Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine

Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN)...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 41; no. 24; pp. 10202 - 10211
Main Authors Han, In-Su, Chung, Chang-Bock
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 29.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8–2.9 mV and the mean absolute percentage errors of 0.16–0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack. •Data-driven models for a PEM fuel cell operating on pure oxygen.•Experimental data for modeling were collected from a full factorial experiment.•Polarization curves predicted by ANN and SVM models were compared.•The ANN model showed excellent performance, outperforming the SVM model.•The ANN model was used to analyze the performance of the fuel cell.
AbstractList Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8–2.9 mV and the mean absolute percentage errors of 0.16–0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack. •Data-driven models for a PEM fuel cell operating on pure oxygen.•Experimental data for modeling were collected from a full factorial experiment.•Polarization curves predicted by ANN and SVM models were compared.•The ANN model showed excellent performance, outperforming the SVM model.•The ANN model was used to analyze the performance of the fuel cell.
Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8-2.9 mV and the mean absolute percentage errors of 0.16-0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack.
Author Chung, Chang-Bock
Han, In-Su
Author_xml – sequence: 1
  givenname: In-Su
  surname: Han
  fullname: Han, In-Su
  email: ishan1969@gscaltex.com
  organization: R&D Center, GS Caltex Corp., 359 Expo-ro, Yusung-gu, Daejeon 34122, South Korea
– sequence: 2
  givenname: Chang-Bock
  surname: Chung
  fullname: Chung, Chang-Bock
  email: chungcb@jnu.ac.kr
  organization: School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea
BookMark eNqFkc9u3CAQxlGVSN0kfYWKYy92YY2N3VOjKP0jpWoOyRlhGCdsbXAHvOm-VJ4xONuee0AjRt_3jWZ-Z-TEBw-EvOes5Iw3H3el2z0eLHgot_lfMlFuhXxDNryVXVGJVp6QDasaVlS8696Ssxh3jHHJRLchz7eAQ8BJewN0RrDOJBc81d7mp8dDdJGGgWp6e_2DDguM1MA40jAD6uT8A83ieUGg4c_hATxd4tq0OunCotvnzhQsjPETvaQmTLNGF7NljcTkBmecHqmHBV9Legr463V4XOY5YKJ7MCkgnbR5dB4uyOmgxwjv_tZzcv_l-u7qW3Hz8-v3q8ubwlRtkwroWyGaptadYX1tqx7Ayh4G0WuorW6F5hUH0zEAMEz2UrJ-6AyXVcN7xlh1Tj4cc2cMvxeISU0urotrD2GJirfbuhbbrpZZ2hylBkOMCIOa0U0aD4oztQJSO_UPkFoBKSZUBpSNn4_GfB3YO0AVjYPMwTrMSysb3P8iXgCiYKQj
CitedBy_id crossref_primary_10_1016_j_ijhydene_2019_09_115
crossref_primary_10_1016_j_ijhydene_2016_12_091
crossref_primary_10_4271_2021_01_0739
crossref_primary_10_1016_j_apenergy_2024_123236
crossref_primary_10_1016_j_egyai_2022_100183
crossref_primary_10_3390_en17102333
crossref_primary_10_1007_s00521_018_3524_z
crossref_primary_10_1016_j_egyai_2022_100187
crossref_primary_10_1016_j_egyai_2024_100380
crossref_primary_10_1016_j_ijhydene_2021_02_065
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1007_s00466_023_02342_7
crossref_primary_10_1016_j_ijhydene_2022_10_261
crossref_primary_10_1016_j_ijhydene_2017_04_134
crossref_primary_10_1016_j_seppur_2022_122328
crossref_primary_10_1115_1_4050587
crossref_primary_10_3390_ma15217760
crossref_primary_10_1109_ACCESS_2021_3111927
crossref_primary_10_1016_j_ijhydene_2019_10_127
crossref_primary_10_1080_15567036_2021_2008062
crossref_primary_10_1016_j_ijhydene_2018_09_085
crossref_primary_10_2139_ssrn_4147014
crossref_primary_10_1016_j_apenergy_2021_117659
crossref_primary_10_1016_j_heliyon_2024_e24506
crossref_primary_10_1016_j_ijhydene_2023_03_033
crossref_primary_10_1016_j_powtec_2022_117527
crossref_primary_10_1016_j_enconman_2022_116642
crossref_primary_10_1016_j_apenergy_2022_120000
crossref_primary_10_3390_en17030573
crossref_primary_10_1002_ange_202006928
crossref_primary_10_1016_j_energy_2019_116049
crossref_primary_10_1016_j_egyai_2022_100170
crossref_primary_10_1016_j_enconman_2021_114367
crossref_primary_10_1016_j_ijhydene_2017_01_131
crossref_primary_10_1016_j_ijhydene_2021_09_233
