One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry
[Display omitted] •The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx d...
Saved in:
Published in | Applied surface science Vol. 530; p. 147209 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 1873-5584 |
DOI | 10.1016/j.apsusc.2020.147209 |
Cover
Loading…
Abstract | [Display omitted]
•The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx depending on the synthesis conditions.
MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti3C2Tx, the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction – the hydrogen evolution reaction, HER – we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF3/HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications. |
---|---|
AbstractList | [Display omitted]
•The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of Ti3C2Tx MXene.•HER is a probe reaction for the characterization of Ti3C2Tx surface properties.•Various properties are obtained for Ti3C2Tx depending on the synthesis conditions.
MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti3C2Tx, the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction – the hydrogen evolution reaction, HER – we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF3/HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications. MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX phases, numerous properties can be targeted thanks to the chemical richness of the precursors. Herein, we highlight how etching agents govern surface chemistries of Ti 3 C 2 T x , the most widely studied MXene to date. By combining characterization tools such as X-ray diffraction, X-ray photoelectron, Raman and electron energy loss spectroscopies, scanning and transmission electron microscopies and a surface sensitive electrochemical reaction-the hydrogen evolution reaction, HER-we clearly demonstrate that the etching agent (HF, LiF/HCl or FeF 3 /HCl) strongly modifies the nature of surface terminal groups (F, OH and/or O), oxidation sensitivity, delamination ability, nature of the inserted species, interstratification, concentration of defects and size of flakes. Beyond showing how using these different characterization tools to analyze MXenes, this work highlights that the MXene synthesis routes can influence targeted applications. |
ArticleNumber | 147209 |
Author | Loupias, Lola Habrioux, Aurélien Barsoum, Michel W. Garnero, Cyril Pacaud, Jérôme Mauchamp, Vincent Benchakar, Mohamed Hurand, Simon Chartier, Patrick Guignard, Nadia Pazniak, Hanna Célérier, Stéphane Canaff, Christine Morisset, Sophie Morais, Cláudia Bilyk, Thomas |
Author_xml | – sequence: 1 givenname: Mohamed surname: Benchakar fullname: Benchakar, Mohamed organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 2 givenname: Lola surname: Loupias fullname: Loupias, Lola organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 3 givenname: Cyril surname: Garnero fullname: Garnero, Cyril organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 4 givenname: Thomas surname: Bilyk fullname: Bilyk, Thomas organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 5 givenname: Cláudia surname: Morais fullname: Morais, Cláudia organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 6 givenname: Christine surname: Canaff fullname: Canaff, Christine organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 7 givenname: Nadia surname: Guignard fullname: Guignard, Nadia organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 8 givenname: Sophie surname: Morisset fullname: Morisset, Sophie organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 9 givenname: Hanna surname: Pazniak fullname: Pazniak, Hanna organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 10 givenname: Simon surname: Hurand fullname: Hurand, Simon organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 11 givenname: Patrick surname: Chartier fullname: Chartier, Patrick organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 12 givenname: Jérôme surname: Pacaud fullname: Pacaud, Jérôme organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 13 givenname: Vincent surname: Mauchamp fullname: Mauchamp, Vincent organization: Institut Pprime, UPR 3346 CNRS, Université de Poitiers, ISAE-ENSMA, BP 30179, 86962 Futuroscope-Chasseneuil Cedex, France – sequence: 14 givenname: Michel W. surname: Barsoum fullname: Barsoum, Michel W. organization: Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19140, United States – sequence: 15 givenname: Aurélien surname: Habrioux fullname: Habrioux, Aurélien email: aurelien.habrioux@univ-poitiers.fr organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France – sequence: 16 givenname: Stéphane surname: Célérier fullname: Célérier, Stéphane email: stephane.celerier@univ-poitiers.fr organization: Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France |
BackLink | https://hal.science/hal-02904636$$DView record in HAL |
BookMark | eNqFkE1rGzEQhkVJoM7HP-hB10LX1cd-WDkUjGmbgkMuDuQm5NEoK7ORjKQNyaW_vWu2vfTQngZm3meGeS7IWYgBCfnA2ZIz3n4-LM0xjxmWgompVXeCqXdkwVedrJpmVZ-RxRRTVS2leE8ucj4wxsU0XZCf9wHp3fqRHnuT8RO13jlMGAq9e8SA-Yau6dPoLQ5-CpZIx2Ax5WKCpaVHCmkEbwaa4oA0OooFeh-eKMRgffExZBoD3Xm5EbtXmsfkDExUj88-l_R2Rc6dGTJe_66X5OHb193mttref_-xWW8rkKu2VI4r1YHsGqjBKWwb4AZBNXteq5ZZLpXt9o2DzjK7bxAb0WLNlJAChWnlSl6Sj_Pe3gz6mPyzSW86Gq9v11t96jGhWN3K9oVP2Zs5CynmnNBp8MWcfinJ-EFzpk_W9UHP1vXJup6tT3D9F_zn2n-wLzOGk4QXj0ln8BgArU8IRdvo_73gF9RpoJg |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c02422 crossref_primary_10_1088_2058_8585_acad8b crossref_primary_10_1016_j_apsusc_2022_153442 crossref_primary_10_1002_adsu_202400865 crossref_primary_10_1016_j_cej_2024_156686 crossref_primary_10_1088_1361_6528_ad53d0 crossref_primary_10_2139_ssrn_4054572 crossref_primary_10_1016_j_surfin_2024_105678 crossref_primary_10_1021_acs_nanolett_1c02809 crossref_primary_10_3390_en18030569 crossref_primary_10_1021_acsnano_0c06735 crossref_primary_10_1016_j_cej_2024_148700 crossref_primary_10_3390_molecules29010148 crossref_primary_10_1016_j_porgcoat_2023_107757 crossref_primary_10_3390_s24010038 crossref_primary_10_1039_D2NR04465J crossref_primary_10_1021_acs_jpcc_3c02318 crossref_primary_10_1002_smll_202406334 crossref_primary_10_1016_j_triboint_2022_108170 crossref_primary_10_1002_advs_202307106 crossref_primary_10_1016_j_apsusc_2021_150210 crossref_primary_10_1021_acsami_3c19177 crossref_primary_10_1021_acsbiomaterials_3c01420 crossref_primary_10_1039_D2TA01140A crossref_primary_10_3390_coatings12040516 crossref_primary_10_1002_slct_202300737 crossref_primary_10_1016_j_chemosphere_2024_141280 crossref_primary_10_1016_j_mtcata_2023_100010 crossref_primary_10_1016_j_cej_2022_137028 crossref_primary_10_1016_j_nanoen_2022_107129 crossref_primary_10_1016_j_inoche_2024_112113 crossref_primary_10_1016_j_flatc_2023_100596 