One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry

[Display omitted] •The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx d...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 530; p. 147209
Main Authors Benchakar, Mohamed, Loupias, Lola, Garnero, Cyril, Bilyk, Thomas, Morais, Cláudia, Canaff, Christine, Guignard, Nadia, Morisset, Sophie, Pazniak, Hanna, Hurand, Simon, Chartier, Patrick, Pacaud, Jérôme, Mauchamp, Vincent, Barsoum, Michel W., Habrioux, Aurélien, Célérier, Stéphane
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2020.147209

Cover

Loading…
Abstract [Display omitted] •The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx depending on the synthesis conditions. MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti3C2Tx, the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction – the hydrogen evolution reaction, HER – we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF3/HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications.
AbstractList [Display omitted] •The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx depending on the synthesis conditions. MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti3C2Tx, the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction – the hydrogen evolution reaction, HER – we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF3/HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications.
MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti 3 C 2 T x , the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction-the hydrogen evolution reaction, HER-we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF 3 /HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications.
ArticleNumber 147209
Author Loupias, Lola
Habrioux, Aurélien
Barsoum, Michel W.
Garnero, Cyril
Pacaud, Jérôme
Mauchamp, Vincent
Benchakar, Mohamed
Hurand, Simon
Chartier, Patrick
Guignard, Nadia
Pazniak, Hanna
Célérier, Stéphane
Canaff, Christine
Morisset, Sophie
Morais, Cláudia
Bilyk, Thomas
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Benchakar
  fullname: Benchakar, Mohamed
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 2
  givenname: Lola
  surname: Loupias
  fullname: Loupias, Lola
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 3
  givenname: Cyril
  surname: Garnero
  fullname: Garnero, Cyril
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 4
  givenname: Thomas
  surname: Bilyk
  fullname: Bilyk, Thomas
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 5
  givenname: Cláudia
  surname: Morais
  fullname: Morais, Cláudia
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 6
  givenname: Christine
  surname: Canaff
  fullname: Canaff, Christine
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 7
  givenname: Nadia
  surname: Guignard
  fullname: Guignard, Nadia
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 8
  givenname: Sophie
  surname: Morisset
  fullname: Morisset, Sophie
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 9
  givenname: Hanna
  surname: Pazniak
  fullname: Pazniak, Hanna
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 10
  givenname: Simon
  surname: Hurand
  fullname: Hurand, Simon
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 11
  givenname: Patrick
  surname: Chartier
  fullname: Chartier, Patrick
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 12
  givenname: Jérôme
  surname: Pacaud
  fullname: Pacaud, Jérôme
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 13
  givenname: Vincent
  surname: Mauchamp
  fullname: Mauchamp, Vincent
  organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France
– sequence: 14
  givenname: Michel W.
  surname: Barsoum
  fullname: Barsoum, Michel W.
  organization: Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19140, United States
– sequence: 15
  givenname: Aurélien
  surname: Habrioux
  fullname: Habrioux, Aurélien
  email: aurelien.habrioux@univ-poitiers.fr
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
– sequence: 16
  givenname: Stéphane
  surname: Célérier
  fullname: Célérier, Stéphane
  email: stephane.celerier@univ-poitiers.fr
  organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France
BackLink https://hal.science/hal-02904636$$DView record in HAL
BookMark eNqFkE1rGzEQhkVJoM7HP-hB10LX1cd-WDkUjGmbgkMuDuQm5NEoK7ORjKQNyaW_vWu2vfTQngZm3meGeS7IWYgBCfnA2ZIz3n4-LM0xjxmWgompVXeCqXdkwVedrJpmVZ-RxRRTVS2leE8ucj4wxsU0XZCf9wHp3fqRHnuT8RO13jlMGAq9e8SA-Yau6dPoLQ5-CpZIx2Ax5WKCpaVHCmkEbwaa4oA0OooFeh-eKMRgffExZBoD3Xm5EbtXmsfkDExUj88-l_R2Rc6dGTJe_66X5OHb193mttref_-xWW8rkKu2VI4r1YHsGqjBKWwb4AZBNXteq5ZZLpXt9o2DzjK7bxAb0WLNlJAChWnlSl6Sj_Pe3gz6mPyzSW86Gq9v11t96jGhWN3K9oVP2Zs5CynmnNBp8MWcfinJ-EFzpk_W9UHP1vXJup6tT3D9F_zn2n-wLzOGk4QXj0ln8BgArU8IRdvo_73gF9RpoJg
CitedBy_id crossref_primary_10_1021_acs_chemmater_4c02422
crossref_primary_10_1088_2058_8585_acad8b
crossref_primary_10_1016_j_apsusc_2022_153442
crossref_primary_10_1002_adsu_202400865
crossref_primary_10_1016_j_cej_2024_156686
crossref_primary_10_1088_1361_6528_ad53d0
crossref_primary_10_2139_ssrn_4054572
crossref_primary_10_1016_j_surfin_2024_105678
crossref_primary_10_1021_acs_nanolett_1c02809
crossref_primary_10_3390_en18030569
crossref_primary_10_1021_acsnano_0c06735
crossref_primary_10_1016_j_cej_2024_148700
crossref_primary_10_3390_molecules29010148
crossref_primary_10_1016_j_porgcoat_2023_107757
crossref_primary_10_3390_s24010038
crossref_primary_10_1039_D2NR04465J
crossref_primary_10_1021_acs_jpcc_3c02318
crossref_primary_10_1002_smll_202406334
crossref_primary_10_1016_j_triboint_2022_108170
crossref_primary_10_1002_advs_202307106
crossref_primary_10_1016_j_apsusc_2021_150210
crossref_primary_10_1021_acsami_3c19177
crossref_primary_10_1021_acsbiomaterials_3c01420
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_3390_coatings12040516
crossref_primary_10_1002_slct_202300737
crossref_primary_10_1016_j_chemosphere_2024_141280
crossref_primary_10_1016_j_mtcata_2023_100010
crossref_primary_10_1016_j_cej_2022_137028
crossref_primary_10_1016_j_nanoen_2022_107129
crossref_primary_10_1016_j_inoche_2024_112113
crossref_primary_10_1016_j_flatc_2023_100596
crossref_primary_10_17721_1812_5409_2020_4_12
crossref_primary_10_1016_j_chemosphere_2024_141838
crossref_primary_10_1016_j_est_2023_106975
crossref_primary_10_1063_5_0055711
crossref_primary_10_1021_acs_chemmater_3c01595
crossref_primary_10_1088_2053_1583_acbfcb
crossref_primary_10_1002_smtd_202100451
crossref_primary_10_1021_acsami_4c00783
crossref_primary_10_1002_admi_202100903
crossref_primary_10_1016_j_coelec_2021_100764
crossref_primary_10_1063_5_0217557
crossref_primary_10_1039_D3YA00489A
crossref_primary_10_1016_j_optmat_2024_115780
crossref_primary_10_1002_adma_202305200
crossref_primary_10_1016_j_matt_2021_01_015
crossref_primary_10_1039_D1NR02224E
crossref_primary_10_1039_D4MA00112E
crossref_primary_10_1007_s42114_022_00519_x
crossref_primary_10_1016_j_cej_2020_128099
crossref_primary_10_1088_1361_6528_ac04cf
crossref_primary_10_3390_surfaces5010001
crossref_primary_10_1016_j_ceramint_2022_10_167
crossref_primary_10_1039_D3MA00188A
crossref_primary_10_1016_j_flatc_2024_100734
crossref_primary_10_1016_j_jphotochem_2023_115260
crossref_primary_10_1109_JSEN_2021_3081588
crossref_primary_10_1016_j_jallcom_2024_173481
crossref_primary_10_1021_acsomega_4c04849
crossref_primary_10_1002_advs_202305099
crossref_primary_10_1002_smtd_202201530
crossref_primary_10_1016_j_flatc_2024_100730
crossref_primary_10_1088_1361_6463_ad056c
crossref_primary_10_1016_j_jfca_2023_105810
crossref_primary_10_1021_acsmaterialslett_1c00673
crossref_primary_10_1021_acsomega_4c01353
crossref_primary_10_1016_j_jelechem_2023_117915
crossref_primary_10_1016_j_ijhydene_2024_11_351
crossref_primary_10_1016_j_nxnano_2024_100055
crossref_primary_10_1016_j_triboint_2023_108273
crossref_primary_10_1016_j_apsusc_2024_160864
crossref_primary_10_1021_jacs_2c11290
crossref_primary_10_1002_admi_202202484
crossref_primary_10_1039_D4TA05097E
crossref_primary_10_1088_2053_1583_ac74ca
crossref_primary_10_1149_1945_7111_acc362
crossref_primary_10_1016_j_compositesb_2024_111255
crossref_primary_10_1021_acs_jpcc_3c03573
crossref_primary_10_1016_j_mtcomm_2024_110576
crossref_primary_10_3390_molecules27154925
crossref_primary_10_1016_j_jallcom_2025_179761
crossref_primary_10_1016_j_apsusc_2024_161926
crossref_primary_10_1016_j_triboint_2023_109137
crossref_primary_10_1016_j_apsusc_2023_159206
crossref_primary_10_3390_bios14100497
crossref_primary_10_1039_D1RA07771F
crossref_primary_10_1021_acs_jpcc_0c06798
crossref_primary_10_1002_aenm_202102355
crossref_primary_10_1021_acs_jpcc_3c04324
crossref_primary_10_1021_acs_energyfuels_4c04303
crossref_primary_10_1038_s41467_023_39533_y
crossref_primary_10_1039_D1MA00873K
crossref_primary_10_1002_advs_202405154
crossref_primary_10_1016_j_oceram_2024_100596
crossref_primary_10_1039_D3GC00787A
crossref_primary_10_1002_smll_202206767
crossref_primary_10_1016_j_mtcata_2024_100066
crossref_primary_10_1016_j_mtcata_2024_100069
crossref_primary_10_1016_j_apsusc_2021_150719
crossref_primary_10_1186_s11671_021_03510_5
crossref_primary_10_1134_S1027451022030041
crossref_primary_10_1016_j_cej_2024_158232
crossref_primary_10_1039_D4NR00615A
crossref_primary_10_1002_ente_202100713
crossref_primary_10_1039_D2NR05718B
crossref_primary_10_1016_j_addr_2021_114099
crossref_primary_10_1016_j_flatc_2022_100363
crossref_primary_10_1016_j_ijhydene_2021_12_185
crossref_primary_10_1021_acsanm_3c00788
crossref_primary_10_1039_D4TC03178D
crossref_primary_10_1039_D4TA00320A
crossref_primary_10_1016_j_flatc_2023_100544
crossref_primary_10_1016_j_jechem_2022_09_046
crossref_primary_10_1016_j_jcis_2024_03_159
crossref_primary_10_1016_j_est_2024_111629
crossref_primary_10_1021_acs_accounts_2c00613
crossref_primary_10_1002_advs_202408448
crossref_primary_10_1002_smtd_202300776
crossref_primary_10_1016_j_apsusc_2023_156397
crossref_primary_10_1021_acsami_3c11857
crossref_primary_10_1016_j_jechem_2024_01_038
crossref_primary_10_1002_celc_202100385
crossref_primary_10_1002_smtd_202201579
crossref_primary_10_1557_s43579_023_00442_2
crossref_primary_10_1103_PhysRevLett_134_106201
crossref_primary_10_1016_j_desal_2024_117781
crossref_primary_10_1016_j_diamond_2023_109883
crossref_primary_10_1007_s12034_023_03095_y
crossref_primary_10_1016_j_apsusc_2022_154001
crossref_primary_10_1016_j_apsusc_2021_151394
crossref_primary_10_1016_j_jechem_2022_08_032
crossref_primary_10_1021_acsanm_1c03814
crossref_primary_10_1364_OE_530215
crossref_primary_10_2139_ssrn_4197756
crossref_primary_10_1039_D4QM00103F
crossref_primary_10_1016_j_jhazmat_2022_130450
crossref_primary_10_1016_j_seppur_2023_125325
crossref_primary_10_1016_j_diamond_2022_109461
crossref_primary_10_1021_acsami_2c09669
crossref_primary_10_1021_acsnano_1c08636
crossref_primary_10_1002_smtd_202400848
crossref_primary_10_1016_j_electacta_2023_143420
crossref_primary_10_1016_j_materresbull_2022_111902
crossref_primary_10_1016_j_microc_2022_108200
crossref_primary_10_1021_acs_inorgchem_4c04794
crossref_primary_10_1016_j_materresbull_2024_113055
crossref_primary_10_1016_j_diamond_2024_111648
crossref_primary_10_1021_acsomega_1c06662
crossref_primary_10_1002_adfm_202209538
crossref_primary_10_1039_D1CP03960A
crossref_primary_10_1126_sciadv_ads3689
crossref_primary_10_1063_5_0138387
crossref_primary_10_1016_j_bioactmat_2021_06_016
crossref_primary_10_1007_s11664_022_10142_7
crossref_primary_10_1016_j_est_2024_112741
crossref_primary_10_1016_j_envres_2023_115919
crossref_primary_10_1007_s12678_024_00897_4
crossref_primary_10_1016_j_mssp_2022_106835
crossref_primary_10_1016_j_est_2023_108501
crossref_primary_10_1039_D5TA00035A
crossref_primary_10_1051_bioconf_202412922018
crossref_primary_10_1016_j_actamat_2024_119713
crossref_primary_10_1039_D2TB00289B
crossref_primary_10_1039_D4NA00927D
crossref_primary_10_1016_j_molliq_2022_120685
crossref_primary_10_1016_j_susmat_2022_e00490
crossref_primary_10_1021_acsanm_2c01143
crossref_primary_10_1021_acsnano_4c02150
crossref_primary_10_1038_s41596_024_00969_1
crossref_primary_10_1002_smtd_202201252
crossref_primary_10_1016_j_xcrp_2022_101151
crossref_primary_10_1016_j_jcis_2023_03_074
crossref_primary_10_1002_adma_202103148
crossref_primary_10_1016_j_eti_2022_102858
crossref_primary_10_1016_j_molliq_2023_123787
crossref_primary_10_1002_smll_202206107
crossref_primary_10_1021_acs_chemmater_1c03390
crossref_primary_10_1088_2053_1583_ac9e66
crossref_primary_10_1016_j_aca_2022_340512
crossref_primary_10_1021_jacs_4c13481
crossref_primary_10_1016_j_ensm_2023_103024
crossref_primary_10_1016_j_ceramint_2024_04_171
crossref_primary_10_3390_nano13050850
crossref_primary_10_1016_j_cej_2022_139512
crossref_primary_10_1016_j_susmat_2024_e01230
crossref_primary_10_3390_nano13111741
crossref_primary_10_1016_j_triboint_2023_108565
crossref_primary_10_1016_j_apt_2025_104789
crossref_primary_10_1016_j_jcis_2022_07_190
crossref_primary_10_1038_s41598_025_92638_w
crossref_primary_10_1002_celc_202200891
crossref_primary_10_1039_D3MA00429E
crossref_primary_10_1002_smtd_202300030
crossref_primary_10_1021_acsnano_1c07060
crossref_primary_10_1039_D3CC02693K
crossref_primary_10_1016_j_jpowsour_2023_233144
crossref_primary_10_2139_ssrn_4113738
crossref_primary_10_1016_j_cscee_2020_100034
crossref_primary_10_1088_2053_1583_ac1ea9
crossref_primary_10_1016_j_chemosphere_2023_140544
crossref_primary_10_1093_oxfmat_itae017
crossref_primary_10_1016_j_cej_2022_138686
crossref_primary_10_1016_j_apsusc_2021_150795
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1016_j_mattod_2023_01_020
crossref_primary_10_1016_j_jallcom_2025_178846
crossref_primary_10_1016_j_ijhydene_2023_01_256
Cites_doi 10.1039/C6CP00330C
10.1016/j.nanoen.2017.12.003
10.1038/nature13970
10.1039/C8NR01883A
10.1002/adfm.201600682
10.1039/C8CS00324F
10.1002/anie.201606643
10.1021/ja501520b
10.1021/acs.chemmater.6b01275
10.1016/j.apsusc.2015.11.089
10.1080/21663831.2017.1296043
10.1002/adfm.201202502
10.1039/C6TA04414J
10.1021/acs.chemmater.9b00414
10.1021/ja3091438
10.1016/j.cossms.2019.02.001
10.1002/adma.201805472
10.1021/acsanm.8b02265
10.1016/j.chempr.2018.08.037
10.1021/acs.chemmater.8b00925
10.1088/2053-1583/aa89cd
10.1038/s41699-019-0089-3
10.1016/j.nanoen.2015.07.028
10.1002/adma.201304138
10.1039/C6NR00002A
10.1021/acs.chemmater.7b02847
10.1002/aenm.201500589
10.1021/acs.jpcc.8b08860
10.1002/adma.201804779
10.1039/C5NR06513E
10.1016/j.jhazmat.2017.06.004
10.1021/acs.chemmater.8b03976
10.1002/anie.201802232
10.1002/ange.201809662
10.1039/C7TA01082F
10.1039/C4CP05666C
10.1002/admi.201901328
10.1103/PhysRevB.89.235428
10.1149/2.0981605jes
10.1038/s41467-017-02529-6
10.1039/C4CC01646G
10.1126/sciadv.aau0920
10.1021/acsami.7b11055
10.1021/acsaem.7b00054
10.1021/acsanm.9b01194
10.1002/adma.201102306
10.1021/cm500641a
10.1016/j.ceramint.2018.03.223
10.1021/acs.inorgchem.8b02890
10.1021/acsaem.9b01618
10.1021/acsami.5b11973
10.1016/j.apsusc.2008.07.149
10.1016/j.jcat.2019.01.037
10.1021/acs.jpcc.9b04546
10.1039/C6EE01717G
10.1039/C6TA00554C
10.1016/j.bios.2015.08.004
10.1021/acs.chemmater.7b00745
10.1038/natrevmats.2016.98
10.1039/C7TA05574A
10.1039/C8RA07270A
10.1039/C7CP08645H
10.1039/C6CP05985F
10.1126/science.aag2421
10.1016/j.trechm.2019.04.006
10.1016/j.trechm.2019.02.016
10.1002/anie.201800887
10.1039/C9ME00142E
10.1021/acsanm.9b00286
10.1021/jp409585v
ContentType Journal Article
Copyright 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.apsusc.2020.147209
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-5584
ExternalDocumentID oai_HAL_hal_02904636v1
10_1016_j_apsusc_2020_147209
S0169433220319668
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SSH
WUQ
1XC
VOOES
ID FETCH-LOGICAL-c386t-f1997c375c4cf9e65c1aec95b14960d139d7b5fc7d0db5ee526e409232e2a6383
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Fri May 09 12:08:24 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Tue Jul 01 01:40:01 EDT 2025
Fri Feb 23 02:41:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MXene
Ti3C2Tx
Surface chemistry
Surface properties
Hydrogen evolution reaction
Oxidation
Etching agent
Ti 3 C 2 T x
surface chemistry
hydrogen evolution reaction
oxidation
etching agent
surface properties
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-f1997c375c4cf9e65c1aec95b14960d139d7b5fc7d0db5ee526e409232e2a6383
ORCID 0000-0003-0159-3752
0000-0003-0096-2122
0000-0002-4597-551X
0000-0002-4761-1007
0000-0002-2381-2234
0000-0001-6308-2494
0000-0002-0592-9009
0000-0002-1686-1513
0000-0002-3019-0250
OpenAccessLink https://hal.science/hal-02904636
ParticipantIDs hal_primary_oai_HAL_hal_02904636v1
crossref_citationtrail_10_1016_j_apsusc_2020_147209
crossref_primary_10_1016_j_apsusc_2020_147209
elsevier_sciencedirect_doi_10_1016_j_apsusc_2020_147209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Anasori, Lukatskaya, Gogotsi (b0120) 2017; 2
Nayak, Jiang, Mohanraman, Anjum, Hedhili, Alshareef (b0335) 2018; 10
Zhang, Lei, Wu, Zhao, Jing, Zhou (b0045) 2016; 4
Alhabeb, Maleski, Mathis, Sarycheva, Hatter, Uzun, Levitt, Gogotsi (b0295) 2018; 57
Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (b0165) 2011; 23
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (b0215) 2017; 29
Sun, Shah, Chen, Tan, Gao, Habib, Radovic, Green (b0205) 2017; 5
Yu, Zhou, Wang, Zhao, Qiu (b0035) 2018; 44
Ahmed, Anjum, Hedhili, Gogotsi, Alshareef (b0325) 2016; 8
Shuck, Han, Maleski, Hantanasirisakul, Kim, Choi, Reil, Gogotsi (b0225) 2019; 2
Schultz, Frey, Hantanasirisakul, Park, May, Shenoy, Gogotsi, Koch (b0250) 2019; 31
Li, Shao, Lin, Lu, Liu, Duployer, Persson, Eklund, Hultman, Li, Chen, Zha, Du, Rozier, Chai, Raymundo-Piñero, Taberna, Simon, Huang (b0210) 2020
Shahzad, Alhabeb, Hatter, Anasori, Hong, Koo, Gogotsi (b0005) 2016; 353
An, Habib, Shah, Gao, Patel, Echols, Zhao, Radovic, Green, Lutkenhaus (b0080) 2019; 2
Echols, An, Zhao, Prehn, Tan, Radovic, Green, Lutkenhaus (b0075) 2020; 5
Zhu, Tang, Yang, Wang, Cao (b0330) 2016; 163
Zhang, Pinilla, McEvoy, Cullen, Anasori, Long, Park, Seral-Ascaso, Shmeliov, Krishnan, Morant, Liu, Duesberg, Gogotsi, Nicolosi (b0350) 2017; 29
Khazaei, Arai, Sasaki, Chung, Venkataramanan, Estili, Sakka, Kawazoe (b0150) 2013; 23
Naguib, Mashtalir, Lukatskaya, Dyatkin, Zhang, Presser, Gogotsi, Barsoum (b0265) 2014; 50
Hantanasirisakul, Gogotsi (b0100) 2018; 30
Verger, Natu, Carey, Barsoum (b0140) 2019; 1
Halim, Lukatskaya, Cook, Lu, Smith, Näslund, May, Hultman, Gogotsi, Eklund, Barsoum (b0170) 2014; 26
Ying, Dillon, Fafarman, Barsoum (b0010) 2017; 5
Come, Black, Lukatskaya, Naguib, Beidaghi, Rondinone, Kalinin, Wesolowski, Gogotsi, Balke (b0070) 2015; 17
Peng, Akuzum, Kurra, Zhao, Alhabeb, Anasori, Kumbur, Alshareef, Ger, Gogotsi (b0340) 2016; 9
Huang, Mochalin (b0345) 2019; 58
Peng, Yang, Li, Yu, Wang, Peng (b0315) 2016; 8
Halim, Persson, Eklund, Persson, Rosen (b0260) 2018; 8
Hu, Sun, Wu, Wang, Wang, Liu, Zhou, He (b0055) 2013; 117
Sarycheva, Polemi, Liu, Dandekar, Anasori, Gogotsi (b0015) 2018; 4
Sokol, Natu, Kota, Barsoum (b0130) 2019; 1
Peng, Chen, Ong, Zhao, Li (b0110) 2019; 5
Handoko, Fredrickson, Anasori, Convey, Johnson, Gogotsi, Vojvodic, Seh (b0030) 2018; 1
Cockreham, Zhang, Li, Hammond-Pereira, Sun, Saunders, Wang, Xu, Wu (b0185) 2019; 2
Sultana, Georgiev, Auner, Newaz, Herfurth, Patwa (b0270) 2008; 255
C. (John) Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries, Adv. Funct. Mater. 26 (2016) 4143–4151. doi: 10.1002/adfm.201600682.
Benchakar, Bilyk, Garnero, Loupias, Morais, Pacaud, Canaff, Chartier, Morisset, Guignard, Mauchamp, Célérier, Habrioux (b0020) 2019; 6
Khazaei, Ranjbar, Esfarjani, Bogdanovski, Dronskowski, Yunoki (b0115) 2018; 20
Lai, Jeon, Jang, Xu, Choi, Park, Hwang, Lee (b0160) 2015; 7
Halim, Cook, Naguib, Eklund, Gogotsi, Rosen, Barsoum (b0240) 2016; 362
Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (b0095) 2018; 9
C
Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (b0040) 2014; 516
Yang, Zhang, Wang, Ricciardulli, Lohe, Blom, Feng (b0200) 2018; 130
Wang, Yang, Duan, Tang, Zhu (b0065) 2015; 74
Verger, Natu, Ghidiu, Barsoum (b0235) 2019; 123
Habib, Zhao, Shah, Chen, Sun, An, Lutkenhaus, Radovic, Green (b0355) 2019; 3
X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’h, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J. Mater. Chem. A. 5 (2017) 22012–22023. doi: 10.1039/C7TA01082F.
Célérier, Hurand, Garnero, Morisset, Benchakar, Habrioux, Chartier, Mauchamp, Findling, Lanson, Ferrage (b0230) 2019; 31
Hope, Forse, Griffith, Lukatskaya, Ghidiu, Gogotsi, Grey (b0280) 2016; 18
Natu, Sokol, Verger, Barsoum (b0275) 2018; 122
Lioi, Neher, Heckler, Back, Mehmood, Nepal, Pachter, Vaia, Kennedy (b0290) 2019; 2
V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M.W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti
Kong, He, Liu, Qi, Zheng, Wang, Bai (b0220) 2018; 44
Guo, Zhou, Zhu, Sun (b0050) 2016; 4
Lukatskaya, Bak, Yu, Yang, Barsoum, Gogotsi (b0310) 2015; 5
Naguib, Mochalin, Barsoum, Gogotsi (b0135) 2014; 26
Magne, Mauchamp, Célérier, Chartier, Cabioc’h (b0300) 2016; 18
Jastrzębska, Szuplewska, Wojciechowski, Chudy, Ziemkowska, Chlubny, Rozmysłowska, Olszyna (b0085) 2017; 339
Ghidiu, Halim, Kota, Bish, Gogotsi, Barsoum (b0175) 2016; 28
Ma, Li, Morgan, Światowska, Baddour-Hadjean, Body, Legein, Borkiewicz, Leclerc, Groult, Lantelme, Laberty-Robert, Dambournet (b0255) 2018; 30
Persson, Halim, Lind, Hansen, Wagner, Näslund, Darakchieva, Palisaitis, Rosen, Persson (b0090) 2019; 31
Xie, Naguib, Mochalin, Barsoum, Gogotsi, Yu, Nam, Yang, Kolesnikov, Kent (b0145) 2014; 136
Persson, L.-\AAke Näslund, J. Halim, M.W. Barsoum, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. \AA Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum, 2D Mater. 5 (2017) 015002. doi: 10.1088/2053-1583/aa89cd.
stacks: Electronic structure versus boundary effects, Phys. Rev. B. 89 (2014) 235428. doi: 10.1103/PhysRevB.89.235428.
Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (b0025) 2019; 371
Xuan, Wang, Chen, Liang, Cheng, Yang, Liu, Ma, Sasaki, Geng (b0190) 2016; 55
Pang, Mendes, Bachmatiuk, Zhao, Ta, Gemming, Liu, Liu, Rummeli (b0105) 2019; 48
Verger, Xu, Natu, Cheng, Ren, Barsoum (b0125) 2019; 23
Goodenough, Park (b0305) 2013; 135
Li, Yao, Liu, Gu, Luo, Li, Yan, Wang, Liu, Chen, Zhang, Abbas, Naz, Zhang (b0195) 2018; 57
Lee, VahidMohammadi, Prorok, Yoon, Beidaghi, Kim (b0060) 2017; 9
Hu, Wang, Zhang, Li, Hu, Wang (b0285) 2015; 17
Halim (10.1016/j.apsusc.2020.147209_b0170) 2014; 26
10.1016/j.apsusc.2020.147209_b0155
Hu (10.1016/j.apsusc.2020.147209_b0055) 2013; 117
Shahzad (10.1016/j.apsusc.2020.147209_b0005) 2016; 353
Ghidiu (10.1016/j.apsusc.2020.147209_b0040) 2014; 516
Hantanasirisakul (10.1016/j.apsusc.2020.147209_b0100) 2018; 30
Peng (10.1016/j.apsusc.2020.147209_b0315) 2016; 8
Halim (10.1016/j.apsusc.2020.147209_b0240) 2016; 362
Anasori (10.1016/j.apsusc.2020.147209_b0120) 2017; 2
Khazaei (10.1016/j.apsusc.2020.147209_b0150) 2013; 23
Intikhab (10.1016/j.apsusc.2020.147209_b0025) 2019; 371
Alhabeb (10.1016/j.apsusc.2020.147209_b0295) 2018; 57
Echols (10.1016/j.apsusc.2020.147209_b0075) 2020; 5
Sultana (10.1016/j.apsusc.2020.147209_b0270) 2008; 255
Habib (10.1016/j.apsusc.2020.147209_b0355) 2019; 3
Li (10.1016/j.apsusc.2020.147209_b0210) 2020
Célérier (10.1016/j.apsusc.2020.147209_b0230) 2019; 31
Magne (10.1016/j.apsusc.2020.147209_b0300) 2016; 18
Yu (10.1016/j.apsusc.2020.147209_b0035) 2018; 44
Kong (10.1016/j.apsusc.2020.147209_b0220) 2018; 44
Ahmed (10.1016/j.apsusc.2020.147209_b0325) 2016; 8
Wang (10.1016/j.apsusc.2020.147209_b0065) 2015; 74
10.1016/j.apsusc.2020.147209_b0245
10.1016/j.apsusc.2020.147209_b0320
Huang (10.1016/j.apsusc.2020.147209_b0345) 2019; 58
Naguib (10.1016/j.apsusc.2020.147209_b0165) 2011; 23
Hu (10.1016/j.apsusc.2020.147209_b0285) 2015; 17
Handoko (10.1016/j.apsusc.2020.147209_b0030) 2018; 1
Hope (10.1016/j.apsusc.2020.147209_b0280) 2016; 18
Come (10.1016/j.apsusc.2020.147209_b0070) 2015; 17
Naguib (10.1016/j.apsusc.2020.147209_b0265) 2014; 50
Ding (10.1016/j.apsusc.2020.147209_b0095) 2018; 9
Peng (10.1016/j.apsusc.2020.147209_b0110) 2019; 5
Naguib (10.1016/j.apsusc.2020.147209_b0135) 2014; 26
Xuan (10.1016/j.apsusc.2020.147209_b0190) 2016; 55
Zhu (10.1016/j.apsusc.2020.147209_b0330) 2016; 163
Goodenough (10.1016/j.apsusc.2020.147209_b0305) 2013; 135
An (10.1016/j.apsusc.2020.147209_b0080) 2019; 2
Zhang (10.1016/j.apsusc.2020.147209_b0350) 2017; 29
Peng (10.1016/j.apsusc.2020.147209_b0340) 2016; 9
Li (10.1016/j.apsusc.2020.147209_b0195) 2018; 57
Cockreham (10.1016/j.apsusc.2020.147209_b0185) 2019; 2
Ma (10.1016/j.apsusc.2020.147209_b0255) 2018; 30
Guo (10.1016/j.apsusc.2020.147209_b0050) 2016; 4
Verger (10.1016/j.apsusc.2020.147209_b0140) 2019; 1
Lai (10.1016/j.apsusc.2020.147209_b0160) 2015; 7
Lioi (10.1016/j.apsusc.2020.147209_b0290) 2019; 2
Sarycheva (10.1016/j.apsusc.2020.147209_b0015) 2018; 4
Alhabeb (10.1016/j.apsusc.2020.147209_b0215) 2017; 29
Lukatskaya (10.1016/j.apsusc.2020.147209_b0310) 2015; 5
Pang (10.1016/j.apsusc.2020.147209_b0105) 2019; 48
Yang (10.1016/j.apsusc.2020.147209_b0200) 2018; 130
Halim (10.1016/j.apsusc.2020.147209_b0260) 2018; 8
Khazaei (10.1016/j.apsusc.2020.147209_b0115) 2018; 20
Schultz (10.1016/j.apsusc.2020.147209_b0250) 2019; 31
Nayak (10.1016/j.apsusc.2020.147209_b0335) 2018; 10
Ghidiu (10.1016/j.apsusc.2020.147209_b0175) 2016; 28
Lee (10.1016/j.apsusc.2020.147209_b0060) 2017; 9
Natu (10.1016/j.apsusc.2020.147209_b0275) 2018; 122
Xie (10.1016/j.apsusc.2020.147209_b0145) 2014; 136
Verger (10.1016/j.apsusc.2020.147209_b0125) 2019; 23
Persson (10.1016/j.apsusc.2020.147209_b0090) 2019; 31
Sokol (10.1016/j.apsusc.2020.147209_b0130) 2019; 1
Zhang (10.1016/j.apsusc.2020.147209_b0045) 2016; 4
Sun (10.1016/j.apsusc.2020.147209_b0205) 2017; 5
Verger (10.1016/j.apsusc.2020.147209_b0235) 2019; 123
10.1016/j.apsusc.2020.147209_b0180
Benchakar (10.1016/j.apsusc.2020.147209_b0020) 2019; 6
Shuck (10.1016/j.apsusc.2020.147209_b0225) 2019; 2
Jastrzębska (10.1016/j.apsusc.2020.147209_b0085) 2017; 339
Ying (10.1016/j.apsusc.2020.147209_b0010) 2017; 5
References_xml – volume: 339
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0085
  article-title: In vitro studies on cytotoxicity of delaminated Ti3C2 MXene
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 6051
  year: 2016
  end-page: 6060
  ident: b0315
  article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1804779
  year: 2018
  ident: b0100
  article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)
  publication-title: Adv. Mater.
– volume: 5
  start-page: 21663
  year: 2017
  end-page: 21668
  ident: b0205
  article-title: Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2847
  year: 2016
  end-page: 2854
  ident: b0340
  article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage
  publication-title: Energy Environ. Sci.
– volume: 516
  start-page: 78
  year: 2014
  end-page: 81
  ident: b0040
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
– volume: 20
  start-page: 8579
  year: 2018
  end-page: 8592
  ident: b0115
  article-title: Insights into exfoliation possibility of MAX phases to MXenes
  publication-title: Phys. Chem. Chem. Phys.
– reference: C
– volume: 2
  start-page: 3368
  year: 2019
  end-page: 3376
  ident: b0225
  article-title: Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene
  publication-title: ACS Appl. Nano Mater.
– volume: 44
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0035
  article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene
  publication-title: Nano Energy
– volume: 57
  start-page: 5444
  year: 2018
  end-page: 5448
  ident: b0295
  article-title: Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene)
  publication-title: Angew. Chem. Int. Ed.
– volume: 163
  start-page: A785
  year: 2016
  end-page: A791
  ident: b0330
  article-title: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 30946
  year: 2016
  end-page: 30953
  ident: b0300
  article-title: Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  start-page: 992
  year: 2014
  end-page: 1005
  ident: b0135
  article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials
  publication-title: Adv. Mater.
– volume: 8
  start-page: 36785
  year: 2018
  end-page: 36790
  ident: b0260
  article-title: Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film
  publication-title: RSC Adv.
– volume: 9
  start-page: 37184
  year: 2017
  end-page: 37190
  ident: b0060
  article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene)
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 16098
  year: 2017
  ident: b0120
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
– volume: 362
  start-page: 406
  year: 2016
  end-page: 417
  ident: b0240
  article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)
  publication-title: Appl. Surf. Sci.
– volume: 255
  start-page: 2569
  year: 2008
  end-page: 2573
  ident: b0270
  article-title: XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 656
  year: 2019
  end-page: 669
  ident: b0140
  article-title: MXenes: an introduction of their synthesis, select properties, and applications
  publication-title: Trends Chem.
– volume: 122
  start-page: 27745
  year: 2018
  end-page: 27753
  ident: b0275
  article-title: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions
  publication-title: J. Phys. Chem. C
– volume: 353
  start-page: 1137
  year: 2016
  end-page: 1140
  ident: b0005
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science
– reference: . Persson, L.-\AAke Näslund, J. Halim, M.W. Barsoum, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. \AA Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum, 2D Mater. 5 (2017) 015002. doi: 10.1088/2053-1583/aa89cd.
– volume: 5
  start-page: 366
  year: 2020
  end-page: 375
  ident: b0075
  article-title: pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors
  publication-title: Mol. Syst. Des. Eng.
– volume: 44
  start-page: 11591
  year: 2018
  end-page: 11596
  ident: b0220
  article-title: Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries
  publication-title: Ceram. Int.
– volume: 123
  start-page: 20044
  year: 2019
  end-page: 20050
  ident: b0235
  article-title: Effect of cationic exchange on the hydration and swelling behavior of Ti3C2Tz MXenes
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 2185
  year: 2013
  end-page: 2192
  ident: b0150
  article-title: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 3078
  year: 2018
  end-page: 3089
  ident: b0255
  article-title: Lithium intercalation in anatase titanium vacancies and the role of local anionic environment
  publication-title: Chem. Mater.
– volume: 117
  start-page: 14253
  year: 2013
  end-page: 14260
  ident: b0055
  article-title: MXene: a new family of promising hydrogen storage medium
  publication-title: J. Phys. Chem. A
– volume: 9
  start-page: 155
  year: 2018
  ident: b0095
  article-title: MXene molecular sieving membranes for highly efficient gas separation
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1
  year: 2019
  end-page: 6
  ident: b0355
  article-title: Oxidation stability of Ti 3 C 2 T x MXene nanosheets in solvents and composite films
  publication-title: Npj 2D Mater. Appl.
– volume: 10
  start-page: 17030
  year: 2018
  end-page: 17037
  ident: b0335
  article-title: Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2Tx MXene
  publication-title: Nanoscale
– volume: 50
  start-page: 7420
  year: 2014
  end-page: 7423
  ident: b0265
  article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes
  publication-title: Chem. Commun.
– volume: 1
  start-page: 173
  year: 2018
  end-page: 180
  ident: b0030
  article-title: Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity
  publication-title: ACS Appl. Energy Mater.
– volume: 26
  start-page: 2374
  year: 2014
  end-page: 2381
  ident: b0170
  article-title: Transparent conductive two-dimensional titanium carbide epitaxial thin films
  publication-title: Chem. Mater.
– volume: 1
  start-page: 210
  year: 2019
  end-page: 223
  ident: b0130
  article-title: On the chemical diversity of the MAX phases
  publication-title: Trends Chem.
– volume: 17
  start-page: 9997
  year: 2015
  end-page: 10003
  ident: b0285
  article-title: Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 72
  year: 2019
  end-page: 133
  ident: b0105
  article-title: Applications of 2D MXenes in energy conversion and storage systems
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 14569
  year: 2016
  end-page: 14574
  ident: b0190
  article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 6590
  year: 2019
  end-page: 6597
  ident: b0250
  article-title: Surface termination dependent work function and electronic properties of Ti3C2Tx MXene
  publication-title: Chem. Mater.
– volume: 31
  start-page: 1805472
  year: 2019
  ident: b0090
  article-title: 2D transition metal carbides (MXenes) for carbon capture
  publication-title: Adv. Mater.
– reference: stacks: Electronic structure versus boundary effects, Phys. Rev. B. 89 (2014) 235428. doi: 10.1103/PhysRevB.89.235428.
– volume: 5
  start-page: 18
  year: 2019
  end-page: 50
  ident: b0110
  article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis
  publication-title: Chem.
– volume: 28
  start-page: 3507
  year: 2016
  end-page: 3514
  ident: b0175
  article-title: Ion-exchange and cation solvation reactions in Ti3C2 MXene
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1500589
  year: 2015
  ident: b0310
  article-title: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 5099
  year: 2016
  end-page: 5102
  ident: b0280
  article-title: NMR reveals the surface functionalisation of Ti3C2 MXene
  publication-title: Phys. Chem. Chem. Phys.
– volume: 74
  start-page: 1022
  year: 2015
  end-page: 1028
  ident: b0065
  article-title: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances
  publication-title: Biosens. Bioelectron.
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: b0165
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
– volume: 8
  start-page: 7580
  year: 2016
  end-page: 7587
  ident: b0325
  article-title: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes
  publication-title: Nanoscale
– volume: 2
  start-page: 6087
  year: 2019
  end-page: 6091
  ident: b0290
  article-title: Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites
  publication-title: ACS Appl. Nano Mater.
– volume: 58
  start-page: 1958
  year: 2019
  end-page: 1966
  ident: b0345
  article-title: Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions
  publication-title: Inorg. Chem.
– reference: C. (John) Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries, Adv. Funct. Mater. 26 (2016) 4143–4151. doi: 10.1002/adfm.201600682.
– volume: 4
  start-page: 11446
  year: 2016
  end-page: 11452
  ident: b0050
  article-title: MXene: a promising photocatalyst for water splitting
  publication-title: J. Mater. Chem. A
– volume: 371
  start-page: 325
  year: 2019
  end-page: 332
  ident: b0025
  article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes
  publication-title: J. Catal.
– reference: V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M.W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti
– volume: 29
  start-page: 4848
  year: 2017
  end-page: 4856
  ident: b0350
  article-title: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)
  publication-title: Chem. Mater.
– volume: 17
  start-page: 27
  year: 2015
  end-page: 35
  ident: b0070
  article-title: Controlling the actuation properties of MXene paper electrodes upon cation intercalation
  publication-title: Nano Energy
– start-page: 1
  year: 2020
  end-page: 6
  ident: b0210
  article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte
  publication-title: Nat. Mater.
– volume: 57
  start-page: 6115
  year: 2018
  end-page: 6119
  ident: b0195
  article-title: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1901328
  year: 2019
  ident: b0020
  article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst
  publication-title: Adv. Mater. Interfaces
– volume: 31
  start-page: 454
  year: 2019
  end-page: 461
  ident: b0230
  article-title: Hydration of Ti3C2Tx MXene: an interstratification process with major implications on physical properties
  publication-title: Chem. Mater.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  ident: b0305
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4871
  year: 2016
  end-page: 4876
  ident: b0045
  article-title: A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation
  publication-title: J. Mater. Chem. A
– volume: 130
  start-page: 15717
  year: 2018
  end-page: 15721
  ident: b0200
  article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system
  publication-title: Angew. Chem.
– volume: 5
  start-page: 391
  year: 2017
  end-page: 398
  ident: b0010
  article-title: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films
  publication-title: Mater. Res. Lett.
– volume: 2
  start-page: 948
  year: 2019
  end-page: 955
  ident: b0080
  article-title: Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing
  publication-title: ACS Appl. Nano Mater.
– reference: X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’h, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J. Mater. Chem. A. 5 (2017) 22012–22023. doi: 10.1039/C7TA01082F.
– volume: 2
  start-page: 8145
  year: 2019
  end-page: 8152
  ident: b0185
  article-title: Inhibition of AlF3·3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment
  publication-title: ACS Appl. Energy Mater.
– volume: 23
  start-page: 149
  year: 2019
  end-page: 163
  ident: b0125
  article-title: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 7
  start-page: 19390
  year: 2015
  end-page: 19396
  ident: b0160
  article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O)
  publication-title: Nanoscale
– volume: 4
  start-page: eaau0920
  year: 2018
  ident: b0015
  article-title: 2D titanium carbide (MXene) for wireless communication
  publication-title: Sci. Adv.
– volume: 136
  start-page: 6385
  year: 2014
  end-page: 6394
  ident: b0145
  article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: b0215
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)
  publication-title: Chem. Mater.
– volume: 18
  start-page: 5099
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0280
  article-title: NMR reveals the surface functionalisation of Ti3C2 MXene
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00330C
– volume: 44
  start-page: 181
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0035
  article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.003
– volume: 516
  start-page: 78
  year: 2014
  ident: 10.1016/j.apsusc.2020.147209_b0040
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 10
  start-page: 17030
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0335
  article-title: Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2Tx MXene
  publication-title: Nanoscale
  doi: 10.1039/C8NR01883A
– ident: 10.1016/j.apsusc.2020.147209_b0320
  doi: 10.1002/adfm.201600682
– volume: 48
  start-page: 72
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0105
  article-title: Applications of 2D MXenes in energy conversion and storage systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00324F
– volume: 55
  start-page: 14569
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0190
  article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606643
– volume: 136
  start-page: 6385
  year: 2014
  ident: 10.1016/j.apsusc.2020.147209_b0145
  article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501520b
– volume: 28
  start-page: 3507
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0175
  article-title: Ion-exchange and cation solvation reactions in Ti3C2 MXene
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01275
– volume: 362
  start-page: 406
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0240
  article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.089
– volume: 5
  start-page: 391
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0010
  article-title: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2017.1296043
– volume: 23
  start-page: 2185
  year: 2013
  ident: 10.1016/j.apsusc.2020.147209_b0150
  article-title: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202502
– volume: 4
  start-page: 11446
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0050
  article-title: MXene: a promising photocatalyst for water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04414J
– volume: 31
  start-page: 6590
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0250
  article-title: Surface termination dependent work function and electronic properties of Ti3C2Tx MXene
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00414
– volume: 135
  start-page: 1167
  year: 2013
  ident: 10.1016/j.apsusc.2020.147209_b0305
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 23
  start-page: 149
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0125
  article-title: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2019.02.001
– volume: 31
  start-page: 1805472
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0090
  article-title: 2D transition metal carbides (MXenes) for carbon capture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805472
– volume: 2
  start-page: 948
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0080
  article-title: Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02265
– volume: 5
  start-page: 18
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0110
  article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis
  publication-title: Chem.
  doi: 10.1016/j.chempr.2018.08.037
– volume: 30
  start-page: 3078
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0255
  article-title: Lithium intercalation in anatase titanium vacancies and the role of local anionic environment
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00925
– ident: 10.1016/j.apsusc.2020.147209_b0245
  doi: 10.1088/2053-1583/aa89cd
– volume: 3
  start-page: 1
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0355
  article-title: Oxidation stability of Ti 3 C 2 T x MXene nanosheets in solvents and composite films
  publication-title: Npj 2D Mater. Appl.
  doi: 10.1038/s41699-019-0089-3
– volume: 17
  start-page: 27
  year: 2015
  ident: 10.1016/j.apsusc.2020.147209_b0070
  article-title: Controlling the actuation properties of MXene paper electrodes upon cation intercalation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.028
– volume: 26
  start-page: 992
  year: 2014
  ident: 10.1016/j.apsusc.2020.147209_b0135
  article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304138
– volume: 8
  start-page: 7580
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0325
  article-title: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes
  publication-title: Nanoscale
  doi: 10.1039/C6NR00002A
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0215
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 5
  start-page: 1500589
  year: 2015
  ident: 10.1016/j.apsusc.2020.147209_b0310
  article-title: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500589
– volume: 122
  start-page: 27745
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0275
  article-title: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b08860
– volume: 30
  start-page: 1804779
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0100
  article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804779
– volume: 7
  start-page: 19390
  year: 2015
  ident: 10.1016/j.apsusc.2020.147209_b0160
  article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O)
  publication-title: Nanoscale
  doi: 10.1039/C5NR06513E
– volume: 339
  start-page: 1
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0085
  article-title: In vitro studies on cytotoxicity of delaminated Ti3C2 MXene
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.06.004
– volume: 31
  start-page: 454
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0230
  article-title: Hydration of Ti3C2Tx MXene: an interstratification process with major implications on physical properties
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03976
– volume: 57
  start-page: 5444
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0295
  article-title: Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene)
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802232
– volume: 130
  start-page: 15717
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0200
  article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201809662
– ident: 10.1016/j.apsusc.2020.147209_b0180
  doi: 10.1039/C7TA01082F
– volume: 17
  start-page: 9997
  year: 2015
  ident: 10.1016/j.apsusc.2020.147209_b0285
  article-title: Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05666C
– volume: 6
  start-page: 1901328
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0020
  article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901328
– ident: 10.1016/j.apsusc.2020.147209_b0155
  doi: 10.1103/PhysRevB.89.235428
– volume: 163
  start-page: A785
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0330
  article-title: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0981605jes
– volume: 9
  start-page: 155
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0095
  article-title: MXene molecular sieving membranes for highly efficient gas separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02529-6
– volume: 50
  start-page: 7420
  year: 2014
  ident: 10.1016/j.apsusc.2020.147209_b0265
  article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01646G
– volume: 4
  start-page: eaau0920
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0015
  article-title: 2D titanium carbide (MXene) for wireless communication
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau0920
– volume: 9
  start-page: 37184
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0060
  article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11055
– volume: 1
  start-page: 173
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0030
  article-title: Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00054
– volume: 2
  start-page: 6087
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0290
  article-title: Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01194
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.apsusc.2020.147209_b0165
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 26
  start-page: 2374
  year: 2014
  ident: 10.1016/j.apsusc.2020.147209_b0170
  article-title: Transparent conductive two-dimensional titanium carbide epitaxial thin films
  publication-title: Chem. Mater.
  doi: 10.1021/cm500641a
– volume: 44
  start-page: 11591
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0220
  article-title: Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.223
– volume: 58
  start-page: 1958
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0345
  article-title: Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02890
– volume: 2
  start-page: 8145
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0185
  article-title: Inhibition of AlF3·3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01618
– volume: 8
  start-page: 6051
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0315
  article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11973
– volume: 255
  start-page: 2569
  year: 2008
  ident: 10.1016/j.apsusc.2020.147209_b0270
  article-title: XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.07.149
– volume: 371
  start-page: 325
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0025
  article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.037
– volume: 123
  start-page: 20044
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0235
  article-title: Effect of cationic exchange on the hydration and swelling behavior of Ti3C2Tz MXenes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04546
– start-page: 1
  year: 2020
  ident: 10.1016/j.apsusc.2020.147209_b0210
  article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2847
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0340
  article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01717G
– volume: 4
  start-page: 4871
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0045
  article-title: A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00554C
– volume: 74
  start-page: 1022
  year: 2015
  ident: 10.1016/j.apsusc.2020.147209_b0065
  article-title: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.08.004
– volume: 29
  start-page: 4848
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0350
  article-title: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00745
– volume: 2
  start-page: 16098
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0120
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 5
  start-page: 21663
  year: 2017
  ident: 10.1016/j.apsusc.2020.147209_b0205
  article-title: Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05574A
– volume: 8
  start-page: 36785
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0260
  article-title: Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07270A
– volume: 20
  start-page: 8579
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0115
  article-title: Insights into exfoliation possibility of MAX phases to MXenes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP08645H
– volume: 18
  start-page: 30946
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0300
  article-title: Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05985F
– volume: 353
  start-page: 1137
  year: 2016
  ident: 10.1016/j.apsusc.2020.147209_b0005
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 1
  start-page: 656
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0140
  article-title: MXenes: an introduction of their synthesis, select properties, and applications
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.04.006
– volume: 1
  start-page: 210
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0130
  article-title: On the chemical diversity of the MAX phases
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.02.016
– volume: 57
  start-page: 6115
  year: 2018
  ident: 10.1016/j.apsusc.2020.147209_b0195
  article-title: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800887
– volume: 5
  start-page: 366
  year: 2020
  ident: 10.1016/j.apsusc.2020.147209_b0075
  article-title: pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C9ME00142E
– volume: 2
  start-page: 3368
  year: 2019
  ident: 10.1016/j.apsusc.2020.147209_b0225
  article-title: Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00286
– volume: 117
  start-page: 14253
  year: 2013
  ident: 10.1016/j.apsusc.2020.147209_b0055
  article-title: MXene: a new family of promising hydrogen storage medium
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp409585v
SSID ssj0012873
Score 2.6690826
Snippet [Display omitted] •The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of...
MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 147209
SubjectTerms Catalysis
Chemical Sciences
Condensed Matter
Etching agent
Hydrogen evolution reaction
Inorganic chemistry
Material chemistry
Materials Science
MXene
Oxidation
Physics
Surface chemistry
Surface properties
Ti3C2Tx
Title One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry
URI https://dx.doi.org/10.1016/j.apsusc.2020.147209
https://hal.science/hal-02904636
Volume 530
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qXvQgPvHNIB6NTTa7m9ZbKEp9VA-20FvYbDZakbRoKp76253JoygIBY9ZdjZhZzOPZL5vGDtzuU5SjWmqsh53hPSso7WInaIZpE4NTzwCJ_ceVHcgbody2GCdGgtDZZWV7S9temGtq5FmtZvNyWjUfCIeEWLf4gTEUYoAv0IEdMovZvMyDzS_5V9mnEzoIF7D54oaL42Z6AcRGXIcEgGnssS_3dPSS_2htXA81xtsvYoYISwfapM1bLbF1n7wCG6z2WNmoRcOYfKCTukc6q4nOfSGZMsuIYTnKRFaoQzkY5jOIS2AASAYVDCeQ6BSQxinQKrEhQFz5aQs6YJxBv2R3-H9L_iYvqfaoFTdK26HDa6v-p2uUzVWcIzfUrmTUnWJ8QNphEnbVknjaWvaMsZ0SbkJBoVJEMvUBImbxNJayZXFPBCDL8s1vrD-LlvOxpndY6A8Q25QtggVFbdFiwvt-bGIhVEuesh95tf7GZmKdZyaX7xFdXnZa1RqISItRKUW9pkzl5qUrBsL5ge1qqJfpydCx7BA8hQ1O78JkW13w_uIxlzeLujUPr2Dfy9_yFbpisCLnjxiy_n71B5jFJPHJ8UxPWEr4c1d9-EbjWbwGg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QE4VDxFaYER4ogVe727jnuzIiqXJuFAKuW2Wq_XNAg5UesgTvx2ZvyIQEKqxHXtWVs763ms5_sG4H0obFlZSlO1j0QgVeQDa2URtM0gbeVEGTE4eb7Q-bX8tFKrA5gOWBguq-xtf2fTW2vdj4z71Rxv1-vxF-YRYfYtwUAcrSeHcMTsVGoER9nlVb7Y_0ygpCDuKL5TBgiJAUHXlnlZSkbvmMtQ0JBMBFcm_ttDHd4MZ62t77l4DMd90IhZ915P4MDXT-HRH1SCz-DX59rjPFvh9ob80gccGp80OF-xOTvHDL_umNOKZLDZ4G6PakGKAdGRjmkrIlcb4qZC1iZNjJQul11VF25qXK7jqVj-xLvdbWUdSQ3t4p7D9cXH5TQP-t4KgYsnugkqLjBxcaKcdFXqtXKR9S5VBWVMOiwpLiyTQlUuKcOyUN4roT2lghR_eWHpm41fwKje1P4loI4ce0I1YWBUkcqJkDaKC1lIp0NykicQD-tpXE88zv0vvpuhwuyb6bRgWAum08IJBHupbUe8cc_9yaAq89cGMuQb7pF8R5rdP4T5tvNsZngsFGnLqPYjevXf07-FB_lyPjOzy8XVKTzkK4xljNQZjJrbnX9NQU1TvOk37W_OG_LL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+MAX+phase%2C+different+MXenes%3A+a+guideline+to+understand+the+crucial+role+of+etching+conditions+on+Ti3C2Tx+surface+chemistry&rft.jtitle=Applied+surface+science&rft.au=Benchakar%2C+Mohamed&rft.au=Loupias%2C+Lola&rft.au=Garnero%2C+Cyril&rft.au=Bilyk%2C+Thomas&rft.date=2020-11-15&rft.pub=Elsevier&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016%2Fj.apsusc.2020.147209&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02904636v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon