Seed Mucilage: Biological Functions and Potential Applications in Biotechnology
Abstract In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synt...
Saved in:
Published in | Plant and cell physiology Vol. 62; no. 12; pp. 1847 - 1857 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
27.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research. |
---|---|
AbstractList | In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research. Abstract In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research. In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research. |
Author | McGee, Robert Dean, Gillian H Tsai, Allen Yi-Lun Haughn, George W Sawa, Shinichiro |
Author_xml | – sequence: 1 givenname: Allen Yi-Lun orcidid: 0000-0002-4232-2281 surname: Tsai fullname: Tsai, Allen Yi-Lun email: tsai-yilun@kumamoto-u.ac.jp – sequence: 2 givenname: Robert orcidid: 0000-0001-6554-8446 surname: McGee fullname: McGee, Robert – sequence: 3 givenname: Gillian H orcidid: 0000-0003-1126-8355 surname: Dean fullname: Dean, Gillian H – sequence: 4 givenname: George W surname: Haughn fullname: Haughn, George W – sequence: 5 givenname: Shinichiro orcidid: 0000-0002-9309-9104 surname: Sawa fullname: Sawa, Shinichiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34195842$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQhoMo7oeevEtPIkg1aZK28bYurgorK6jnkibpGukmtUkP--9N7epB0MMww8zzzuGZgH1jjQLgBMFLBBm-akQTipeQsT0wRiRDMYMU74MxhDiJYZajEZg49w5hmDE8BCNMEKM5ScZg9ayUjB47oWu-VtfRjba1XWvB62jRGeG1NS7iRkZP1ivjddjPmqYOwHDSpo94Jd5MH9wegYOK104d7_oUvC5uX-b38XJ19zCfLWOB89THSnBIBSMUJxKLDGcYc5n2qxRLmbC8ImWKWEpEVVY5IwkSJa2kyjgjkiQUT8H58Ldp7UennC822glV19wo27kioSSjJMU4D-jpDu3KjZJF0-oNb7fFt4QAXAyAaK1zrap-EASLXnERFBc7xYFGv2ih_ZcN33Jd_5E5GzK2a_59_gmkS42M |
CitedBy_id | crossref_primary_10_1016_j_aimed_2024_09_008 crossref_primary_10_1016_j_ijbiomac_2025_141360 crossref_primary_10_1093_jxb_erae213 crossref_primary_10_3390_ijms25021149 crossref_primary_10_1007_s11104_024_06642_6 crossref_primary_10_1016_j_ijbiomac_2023_126725 crossref_primary_10_1002_bip_23561 crossref_primary_10_3762_bjnano_15_126 crossref_primary_10_1111_tpj_16109 crossref_primary_10_1016_j_jff_2021_104812 crossref_primary_10_1016_j_indcrop_2022_114761 crossref_primary_10_1016_j_tifs_2023_104136 crossref_primary_10_1111_jac_12603 crossref_primary_10_3390_su152115406 crossref_primary_10_1007_s11104_024_07192_7 crossref_primary_10_1016_j_heliyon_2023_e15149 crossref_primary_10_3389_fagro_2023_1216520 crossref_primary_10_1093_pcp_pcab168 crossref_primary_10_1016_j_flora_2024_152614 crossref_primary_10_1371_journal_pone_0319087 crossref_primary_10_1016_j_colsurfa_2023_133005 crossref_primary_10_1016_j_jnc_2025_126900 crossref_primary_10_3389_fnut_2024_1334247 crossref_primary_10_1016_j_hybadv_2025_100453 crossref_primary_10_11110_kjpt_2024_54_3_160 crossref_primary_10_1038_s42003_023_05192_4 crossref_primary_10_1093_jxb_eraf014 crossref_primary_10_1093_aob_mcad091 crossref_primary_10_1016_j_indcrop_2022_115963 crossref_primary_10_1111_plb_13641 crossref_primary_10_3390_su14116909 crossref_primary_10_1093_aob_mcad054 crossref_primary_10_1093_botlinnean_boae051 crossref_primary_10_1002_pei3_10135 crossref_primary_10_1016_j_plaphy_2025_109517 crossref_primary_10_1016_j_rhisph_2023_100803 crossref_primary_10_1080_15440478_2023_2216951 crossref_primary_10_3389_fpls_2025_1551783 |
Cites_doi | 10.1016/S0885-5765(88)80006-7 10.1104/pp.109.138388 10.1104/pp.122.2.403 10.1016/j.jaridenv.2016.01.008 10.3390/ijms16023452 10.1007/s00442-013-2735-3 10.1016/j.flora.2006.12.003 10.1016/j.molp.2018.11.008 10.2135/cropsci2016.08.0703 10.1071/BT08022 10.1007/978-1-4020-6697-9_2 10.3389/fpls.2018.01957 10.1093/plcell/koaa031 10.1007/s11103-005-4110-1 10.1007/s11104-018-3670-1 10.1007/s11104-014-2281-8 10.1038/s41580-020-00288-9 10.1007/s11104-013-1920-9 10.1021/acs.jafc.6b05726 10.1002/ecy.2809 10.1071/CH9751345 10.1007/s00114-020-01709-7 10.1016/j.ppees.2012.09.002 10.1111/j.1467-7652.2010.00511.x 10.1105/tpc.010265 10.3390/plants7040081 10.3390/app10010065 10.1104/pp.010410 10.1016/j.indcrop.2019.111991 10.1111/nph.17056 10.1038/s41586-019-1711-4 10.1093/aob/mcu011 10.1007/s11103-017-0631-7 10.1002/aps3.11332 10.1111/j.1365-313X.2011.04768.x 10.1002/ajb2.1415 10.3732/ajb.1500317 10.1016/0144-8617(94)90085-X 10.1111/bij.12198 10.1111/j.1365-3040.2011.02459.x 10.1111/pce.13442 10.1111/j.1469-8137.2004.01217.x 10.1007/978-3-319-54600-1_14 10.1111/nph.15490 10.1051/ocl/2015058 10.1080/0007166031000085337 10.1093/pcp/pcab077 10.1016/j.tplants.2015.04.008 10.3390/agronomy10071033 10.1016/S0008-6215(00)84644-3 10.1093/aob/mcm089 10.2979/NPJ.2007.8.1.4 10.1093/aob/mcaq041 10.1111/nph.16144 10.1016/j.cofs.2018.01.004 10.1007/s00497-018-0345-2 10.1080/07929978.1999.10676748 10.1007/s11103-012-9984-0 10.1111/j.1438-8677.2012.00684.x 10.3390/plants9030333 10.1186/s43141-020-00036-8 10.1371/journal.pone.0024346 10.1007/s11104-019-03939-9 10.1007/s11104-018-3565-1 10.1371/journal.pone.0034597 10.1371/journal.pgen.1004221 10.1016/j.jplph.2018.11.010 10.3732/ajb.90.3.388 10.1021/acsami.0c12357 10.1002/aps3.11314 10.1111/nph.14897 10.1093/aob/mcr301 10.1007/BF00385333 10.1016/S0254-6299(15)30972-8 10.1111/j.1365-313X.2008.03437.x 10.1111/nph.14468 10.3389/fpls.2018.01515 10.1002/9781119312994.apr0691 10.1104/pp.100.2.1059 10.1016/S0963-9969(00)00055-7 10.1007/s11103-019-00909-8 10.1111/pce.13827 10.1104/pp.103.032508 10.1038/s41598-018-28564-x 10.1071/BT11314 10.1111/tpj.15283 10.1093/abbs/gmv078 10.1016/j.plaphy.2009.12.006 10.1017/S0960258511000249 10.1139/cjb-2014-0242 10.1111/j.1751-7915.2010.00165.x 10.1093/aob/mcx081 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/pcp/pcab099 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | Special Issue The Biomechanics of Plant Cell Walls |
EISSN | 1471-9053 |
EndPage | 1857 |
ExternalDocumentID | 34195842 10_1093_pcp_pcab099 10.1093/pcp/pcab099 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: KAKENHI 18H05487 – fundername: Japan Society for the Promotion of Science grantid: KAKENHI 20H00422 – fundername: University of British Columbia grantid: 4YF Tuition Award – fundername: Natural Sciences and Engineering Research Council of Canada grantid: Discovery grants – fundername: Natural Sciences and Engineering Research Council of Canada grantid: CREATE PRoTECT program – fundername: Japan Society for the Promotion of Science grantid: KAKENHI 20KK0135 |
GroupedDBID | --- -E4 -~X .2P .I3 0R~ 123 1TH 29O 2WC 4.4 482 48X 53G 5VS 5WD 6.Y 6P2 7.U 70D A8Z AAHBH AAIMJ AAJKP AAJQQ AAKDD AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT ABDBF ABEUO ABIXL ABJNI ABMNT ABNKS ABPTD ABQLI ABQTQ ABSAR ABSMQ ABWST ABXVV ABZBJ ACFRR ACGFS ACIWK ACKIV ACMRT ACNCT ACPQN ACPRK ACUFI ACUTJ ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AIDBO AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K EBD EBS ECGQY EDH EE~ EJD ELUNK EMOBN ESTFP ESX F20 F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY N9A NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RHF RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SV3 TCN TEORI TLC TN5 TUS TWZ W8F WHG X7H Y6R YAYTL YKOAZ YNT YSK YXANX ZCG ZJWQK ZKX ~91 ~KM AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ACUHS ADNBA AGORE AHGBF AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c386t-eca05c94532d3c73733ad605c963dd298f4b61964cfbf89421cb5fde7a94d4253 |
ISSN | 0032-0781 1471-9053 |
IngestDate | Fri Jul 11 04:26:43 EDT 2025 Tue Apr 01 03:09:35 EDT 2025 Tue Jul 01 02:34:03 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Wed Aug 28 03:16:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Mucilage Abiotic stress Biotic interactions Polysaccharide Seed Cell wall |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-eca05c94532d3c73733ad605c963dd298f4b61964cfbf89421cb5fde7a94d4253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1126-8355 0000-0002-9309-9104 0000-0002-4232-2281 0000-0001-6554-8446 |
PMID | 34195842 |
PQID | 2547546338 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2547546338 pubmed_primary_34195842 crossref_primary_10_1093_pcp_pcab099 crossref_citationtrail_10_1093_pcp_pcab099 oup_primary_10_1093_pcp_pcab099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec-27 |
PublicationDateYYYYMMDD | 2021-12-27 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: Japan |
PublicationTitle | Plant and cell physiology |
PublicationTitleAlternate | Plant Cell Physiol |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Arshad (2022011813460548000_R5) 2019; 221 Lee (2022011813460548000_R47) 2020; 12 Saez-Aguayo (2022011813460548000_R65) 2014; 10 Penfield (2022011813460548000_R61) 2001; 13 Alzueta (2022011813460548000_R2) 2003; 44 Yang (2022011813460548000_R93) 2013; 173 Ding (2022011813460548000_R20) 2021 Dixon (2022011813460548000_R21) 2005; 165 De Muynck (2022011813460548000_R0018a) 2010; 8 Šola (2022011813460548000_R71) 2019; 2 Arsovski (2022011813460548000_R6) 2009; 150 Yang (2022011813460548000_R89) 2012; 35 Geneve (2022011813460548000_R33) 2017; 57 Lin (2022011813460548000_R48) 1994; 23 Shan (2022011813460548000_R68) 2020; 8 Anjaneyalu (2022011813460548000_R0003a) 1971; 24 Castejón (2022011813460548000_R12) 2017; 65 Fry (2022011813460548000_R28) 2017; 120 Shen (2022011813460548000_R69) 2006; 60 Rautengarten (2022011813460548000_R63) 2008; 54 Fitch (2022011813460548000_R25) 2007; 8 Hasegawa (2022011813460548000_R36) 1992; 100 Han (2022011813460548000_R0036a) 2020; 145 Toorop (2022011813460548000_R77) 2012; 109 Fabre (2022011813460548000_R24) 2015; 22 Dean (2022011813460548000_R14) 2017; 95 Souza (2022011813460548000_R73) 2020; 107 Di Marsico (2022011813460548000_R19) 2018; 425 Yang (2022011813460548000_R92) 2011; 6 Liu (2022011813460548000_R49) 2018; 9 Akhtar (2022011813460548000_R1) 2018; 428 Hu (2022011813460548000_R38) 2019; 232 Roberts (2022011813460548000_R64) 2018; 8 Karaismailoglu (2022011813460548000_R0044a) 2018 LoPresti (2022011813460548000_R51) 2019; 100 Viudes (2022011813460548000_R81) 2020 Witztum (2022011813460548000_R85) 1969; 130 Yang (2022011813460548000_R88) 2012; 7 Balke (2022011813460548000_R7) 2000; 33 Heydecker (2022011813460548000_R37) 1968; 83 Gao (2022011813460548000_R31) 2004; 134 Yang (2022011813460548000_R87) 2021; 229 Voiniciuc (2022011813460548000_R82) 2015; 16 Sun (2022011813460548000_R74) 2012; 60 McGee (2022011813460548000_R53) 2019; 101 Arshad (2022011813460548000_R0005a) 2021 Lobova (2022011813460548000_R50) 2003; 90 Galloway (2022011813460548000_R30) 2018; 217 De-Paula (2022011813460548000_R18) 2015; 102 Huang (2022011813460548000_R42) 1999; 47 Kreitschitz (2022011813460548000_R46) 2007; 202 Barber (2022011813460548000_R0008a) 1974; 34 Sechet (2022011813460548000_R67) 2018; 7 Deng (2022011813460548000_R17) 2015; 387 Huang (2022011813460548000_R43) 1999; 65 Metje-Sprink (2022011813460548000_R56) 2019; 9 Boothe (2022011813460548000_R11) 2010; 8 Thapliyal (2022011813460548000_R75) 2008; 56 Zhu (2022011813460548000_R95) 2020; 21 McGee (2022011813460548000_R54) 2021 Dean (2022011813460548000_R15) 2020; 8 Tsai (2022011813460548000_R0078a) 2017; 173 Debeaujon (2022011813460548000_R16) 2000; 122 Kreitschitz (2022011813460548000_R45) 2021; 108 Engelbrecht (2022011813460548000_R22) 2014; 111 Gedalovich (2022011813460548000_R32) 1988; 32 Sharma (2022011813460548000_R0068a) 2013 Huang (2022011813460548000_R40) 2015; 47 Zhang (2022011813460548000_R94) 2020; 9 Gorai (2022011813460548000_R34) 2014; 374 Anzalone (2022011813460548000_R4) 2019; 576 Bhatt (2022011813460548000_R10) 2016; 128 Barber (2022011813460548000_R8) 1976; 36 Anjaneyalu (2022011813460548000_R3) 1979; 75 Naveed (2022011813460548000_R59) 2019; 437 Griffiths (2022011813460548000_R35) 2017; 214 Western (2022011813460548000_R84) 2001; 127 Galloway (2022011813460548000_R29) 2020; 225 Esfandiari (2022011813460548000_R23) 2013; 81 Barrios (2022011813460548000_R9) 2015; 93 Francoz (2022011813460548000_R26) 2018; 31 Moohan (2022011813460548000_R58) 2020; 10 Shi (2022011813460548000_R70) 2012; 69 Villellas (2022011813460548000_R80) 2013; 15 Meschke (2022011813460548000_R55) 2010; 3 Sandhya (2022011813460548000_R66) 2020; 18 Yang (2022011813460548000_R90) 2012; 14 Phan (2022011813460548000_R62) 2018; 1 Xu (2022011813460548000_R86) 2018 Lu (2022011813460548000_R52) 2010; 105 Tharanathan (2022011813460548000_R76) 1975; 28 Yang (2022011813460548000_R91) 2010; 48 Montecillo (2022011813460548000_R57) 2020; 10 Soukoulis (2022011813460548000_R72) 2018; 22 Huang (2022011813460548000_R41) 2008; 101 Kreitschitz (2022011813460548000_R44) 2009 Western (2022011813460548000_R83) 2012; 22 North (2022011813460548000_R60) 2014; 114 Tsai (2022011813460548000_R78) 2019; 12 Hu (2022011813460548000_R39) 2019; 42 Francoz (2022011813460548000_R27) 2015; 20 |
References_xml | – volume: 32 start-page: 61 year: 1988 ident: 2022011813460548000_R32 article-title: Chemical composition of viscin, an adhesive involved in dispersal of the parasite Phoradendron californicum (Viscaceae) publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/S0885-5765(88)80006-7 – volume: 150 start-page: 1219 year: 2009 ident: 2022011813460548000_R6 article-title: AtBXL1 encodes a bifunctional β-D-xylosidase/α-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells publication-title: Plant Physiol. doi: 10.1104/pp.109.138388 – volume: 122 start-page: 403 year: 2000 ident: 2022011813460548000_R16 article-title: Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.122.2.403 – volume: 128 start-page: 73 year: 2016 ident: 2022011813460548000_R10 article-title: Seed mucilage effect on water uptake and germination in five species from the hyper-arid Arabian desert publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2016.01.008 – volume: 16 start-page: 3452 year: 2015 ident: 2022011813460548000_R82 article-title: Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16023452 – volume: 173 start-page: 1452 year: 2013 ident: 2022011813460548000_R93 article-title: Hydrated mucilage reduces post-dispersal seed removal of a sand desert shrub by ants in a semiarid ecosystem publication-title: Oecologia doi: 10.1007/s00442-013-2735-3 – volume: 202 start-page: 570 year: 2007 ident: 2022011813460548000_R46 article-title: Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae) publication-title: Flora. Morphol. Distrib. Funct. Ecol. Plants doi: 10.1016/j.flora.2006.12.003 – volume: 12 start-page: 99 year: 2019 ident: 2022011813460548000_R78 article-title: Regulation of root-knot nematode behavior by seed-coat mucilage-derived attractants publication-title: Mol. Plant doi: 10.1016/j.molp.2018.11.008 – volume: 57 start-page: 2160 year: 2017 ident: 2022011813460548000_R33 article-title: Stress influences seed germination in mucilage-producing chia publication-title: Crop Sci. doi: 10.2135/cropsci2016.08.0703 – volume: 56 start-page: 583 year: 2008 ident: 2022011813460548000_R75 article-title: Role of mucilage in germination of Dillenia indica (Dilleniaceae) seeds publication-title: Aust. J. Bot. doi: 10.1071/BT08022 – start-page: 11 volume-title: Functional Surfaces in Biology: Little Structures with Big Effects year: 2009 ident: 2022011813460548000_R44 doi: 10.1007/978-1-4020-6697-9_2 – volume: 9 year: 2019 ident: 2022011813460548000_R56 article-title: DNA-free genome editing: past, present and future publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01957 – year: 2021 ident: 2022011813460548000_R20 article-title: ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage publication-title: Plant Cell doi: 10.1093/plcell/koaa031 – volume: 60 start-page: 377 year: 2006 ident: 2022011813460548000_R69 article-title: The homeobox gene GLABRA2 affects seed oil content in Arabidopsis publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-4110-1 – volume: 173 start-page: 1059 year: 2017 ident: 2022011813460548000_R0078a article-title: Identification and characterization of seed coat mucilage proteins publication-title: Plant Physiol. doi: 10.1016/j.molp.2018.11.008 – volume: 428 start-page: 57 year: 2018 ident: 2022011813460548000_R1 article-title: A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates publication-title: Plant Soil doi: 10.1007/s11104-018-3670-1 – volume: 387 start-page: 167 year: 2015 ident: 2022011813460548000_R17 article-title: The effect of natural seed coatings of Capsella bursa-pastoris L. Medik. (shepherd’s purse) on soil-water retention, stability and hydraulic conductivity publication-title: Plant Soil doi: 10.1007/s11104-014-2281-8 – volume: 21 start-page: 661 year: 2020 ident: 2022011813460548000_R95 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00288-9 – volume: 374 start-page: 727 year: 2014 ident: 2022011813460548000_R34 article-title: Toward understanding the ecological role of mucilage in seed germination of a desert shrub Henophyton deserti: interactive effects of temperature, salinity and osmotic stress publication-title: Plant Soil doi: 10.1007/s11104-013-1920-9 – volume: 65 start-page: 2572 year: 2017 ident: 2022011813460548000_R12 article-title: Ultrasonic removal of mucilage for pressurized liquid extraction of omega-3 rich oil from chia seeds (Salvia hispanica L.) publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b05726 – volume: 100 year: 2019 ident: 2022011813460548000_R51 article-title: Mucilage-bound sand reduces seed predation by ants but not by reducing apparency: a field test of 53 plant species publication-title: Ecology doi: 10.1002/ecy.2809 – volume: 28 start-page: 1345 year: 1975 ident: 2022011813460548000_R76 article-title: Structure of the acid-stable core-polysaccharide derived from the seed mucilage of Ocimum basilicum publication-title: Aust. J. Chem. doi: 10.1071/CH9751345 – volume: 108 year: 2021 ident: 2022011813460548000_R45 article-title: The role of mucilage envelope in the endozoochory of selected plant taxa publication-title: Sci. Nat. doi: 10.1007/s00114-020-01709-7 – volume: 14 start-page: 434 year: 2012 ident: 2022011813460548000_R90 article-title: More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage publication-title: Perspect. Plant Ecol. Evol. Syst. doi: 10.1016/j.ppees.2012.09.002 – volume: 8 start-page: 588 year: 2010 ident: 2022011813460548000_R11 article-title: Seed-based expression systems for plant molecular farming publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00511.x – volume: 13 start-page: 2777 year: 2001 ident: 2022011813460548000_R61 article-title: MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat publication-title: Plant Cell doi: 10.1105/tpc.010265 – volume: 7 year: 2018 ident: 2022011813460548000_R67 article-title: Emerging functions for cell wall polysaccharides accumulated during eudicot seed development publication-title: Plants doi: 10.3390/plants7040081 – volume: 36 start-page: 301 year: 1976 ident: 2022011813460548000_R8 article-title: Interactions between mosquito larvae and mucilaginous plant seeds. III. Factors influencing attachment of larvae to seeds and their subsequent mortality publication-title: Mosq. News – volume: 10 year: 2020 ident: 2022011813460548000_R58 article-title: Cellulose nanofibers and other biopolymers for biomedical applications. A review publication-title: Appl. Sci. doi: 10.3390/app10010065 – volume: 127 start-page: 998 year: 2001 ident: 2022011813460548000_R84 article-title: Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.010410 – volume: 145 year: 2020 ident: 2022011813460548000_R0036a article-title: Transcriptome analysis reveals the molecular mechanisms of mucilage biosynthesis during Artemisia sphaerocephala seed development publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2019.111991 – volume: 1 start-page: 1 year: 2018 ident: 2022011813460548000_R62 article-title: New insights into the composition and structure of seed mucilage publication-title: Annu. Plant Rev. Online – volume: 229 start-page: 1946 year: 2021 ident: 2022011813460548000_R87 article-title: Seed hemicelluloses tailor mucilage properties and salt tolerance publication-title: New Phytol. doi: 10.1111/nph.17056 – volume: 576 start-page: 149 year: 2019 ident: 2022011813460548000_R4 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 114 start-page: 1251 year: 2014 ident: 2022011813460548000_R60 article-title: Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants publication-title: Ann. Bot. doi: 10.1093/aob/mcu011 – volume: 95 start-page: 33 year: 2017 ident: 2022011813460548000_R14 article-title: Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene publication-title: Plant Mol. Biol. doi: 10.1007/s11103-017-0631-7 – volume: 8 year: 2020 ident: 2022011813460548000_R15 article-title: A simple, non-toxic method for separating seeds based on density, and its application in isolating Arabidopsis thaliana seed oil mutants publication-title: Appl. Plant Sci. doi: 10.1002/aps3.11332 – volume: 69 start-page: 37 year: 2012 ident: 2022011813460548000_R70 article-title: Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04768.x – start-page: 445 volume-title: Bangladesh J. Bot. year: 2018 ident: 2022011813460548000_R0044a – volume: 107 start-page: 31 year: 2020 ident: 2022011813460548000_R73 article-title: Secondary-cell-wall release: a particular pattern of secretion in the mucilaginous seed coat of Magonia pubescens publication-title: Am. J. Bot. doi: 10.1002/ajb2.1415 – volume: 102 start-page: 1413 year: 2015 ident: 2022011813460548000_R18 article-title: Roles of mucilage in Emilia fosbergii, a myxocarpic Asteraceae: efficient seed imbibition and diaspore adhesion publication-title: Am. J. Bot. doi: 10.3732/ajb.1500317 – volume: 23 start-page: 13 year: 1994 ident: 2022011813460548000_R48 article-title: Structure of chia seed polysaccharide exudate publication-title: Carbohydr. Polym. doi: 10.1016/0144-8617(94)90085-X – volume: 111 start-page: 241 year: 2014 ident: 2022011813460548000_R22 article-title: Mucilage secretion: an adaptive mechanism to reduce seed removal by soil erosion? publication-title: Biol. J. Linn. Soc. doi: 10.1111/bij.12198 – volume: 35 start-page: 872 year: 2012 ident: 2022011813460548000_R89 article-title: Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02459.x – volume: 42 start-page: 591 year: 2019 ident: 2022011813460548000_R39 article-title: Seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence on desert sand dunes publication-title: Plant Cell Environ. doi: 10.1111/pce.13442 – volume: 165 start-page: 9 year: 2005 ident: 2022011813460548000_R21 article-title: Proanthocyanidins - a final frontier in flavonoid research? publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01217.x – start-page: 509 volume-title: Bioprocessing of Plant in Vitro Systems. Reference Series in Phytochemistry year: 2018 ident: 2022011813460548000_R86 doi: 10.1007/978-3-319-54600-1_14 – volume: 221 start-page: 1434 year: 2019 ident: 2022011813460548000_R5 article-title: Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae) publication-title: New Phytol. doi: 10.1111/nph.15490 – volume: 22 year: 2015 ident: 2022011813460548000_R24 article-title: Barriers to the release of flaxseed oil bodies and ways of overcoming them publication-title: OCL doi: 10.1051/ocl/2015058 – volume: 44 start-page: 67 year: 2003 ident: 2022011813460548000_R2 article-title: Effect of whole and demucilaged linseed in broiler chicken diets on digesta viscosity, nutrient utilisation and intestinal microflora publication-title: Br. Poult. Sci. doi: 10.1080/0007166031000085337 – year: 2021 ident: 2022011813460548000_R54 article-title: Pectin modification in seed coat mucilage by in vivo expression of rhamnogalacturonan-I- and homogalacturonan-degrading enzymes publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcab077 – volume: 20 start-page: 515 year: 2015 ident: 2022011813460548000_R27 article-title: Arabidopsis seed mucilage secretory cells: regulation and dynamics publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.04.008 – volume: 10 year: 2020 ident: 2022011813460548000_R57 article-title: CRISPR-Cas9 system for plant genome editing: current approaches and emerging developments publication-title: Agronomy. doi: 10.3390/agronomy10071033 – volume: 24 start-page: 1501 year: 1971 ident: 2022011813460548000_R0003a article-title: Composition and preliminary fractionation of the seed mucilage of Ocimum canum. Aust. J. Chem doi: 10.1016/S0008-6215(00)84644-3 – volume: 101 start-page: 277 year: 2008 ident: 2022011813460548000_R41 article-title: Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions publication-title: Ann. Bot. doi: 10.1093/aob/mcm089 – volume: 8 start-page: 4 year: 2007 ident: 2022011813460548000_R25 article-title: Germinating seeds of Lesquerella perforata and stonensis: substrate effects and mucilage production publication-title: Nativ. Plants J. doi: 10.2979/NPJ.2007.8.1.4 – volume: 105 start-page: 999 year: 2010 ident: 2022011813460548000_R52 article-title: Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance publication-title: Ann. Bot. doi: 10.1093/aob/mcaq041 – volume: 225 start-page: 1461 year: 2020 ident: 2022011813460548000_R29 article-title: Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value publication-title: New Phytol. doi: 10.1111/nph.16144 – volume: 22 start-page: 28 year: 2018 ident: 2022011813460548000_R72 article-title: Plant seed mucilage as emerging biopolymer in food industry applications publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2018.01.004 – volume: 31 start-page: 327 year: 2018 ident: 2022011813460548000_R26 article-title: Seed coats as an alternative molecular factory: thinking outside the box publication-title: Plant Reprod. doi: 10.1007/s00497-018-0345-2 – volume: 47 start-page: 27 year: 1999 ident: 2022011813460548000_R42 article-title: Water absorption by mucilaginous achenes of Artemisia monosperma: floating and germination as affected by salt concentrations publication-title: Isr. J. Plant Sci. doi: 10.1080/07929978.1999.10676748 – volume: 81 start-page: 93 year: 2013 ident: 2022011813460548000_R23 article-title: Identification and analysis of an outer-seed-coat-specific promoter from Arabidopsis thaliana publication-title: Plant Mol. Biol. doi: 10.1007/s11103-012-9984-0 – volume: 15 start-page: 899 year: 2013 ident: 2022011813460548000_R80 article-title: The role of the tolerance-fecundity trade-off in maintaining intraspecific seed trait variation in a widespread dimorphic herb publication-title: Plant Biol. J. doi: 10.1111/j.1438-8677.2012.00684.x – volume: 9 year: 2020 ident: 2022011813460548000_R94 article-title: Seed biology of Lepidium apetalum (Brassicaceae), with particular reference to dormancy and mucilage development publication-title: Plants doi: 10.3390/plants9030333 – volume: 18 year: 2020 ident: 2022011813460548000_R66 article-title: The present and potential future methods for delivering CRISPR/Cas9 components in plants publication-title: J. Genet. Eng. Biotechnol. doi: 10.1186/s43141-020-00036-8 – volume: 6 year: 2011 ident: 2022011813460548000_R92 article-title: The achene mucilage hydrated in desert dew assists seed cells in maintaining DNA integrity: adaptive strategy of desert plant Artemisia sphaerocephala publication-title: PLoS One doi: 10.1371/journal.pone.0024346 – volume: 437 start-page: 65 year: 2019 ident: 2022011813460548000_R59 article-title: Surface tension, rheology and hydrophobicity of rhizodeposits and seed mucilage influence soil water retention and hysteresis publication-title: Plant Soil doi: 10.1007/s11104-019-03939-9 – volume: 75 start-page: 251 year: 1979 ident: 2022011813460548000_R3 article-title: Structural studies of an acidic polysaccharide from Ocimum basilicum seeds publication-title: Carbohydr. Res. doi: 10.1016/S0008-6215(00)84644-3 – volume: 425 start-page: 57 year: 2018 ident: 2022011813460548000_R19 article-title: Mucilage from fruits/seeds of chia (Salvia hispanica L.) improves soil aggregate stability publication-title: Plant Soil doi: 10.1007/s11104-018-3565-1 – volume: 7 year: 2012 ident: 2022011813460548000_R88 article-title: Seed mucilage improves seedling emergence of a sand desert shrub publication-title: PLoS One doi: 10.1371/journal.pone.0034597 – volume: 10 year: 2014 ident: 2022011813460548000_R65 article-title: Local evolution of seed flotation in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004221 – volume: 232 start-page: 1 year: 2019 ident: 2022011813460548000_R38 article-title: Arbuscular mycorrhizal symbiosis and achene mucilage have independent functions in seedling growth of a desert shrub publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2018.11.010 – volume: 90 start-page: 388 year: 2003 ident: 2022011813460548000_R50 article-title: Cecropia as a food resource for bats in French Guiana and the significance of fruit structure in seed dispersal and longevity publication-title: Am. J. Bot. doi: 10.3732/ajb.90.3.388 – volume: 12 start-page: 42531 year: 2020 ident: 2022011813460548000_R47 article-title: Localization of phenolic compounds at an air-solid interface in plant seed mucilage: a strategy to maximize its biological function? publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12357 – volume: 8 year: 2020 ident: 2022011813460548000_R68 article-title: Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems publication-title: Appl. Plant Sci. doi: 10.1002/aps3.11314 – volume: 8 start-page: 529 year: 2010 ident: 2022011813460548000_R0018a article-title: Production of antibodies in plants: status after twenty years publication-title: Plant Biotechnol. J. doi: 10.3732/ajb.1500317 – volume: 217 start-page: 1128 year: 2018 ident: 2022011813460548000_R30 article-title: Xyloglucan is released by plants and promotes soil particle aggregation publication-title: New Phytol. doi: 10.1111/nph.14897 – volume: 109 start-page: 481 year: 2012 ident: 2022011813460548000_R77 article-title: Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd’s purse) publication-title: Ann. Bot. doi: 10.1093/aob/mcr301 – volume: 83 start-page: 237 year: 1968 ident: 2022011813460548000_R37 article-title: The effect of excess moisture on the germination of Spinacia oleracea L publication-title: Planta doi: 10.1007/BF00385333 – volume: 65 start-page: 187 year: 1999 ident: 2022011813460548000_R43 article-title: Germination of Artemisia sphaerocephala (Asteraceae), occurring in the sandy desert areas of Northwest China publication-title: S. Afr. J. Bot. doi: 10.1016/S0254-6299(15)30972-8 – volume: 54 start-page: 466 year: 2008 ident: 2022011813460548000_R63 article-title: A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03437.x – volume: 214 start-page: 959 year: 2017 ident: 2022011813460548000_R35 article-title: Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions publication-title: New Phytol. doi: 10.1111/nph.14468 – volume: 9 year: 2018 ident: 2022011813460548000_R49 article-title: Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01515 – volume: 2 start-page: 1085 year: 2019 ident: 2022011813460548000_R71 article-title: Arabidopsis seed mucilage, a specialized extracellular matrix that demonstrates the structure-function versatility of cell wall polysaccharides publication-title: Annu. Plant Rev. Online doi: 10.1002/9781119312994.apr0691 – volume: 100 start-page: 1059 year: 1992 ident: 2022011813460548000_R36 article-title: Isolation and identification of lepidimoide, a new allelopathic substance from mucilage of germinated cress seeds publication-title: Plant Physiol. doi: 10.1104/pp.100.2.1059 – volume: 33 start-page: 347 year: 2000 ident: 2022011813460548000_R7 article-title: Rapid aqueous extraction of mucilage from whole white mustard seed publication-title: Food Res. Int. doi: 10.1016/S0963-9969(00)00055-7 – volume: 101 start-page: 373 year: 2019 ident: 2022011813460548000_R53 article-title: Assessing the utility of seed coat-specific promoters to engineer cell wall polysaccharide composition of mucilage publication-title: Plant Mol. Biol. doi: 10.1007/s11103-019-00909-8 – year: 2020 ident: 2022011813460548000_R81 article-title: Seed mucilage evolution: diverse molecular mechanisms generate versatile ecological functions for particular environments publication-title: Plant Cell Environ. doi: 10.1111/pce.13827 – volume: 34 start-page: 394 year: 1974 ident: 2022011813460548000_R0008a article-title: Interactions between mosquito larvae and mucilaginous plant seeds. I. Carbohydrate composition of mucilage in relation to entrapment of larvae publication-title: Mosq. News – volume: 134 start-page: 898 year: 2004 ident: 2022011813460548000_R31 article-title: Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress publication-title: Plant Physiol. doi: 10.1104/pp.103.032508 – volume: 8 year: 2018 ident: 2022011813460548000_R64 article-title: Evidence for facultative protocarnivory in Capsella bursa-pastoris seeds publication-title: Sci. Rep. doi: 10.1038/s41598-018-28564-x – volume: 60 start-page: 439 year: 2012 ident: 2022011813460548000_R74 article-title: Role of mucilage in seed dispersal and germination of the annual ephemeral Alyssum minus (Brassicaceae) publication-title: Aust. J. Bot. doi: 10.1071/BT11314 – year: 2021 ident: 2022011813460548000_R0005a article-title: A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae) publication-title: Plant J. doi: 10.1111/tpj.15283 – volume: 47 start-page: 775 year: 2015 ident: 2022011813460548000_R40 article-title: Differentiation of the seed coat and composition of the mucilage of Lepidium perfoliatum L.: a desert annual with typical myxospermy publication-title: Acta. Biochim. Biophys. Sin. doi: 10.1093/abbs/gmv078 – volume: 48 start-page: 131 year: 2010 ident: 2022011813460548000_R91 article-title: Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.12.006 – volume: 22 start-page: 1 year: 2012 ident: 2022011813460548000_R83 article-title: The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal publication-title: Seed Sci. Res. doi: 10.1017/S0960258511000249 – volume: 130 start-page: 238 year: 1969 ident: 2022011813460548000_R85 article-title: Integumentary mucilage as an oxygen barrier during germination of Blepharis persica (Burm.) Kuntze publication-title: Int. J. Plant Sci. – volume: 93 start-page: 251 year: 2015 ident: 2022011813460548000_R9 article-title: The role of mucilage in the germination of Leptocereus scopulophilus (Cactaceae) seeds from Pan de Matanzas, Cuba publication-title: Botany doi: 10.1139/cjb-2014-0242 – volume: 3 start-page: 428 year: 2010 ident: 2022011813460548000_R55 article-title: Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana publication-title: Microb. Biotechnol. doi: 10.1111/j.1751-7915.2010.00165.x – volume: 120 start-page: 511 year: 2017 ident: 2022011813460548000_R28 article-title: Potassium, not lepidimoide, is the principal ‘allelochemical’ of cress-seed exudate that promotes amaranth hypocotyl elongation publication-title: Ann. Bot. doi: 10.1093/aob/mcx081 – year: 2013 ident: 2022011813460548000_R0068a article-title: Extraction, characterisation and compatibility study of polysaccharides from publication-title: Dillenia indica and Abelmoschus esculentus |
SSID | ssj0007830 |
Score | 2.5264902 |
SecondaryResourceType | review_article |
Snippet | Abstract
In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species,... In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1847 |
SubjectTerms | Biotechnology Cell Wall - metabolism Plant Mucilage - metabolism Plants - metabolism Seeds - metabolism |
Title | Seed Mucilage: Biological Functions and Potential Applications in Biotechnology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34195842 https://www.proquest.com/docview/2547546338 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FFiQuqBQogRYWqScqt-7uem1zSwpphQgcSKVysrwPQ6TKiah9KP-Cf8ysx3ZsCOVxsaLVeqXsfJ6XvpkhZF8JIULOUs9aqT0hmPDiTCovjKSMIAAQmXH5jul7eXYu3l4EF4PB9w5rqSzUof62tq7kf6QKayBXVyX7D5JtD4UF-A3yhSdIGJ5_JeOPYHoOpqWeX4JWcLE9Tpas7n0CBgtZblU9wKJwtCAnj2WfQg6vFP30eu2qunFGSD93yX1MgfRy8LMrHGU9ctNYDj7NvXdli7SpPkWGDzK3W3fZYr71tMry5J3KiLT8_CVfJemR99ekI9ixo3Zgdf9NZY5dFcwd3RXntBxa1LpgIb3Yx67BjVqWrAs_1lGyEJSGHYPtulmtNQbYKGupl9UzVT6OYvqpv_Zvdt4imwwiD1Cdm6Px6_GkNe9hxOten_g_6qJPOOIIDjiqX--5Ob3SyV8imMqTmW2Re3UIQkeIp_tkYPNtcgehc71Nbo8XEDBcPyAfHLxoA69XdAUu2oKLAj5oCy7aBRed57QHrofkfPJmdnLm1fM3PM0jWXhWp36gYxFwZrgOech5aqRbktwYFkeZUNI1dNOZyqJYsGOtgszYMI2FAVvAH5GNfJHbx4RyxaVUUvnCcHCBgyhWHKQYqizzMyPiIXnZXFei6-b0bkbKZYIkCZ7A3Sb13Q7Jfrt5iT1Z1m97Dvd-844XjUwS0Krua0pzuyivEhaI0A2K4NGQ7KCw2oNcB0Rw29mTP57_lNxdfSK7ZKP4Wto98GEL9axG1Q-Tu54F |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seed+Mucilage%3A+Biological+Functions+and+Potential+Applications+in+Biotechnology&rft.jtitle=Plant+and+cell+physiology&rft.au=Tsai%2C+Allen+Yi-Lun&rft.au=McGee%2C+Robert&rft.au=Dean%2C+Gillian+H&rft.au=Haughn%2C+George+W&rft.date=2021-12-27&rft.pub=Oxford+University+Press&rft.issn=0032-0781&rft.eissn=1471-9053&rft.volume=62&rft.issue=12&rft.spage=1847&rft.epage=1857&rft_id=info:doi/10.1093%2Fpcp%2Fpcab099&rft.externalDocID=10.1093%2Fpcp%2Fpcab099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0781&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0781&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0781&client=summon |