crossref_primary_10_17721_1812_5409_2020_4_12 crossref_primary_10_1016_j_chemosphere_2024_141838 crossref_primary_10_1016_j_est_2023_106975 crossref_primary_10_1063_5_0055711 crossref_primary_10_1021_acs_chemmater_3c01595 crossref_primary_10_1088_2053_1583_acbfcb crossref_primary_10_1002_smtd_202100451 crossref_primary_10_1021_acsami_4c00783 crossref_primary_10_1002_admi_202100903 crossref_primary_10_1016_j_coelec_2021_100764 crossref_primary_10_1063_5_0217557 crossref_primary_10_1039_D3YA00489A crossref_primary_10_1016_j_optmat_2024_115780 crossref_primary_10_1002_adma_202305200 crossref_primary_10_1016_j_matt_2021_01_015 crossref_primary_10_1039_D1NR02224E crossref_primary_10_1039_D4MA00112E crossref_primary_10_1007_s42114_022_00519_x crossref_primary_10_1016_j_cej_2020_128099 crossref_primary_10_1088_1361_6528_ac04cf crossref_primary_10_3390_surfaces5010001 crossref_primary_10_1016_j_ceramint_2022_10_167 crossref_primary_10_1039_D3MA00188A crossref_primary_10_1016_j_flatc_2024_100734 crossref_primary_10_1016_j_jphotochem_2023_115260 crossref_primary_10_1109_JSEN_2021_3081588 crossref_primary_10_1016_j_jallcom_2024_173481 crossref_primary_10_1021_acsomega_4c04849 crossref_primary_10_1002_advs_202305099 crossref_primary_10_1002_smtd_202201530 crossref_primary_10_1016_j_flatc_2024_100730 crossref_primary_10_1088_1361_6463_ad056c crossref_primary_10_1016_j_jfca_2023_105810 crossref_primary_10_1021_acsmaterialslett_1c00673 crossref_primary_10_1021_acsomega_4c01353 crossref_primary_10_1016_j_jelechem_2023_117915 crossref_primary_10_1016_j_ijhydene_2024_11_351 crossref_primary_10_1016_j_nxnano_2024_100055 crossref_primary_10_1016_j_triboint_2023_108273 crossref_primary_10_1016_j_apsusc_2024_160864 crossref_primary_10_1021_jacs_2c11290 crossref_primary_10_1002_admi_202202484 crossref_primary_10_1039_D4TA05097E crossref_primary_10_1088_2053_1583_ac74ca crossref_primary_10_1149_1945_7111_acc362 crossref_primary_10_1016_j_compositesb_2024_111255 crossref_primary_10_1021_acs_jpcc_3c03573 crossref_primary_10_1016_j_mtcomm_2024_110576 crossref_primary_10_3390_molecules27154925 crossref_primary_10_1016_j_jallcom_2025_179761 crossref_primary_10_1016_j_apsusc_2024_161926 crossref_primary_10_1016_j_triboint_2023_109137 crossref_primary_10_1016_j_apsusc_2023_159206 crossref_primary_10_3390_bios14100497 crossref_primary_10_1039_D1RA07771F crossref_primary_10_1021_acs_jpcc_0c06798 crossref_primary_10_1002_aenm_202102355 crossref_primary_10_1021_acs_jpcc_3c04324 crossref_primary_10_1021_acs_energyfuels_4c04303 crossref_primary_10_1038_s41467_023_39533_y crossref_primary_10_1039_D1MA00873K crossref_primary_10_1002_advs_202405154 crossref_primary_10_1016_j_oceram_2024_100596 crossref_primary_10_1039_D3GC00787A crossref_primary_10_1002_smll_202206767 crossref_primary_10_1016_j_mtcata_2024_100066 crossref_primary_10_1016_j_mtcata_2024_100069 crossref_primary_10_1016_j_apsusc_2021_150719 crossref_primary_10_1186_s11671_021_03510_5 crossref_primary_10_1134_S1027451022030041 crossref_primary_10_1016_j_cej_2024_158232 crossref_primary_10_1039_D4NR00615A crossref_primary_10_1002_ente_202100713 crossref_primary_10_1039_D2NR05718B crossref_primary_10_1016_j_addr_2021_114099 crossref_primary_10_1016_j_flatc_2022_100363 crossref_primary_10_1016_j_ijhydene_2021_12_185 crossref_primary_10_1021_acsanm_3c00788 crossref_primary_10_1039_D4TC03178D crossref_primary_10_1039_D4TA00320A crossref_primary_10_1016_j_flatc_2023_100544 crossref_primary_10_1016_j_jechem_2022_09_046 crossref_primary_10_1016_j_jcis_2024_03_159 crossref_primary_10_1016_j_est_2024_111629 crossref_primary_10_1021_acs_accounts_2c00613 crossref_primary_10_1002_advs_202408448 crossref_primary_10_1002_smtd_202300776 crossref_primary_10_1016_j_apsusc_2023_156397 crossref_primary_10_1021_acsami_3c11857 crossref_primary_10_1016_j_jechem_2024_01_038 crossref_primary_10_1002_celc_202100385 crossref_primary_10_1002_smtd_202201579 crossref_primary_10_1557_s43579_023_00442_2 crossref_primary_10_1103_PhysRevLett_134_106201 crossref_primary_10_1016_j_desal_2024_117781 crossref_primary_10_1016_j_diamond_2023_109883 crossref_primary_10_1007_s12034_023_03095_y crossref_primary_10_1016_j_apsusc_2022_154001 crossref_primary_10_1016_j_apsusc_2021_151394 crossref_primary_10_1016_j_jechem_2022_08_032 crossref_primary_10_1021_acsanm_1c03814 crossref_primary_10_1364_OE_530215 crossref_primary_10_2139_ssrn_4197756 crossref_primary_10_1039_D4QM00103F crossref_primary_10_1016_j_jhazmat_2022_130450 crossref_primary_10_1016_j_seppur_2023_125325 crossref_primary_10_1016_j_diamond_2022_109461 crossref_primary_10_1021_acsami_2c09669 crossref_primary_10_1021_acsnano_1c08636 crossref_primary_10_1002_smtd_202400848 crossref_primary_10_1016_j_electacta_2023_143420 crossref_primary_10_1016_j_materresbull_2022_111902 crossref_primary_10_1016_j_microc_2022_108200 crossref_primary_10_1021_acs_inorgchem_4c04794 crossref_primary_10_1016_j_materresbull_2024_113055 crossref_primary_10_1016_j_diamond_2024_111648 crossref_primary_10_1021_acsomega_1c06662 crossref_primary_10_1002_adfm_202209538 crossref_primary_10_1039_D1CP03960A crossref_primary_10_1126_sciadv_ads3689 crossref_primary_10_1063_5_0138387 crossref_primary_10_1016_j_bioactmat_2021_06_016 crossref_primary_10_1007_s11664_022_10142_7 crossref_primary_10_1016_j_est_2024_112741 crossref_primary_10_1016_j_envres_2023_115919 crossref_primary_10_1007_s12678_024_00897_4 crossref_primary_10_1016_j_mssp_2022_106835 crossref_primary_10_1016_j_est_2023_108501 crossref_primary_10_1039_D5TA00035A crossref_primary_10_1051_bioconf_202412922018 crossref_primary_10_1016_j_actamat_2024_119713 crossref_primary_10_1039_D2TB00289B crossref_primary_10_1039_D4NA00927D crossref_primary_10_1016_j_molliq_2022_120685 crossref_primary_10_1016_j_susmat_2022_e00490 crossref_primary_10_1021_acsanm_2c01143 crossref_primary_10_1021_acsnano_4c02150 crossref_primary_10_1038_s41596_024_00969_1 crossref_primary_10_1002_smtd_202201252 crossref_primary_10_1016_j_xcrp_2022_101151 crossref_primary_10_1016_j_jcis_2023_03_074 crossref_primary_10_1002_adma_202103148 crossref_primary_10_1016_j_eti_2022_102858 crossref_primary_10_1016_j_molliq_2023_123787 crossref_primary_10_1002_smll_202206107 crossref_primary_10_1021_acs_chemmater_1c03390 crossref_primary_10_1088_2053_1583_ac9e66 crossref_primary_10_1016_j_aca_2022_340512 crossref_primary_10_1021_jacs_4c13481 crossref_primary_10_1016_j_ensm_2023_103024 crossref_primary_10_1016_j_ceramint_2024_04_171 crossref_primary_10_3390_nano13050850 crossref_primary_10_1016_j_cej_2022_139512 crossref_primary_10_1016_j_susmat_2024_e01230 crossref_primary_10_3390_nano13111741 crossref_primary_10_1016_j_triboint_2023_108565 crossref_primary_10_1016_j_apt_2025_104789 crossref_primary_10_1016_j_jcis_2022_07_190 crossref_primary_10_1038_s41598_025_92638_w crossref_primary_10_1002_celc_202200891 crossref_primary_10_1039_D3MA00429E crossref_primary_10_1002_smtd_202300030 crossref_primary_10_1021_acsnano_1c07060 crossref_primary_10_1039_D3CC02693K crossref_primary_10_1016_j_jpowsour_2023_233144 crossref_primary_10_2139_ssrn_4113738 crossref_primary_10_1016_j_cscee_2020_100034 crossref_primary_10_1088_2053_1583_ac1ea9 crossref_primary_10_1016_j_chemosphere_2023_140544 crossref_primary_10_1093_oxfmat_itae017 crossref_primary_10_1016_j_cej_2022_138686 crossref_primary_10_1016_j_apsusc_2021_150795 crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1016_j_mattod_2023_01_020 crossref_primary_10_1016_j_jallcom_2025_178846 crossref_primary_10_1016_j_ijhydene_2023_01_256 |