crossref_primary_10_1016_j_engappai_2019_07_019
crossref_primary_10_1016_j_ijhydene_2020_07_265
crossref_primary_10_3390_en16124772
crossref_primary_10_2139_ssrn_4182181
crossref_primary_10_1016_j_apenergy_2020_115092
crossref_primary_10_1039_D3YA00104K
crossref_primary_10_3390_en14030619
crossref_primary_10_3390_pr7070434
crossref_primary_10_1016_j_egyai_2020_100014
crossref_primary_10_1016_j_ijhydene_2017_04_084
crossref_primary_10_1016_j_apenergy_2021_116561
crossref_primary_10_1021_acs_chemrev_1c00901
crossref_primary_10_1016_j_ijhydene_2020_11_161
crossref_primary_10_1016_j_ijhydene_2021_03_168
crossref_primary_10_1016_j_ijhydene_2024_05_051
crossref_primary_10_1016_j_enconman_2022_116338
crossref_primary_10_1016_j_ijhydene_2022_02_239
crossref_primary_10_1016_j_ces_2022_118350
crossref_primary_10_1016_j_ces_2024_120309
crossref_primary_10_3390_a15100346
crossref_primary_10_1016_j_apenergy_2020_115460
crossref_primary_10_1002_er_6443
crossref_primary_10_1002_er_8503
crossref_primary_10_1016_j_egypro_2017_12_598
crossref_primary_10_3390_computers7040060
crossref_primary_10_3390_pr9040713
crossref_primary_10_1016_j_fuel_2024_132400
crossref_primary_10_1016_j_ijhydene_2020_11_054
crossref_primary_10_1016_j_ijhydene_2021_03_132
crossref_primary_10_3390_en16247991
crossref_primary_10_1016_j_enconman_2019_111974
crossref_primary_10_1016_j_biortech_2022_126794
crossref_primary_10_1016_j_ijhydene_2017_02_119
crossref_primary_10_1016_j_ijhydene_2020_05_263
crossref_primary_10_1080_10407790_2019_1690879
crossref_primary_10_1002_anie_202006928
crossref_primary_10_3390_en17123002
crossref_primary_10_1016_j_ijhydene_2017_06_013
crossref_primary_10_1016_j_apenergy_2023_122255
crossref_primary_10_1016_j_enconman_2021_115154
crossref_primary_10_1016_j_energy_2022_124673
crossref_primary_10_1016_j_jpowsour_2020_228154
crossref_primary_10_1016_j_apenergy_2017_11_066
crossref_primary_10_1016_j_ijhydene_2023_12_149
crossref_primary_10_3390_su151411010
crossref_primary_10_1016_j_egyai_2021_100134
crossref_primary_10_1016_j_gee_2023_11_002
crossref_primary_10_1016_j_ijhydene_2020_02_150
crossref_primary_10_1016_j_jpowsour_2021_230968
Cites_doi 10.1016/j.jpowsour.2007.09.049
10.1023/A:1018628609742
10.1016/S0893-6080(03)00169-2
10.1016/j.energy.2006.08.007
10.1016/j.ijhydene.2015.03.039
10.1016/j.jpowsour.2007.05.039
10.1016/j.ijhydene.2013.12.211
10.1137/S003614450242889
10.1016/j.ijhydene.2013.01.095
10.7316/KHNES.2014.25.5.491
10.1016/j.ijhydene.2015.02.071
10.1016/j.jpowsour.2006.01.040
10.9713/kcer.2015.53.2.236
10.1016/j.ijhydene.2013.04.135
10.1016/j.jpowsour.2006.07.031
10.1016/S0377-0427(00)00423-4
10.1016/j.energy.2008.04.015
10.1016/j.ces.2009.06.017
10.1016/j.ijhydene.2009.09.071
10.1016/j.electacta.2010.10.046
10.1002/app.20979
10.1021/ie049425a
10.1016/j.jpowsour.2013.08.018
10.1016/S0360-3199(02)00284-7
10.1016/0893-6080(91)90009-T
10.1016/S1364-0321(01)00006-5
10.1016/j.ijhydene.2015.04.042
10.1016/j.jpowsour.2014.07.107
10.1016/j.ijhydene.2012.12.109
10.1016/j.ijhydene.2003.01.002
10.1016/j.jpowsour.2009.01.079
10.1016/j.ijhydene.2013.02.136
ContentType Journal Article
Copyright 2016 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2016 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.ijhydene.2016.04.247
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 10211
ExternalDocumentID 10_1016_j_ijhydene_2016_04_247
S036031991530389X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
7SP
8FD
L7M
ID FETCH-LOGICAL-c386t-eb844665a9c0b5d3beed7bef4bae5da84a131ec90eeec07b770bf9c17361b0003
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Fri Oct 25 04:48:01 EDT 2024
Thu Sep 26 15:49:06 EDT 2024
Fri Feb 23 02:26:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Support vector machine (SVM)
Artificial neural network (ANN)
Data-driven model
Polymer electrolyte membrane (PEM) fuel cell
Pure oxygen
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-eb844665a9c0b5d3beed7bef4bae5da84a131ec90eeec07b770bf9c17361b0003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825542957
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1825542957
crossref_primary_10_1016_j_ijhydene_2016_04_247
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2016_04_247
PublicationCentury 2000
PublicationDate 2016-06-29
PublicationDateYYYYMMDD 2016-06-29
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-29
  day: 29
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Suykens, Vandewalle (bib35) 1999; 9
Larminie, Dicks (bib40) 2003
Renau, Lozano, Barroso, Miralles, Martin, Sanchez (bib2) 2015; 40
Han, Shin (bib11) 2015; 53
Nasr, Hafez, El Naggar, Nakhla (bib22) 2013; 38
Basak, Pal, Patranabis (bib34) 2007; 11
Vapnik (bib29) 1999
Cherkassky, Ma (bib19) 2004; 17
Mathworks (bib37) 2011
Chavez-Ramirez, Munoz-Guerrero, Duron-Torres, Ferraro, Brunaccini, Sergi (bib9) 2010; 35
Lee, Park, Yang, Yoon, Kim (bib7) 2004; 29
Li, Zhu, Cao, Sui, Hu (bib15) 2008; 175
Zhong, Zhu, Cao (bib14) 2006; 160
Hagan, Demuth, Beale, De Jesus (bib24) 2014
Barbir (bib39) 2005
Zamaniyan, Joda, Behroozsarand, Ebrahimi (bib23) 2013; 38
Hornik (bib28) 1991; 4
Lewis, Torczon, Trosset (bib38) 2000; 124
Napoli, Ferraro, Sergi, Brunaccini, Antonucci (bib10) 2013; 38
Zahadat, Milewski (bib21) 2015; 40
Liu, Wu, Zhang, Chen (bib26) 2014; 270
Razbani, Assadi (bib12) 2014; 246
Li, Chen, Liu, Guo, Huang (bib16) 2014; 39
Shih, Weng, Lee, Hsiao (bib1) 2013; 38
Djilali (bib6) 2007; 32
Gaspar, Carbonell, Oliveira (bib33) 2013; 9
Siegel (bib5) 2008; 33
Saengrung, Abtahi, Zilouchian (bib8) 2007; 172
Clerc (bib20) 2006
Zhao (bib30) 2009; 64
Kalogirou (bib18) 2001; 5
Huo, Zhu, Cao (bib17) 2006; 162
Shah, Luo, Ralph, Walsh (bib4) 2011; 56
Jha (bib3) 2012
Wang, Husar, Zhou, Liu (bib41) 2003; 28
Han, Shin (bib31) 2014; 25
Lobato, Canizares, Rodrigo, Linares, Piuleac, Curteanu (bib13) 2009; 192
Han, Han, Chung (bib27) 2005; 95
Kolda, Lewis, Torczon (bib36) 2003; 45
Han, Lee, Han (bib32) 2006; 45
Basile, Curcio, Bagnato, Liguori, Jokar, Iulianelli (bib25) 2015; 40
Clerc (10.1016/j.ijhydene.2016.04.247_bib20) 2006
Larminie (10.1016/j.ijhydene.2016.04.247_bib40) 2003
Razbani (10.1016/j.ijhydene.2016.04.247_bib12) 2014; 246
Zhong (10.1016/j.ijhydene.2016.04.247_bib14) 2006; 160
Li (10.1016/j.ijhydene.2016.04.247_bib16) 2014; 39
Wang (10.1016/j.ijhydene.2016.04.247_bib41) 2003; 28
Han (10.1016/j.ijhydene.2016.04.247_bib11) 2015; 53
Zahadat (10.1016/j.ijhydene.2016.04.247_bib21) 2015; 40
Chavez-Ramirez (10.1016/j.ijhydene.2016.04.247_bib9) 2010; 35
Djilali (10.1016/j.ijhydene.2016.04.247_bib6) 2007; 32
Han (10.1016/j.ijhydene.2016.04.247_bib31) 2014; 25
Mathworks (10.1016/j.ijhydene.2016.04.247_bib37) 2011
Kalogirou (10.1016/j.ijhydene.2016.04.247_bib18) 2001; 5
Li (10.1016/j.ijhydene.2016.04.247_bib15) 2008; 175
Basile (10.1016/j.ijhydene.2016.04.247_bib25) 2015; 40
Hornik (10.1016/j.ijhydene.2016.04.247_bib28) 1991; 4
Shih (10.1016/j.ijhydene.2016.04.247_bib1) 2013; 38
Cherkassky (10.1016/j.ijhydene.2016.04.247_bib19) 2004; 17
Saengrung (10.1016/j.ijhydene.2016.04.247_bib8) 2007; 172
Shah (10.1016/j.ijhydene.2016.04.247_bib4) 2011; 56
Zamaniyan (10.1016/j.ijhydene.2016.04.247_bib23) 2013; 38
Nasr (10.1016/j.ijhydene.2016.04.247_bib22) 2013; 38
Lee (10.1016/j.ijhydene.2016.04.247_bib7) 2004; 29
Napoli (10.1016/j.ijhydene.2016.04.247_bib10) 2013; 38
Huo (10.1016/j.ijhydene.2016.04.247_bib17) 2006; 162
Gaspar (10.1016/j.ijhydene.2016.04.247_bib33) 2013; 9
Renau (10.1016/j.ijhydene.2016.04.247_bib2) 2015; 40
Siegel (10.1016/j.ijhydene.2016.04.247_bib5) 2008; 33
Jha (10.1016/j.ijhydene.2016.04.247_bib3) 2012
Basak (10.1016/j.ijhydene.2016.04.247_bib34) 2007; 11
Lewis (10.1016/j.ijhydene.2016.04.247_bib38) 2000; 124
Han (10.1016/j.ijhydene.2016.04.247_bib27) 2005; 95
Liu (10.1016/j.ijhydene.2016.04.247_bib26) 2014; 270
Zhao (10.1016/j.ijhydene.2016.04.247_bib30) 2009; 64
Barbir (10.1016/j.ijhydene.2016.04.247_bib39) 2005
Hagan (10.1016/j.ijhydene.2016.04.247_bib24) 2014
Suykens (10.1016/j.ijhydene.2016.04.247_bib35) 1999; 9
Kolda (10.1016/j.ijhydene.2016.04.247_bib36) 2003; 45
Han (10.1016/j.ijhydene.2016.04.247_bib32) 2006; 45
Vapnik (10.1016/j.ijhydene.2016.04.247_bib29) 1999
Lobato (10.1016/j.ijhydene.2016.04.247_bib13) 2009; 192
References_xml – volume: 39
  start-page: 13777
  year: 2014
  end-page: 13786
  ident: bib16
  article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Huang
– volume: 33
  start-page: 1131
  year: 2008
  end-page: 1152
  ident: bib5
  article-title: Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells
  publication-title: Energy
  contributor:
    fullname: Siegel
– volume: 124
  start-page: 191
  year: 2000
  end-page: 207
  ident: bib38
  article-title: Direct search methods: then and now
  publication-title: J Comput Appl Math
  contributor:
    fullname: Trosset
– volume: 160
  start-page: 293
  year: 2006
  end-page: 298
  ident: bib14
  article-title: Modeling a PEMFC by a support vector machine
  publication-title: J Power Sources
  contributor:
    fullname: Cao
– volume: 53
  start-page: 236
  year: 2015
  end-page: 242
  ident: bib11
  article-title: Modeling of a PEM fuel cell stack using partial least squares and artificial neural networks
  publication-title: Korean Chem Eng Res
  contributor:
    fullname: Shin
– volume: 192
  start-page: 190
  year: 2009
  end-page: 194
  ident: bib13
  article-title: The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: effect of temperature
  publication-title: J Power Sources
  contributor:
    fullname: Curteanu
– volume: 172
  start-page: 749
  year: 2007
  end-page: 759
  ident: bib8
  article-title: Neural network model for a commercial PEM fuel cell system
  publication-title: J Power Sources
  contributor:
    fullname: Zilouchian
– volume: 40
  start-page: 5897
  year: 2015
  end-page: 5906
  ident: bib25
  article-title: Water gas shift reaction in membrane reactors: theoretical investigation by artificial neural networks model and experimental validation
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Iulianelli
– year: 2005
  ident: bib39
  article-title: PEM fuel cells: theory and practice
  contributor:
    fullname: Barbir
– volume: 25
  start-page: 491
  year: 2014
  end-page: 499
  ident: bib31
  article-title: Soft sensor development for predicting the relative humidity of a membrane humidifier for PEM fuel cells
  publication-title: Trans Korean Hydrogen New Energy Soc
  contributor:
    fullname: Shin
– volume: 38
  start-page: 3189
  year: 2013
  end-page: 3195
  ident: bib22
  article-title: Application of artificial neural networks for modeling of biohydrogen production
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Nakhla
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: bib34
  article-title: Support vector regression
  publication-title: Neural Inf Process Lett Rev
  contributor:
    fullname: Patranabis
– year: 1999
  ident: bib29
  article-title: The nature of statistical learning theory
  contributor:
    fullname: Vapnik
– volume: 246
  start-page: 581
  year: 2014
  end-page: 586
  ident: bib12
  article-title: Artificial neural network model of a short stack solid oxide fuel cell based on experimental data
  publication-title: J Power Sources
  contributor:
    fullname: Assadi
– volume: 45
  start-page: 385
  year: 2003
  end-page: 482
  ident: bib36
  article-title: Optimization by direct search: new perspectives on some classical and modern methods
  publication-title: SIAM Rev
  contributor:
    fullname: Torczon
– volume: 162
  start-page: 1220
  year: 2006
  end-page: 1225
  ident: bib17
  article-title: Nonlinear modeling of a SOFC stack based on a least squares support vector machine
  publication-title: J Power Sources
  contributor:
    fullname: Cao
– volume: 56
  start-page: 3731
  year: 2011
  end-page: 3757
  ident: bib4
  article-title: Recent trends and developments in polymer electrolyte membrane fuel cell modeling
  publication-title: Electrochimica Acta
  contributor:
    fullname: Walsh
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: bib18
  article-title: Artificial neural networks in renewable energy systems application: a review
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Kalogirou
– volume: 95
  start-page: 967
  year: 2005
  end-page: 974
  ident: bib27
  article-title: Melt index modeling with support vector machines, partial least squares, and artificial neural networks
  publication-title: J Appl Polym Sci
  contributor:
    fullname: Chung
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib28
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw
  contributor:
    fullname: Hornik
– year: 2011
  ident: bib37
  article-title: Global optimization toolbox user's guide
  contributor:
    fullname: Mathworks
– volume: 40
  start-page: 7246
  year: 2015
  end-page: 7251
  ident: bib21
  article-title: Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Milewski
– year: 2012
  ident: bib3
  article-title: Next-generation batteries and fuel cells for commercial, military, and space applications
  contributor:
    fullname: Jha
– volume: 29
  start-page: 961
  year: 2004
  end-page: 966
  ident: bib7
  article-title: Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Kim
– volume: 38
  start-page: 11138
  year: 2013
  end-page: 11143
  ident: bib1
  article-title: Development of a small fuel cell underwater vehicle
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Hsiao
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib35
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  contributor:
    fullname: Vandewalle
– volume: 28
  start-page: 1263
  year: 2003
  end-page: 1272
  ident: bib41
  article-title: A parametric study of PEM fuel cell performances
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Liu
– volume: 45
  start-page: 670
  year: 2006
  end-page: 680
  ident: bib32
  article-title: Modeling and optimization of the condensing steam turbine network of a chemical plant
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Han
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib19
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw
  contributor:
    fullname: Ma
– volume: 270
  start-page: 151
  year: 2014
  end-page: 157
  ident: bib26
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
  contributor:
    fullname: Chen
– volume: 9
  start-page: 201
  year: 2013
  end-page: 211
  ident: bib33
  article-title: On the parameter optimization of support vector machines for binary classification
  publication-title: J Integr Bioinform
  contributor:
    fullname: Oliveira
– volume: 38
  start-page: 6289
  year: 2013
  end-page: 6297
  ident: bib23
  article-title: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant
  publication-title: Int J Hydrog Energy
  contributor:
    fullname: Ebrahimi
– volume: 175
  start-page: 303
  year: 2008
  end-page: 316
  ident: bib15
  article-title: Identification of the hammerstein model of a PEMFC stack based on least square support vector machines
  publication-title: J Power Sources
  contributor:
    fullname: Hu
– volume: 38
  start-page: 11628
  year: 2013
  end-page: 11638
  ident: bib10
  article-title: Data driven models for a PEM fuel cell stack performance prediction
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Antonucci
– volume: 32
  start-page: 269
  year: 2007
  end-page: 280
  ident: bib6
  article-title: Computational modeling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities
  publication-title: Energy
  contributor:
    fullname: Djilali
– volume: 35
  start-page: 12125
  year: 2010
  end-page: 12133
  ident: bib9
  article-title: High power fuel cell simulator based on artificial neural network
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Sergi
– year: 2014
  ident: bib24
  article-title: Neural network design
  contributor:
    fullname: De Jesus
– volume: 64
  start-page: 4131
  year: 2009
  end-page: 4136
  ident: bib30
  article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
  publication-title: Chem Eng Sci
  contributor:
    fullname: Zhao
– year: 2006
  ident: bib20
  article-title: Particle swarm optimization
  contributor:
    fullname: Clerc
– volume: 40
  start-page: 14573
  year: 2015
  end-page: 14583
  ident: bib2
  article-title: Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Sanchez
– year: 2003
  ident: bib40
  article-title: Fuel cell systems explained
  contributor:
    fullname: Dicks
– year: 2006
  ident: 10.1016/j.ijhydene.2016.04.247_bib20
  contributor:
    fullname: Clerc
– volume: 175
  start-page: 303
  year: 2008
  ident: 10.1016/j.ijhydene.2016.04.247_bib15
  article-title: Identification of the hammerstein model of a PEMFC stack based on least square support vector machines
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.09.049
  contributor:
    fullname: Li
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.ijhydene.2016.04.247_bib35
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
  contributor:
    fullname: Suykens
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.ijhydene.2016.04.247_bib19
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
  contributor:
    fullname: Cherkassky
– volume: 32
  start-page: 269
  year: 2007
  ident: 10.1016/j.ijhydene.2016.04.247_bib6
  article-title: Computational modeling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities
  publication-title: Energy
  doi: 10.1016/j.energy.2006.08.007
  contributor:
    fullname: Djilali
– volume: 40
  start-page: 5897
  year: 2015
  ident: 10.1016/j.ijhydene.2016.04.247_bib25
  article-title: Water gas shift reaction in membrane reactors: theoretical investigation by artificial neural networks model and experimental validation
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.03.039
  contributor:
    fullname: Basile
– volume: 172
  start-page: 749
  year: 2007
  ident: 10.1016/j.ijhydene.2016.04.247_bib8
  article-title: Neural network model for a commercial PEM fuel cell system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.05.039
  contributor:
    fullname: Saengrung
– volume: 39
  start-page: 13777
  year: 2014
  ident: 10.1016/j.ijhydene.2016.04.247_bib16
  article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2013.12.211
  contributor:
    fullname: Li
– volume: 45
  start-page: 385
  year: 2003
  ident: 10.1016/j.ijhydene.2016.04.247_bib36
  article-title: Optimization by direct search: new perspectives on some classical and modern methods
  publication-title: SIAM Rev
  doi: 10.1137/S003614450242889
  contributor:
    fullname: Kolda
– volume: 38
  start-page: 11138
  year: 2013
  ident: 10.1016/j.ijhydene.2016.04.247_bib1
  article-title: Development of a small fuel cell underwater vehicle
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.095
  contributor:
    fullname: Shih
– year: 2012
  ident: 10.1016/j.ijhydene.2016.04.247_bib3
  contributor:
    fullname: Jha
– volume: 25
  start-page: 491
  year: 2014
  ident: 10.1016/j.ijhydene.2016.04.247_bib31
  article-title: Soft sensor development for predicting the relative humidity of a membrane humidifier for PEM fuel cells
  publication-title: Trans Korean Hydrogen New Energy Soc
  doi: 10.7316/KHNES.2014.25.5.491
  contributor:
    fullname: Han
– volume: 40
  start-page: 14573
  year: 2015
  ident: 10.1016/j.ijhydene.2016.04.247_bib2
  article-title: Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.02.071
  contributor:
    fullname: Renau
– year: 2005
  ident: 10.1016/j.ijhydene.2016.04.247_bib39
  contributor:
    fullname: Barbir
– volume: 160
  start-page: 293
  year: 2006
  ident: 10.1016/j.ijhydene.2016.04.247_bib14
  article-title: Modeling a PEMFC by a support vector machine
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.01.040
  contributor:
    fullname: Zhong
– volume: 53
  start-page: 236
  year: 2015
  ident: 10.1016/j.ijhydene.2016.04.247_bib11
  article-title: Modeling of a PEM fuel cell stack using partial least squares and artificial neural networks
  publication-title: Korean Chem Eng Res
  doi: 10.9713/kcer.2015.53.2.236
  contributor:
    fullname: Han
– volume: 38
  start-page: 11628
  year: 2013
  ident: 10.1016/j.ijhydene.2016.04.247_bib10
  article-title: Data driven models for a PEM fuel cell stack performance prediction
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.135
  contributor:
    fullname: Napoli
– volume: 162
  start-page: 1220
  year: 2006
  ident: 10.1016/j.ijhydene.2016.04.247_bib17
  article-title: Nonlinear modeling of a SOFC stack based on a least squares support vector machine
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.07.031
  contributor:
    fullname: Huo
– volume: 124
  start-page: 191
  year: 2000
  ident: 10.1016/j.ijhydene.2016.04.247_bib38
  article-title: Direct search methods: then and now
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(00)00423-4
  contributor:
    fullname: Lewis
– volume: 33
  start-page: 1131
  year: 2008
  ident: 10.1016/j.ijhydene.2016.04.247_bib5
  article-title: Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells
  publication-title: Energy
  doi: 10.1016/j.energy.2008.04.015
  contributor:
    fullname: Siegel
– year: 2011
  ident: 10.1016/j.ijhydene.2016.04.247_bib37
  contributor:
    fullname: Mathworks
– volume: 64
  start-page: 4131
  year: 2009
  ident: 10.1016/j.ijhydene.2016.04.247_bib30
  article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.06.017
  contributor:
    fullname: Zhao
– volume: 35
  start-page: 12125
  year: 2010
  ident: 10.1016/j.ijhydene.2016.04.247_bib9
  article-title: High power fuel cell simulator based on artificial neural network
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.071
  contributor:
    fullname: Chavez-Ramirez
– volume: 56
  start-page: 3731
  year: 2011
  ident: 10.1016/j.ijhydene.2016.04.247_bib4
  article-title: Recent trends and developments in polymer electrolyte membrane fuel cell modeling
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2010.10.046
  contributor:
    fullname: Shah
– year: 2014
  ident: 10.1016/j.ijhydene.2016.04.247_bib24
  contributor:
    fullname: Hagan
– year: 1999
  ident: 10.1016/j.ijhydene.2016.04.247_bib29
  contributor:
    fullname: Vapnik
– volume: 95
  start-page: 967
  year: 2005
  ident: 10.1016/j.ijhydene.2016.04.247_bib27
  article-title: Melt index modeling with support vector machines, partial least squares, and artificial neural networks
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.20979
  contributor:
    fullname: Han
– volume: 45
  start-page: 670
  year: 2006
  ident: 10.1016/j.ijhydene.2016.04.247_bib32
  article-title: Modeling and optimization of the condensing steam turbine network of a chemical plant
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie049425a
  contributor:
    fullname: Han
– volume: 11
  start-page: 203
  year: 2007
  ident: 10.1016/j.ijhydene.2016.04.247_bib34
  article-title: Support vector regression
  publication-title: Neural Inf Process Lett Rev
  contributor:
    fullname: Basak
– volume: 246
  start-page: 581
  year: 2014
  ident: 10.1016/j.ijhydene.2016.04.247_bib12
  article-title: Artificial neural network model of a short stack solid oxide fuel cell based on experimental data
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.08.018
  contributor:
    fullname: Razbani
– volume: 28
  start-page: 1263
  year: 2003
  ident: 10.1016/j.ijhydene.2016.04.247_bib41
  article-title: A parametric study of PEM fuel cell performances
  publication-title: Int J Hydrog Energy
  doi: 10.1016/S0360-3199(02)00284-7
  contributor:
    fullname: Wang
– volume: 4
  start-page: 251
  year: 1991
  ident: 10.1016/j.ijhydene.2016.04.247_bib28
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(91)90009-T
  contributor:
    fullname: Hornik
– year: 2003
  ident: 10.1016/j.ijhydene.2016.04.247_bib40
  contributor:
    fullname: Larminie
– volume: 5
  start-page: 373
  year: 2001
  ident: 10.1016/j.ijhydene.2016.04.247_bib18
  article-title: Artificial neural networks in renewable energy systems application: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/S1364-0321(01)00006-5
  contributor:
    fullname: Kalogirou
– volume: 40
  start-page: 7246
  year: 2015
  ident: 10.1016/j.ijhydene.2016.04.247_bib21
  article-title: Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2015.04.042
  contributor:
    fullname: Zahadat
– volume: 270
  start-page: 151
  year: 2014
  ident: 10.1016/j.ijhydene.2016.04.247_bib26
  article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.107
  contributor:
    fullname: Liu
– volume: 38
  start-page: 3189
  year: 2013
  ident: 10.1016/j.ijhydene.2016.04.247_bib22
  article-title: Application of artificial neural networks for modeling of biohydrogen production
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2012.12.109
  contributor:
    fullname: Nasr
– volume: 9
  start-page: 201
  year: 2013
  ident: 10.1016/j.ijhydene.2016.04.247_bib33
  article-title: On the parameter optimization of support vector machines for binary classification
  publication-title: J Integr Bioinform
  contributor:
    fullname: Gaspar
– volume: 29
  start-page: 961
  year: 2004
  ident: 10.1016/j.ijhydene.2016.04.247_bib7
  article-title: Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2003.01.002
  contributor:
    fullname: Lee
– volume: 192
  start-page: 190
  year: 2009
  ident: 10.1016/j.ijhydene.2016.04.247_bib13
  article-title: The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: effect of temperature
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.01.079
  contributor:
    fullname: Lobato
– volume: 38
  start-page: 6289
  year: 2013
  ident: 10.1016/j.ijhydene.2016.04.247_bib23
  article-title: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2013.02.136
  contributor:
    fullname: Zamaniyan
SSID ssj0017049
Score 2.5447285
Snippet Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 10202
SubjectTerms Artificial neural network (ANN)
Artificial neural networks
Data-driven model
Fuel cells
Learning theory
Mathematical models
Neural networks
Oxygen
Polymer electrolyte membrane (PEM) fuel cell
Pure oxygen
Stacks
Support vector machine (SVM)
Support vector machines
Title Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine
URI https://dx.doi.org/10.1016/j.ijhydene.2016.04.247
https://search.proquest.com/docview/1825542957
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoED4inKoxokru4mu7GTcFtVrRZQq0pQaW-W7YxhV5BE2Q2iF34Sv5EZb1IKQuLAIYoSOU7kGc-M42--EeKVDlNM7NRLb52SmSq9dEXQsnLk3nWBQcf6KWfnenGZvV2q5Z44HnNhGFY52P6dTY_WergzGUZz0q5Wk_dkezkFp6Q5yyxxS85gJ_dHOn30_RrmkeZDCEyNJbe-kSW8PlqtP13R9Ga6zFQz5emUy6z83UH9Yaqj_zm9J-4OgSPMd992X-xh_UDcuUEn-FD8uPiVBQBtx1swPOxg64qOHfkINAEsXJycQejxM_B_e2haZlamLoAat32H0Hy7IsUCBsV_BAaRyqpjswixcM7mNczBXxcwjF12EXNEygzMkBlPEV8eX77pWw7z4WvcIoAvEcCJj8Tl6cmH44Uc6jFIPyv0VqIrePdX2dInTlUzR_41dxgyZ1FVtshsOkvRlwki-iR3eZ64UPo0n-k0Lr4ei_26qfGJgFI7rwNqFxRmuiKHQQsXUuqCtCNVvjgQk1EIpt3RbpgRj7Y2o9gMi80kmSGxHYhylJX5TYEM-YZ_PvtyFK6h2cVDb2ts-o2h1Zfiil4qf_of_T8Tt_mKEWbT8rnY33Y9vqBYZusOo7IeilvzN-8W5z8BPPr7Bg
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFOU5yBxdTfZjZ2EW1W1WqBbVaKV9mbFzrjsCpIou0H00p_U38iMNykFIXHgEEVKHCfyjGfG8TffCPFO-zFGxdhJV1glE5U7aTOvZWnJvesMvQ71U2bHenqWfJyr-ZbYH3JhGFbZ2_6NTQ_Wur8y6kdz1CwWo89kezkFJ6c5yyxx81vidsLxMSn17uU1ziNO-xiYWktufiNNeLm7WH65oPnNfJmxZs7TMddZ-buH-sNWBwd0-EDc7yNH2Nt83EOxhdUjce8Gn-BjcXXyKw0Ampb3YHjcoahKOjbsI1B7KODkYAa-w6_AP-6hbphamboAatx0LUL944I0CxgVfw6MIpVly3YRQuWc1XvYA3ddwTB02QbQEWkzMEVmOAWAeXj5qms4zofvYY8AvgUEJz4RZ4cHp_tT2RdkkG6S6bVEm_H2rypyF1lVTiw52NSiT2yBqiyypIgnMbo8QkQXpTZNI-tzF6cTHYfV11OxXdUVPhOQa-u0R229wkSX5DFo5UJanZF6xMplO2I0CME0G94NMwDSlmYQm2GxmSgxJLYdkQ-yMr9pkCHn8M9n3w7CNTS9eOiLCutuZWj5pbikl0qf_0f_b8Sd6ensyBx9OP70QtzlOww3G-cvxfa67fAVBTZr-zoo7k8Kn_yf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prediction+and+analysis+of+a+PEM+fuel+cell+operating+on+pure+oxygen+using+data-driven+models%3A+A+comparison+of+artificial+neural+network+and+support+vector+machine&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Han%2C+In-Su&rft.au=Chung%2C+Chang-Bock&rft.date=2016-06-29&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=41&rft.issue=24&rft.spage=10202&rft.epage=10211&rft_id=info:doi/10.1016%2Fj.ijhydene.2016.04.247&rft.externalDocID=S036031991530389X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon