publication-title: J Membr Sci doi: 10.1016/S0376-7388(97)00329-3 – volume: 41 start-page: 84 year: 2006 ident: 2867_CR16 publication-title: Water Qual Res J doi: 10.2166/wqrj.2006.009 – volume: 243 year: 2020 ident: 2867_CR40 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125446 – volume: 223 start-page: 17 year: 2019 ident: 2867_CR9 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.04.057 – volume: 540 start-page: 136 year: 2017 ident: 2867_CR23 publication-title: J Membr Sci doi: 10.1016/j.memsci.2017.06.044 – volume: 194 start-page: 272 year: 2018 ident: 2867_CR18 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2017.11.054 – volume: 74 start-page: 2046 year: 1999 ident: 2867_CR28 publication-title: J Appl Polym Sci doi: 10.1002/(SICI)1097-4628(19991121)74:8<2046::AID-APP20>3.0.CO;2-3 – volume: 217 year: 2021 ident: 2867_CR3 publication-title: Polymer doi: 10.1016/j.polymer.2021.123451 – volume: 62 start-page: 461 year: 2016 ident: 2867_CR5 publication-title: AIChE J doi: 10.1002/aic.15076 |
SSID | ssj0055768 |
Score | 2.3106022 |
Snippet | This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/γ-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system using... This work reports a fabrication of asymmetric polyethersulfone (PES) membranes from the water/[gamma]-butyllactone (GBL)/polyvinylpyrrolidone (PVP)/PES system... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Asymmetry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Membranes Original Paper Penetration Phase separation Polyethersulfones Polymer Sciences Polyvinylpyrrolidone Pore size Povidone Solvents Ultrafiltration Water |
Title | Asymmetric and bi-continuously structured polyethersulfone (PES) membranes with superior water flux for ultrafiltration application |
URI | https://link.springer.com/article/10.1007/s10965-021-02867-6 https://www.proquest.com/docview/2614796612 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_i48Au04ChdUDlA9KYRqTEdeLkGKAFgYaQtkpwshx_SJXSFDWNWM_7x_ecJkBhIHHKwR-y8uzn389-72eAA51RyySNPMSiymPc-F6SMBfvIP0QWVDs11JKP6-i8yG7uAlvmqSwso12b68ka0_9JNktiVw2MdJfGuPyjlZhPUTu7gK5hjRt_W_oEHR9x4k0Czdbv0mV-X8fS9vRc6f84na03nQGn-BjgxZJujDvJqyYYgs2TtpH2rbhb1rOx2P3KpYistAkG3ku-HxUVMjo8zlZyMNWU6PJ3SSf19m9ZZXbSWHI4XX_13cyNmMkzOjwiDuSJWXlpI8nU3KPIHRKbF79IYhrSZXPptKO8kZllzy5-P4Mw0H_98m517yr4KleHM08KzVVJtYINqT2Ex1nVPeU5BKxnTLKUm04V34QW8MiX4cWF7qOdMA1gonA2N4OrBU4zi9ADOOZDCQy8ixgUrKMI1oP_R6nVgehiToQtL9XqEZ03L19kYtHuWRnEoEmEbVJBLb58dDmbiG58Wbtb85qwq1H7FnJJq0Ax-eUrUSKLi1hTva-A3tLNdFSarm4tbto1nEpkF8yjowwoB04aufCY_Hrw_r6vuq78IG6-Vqf7ezBGk4Os49oZ5Z1YTUenHVhPT0-PR6479ntZb9bT_l_Wkv7BA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVCiIhRZ8ALUIIiWOEyeHHlal1ZY-VImu1Jtx_JBWymarzUZlz_0r_FDG3oR2W0Di0LMfsjzjeXhmvgF4rwtqmaRpgLaoChg3YZDnzOU7yDBBLygLPZTSyWk6GLKvF8nFCvzsamF8tnsXkvSS-laxW566amJ0f2mGzzttUymPzPwKHbV69_ALUvUDpQf753uDoO0lEKg4S2eBlZoqk2lUsFKHuc4KqmMluUR7RhllqTacqzDKrGFpqBOLzK1THXGNCjQyNsZ9H8FjND4y93aGtN_J-8RZ7D6mim4dKvewLc3585mX1N9dJXAvGuuV3ME6PG2tU9JfsNMzWDHVc1jb65rCbcB1v56Px64LlyKy0qQYBS7ZfVQ1k6Yu52QBR9tMjSaXk3Luq4nrprSTypCds_1vH8nYjNFBRwFL3BcwqRsHtTyZkis0eqfEls0PgnY0acrZVNpR2aL6kluB9hcwfJC7fwmrFZ7zFRDDeCEjaYq4iJiUrODoHSRhzKnVUWLSHkTd9QrVgpy7XhuluIFndiQRSBLhSSJwzaffay4XEB__nL3tqCbc-8edlWzLGPB8DklL9FGE5szB7Pdgc2kmUkotD3d0F63cqAX6s4yjBxrRHnzueOFm-O_Hev1_09_B2uD85FgcH54evYEn1PGu_1fahFVkFLOFltaseOsZncD3h35ZvwBY9TYq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKrVcUEtbsUDBB1BbtRGJ48TJgcMKWPFoEVK7EjfX8UNaKZtdbTaie-4f4icyzibA9iX1wNkPjTzjeXg83wDs6oxaJmnsoS-qPMaN76Upc_8dpB9hFJT4NZTSl4v4pM_OrqKrJbhpa2Hq3-5tSnJe0-BQmorp_ljb_QeFb2nsKosxFKYJXvW4-VZ5bmbXGLSVB6dHyOE9SnvH3w5PvKavgKfCJJ56VmqqTKLR2ErtpzrJqA6V5BJ9G2WUpdpwrvwgsYbFvo4sCrqOdcA1GtPA2BD3fQJPmas-xhvUp91W90fOe6_zqxjioaH3mzKdP9O8YAp_NQi_ZWZrg9d7AauNp0q6c9F6CUumWIPnh22DuFfws1vOhkPXkUsRWWiSDTx3ioOiGlVlPiNzaNpqYjQZj_JZXVlcVrkdFYa8vzz--oEMzRCDdVS2xD0Hk7JysMujCblGB3hCbF79IOhTkyqfTqQd5A3CL3mQdH8N_Uc5-zewXCCd60AM45kMpMnCLGBSsoxjpBD5IadWB5GJOxC0xytUA3ju-m7k4h6q2bFEIEtEzRKBaz7erRnP4T7-Ofud45pwugB3VrIpaUD6HKqW6KI6TZmD3O_A1sJM5JRaHG75LhodUgqMbRnHaDSgHfjUysL98N_J2vi_6Tvw7PKoJz6fXpxvwgp1ols_MW3BMsqJeYtO1zTbruWcwPfHvli3_fY6XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+and+bi-continuously+structured+polyethersulfone+%28PES%29+membranes+with+superior+water+flux+for+ultrafiltration+application&rft.jtitle=Journal+of+polymer+research&rft.au=Chang%2C+Chao-Ching&rft.au=Yu%2C+Szu-Ting&rft.au=Su%2C+Jenn+Fang&rft.au=Cheng%2C+Liao-Ping&rft.date=2022-01-01&rft.issn=1022-9760&rft.eissn=1572-8935&rft.volume=29&rft.issue=1&rft_id=info:doi/10.1007%2Fs10965-021-02867-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10965_021_02867_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-9760&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-9760&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-9760&client=summon |