Cites_doi | 10.1039/C6CP00330C 10.1016/j.nanoen.2017.12.003 10.1038/nature13970 10.1039/C8NR01883A 10.1002/adfm.201600682 10.1039/C8CS00324F 10.1002/anie.201606643 10.1021/ja501520b 10.1021/acs.chemmater.6b01275 10.1016/j.apsusc.2015.11.089 10.1080/21663831.2017.1296043 10.1002/adfm.201202502 10.1039/C6TA04414J 10.1021/acs.chemmater.9b00414 10.1021/ja3091438 10.1016/j.cossms.2019.02.001 10.1002/adma.201805472 10.1021/acsanm.8b02265 10.1016/j.chempr.2018.08.037 10.1021/acs.chemmater.8b00925 10.1088/2053-1583/aa89cd 10.1038/s41699-019-0089-3 10.1016/j.nanoen.2015.07.028 10.1002/adma.201304138 10.1039/C6NR00002A 10.1021/acs.chemmater.7b02847 10.1002/aenm.201500589 10.1021/acs.jpcc.8b08860 10.1002/adma.201804779 10.1039/C5NR06513E 10.1016/j.jhazmat.2017.06.004 10.1021/acs.chemmater.8b03976 10.1002/anie.201802232 10.1002/ange.201809662 10.1039/C7TA01082F 10.1039/C4CP05666C 10.1002/admi.201901328 10.1103/PhysRevB.89.235428 10.1149/2.0981605jes 10.1038/s41467-017-02529-6 10.1039/C4CC01646G 10.1126/sciadv.aau0920 10.1021/acsami.7b11055 10.1021/acsaem.7b00054 10.1021/acsanm.9b01194 10.1002/adma.201102306 10.1021/cm500641a 10.1016/j.ceramint.2018.03.223 10.1021/acs.inorgchem.8b02890 10.1021/acsaem.9b01618 10.1021/acsami.5b11973 10.1016/j.apsusc.2008.07.149 10.1016/j.jcat.2019.01.037 10.1021/acs.jpcc.9b04546 10.1039/C6EE01717G 10.1039/C6TA00554C 10.1016/j.bios.2015.08.004 10.1021/acs.chemmater.7b00745 10.1038/natrevmats.2016.98 10.1039/C7TA05574A 10.1039/C8RA07270A 10.1039/C7CP08645H 10.1039/C6CP05985F 10.1126/science.aag2421 10.1016/j.trechm.2019.04.006 10.1016/j.trechm.2019.02.016 10.1002/anie.201800887 10.1039/C9ME00142E 10.1021/acsanm.9b00286 10.1021/jp409585v |
ContentType | Journal Article |
Copyright | 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.apsusc.2020.147209 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-5584 |
ExternalDocumentID | oai_HAL_hal_02904636v1 10_1016_j_apsusc_2020_147209 S0169433220319668 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SSH WUQ 1XC VOOES |
ID | FETCH-LOGICAL-c386t-f1997c375c4cf9e65c1aec95b14960d139d7b5fc7d0db5ee526e409232e2a6383 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Fri May 09 12:08:24 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 01:40:01 EDT 2025 Fri Feb 23 02:41:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MXene Ti3C2Tx Surface chemistry Surface properties Hydrogen evolution reaction Oxidation Etching agent Ti 3 C 2 T x surface chemistry hydrogen evolution reaction oxidation etching agent surface properties |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-f1997c375c4cf9e65c1aec95b14960d139d7b5fc7d0db5ee526e409232e2a6383 |
ORCID | 0000-0003-0159-3752 0000-0003-0096-2122 0000-0002-4597-551X 0000-0002-4761-1007 0000-0002-2381-2234 0000-0001-6308-2494 0000-0002-0592-9009 0000-0002-1686-1513 0000-0002-3019-0250 |
OpenAccessLink | https://hal.science/hal-02904636 |
ParticipantIDs | hal_primary_oai_HAL_hal_02904636v1 crossref_citationtrail_10_1016_j_apsusc_2020_147209 crossref_primary_10_1016_j_apsusc_2020_147209 elsevier_sciencedirect_doi_10_1016_j_apsusc_2020_147209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-15 |
PublicationDateYYYYMMDD | 2020-11-15 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Anasori, Lukatskaya, Gogotsi (b0120) 2017; 2 Nayak, Jiang, Mohanraman, Anjum, Hedhili, Alshareef (b0335) 2018; 10 Zhang, Lei, Wu, Zhao, Jing, Zhou (b0045) 2016; 4 Alhabeb, Maleski, Mathis, Sarycheva, Hatter, Uzun, Levitt, Gogotsi (b0295) 2018; 57 Naguib, Kurtoglu, Presser, Lu, Niu, Heon, Hultman, Gogotsi, Barsoum (b0165) 2011; 23 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (b0215) 2017; 29 Sun, Shah, Chen, Tan, Gao, Habib, Radovic, Green (b0205) 2017; 5 Yu, Zhou, Wang, Zhao, Qiu (b0035) 2018; 44 Ahmed, Anjum, Hedhili, Gogotsi, Alshareef (b0325) 2016; 8 Shuck, Han, Maleski, Hantanasirisakul, Kim, Choi, Reil, Gogotsi (b0225) 2019; 2 Schultz, Frey, Hantanasirisakul, Park, May, Shenoy, Gogotsi, Koch (b0250) 2019; 31 Li, Shao, Lin, Lu, Liu, Duployer, Persson, Eklund, Hultman, Li, Chen, Zha, Du, Rozier, Chai, Raymundo-Piñero, Taberna, Simon, Huang (b0210) 2020 Shahzad, Alhabeb, Hatter, Anasori, Hong, Koo, Gogotsi (b0005) 2016; 353 An, Habib, Shah, Gao, Patel, Echols, Zhao, Radovic, Green, Lutkenhaus (b0080) 2019; 2 Echols, An, Zhao, Prehn, Tan, Radovic, Green, Lutkenhaus (b0075) 2020; 5 Zhu, Tang, Yang, Wang, Cao (b0330) 2016; 163 Zhang, Pinilla, McEvoy, Cullen, Anasori, Long, Park, Seral-Ascaso, Shmeliov, Krishnan, Morant, Liu, Duesberg, Gogotsi, Nicolosi (b0350) 2017; 29 Khazaei, Arai, Sasaki, Chung, Venkataramanan, Estili, Sakka, Kawazoe (b0150) 2013; 23 Naguib, Mashtalir, Lukatskaya, Dyatkin, Zhang, Presser, Gogotsi, Barsoum (b0265) 2014; 50 Hantanasirisakul, Gogotsi (b0100) 2018; 30 Verger, Natu, Carey, Barsoum (b0140) 2019; 1 Halim, Lukatskaya, Cook, Lu, Smith, Näslund, May, Hultman, Gogotsi, Eklund, Barsoum (b0170) 2014; 26 Ying, Dillon, Fafarman, Barsoum (b0010) 2017; 5 Come, Black, Lukatskaya, Naguib, Beidaghi, Rondinone, Kalinin, Wesolowski, Gogotsi, Balke (b0070) 2015; 17 Peng, Akuzum, Kurra, Zhao, Alhabeb, Anasori, Kumbur, Alshareef, Ger, Gogotsi (b0340) 2016; 9 Huang, Mochalin (b0345) 2019; 58 Peng, Yang, Li, Yu, Wang, Peng (b0315) 2016; 8 Halim, Persson, Eklund, Persson, Rosen (b0260) 2018; 8 Hu, Sun, Wu, Wang, Wang, Liu, Zhou, He (b0055) 2013; 117 Sarycheva, Polemi, Liu, Dandekar, Anasori, Gogotsi (b0015) 2018; 4 Sokol, Natu, Kota, Barsoum (b0130) 2019; 1 Peng, Chen, Ong, Zhao, Li (b0110) 2019; 5 Handoko, Fredrickson, Anasori, Convey, Johnson, Gogotsi, Vojvodic, Seh (b0030) 2018; 1 Cockreham, Zhang, Li, Hammond-Pereira, Sun, Saunders, Wang, Xu, Wu (b0185) 2019; 2 Sultana, Georgiev, Auner, Newaz, Herfurth, Patwa (b0270) 2008; 255 C. (John) Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries, Adv. Funct. Mater. 26 (2016) 4143–4151. doi: 10.1002/adfm.201600682. Benchakar, Bilyk, Garnero, Loupias, Morais, Pacaud, Canaff, Chartier, Morisset, Guignard, Mauchamp, Célérier, Habrioux (b0020) 2019; 6 Khazaei, Ranjbar, Esfarjani, Bogdanovski, Dronskowski, Yunoki (b0115) 2018; 20 Lai, Jeon, Jang, Xu, Choi, Park, Hwang, Lee (b0160) 2015; 7 Halim, Cook, Naguib, Eklund, Gogotsi, Rosen, Barsoum (b0240) 2016; 362 Ding, Wei, Li, Zhang, Wang, Xue, Ding, Wang, Caro, Gogotsi (b0095) 2018; 9 C Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (b0040) 2014; 516 Yang, Zhang, Wang, Ricciardulli, Lohe, Blom, Feng (b0200) 2018; 130 Wang, Yang, Duan, Tang, Zhu (b0065) 2015; 74 Verger, Natu, Ghidiu, Barsoum (b0235) 2019; 123 Habib, Zhao, Shah, Chen, Sun, An, Lutkenhaus, Radovic, Green (b0355) 2019; 3 X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’h, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J. Mater. Chem. A. 5 (2017) 22012–22023. doi: 10.1039/C7TA01082F. Célérier, Hurand, Garnero, Morisset, Benchakar, Habrioux, Chartier, Mauchamp, Findling, Lanson, Ferrage (b0230) 2019; 31 Hope, Forse, Griffith, Lukatskaya, Ghidiu, Gogotsi, Grey (b0280) 2016; 18 Natu, Sokol, Verger, Barsoum (b0275) 2018; 122 Lioi, Neher, Heckler, Back, Mehmood, Nepal, Pachter, Vaia, Kennedy (b0290) 2019; 2 V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M.W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti Kong, He, Liu, Qi, Zheng, Wang, Bai (b0220) 2018; 44 Guo, Zhou, Zhu, Sun (b0050) 2016; 4 Lukatskaya, Bak, Yu, Yang, Barsoum, Gogotsi (b0310) 2015; 5 Naguib, Mochalin, Barsoum, Gogotsi (b0135) 2014; 26 Magne, Mauchamp, Célérier, Chartier, Cabioc’h (b0300) 2016; 18 Jastrzębska, Szuplewska, Wojciechowski, Chudy, Ziemkowska, Chlubny, Rozmysłowska, Olszyna (b0085) 2017; 339 Ghidiu, Halim, Kota, Bish, Gogotsi, Barsoum (b0175) 2016; 28 Ma, Li, Morgan, Światowska, Baddour-Hadjean, Body, Legein, Borkiewicz, Leclerc, Groult, Lantelme, Laberty-Robert, Dambournet (b0255) 2018; 30 Persson, Halim, Lind, Hansen, Wagner, Näslund, Darakchieva, Palisaitis, Rosen, Persson (b0090) 2019; 31 Xie, Naguib, Mochalin, Barsoum, Gogotsi, Yu, Nam, Yang, Kolesnikov, Kent (b0145) 2014; 136 Persson, L.-\AAke Näslund, J. Halim, M.W. Barsoum, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. \AA Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum, 2D Mater. 5 (2017) 015002. doi: 10.1088/2053-1583/aa89cd. stacks: Electronic structure versus boundary effects, Phys. Rev. B. 89 (2014) 235428. doi: 10.1103/PhysRevB.89.235428. Intikhab, Natu, Li, Li, Tao, Rosen, Barsoum, Snyder (b0025) 2019; 371 Xuan, Wang, Chen, Liang, Cheng, Yang, Liu, Ma, Sasaki, Geng (b0190) 2016; 55 Pang, Mendes, Bachmatiuk, Zhao, Ta, Gemming, Liu, Liu, Rummeli (b0105) 2019; 48 Verger, Xu, Natu, Cheng, Ren, Barsoum (b0125) 2019; 23 Goodenough, Park (b0305) 2013; 135 Li, Yao, Liu, Gu, Luo, Li, Yan, Wang, Liu, Chen, Zhang, Abbas, Naz, Zhang (b0195) 2018; 57 Lee, VahidMohammadi, Prorok, Yoon, Beidaghi, Kim (b0060) 2017; 9 Hu, Wang, Zhang, Li, Hu, Wang (b0285) 2015; 17 Halim (10.1016/j.apsusc.2020.147209_b0170) 2014; 26 10.1016/j.apsusc.2020.147209_b0155 Hu (10.1016/j.apsusc.2020.147209_b0055) 2013; 117 Shahzad (10.1016/j.apsusc.2020.147209_b0005) 2016; 353 Ghidiu (10.1016/j.apsusc.2020.147209_b0040) 2014; 516 Hantanasirisakul (10.1016/j.apsusc.2020.147209_b0100) 2018; 30 Peng (10.1016/j.apsusc.2020.147209_b0315) 2016; 8 Halim (10.1016/j.apsusc.2020.147209_b0240) 2016; 362 Anasori (10.1016/j.apsusc.2020.147209_b0120) 2017; 2 Khazaei (10.1016/j.apsusc.2020.147209_b0150) 2013; 23 Intikhab (10.1016/j.apsusc.2020.147209_b0025) 2019; 371 Alhabeb (10.1016/j.apsusc.2020.147209_b0295) 2018; 57 Echols (10.1016/j.apsusc.2020.147209_b0075) 2020; 5 Sultana (10.1016/j.apsusc.2020.147209_b0270) 2008; 255 Habib (10.1016/j.apsusc.2020.147209_b0355) 2019; 3 Li (10.1016/j.apsusc.2020.147209_b0210) 2020 Célérier (10.1016/j.apsusc.2020.147209_b0230) 2019; 31 Magne (10.1016/j.apsusc.2020.147209_b0300) 2016; 18 Yu (10.1016/j.apsusc.2020.147209_b0035) 2018; 44 Kong (10.1016/j.apsusc.2020.147209_b0220) 2018; 44 Ahmed (10.1016/j.apsusc.2020.147209_b0325) 2016; 8 Wang (10.1016/j.apsusc.2020.147209_b0065) 2015; 74 10.1016/j.apsusc.2020.147209_b0245 10.1016/j.apsusc.2020.147209_b0320 Huang (10.1016/j.apsusc.2020.147209_b0345) 2019; 58 Naguib (10.1016/j.apsusc.2020.147209_b0165) 2011; 23 Hu (10.1016/j.apsusc.2020.147209_b0285) 2015; 17 Handoko (10.1016/j.apsusc.2020.147209_b0030) 2018; 1 Hope (10.1016/j.apsusc.2020.147209_b0280) 2016; 18 Come (10.1016/j.apsusc.2020.147209_b0070) 2015; 17 Naguib (10.1016/j.apsusc.2020.147209_b0265) 2014; 50 Ding (10.1016/j.apsusc.2020.147209_b0095) 2018; 9 Peng (10.1016/j.apsusc.2020.147209_b0110) 2019; 5 Naguib (10.1016/j.apsusc.2020.147209_b0135) 2014; 26 Xuan (10.1016/j.apsusc.2020.147209_b0190) 2016; 55 Zhu (10.1016/j.apsusc.2020.147209_b0330) 2016; 163 Goodenough (10.1016/j.apsusc.2020.147209_b0305) 2013; 135 An (10.1016/j.apsusc.2020.147209_b0080) 2019; 2 Zhang (10.1016/j.apsusc.2020.147209_b0350) 2017; 29 Peng (10.1016/j.apsusc.2020.147209_b0340) 2016; 9 Li (10.1016/j.apsusc.2020.147209_b0195) 2018; 57 Cockreham (10.1016/j.apsusc.2020.147209_b0185) 2019; 2 Ma (10.1016/j.apsusc.2020.147209_b0255) 2018; 30 Guo (10.1016/j.apsusc.2020.147209_b0050) 2016; 4 Verger (10.1016/j.apsusc.2020.147209_b0140) 2019; 1 Lai (10.1016/j.apsusc.2020.147209_b0160) 2015; 7 Lioi (10.1016/j.apsusc.2020.147209_b0290) 2019; 2 Sarycheva (10.1016/j.apsusc.2020.147209_b0015) 2018; 4 Alhabeb (10.1016/j.apsusc.2020.147209_b0215) 2017; 29 Lukatskaya (10.1016/j.apsusc.2020.147209_b0310) 2015; 5 Pang (10.1016/j.apsusc.2020.147209_b0105) 2019; 48 Yang (10.1016/j.apsusc.2020.147209_b0200) 2018; 130 Halim (10.1016/j.apsusc.2020.147209_b0260) 2018; 8 Khazaei (10.1016/j.apsusc.2020.147209_b0115) 2018; 20 Schultz (10.1016/j.apsusc.2020.147209_b0250) 2019; 31 Nayak (10.1016/j.apsusc.2020.147209_b0335) 2018; 10 Ghidiu (10.1016/j.apsusc.2020.147209_b0175) 2016; 28 Lee (10.1016/j.apsusc.2020.147209_b0060) 2017; 9 Natu (10.1016/j.apsusc.2020.147209_b0275) 2018; 122 Xie (10.1016/j.apsusc.2020.147209_b0145) 2014; 136 Verger (10.1016/j.apsusc.2020.147209_b0125) 2019; 23 Persson (10.1016/j.apsusc.2020.147209_b0090) 2019; 31 Sokol (10.1016/j.apsusc.2020.147209_b0130) 2019; 1 Zhang (10.1016/j.apsusc.2020.147209_b0045) 2016; 4 Sun (10.1016/j.apsusc.2020.147209_b0205) 2017; 5 Verger (10.1016/j.apsusc.2020.147209_b0235) 2019; 123 10.1016/j.apsusc.2020.147209_b0180 Benchakar (10.1016/j.apsusc.2020.147209_b0020) 2019; 6 Shuck (10.1016/j.apsusc.2020.147209_b0225) 2019; 2 Jastrzębska (10.1016/j.apsusc.2020.147209_b0085) 2017; 339 Ying (10.1016/j.apsusc.2020.147209_b0010) 2017; 5 |
References_xml | – volume: 339 start-page: 1 year: 2017 end-page: 8 ident: b0085 article-title: In vitro studies on cytotoxicity of delaminated Ti3C2 MXene publication-title: J. Hazard. Mater. – volume: 8 start-page: 6051 year: 2016 end-page: 6060 ident: b0315 article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1804779 year: 2018 ident: b0100 article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) publication-title: Adv. Mater. – volume: 5 start-page: 21663 year: 2017 end-page: 21668 ident: b0205 article-title: Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution publication-title: J. Mater. Chem. A – volume: 9 start-page: 2847 year: 2016 end-page: 2854 ident: b0340 article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage publication-title: Energy Environ. Sci. – volume: 516 start-page: 78 year: 2014 end-page: 81 ident: b0040 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature – volume: 20 start-page: 8579 year: 2018 end-page: 8592 ident: b0115 article-title: Insights into exfoliation possibility of MAX phases to MXenes publication-title: Phys. Chem. Chem. Phys. – reference: C – volume: 2 start-page: 3368 year: 2019 end-page: 3376 ident: b0225 article-title: Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene publication-title: ACS Appl. Nano Mater. – volume: 44 start-page: 181 year: 2018 end-page: 190 ident: b0035 article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene publication-title: Nano Energy – volume: 57 start-page: 5444 year: 2018 end-page: 5448 ident: b0295 article-title: Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene) publication-title: Angew. Chem. Int. Ed. – volume: 163 start-page: A785 year: 2016 end-page: A791 ident: b0330 article-title: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance publication-title: J. Electrochem. Soc. – volume: 18 start-page: 30946 year: 2016 end-page: 30953 ident: b0300 article-title: Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 992 year: 2014 end-page: 1005 ident: b0135 article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials publication-title: Adv. Mater. – volume: 8 start-page: 36785 year: 2018 end-page: 36790 ident: b0260 article-title: Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film publication-title: RSC Adv. – volume: 9 start-page: 37184 year: 2017 end-page: 37190 ident: b0060 article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene) publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 16098 year: 2017 ident: b0120 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. – volume: 362 start-page: 406 year: 2016 end-page: 417 ident: b0240 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. – volume: 255 start-page: 2569 year: 2008 end-page: 2573 ident: b0270 article-title: XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium publication-title: Appl. Surf. Sci. – volume: 1 start-page: 656 year: 2019 end-page: 669 ident: b0140 article-title: MXenes: an introduction of their synthesis, select properties, and applications publication-title: Trends Chem. – volume: 122 start-page: 27745 year: 2018 end-page: 27753 ident: b0275 article-title: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions publication-title: J. Phys. Chem. C – volume: 353 start-page: 1137 year: 2016 end-page: 1140 ident: b0005 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science – reference: . Persson, L.-\AAke Näslund, J. Halim, M.W. Barsoum, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. \AA Persson, On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum, 2D Mater. 5 (2017) 015002. doi: 10.1088/2053-1583/aa89cd. – volume: 5 start-page: 366 year: 2020 end-page: 375 ident: b0075 article-title: pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors publication-title: Mol. Syst. Des. Eng. – volume: 44 start-page: 11591 year: 2018 end-page: 11596 ident: b0220 article-title: Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries publication-title: Ceram. Int. – volume: 123 start-page: 20044 year: 2019 end-page: 20050 ident: b0235 article-title: Effect of cationic exchange on the hydration and swelling behavior of Ti3C2Tz MXenes publication-title: J. Phys. Chem. C – volume: 23 start-page: 2185 year: 2013 end-page: 2192 ident: b0150 article-title: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides publication-title: Adv. Funct. Mater. – volume: 30 start-page: 3078 year: 2018 end-page: 3089 ident: b0255 article-title: Lithium intercalation in anatase titanium vacancies and the role of local anionic environment publication-title: Chem. Mater. – volume: 117 start-page: 14253 year: 2013 end-page: 14260 ident: b0055 article-title: MXene: a new family of promising hydrogen storage medium publication-title: J. Phys. Chem. A – volume: 9 start-page: 155 year: 2018 ident: b0095 article-title: MXene molecular sieving membranes for highly efficient gas separation publication-title: Nat. Commun. – volume: 3 start-page: 1 year: 2019 end-page: 6 ident: b0355 article-title: Oxidation stability of Ti 3 C 2 T x MXene nanosheets in solvents and composite films publication-title: Npj 2D Mater. Appl. – volume: 10 start-page: 17030 year: 2018 end-page: 17037 ident: b0335 article-title: Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2Tx MXene publication-title: Nanoscale – volume: 50 start-page: 7420 year: 2014 end-page: 7423 ident: b0265 article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes publication-title: Chem. Commun. – volume: 1 start-page: 173 year: 2018 end-page: 180 ident: b0030 article-title: Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity publication-title: ACS Appl. Energy Mater. – volume: 26 start-page: 2374 year: 2014 end-page: 2381 ident: b0170 article-title: Transparent conductive two-dimensional titanium carbide epitaxial thin films publication-title: Chem. Mater. – volume: 1 start-page: 210 year: 2019 end-page: 223 ident: b0130 article-title: On the chemical diversity of the MAX phases publication-title: Trends Chem. – volume: 17 start-page: 9997 year: 2015 end-page: 10003 ident: b0285 article-title: Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 72 year: 2019 end-page: 133 ident: b0105 article-title: Applications of 2D MXenes in energy conversion and storage systems publication-title: Chem. Soc. Rev. – volume: 55 start-page: 14569 year: 2016 end-page: 14574 ident: b0190 article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 6590 year: 2019 end-page: 6597 ident: b0250 article-title: Surface termination dependent work function and electronic properties of Ti3C2Tx MXene publication-title: Chem. Mater. – volume: 31 start-page: 1805472 year: 2019 ident: b0090 article-title: 2D transition metal carbides (MXenes) for carbon capture publication-title: Adv. Mater. – reference: stacks: Electronic structure versus boundary effects, Phys. Rev. B. 89 (2014) 235428. doi: 10.1103/PhysRevB.89.235428. – volume: 5 start-page: 18 year: 2019 end-page: 50 ident: b0110 article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis publication-title: Chem. – volume: 28 start-page: 3507 year: 2016 end-page: 3514 ident: b0175 article-title: Ion-exchange and cation solvation reactions in Ti3C2 MXene publication-title: Chem. Mater. – volume: 5 start-page: 1500589 year: 2015 ident: b0310 article-title: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy publication-title: Adv. Energy Mater. – volume: 18 start-page: 5099 year: 2016 end-page: 5102 ident: b0280 article-title: NMR reveals the surface functionalisation of Ti3C2 MXene publication-title: Phys. Chem. Chem. Phys. – volume: 74 start-page: 1022 year: 2015 end-page: 1028 ident: b0065 article-title: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances publication-title: Biosens. Bioelectron. – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: b0165 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. – volume: 8 start-page: 7580 year: 2016 end-page: 7587 ident: b0325 article-title: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes publication-title: Nanoscale – volume: 2 start-page: 6087 year: 2019 end-page: 6091 ident: b0290 article-title: Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites publication-title: ACS Appl. Nano Mater. – volume: 58 start-page: 1958 year: 2019 end-page: 1966 ident: b0345 article-title: Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions publication-title: Inorg. Chem. – reference: C. (John) Zhang, S.J. Kim, M. Ghidiu, M.-Q. Zhao, M.W. Barsoum, V. Nicolosi, Y. Gogotsi, Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx Hierarchical Composites for High Performance Li-ion Batteries, Adv. Funct. Mater. 26 (2016) 4143–4151. doi: 10.1002/adfm.201600682. – volume: 4 start-page: 11446 year: 2016 end-page: 11452 ident: b0050 article-title: MXene: a promising photocatalyst for water splitting publication-title: J. Mater. Chem. A – volume: 371 start-page: 325 year: 2019 end-page: 332 ident: b0025 article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes publication-title: J. Catal. – reference: V. Mauchamp, M. Bugnet, E.P. Bellido, G.A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M.W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti – volume: 29 start-page: 4848 year: 2017 end-page: 4856 ident: b0350 article-title: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes) publication-title: Chem. Mater. – volume: 17 start-page: 27 year: 2015 end-page: 35 ident: b0070 article-title: Controlling the actuation properties of MXene paper electrodes upon cation intercalation publication-title: Nano Energy – start-page: 1 year: 2020 end-page: 6 ident: b0210 article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte publication-title: Nat. Mater. – volume: 57 start-page: 6115 year: 2018 end-page: 6119 ident: b0195 article-title: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1901328 year: 2019 ident: b0020 article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst publication-title: Adv. Mater. Interfaces – volume: 31 start-page: 454 year: 2019 end-page: 461 ident: b0230 article-title: Hydration of Ti3C2Tx MXene: an interstratification process with major implications on physical properties publication-title: Chem. Mater. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: b0305 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4871 year: 2016 end-page: 4876 ident: b0045 article-title: A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation publication-title: J. Mater. Chem. A – volume: 130 start-page: 15717 year: 2018 end-page: 15721 ident: b0200 article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system publication-title: Angew. Chem. – volume: 5 start-page: 391 year: 2017 end-page: 398 ident: b0010 article-title: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films publication-title: Mater. Res. Lett. – volume: 2 start-page: 948 year: 2019 end-page: 955 ident: b0080 article-title: Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing publication-title: ACS Appl. Nano Mater. – reference: X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’h, C. Coutanceau, V. Mauchamp, S. Célérier, A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water, J. Mater. Chem. A. 5 (2017) 22012–22023. doi: 10.1039/C7TA01082F. – volume: 2 start-page: 8145 year: 2019 end-page: 8152 ident: b0185 article-title: Inhibition of AlF3·3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment publication-title: ACS Appl. Energy Mater. – volume: 23 start-page: 149 year: 2019 end-page: 163 ident: b0125 article-title: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 7 start-page: 19390 year: 2015 end-page: 19396 ident: b0160 article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O) publication-title: Nanoscale – volume: 4 start-page: eaau0920 year: 2018 ident: b0015 article-title: 2D titanium carbide (MXene) for wireless communication publication-title: Sci. Adv. – volume: 136 start-page: 6385 year: 2014 end-page: 6394 ident: b0145 article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: b0215 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) publication-title: Chem. Mater. – volume: 18 start-page: 5099 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0280 article-title: NMR reveals the surface functionalisation of Ti3C2 MXene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00330C – volume: 44 start-page: 181 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0035 article-title: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.003 – volume: 516 start-page: 78 year: 2014 ident: 10.1016/j.apsusc.2020.147209_b0040 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature doi: 10.1038/nature13970 – volume: 10 start-page: 17030 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0335 article-title: Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2Tx MXene publication-title: Nanoscale doi: 10.1039/C8NR01883A – ident: 10.1016/j.apsusc.2020.147209_b0320 doi: 10.1002/adfm.201600682 – volume: 48 start-page: 72 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0105 article-title: Applications of 2D MXenes in energy conversion and storage systems publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00324F – volume: 55 start-page: 14569 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0190 article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606643 – volume: 136 start-page: 6385 year: 2014 ident: 10.1016/j.apsusc.2020.147209_b0145 article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501520b – volume: 28 start-page: 3507 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0175 article-title: Ion-exchange and cation solvation reactions in Ti3C2 MXene publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01275 – volume: 362 start-page: 406 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0240 article-title: X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.089 – volume: 5 start-page: 391 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0010 article-title: Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2017.1296043 – volume: 23 start-page: 2185 year: 2013 ident: 10.1016/j.apsusc.2020.147209_b0150 article-title: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202502 – volume: 4 start-page: 11446 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0050 article-title: MXene: a promising photocatalyst for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04414J – volume: 31 start-page: 6590 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0250 article-title: Surface termination dependent work function and electronic properties of Ti3C2Tx MXene publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00414 – volume: 135 start-page: 1167 year: 2013 ident: 10.1016/j.apsusc.2020.147209_b0305 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 23 start-page: 149 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0125 article-title: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2019.02.001 – volume: 31 start-page: 1805472 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0090 article-title: 2D transition metal carbides (MXenes) for carbon capture publication-title: Adv. Mater. doi: 10.1002/adma.201805472 – volume: 2 start-page: 948 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0080 article-title: Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02265 – volume: 5 start-page: 18 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0110 article-title: Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis publication-title: Chem. doi: 10.1016/j.chempr.2018.08.037 – volume: 30 start-page: 3078 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0255 article-title: Lithium intercalation in anatase titanium vacancies and the role of local anionic environment publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00925 – ident: 10.1016/j.apsusc.2020.147209_b0245 doi: 10.1088/2053-1583/aa89cd – volume: 3 start-page: 1 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0355 article-title: Oxidation stability of Ti 3 C 2 T x MXene nanosheets in solvents and composite films publication-title: Npj 2D Mater. Appl. doi: 10.1038/s41699-019-0089-3 – volume: 17 start-page: 27 year: 2015 ident: 10.1016/j.apsusc.2020.147209_b0070 article-title: Controlling the actuation properties of MXene paper electrodes upon cation intercalation publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.028 – volume: 26 start-page: 992 year: 2014 ident: 10.1016/j.apsusc.2020.147209_b0135 article-title: 25th anniversary article: MXenes: a new family of two-dimensional materials publication-title: Adv. Mater. doi: 10.1002/adma.201304138 – volume: 8 start-page: 7580 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0325 article-title: H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes publication-title: Nanoscale doi: 10.1039/C6NR00002A – volume: 29 start-page: 7633 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0215 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 5 start-page: 1500589 year: 2015 ident: 10.1016/j.apsusc.2020.147209_b0310 article-title: Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500589 – volume: 122 start-page: 27745 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0275 article-title: Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b08860 – volume: 30 start-page: 1804779 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0100 article-title: Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) publication-title: Adv. Mater. doi: 10.1002/adma.201804779 – volume: 7 start-page: 19390 year: 2015 ident: 10.1016/j.apsusc.2020.147209_b0160 article-title: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O) publication-title: Nanoscale doi: 10.1039/C5NR06513E – volume: 339 start-page: 1 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0085 article-title: In vitro studies on cytotoxicity of delaminated Ti3C2 MXene publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.06.004 – volume: 31 start-page: 454 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0230 article-title: Hydration of Ti3C2Tx MXene: an interstratification process with major implications on physical properties publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03976 – volume: 57 start-page: 5444 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0295 article-title: Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802232 – volume: 130 start-page: 15717 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0200 article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system publication-title: Angew. Chem. doi: 10.1002/ange.201809662 – ident: 10.1016/j.apsusc.2020.147209_b0180 doi: 10.1039/C7TA01082F – volume: 17 start-page: 9997 year: 2015 ident: 10.1016/j.apsusc.2020.147209_b0285 article-title: Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05666C – volume: 6 start-page: 1901328 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0020 article-title: MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901328 – ident: 10.1016/j.apsusc.2020.147209_b0155 doi: 10.1103/PhysRevB.89.235428 – volume: 163 start-page: A785 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0330 article-title: Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance publication-title: J. Electrochem. Soc. doi: 10.1149/2.0981605jes – volume: 9 start-page: 155 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0095 article-title: MXene molecular sieving membranes for highly efficient gas separation publication-title: Nat. Commun. doi: 10.1038/s41467-017-02529-6 – volume: 50 start-page: 7420 year: 2014 ident: 10.1016/j.apsusc.2020.147209_b0265 article-title: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes publication-title: Chem. Commun. doi: 10.1039/C4CC01646G – volume: 4 start-page: eaau0920 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0015 article-title: 2D titanium carbide (MXene) for wireless communication publication-title: Sci. Adv. doi: 10.1126/sciadv.aau0920 – volume: 9 start-page: 37184 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0060 article-title: Room temperature gas sensing of two-dimensional titanium carbide (MXene) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11055 – volume: 1 start-page: 173 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0030 article-title: Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00054 – volume: 2 start-page: 6087 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0290 article-title: Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01194 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.apsusc.2020.147209_b0165 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 26 start-page: 2374 year: 2014 ident: 10.1016/j.apsusc.2020.147209_b0170 article-title: Transparent conductive two-dimensional titanium carbide epitaxial thin films publication-title: Chem. Mater. doi: 10.1021/cm500641a – volume: 44 start-page: 11591 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0220 article-title: Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.223 – volume: 58 start-page: 1958 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0345 article-title: Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02890 – volume: 2 start-page: 8145 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0185 article-title: Inhibition of AlF3·3H2O impurity formation in Ti3C2Tx MXene synthesis under a unique CoFx/HCl etching environment publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01618 – volume: 8 start-page: 6051 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0315 article-title: Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11973 – volume: 255 start-page: 2569 year: 2008 ident: 10.1016/j.apsusc.2020.147209_b0270 article-title: XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.07.149 – volume: 371 start-page: 325 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0025 article-title: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.037 – volume: 123 start-page: 20044 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0235 article-title: Effect of cationic exchange on the hydration and swelling behavior of Ti3C2Tz MXenes publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04546 – start-page: 1 year: 2020 ident: 10.1016/j.apsusc.2020.147209_b0210 article-title: A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte publication-title: Nat. Mater. – volume: 9 start-page: 2847 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0340 article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01717G – volume: 4 start-page: 4871 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0045 article-title: A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00554C – volume: 74 start-page: 1022 year: 2015 ident: 10.1016/j.apsusc.2020.147209_b0065 article-title: TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.08.004 – volume: 29 start-page: 4848 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0350 article-title: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00745 – volume: 2 start-page: 16098 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0120 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 5 start-page: 21663 year: 2017 ident: 10.1016/j.apsusc.2020.147209_b0205 article-title: Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05574A – volume: 8 start-page: 36785 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0260 article-title: Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film publication-title: RSC Adv. doi: 10.1039/C8RA07270A – volume: 20 start-page: 8579 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0115 article-title: Insights into exfoliation possibility of MAX phases to MXenes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP08645H – volume: 18 start-page: 30946 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0300 article-title: Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05985F – volume: 353 start-page: 1137 year: 2016 ident: 10.1016/j.apsusc.2020.147209_b0005 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science doi: 10.1126/science.aag2421 – volume: 1 start-page: 656 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0140 article-title: MXenes: an introduction of their synthesis, select properties, and applications publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.04.006 – volume: 1 start-page: 210 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0130 article-title: On the chemical diversity of the MAX phases publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.02.016 – volume: 57 start-page: 6115 year: 2018 ident: 10.1016/j.apsusc.2020.147209_b0195 article-title: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800887 – volume: 5 start-page: 366 year: 2020 ident: 10.1016/j.apsusc.2020.147209_b0075 article-title: pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C9ME00142E – volume: 2 start-page: 3368 year: 2019 ident: 10.1016/j.apsusc.2020.147209_b0225 article-title: Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00286 – volume: 117 start-page: 14253 year: 2013 ident: 10.1016/j.apsusc.2020.147209_b0055 article-title: MXene: a new family of promising hydrogen storage medium publication-title: J. Phys. Chem. A doi: 10.1021/jp409585v |
SSID | ssj0012873 |
Score | 2.6690826 |
Snippet | [Display omitted]
•The nature of etching agent modifies the surface chemistry of Ti3C2Tx MXene.•Combined XRD, Raman and XPS for an in-depth characterization of... MXenes are a new, and growing, family of 2D materials with very promising properties for a wide variety of applications. Obtained from the etching of MAX... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 147209 |
SubjectTerms | Catalysis Chemical Sciences Condensed Matter Etching agent Hydrogen evolution reaction Inorganic chemistry Material chemistry Materials Science MXene Oxidation Physics Surface chemistry Surface properties Ti3C2Tx |
Title | One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry |
URI | https://dx.doi.org/10.1016/j.apsusc.2020.147209 https://hal.science/hal-02904636 |
Volume | 530 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qXvQgPvHNIB6NTTa7m9ZbKEp9VA-20FvYbDZakbRoKp76253JoygIBY9ZdjZhZzOPZL5vGDtzuU5SjWmqsh53hPSso7WInaIZpE4NTzwCJ_ceVHcgbody2GCdGgtDZZWV7S9temGtq5FmtZvNyWjUfCIeEWLf4gTEUYoAv0IEdMovZvMyDzS_5V9mnEzoIF7D54oaL42Z6AcRGXIcEgGnssS_3dPSS_2htXA81xtsvYoYISwfapM1bLbF1n7wCG6z2WNmoRcOYfKCTukc6q4nOfSGZMsuIYTnKRFaoQzkY5jOIS2AASAYVDCeQ6BSQxinQKrEhQFz5aQs6YJxBv2R3-H9L_iYvqfaoFTdK26HDa6v-p2uUzVWcIzfUrmTUnWJ8QNphEnbVknjaWvaMsZ0SbkJBoVJEMvUBImbxNJayZXFPBCDL8s1vrD-LlvOxpndY6A8Q25QtggVFbdFiwvt-bGIhVEuesh95tf7GZmKdZyaX7xFdXnZa1RqISItRKUW9pkzl5qUrBsL5ge1qqJfpydCx7BA8hQ1O78JkW13w_uIxlzeLujUPr2Dfy9_yFbpisCLnjxiy_n71B5jFJPHJ8UxPWEr4c1d9-EbjWbwGg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QE4VDxFaYER4ogVe727jnuzIiqXJuFAKuW2Wq_XNAg5UesgTvx2ZvyIQEKqxHXtWVs763ms5_sG4H0obFlZSlO1j0QgVeQDa2URtM0gbeVEGTE4eb7Q-bX8tFKrA5gOWBguq-xtf2fTW2vdj4z71Rxv1-vxF-YRYfYtwUAcrSeHcMTsVGoER9nlVb7Y_0ygpCDuKL5TBgiJAUHXlnlZSkbvmMtQ0JBMBFcm_ttDHd4MZ62t77l4DMd90IhZ915P4MDXT-HRH1SCz-DX59rjPFvh9ob80gccGp80OF-xOTvHDL_umNOKZLDZ4G6PakGKAdGRjmkrIlcb4qZC1iZNjJQul11VF25qXK7jqVj-xLvdbWUdSQ3t4p7D9cXH5TQP-t4KgYsnugkqLjBxcaKcdFXqtXKR9S5VBWVMOiwpLiyTQlUuKcOyUN4roT2lghR_eWHpm41fwKje1P4loI4ce0I1YWBUkcqJkDaKC1lIp0NykicQD-tpXE88zv0vvpuhwuyb6bRgWAum08IJBHupbUe8cc_9yaAq89cGMuQb7pF8R5rdP4T5tvNsZngsFGnLqPYjevXf07-FB_lyPjOzy8XVKTzkK4xljNQZjJrbnX9NQU1TvOk37W_OG_LL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+MAX+phase%2C+different+MXenes%3A+a+guideline+to+understand+the+crucial+role+of+etching+conditions+on+Ti3C2Tx+surface+chemistry&rft.jtitle=Applied+surface+science&rft.au=Benchakar%2C+Mohamed&rft.au=Loupias%2C+Lola&rft.au=Garnero%2C+Cyril&rft.au=Bilyk%2C+Thomas&rft.date=2020-11-15&rft.pub=Elsevier&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016%2Fj.apsusc.2020.147209&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02904636v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |