Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine
Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN)...
Saved in:
Published in | International journal of hydrogen energy Vol. 41; no. 24; pp. 10202 - 10211 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
29.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8–2.9 mV and the mean absolute percentage errors of 0.16–0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack.
•Data-driven models for a PEM fuel cell operating on pure oxygen.•Experimental data for modeling were collected from a full factorial experiment.•Polarization curves predicted by ANN and SVM models were compared.•The ANN model showed excellent performance, outperforming the SVM model.•The ANN model was used to analyze the performance of the fuel cell. |
---|---|
AbstractList | Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8–2.9 mV and the mean absolute percentage errors of 0.16–0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack.
•Data-driven models for a PEM fuel cell operating on pure oxygen.•Experimental data for modeling were collected from a full factorial experiment.•Polarization curves predicted by ANN and SVM models were compared.•The ANN model showed excellent performance, outperforming the SVM model.•The ANN model was used to analyze the performance of the fuel cell. Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power source for air-independent operation of underwater vehicles, spacecrafts, unmanned aerial vehicles, etc. Both artificial neural network (ANN) and support vector machine (SVM) were employed as modeling methods to construct the nonlinear empirical models for a 1.2-kW PEM fuel-cell stack operating on high-pressure pure hydrogen and oxygen in dead-end mode. A sufficient amount of data was collected from a full factorial design of test operations of the fuel-cell stack. The hyper-parameters of the ANN and SVM models were determined using a 10-fold cross-validation scheme. The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8-2.9 mV and the mean absolute percentage errors of 0.16-0.27%. Consequently, the ANN model was used to analyze and discuss in detail the effects of the major operating variables, including the stack temperature, the reactant inlet pressures, and the relative humidity of the supplied oxygen, on the performance of the stack. |
Author | Chung, Chang-Bock Han, In-Su |
Author_xml | – sequence: 1 givenname: In-Su surname: Han fullname: Han, In-Su email: ishan1969@gscaltex.com organization: R&D Center, GS Caltex Corp., 359 Expo-ro, Yusung-gu, Daejeon 34122, South Korea – sequence: 2 givenname: Chang-Bock surname: Chung fullname: Chung, Chang-Bock email: chungcb@jnu.ac.kr organization: School of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, South Korea |
BookMark | eNqFkc9u3CAQxlGVSN0kfYWKYy92YY2N3VOjKP0jpWoOyRlhGCdsbXAHvOm-VJ4xONuee0AjRt_3jWZ-Z-TEBw-EvOes5Iw3H3el2z0eLHgot_lfMlFuhXxDNryVXVGJVp6QDasaVlS8696Ssxh3jHHJRLchz7eAQ8BJewN0RrDOJBc81d7mp8dDdJGGgWp6e_2DDguM1MA40jAD6uT8A83ieUGg4c_hATxd4tq0OunCotvnzhQsjPETvaQmTLNGF7NljcTkBmecHqmHBV9Legr463V4XOY5YKJ7MCkgnbR5dB4uyOmgxwjv_tZzcv_l-u7qW3Hz8-v3q8ubwlRtkwroWyGaptadYX1tqx7Ayh4G0WuorW6F5hUH0zEAMEz2UrJ-6AyXVcN7xlh1Tj4cc2cMvxeISU0urotrD2GJirfbuhbbrpZZ2hylBkOMCIOa0U0aD4oztQJSO_UPkFoBKSZUBpSNn4_GfB3YO0AVjYPMwTrMSysb3P8iXgCiYKQj |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2019_09_115 crossref_primary_10_1016_j_ijhydene_2016_12_091 crossref_primary_10_4271_2021_01_0739 crossref_primary_10_1016_j_apenergy_2024_123236 crossref_primary_10_1016_j_egyai_2022_100183 crossref_primary_10_3390_en17102333 crossref_primary_10_1007_s00521_018_3524_z crossref_primary_10_1016_j_egyai_2022_100187 crossref_primary_10_1016_j_egyai_2024_100380 crossref_primary_10_1016_j_ijhydene_2021_02_065 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1007_s00466_023_02342_7 crossref_primary_10_1016_j_ijhydene_2022_10_261 crossref_primary_10_1016_j_ijhydene_2017_04_134 crossref_primary_10_1016_j_seppur_2022_122328 crossref_primary_10_1115_1_4050587 crossref_primary_10_3390_ma15217760 crossref_primary_10_1109_ACCESS_2021_3111927 crossref_primary_10_1016_j_ijhydene_2019_10_127 crossref_primary_10_1080_15567036_2021_2008062 crossref_primary_10_1016_j_ijhydene_2018_09_085 crossref_primary_10_2139_ssrn_4147014 crossref_primary_10_1016_j_apenergy_2021_117659 crossref_primary_10_1016_j_heliyon_2024_e24506 crossref_primary_10_1016_j_ijhydene_2023_03_033 crossref_primary_10_1016_j_powtec_2022_117527 crossref_primary_10_1016_j_enconman_2022_116642 crossref_primary_10_1016_j_apenergy_2022_120000 crossref_primary_10_3390_en17030573 crossref_primary_10_1002_ange_202006928 crossref_primary_10_1016_j_energy_2019_116049 crossref_primary_10_1016_j_egyai_2022_100170 crossref_primary_10_1016_j_enconman_2021_114367 crossref_primary_10_1016_j_ijhydene_2017_01_131 crossref_primary_10_1016_j_ijhydene_2021_09_233 crossref_primary_10_1016_j_engappai_2019_07_019 crossref_primary_10_1016_j_ijhydene_2020_07_265 crossref_primary_10_3390_en16124772 crossref_primary_10_2139_ssrn_4182181 crossref_primary_10_1016_j_apenergy_2020_115092 crossref_primary_10_1039_D3YA00104K crossref_primary_10_3390_en14030619 crossref_primary_10_3390_pr7070434 crossref_primary_10_1016_j_egyai_2020_100014 crossref_primary_10_1016_j_ijhydene_2017_04_084 crossref_primary_10_1016_j_apenergy_2021_116561 crossref_primary_10_1021_acs_chemrev_1c00901 crossref_primary_10_1016_j_ijhydene_2020_11_161 crossref_primary_10_1016_j_ijhydene_2021_03_168 crossref_primary_10_1016_j_ijhydene_2024_05_051 crossref_primary_10_1016_j_enconman_2022_116338 crossref_primary_10_1016_j_ijhydene_2022_02_239 crossref_primary_10_1016_j_ces_2022_118350 crossref_primary_10_1016_j_ces_2024_120309 crossref_primary_10_3390_a15100346 crossref_primary_10_1016_j_apenergy_2020_115460 crossref_primary_10_1002_er_6443 crossref_primary_10_1002_er_8503 crossref_primary_10_1016_j_egypro_2017_12_598 crossref_primary_10_3390_computers7040060 crossref_primary_10_3390_pr9040713 crossref_primary_10_1016_j_fuel_2024_132400 crossref_primary_10_1016_j_ijhydene_2020_11_054 crossref_primary_10_1016_j_ijhydene_2021_03_132 crossref_primary_10_3390_en16247991 crossref_primary_10_1016_j_enconman_2019_111974 crossref_primary_10_1016_j_biortech_2022_126794 crossref_primary_10_1016_j_ijhydene_2017_02_119 crossref_primary_10_1016_j_ijhydene_2020_05_263 crossref_primary_10_1080_10407790_2019_1690879 crossref_primary_10_1002_anie_202006928 crossref_primary_10_3390_en17123002 crossref_primary_10_1016_j_ijhydene_2017_06_013 crossref_primary_10_1016_j_apenergy_2023_122255 crossref_primary_10_1016_j_enconman_2021_115154 crossref_primary_10_1016_j_energy_2022_124673 crossref_primary_10_1016_j_jpowsour_2020_228154 crossref_primary_10_1016_j_apenergy_2017_11_066 crossref_primary_10_1016_j_ijhydene_2023_12_149 crossref_primary_10_3390_su151411010 crossref_primary_10_1016_j_egyai_2021_100134 crossref_primary_10_1016_j_gee_2023_11_002 crossref_primary_10_1016_j_ijhydene_2020_02_150 crossref_primary_10_1016_j_jpowsour_2021_230968 |
Cites_doi | 10.1016/j.jpowsour.2007.09.049 10.1023/A:1018628609742 10.1016/S0893-6080(03)00169-2 10.1016/j.energy.2006.08.007 10.1016/j.ijhydene.2015.03.039 10.1016/j.jpowsour.2007.05.039 10.1016/j.ijhydene.2013.12.211 10.1137/S003614450242889 10.1016/j.ijhydene.2013.01.095 10.7316/KHNES.2014.25.5.491 10.1016/j.ijhydene.2015.02.071 10.1016/j.jpowsour.2006.01.040 10.9713/kcer.2015.53.2.236 10.1016/j.ijhydene.2013.04.135 10.1016/j.jpowsour.2006.07.031 10.1016/S0377-0427(00)00423-4 10.1016/j.energy.2008.04.015 10.1016/j.ces.2009.06.017 10.1016/j.ijhydene.2009.09.071 10.1016/j.electacta.2010.10.046 10.1002/app.20979 10.1021/ie049425a 10.1016/j.jpowsour.2013.08.018 10.1016/S0360-3199(02)00284-7 10.1016/0893-6080(91)90009-T 10.1016/S1364-0321(01)00006-5 10.1016/j.ijhydene.2015.04.042 10.1016/j.jpowsour.2014.07.107 10.1016/j.ijhydene.2012.12.109 10.1016/j.ijhydene.2003.01.002 10.1016/j.jpowsour.2009.01.079 10.1016/j.ijhydene.2013.02.136 |
ContentType | Journal Article |
Copyright | 2016 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2016 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1016/j.ijhydene.2016.04.247 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3487 |
EndPage | 10211 |
ExternalDocumentID | 10_1016_j_ijhydene_2016_04_247 S036031991530389X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ 7SP 8FD L7M |
ID | FETCH-LOGICAL-c386t-eb844665a9c0b5d3beed7bef4bae5da84a131ec90eeec07b770bf9c17361b0003 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Fri Oct 25 04:48:01 EDT 2024 Thu Sep 26 15:49:06 EDT 2024 Fri Feb 23 02:26:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Support vector machine (SVM) Artificial neural network (ANN) Data-driven model Polymer electrolyte membrane (PEM) fuel cell Pure oxygen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-eb844665a9c0b5d3beed7bef4bae5da84a131ec90eeec07b770bf9c17361b0003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825542957 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1825542957 crossref_primary_10_1016_j_ijhydene_2016_04_247 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2016_04_247 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-29 |
PublicationDateYYYYMMDD | 2016-06-29 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-29 day: 29 |
PublicationDecade | 2010 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Suykens, Vandewalle (bib35) 1999; 9 Larminie, Dicks (bib40) 2003 Renau, Lozano, Barroso, Miralles, Martin, Sanchez (bib2) 2015; 40 Han, Shin (bib11) 2015; 53 Nasr, Hafez, El Naggar, Nakhla (bib22) 2013; 38 Basak, Pal, Patranabis (bib34) 2007; 11 Vapnik (bib29) 1999 Cherkassky, Ma (bib19) 2004; 17 Mathworks (bib37) 2011 Chavez-Ramirez, Munoz-Guerrero, Duron-Torres, Ferraro, Brunaccini, Sergi (bib9) 2010; 35 Lee, Park, Yang, Yoon, Kim (bib7) 2004; 29 Li, Zhu, Cao, Sui, Hu (bib15) 2008; 175 Zhong, Zhu, Cao (bib14) 2006; 160 Hagan, Demuth, Beale, De Jesus (bib24) 2014 Barbir (bib39) 2005 Zamaniyan, Joda, Behroozsarand, Ebrahimi (bib23) 2013; 38 Hornik (bib28) 1991; 4 Lewis, Torczon, Trosset (bib38) 2000; 124 Napoli, Ferraro, Sergi, Brunaccini, Antonucci (bib10) 2013; 38 Zahadat, Milewski (bib21) 2015; 40 Liu, Wu, Zhang, Chen (bib26) 2014; 270 Razbani, Assadi (bib12) 2014; 246 Li, Chen, Liu, Guo, Huang (bib16) 2014; 39 Shih, Weng, Lee, Hsiao (bib1) 2013; 38 Djilali (bib6) 2007; 32 Gaspar, Carbonell, Oliveira (bib33) 2013; 9 Siegel (bib5) 2008; 33 Saengrung, Abtahi, Zilouchian (bib8) 2007; 172 Clerc (bib20) 2006 Zhao (bib30) 2009; 64 Kalogirou (bib18) 2001; 5 Huo, Zhu, Cao (bib17) 2006; 162 Shah, Luo, Ralph, Walsh (bib4) 2011; 56 Jha (bib3) 2012 Wang, Husar, Zhou, Liu (bib41) 2003; 28 Han, Shin (bib31) 2014; 25 Lobato, Canizares, Rodrigo, Linares, Piuleac, Curteanu (bib13) 2009; 192 Han, Han, Chung (bib27) 2005; 95 Kolda, Lewis, Torczon (bib36) 2003; 45 Han, Lee, Han (bib32) 2006; 45 Basile, Curcio, Bagnato, Liguori, Jokar, Iulianelli (bib25) 2015; 40 Clerc (10.1016/j.ijhydene.2016.04.247_bib20) 2006 Larminie (10.1016/j.ijhydene.2016.04.247_bib40) 2003 Razbani (10.1016/j.ijhydene.2016.04.247_bib12) 2014; 246 Zhong (10.1016/j.ijhydene.2016.04.247_bib14) 2006; 160 Li (10.1016/j.ijhydene.2016.04.247_bib16) 2014; 39 Wang (10.1016/j.ijhydene.2016.04.247_bib41) 2003; 28 Han (10.1016/j.ijhydene.2016.04.247_bib11) 2015; 53 Zahadat (10.1016/j.ijhydene.2016.04.247_bib21) 2015; 40 Chavez-Ramirez (10.1016/j.ijhydene.2016.04.247_bib9) 2010; 35 Djilali (10.1016/j.ijhydene.2016.04.247_bib6) 2007; 32 Han (10.1016/j.ijhydene.2016.04.247_bib31) 2014; 25 Mathworks (10.1016/j.ijhydene.2016.04.247_bib37) 2011 Kalogirou (10.1016/j.ijhydene.2016.04.247_bib18) 2001; 5 Li (10.1016/j.ijhydene.2016.04.247_bib15) 2008; 175 Basile (10.1016/j.ijhydene.2016.04.247_bib25) 2015; 40 Hornik (10.1016/j.ijhydene.2016.04.247_bib28) 1991; 4 Shih (10.1016/j.ijhydene.2016.04.247_bib1) 2013; 38 Cherkassky (10.1016/j.ijhydene.2016.04.247_bib19) 2004; 17 Saengrung (10.1016/j.ijhydene.2016.04.247_bib8) 2007; 172 Shah (10.1016/j.ijhydene.2016.04.247_bib4) 2011; 56 Zamaniyan (10.1016/j.ijhydene.2016.04.247_bib23) 2013; 38 Nasr (10.1016/j.ijhydene.2016.04.247_bib22) 2013; 38 Lee (10.1016/j.ijhydene.2016.04.247_bib7) 2004; 29 Napoli (10.1016/j.ijhydene.2016.04.247_bib10) 2013; 38 Huo (10.1016/j.ijhydene.2016.04.247_bib17) 2006; 162 Gaspar (10.1016/j.ijhydene.2016.04.247_bib33) 2013; 9 Renau (10.1016/j.ijhydene.2016.04.247_bib2) 2015; 40 Siegel (10.1016/j.ijhydene.2016.04.247_bib5) 2008; 33 Jha (10.1016/j.ijhydene.2016.04.247_bib3) 2012 Basak (10.1016/j.ijhydene.2016.04.247_bib34) 2007; 11 Lewis (10.1016/j.ijhydene.2016.04.247_bib38) 2000; 124 Han (10.1016/j.ijhydene.2016.04.247_bib27) 2005; 95 Liu (10.1016/j.ijhydene.2016.04.247_bib26) 2014; 270 Zhao (10.1016/j.ijhydene.2016.04.247_bib30) 2009; 64 Barbir (10.1016/j.ijhydene.2016.04.247_bib39) 2005 Hagan (10.1016/j.ijhydene.2016.04.247_bib24) 2014 Suykens (10.1016/j.ijhydene.2016.04.247_bib35) 1999; 9 Kolda (10.1016/j.ijhydene.2016.04.247_bib36) 2003; 45 Han (10.1016/j.ijhydene.2016.04.247_bib32) 2006; 45 Vapnik (10.1016/j.ijhydene.2016.04.247_bib29) 1999 Lobato (10.1016/j.ijhydene.2016.04.247_bib13) 2009; 192 |
References_xml | – volume: 39 start-page: 13777 year: 2014 end-page: 13786 ident: bib16 article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system publication-title: Int J Hydrog Energy contributor: fullname: Huang – volume: 33 start-page: 1131 year: 2008 end-page: 1152 ident: bib5 article-title: Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells publication-title: Energy contributor: fullname: Siegel – volume: 124 start-page: 191 year: 2000 end-page: 207 ident: bib38 article-title: Direct search methods: then and now publication-title: J Comput Appl Math contributor: fullname: Trosset – volume: 160 start-page: 293 year: 2006 end-page: 298 ident: bib14 article-title: Modeling a PEMFC by a support vector machine publication-title: J Power Sources contributor: fullname: Cao – volume: 53 start-page: 236 year: 2015 end-page: 242 ident: bib11 article-title: Modeling of a PEM fuel cell stack using partial least squares and artificial neural networks publication-title: Korean Chem Eng Res contributor: fullname: Shin – volume: 192 start-page: 190 year: 2009 end-page: 194 ident: bib13 article-title: The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: effect of temperature publication-title: J Power Sources contributor: fullname: Curteanu – volume: 172 start-page: 749 year: 2007 end-page: 759 ident: bib8 article-title: Neural network model for a commercial PEM fuel cell system publication-title: J Power Sources contributor: fullname: Zilouchian – volume: 40 start-page: 5897 year: 2015 end-page: 5906 ident: bib25 article-title: Water gas shift reaction in membrane reactors: theoretical investigation by artificial neural networks model and experimental validation publication-title: Int J Hydrog Energy contributor: fullname: Iulianelli – year: 2005 ident: bib39 article-title: PEM fuel cells: theory and practice contributor: fullname: Barbir – volume: 25 start-page: 491 year: 2014 end-page: 499 ident: bib31 article-title: Soft sensor development for predicting the relative humidity of a membrane humidifier for PEM fuel cells publication-title: Trans Korean Hydrogen New Energy Soc contributor: fullname: Shin – volume: 38 start-page: 3189 year: 2013 end-page: 3195 ident: bib22 article-title: Application of artificial neural networks for modeling of biohydrogen production publication-title: Int J Hydrog Energy contributor: fullname: Nakhla – volume: 11 start-page: 203 year: 2007 end-page: 224 ident: bib34 article-title: Support vector regression publication-title: Neural Inf Process Lett Rev contributor: fullname: Patranabis – year: 1999 ident: bib29 article-title: The nature of statistical learning theory contributor: fullname: Vapnik – volume: 246 start-page: 581 year: 2014 end-page: 586 ident: bib12 article-title: Artificial neural network model of a short stack solid oxide fuel cell based on experimental data publication-title: J Power Sources contributor: fullname: Assadi – volume: 45 start-page: 385 year: 2003 end-page: 482 ident: bib36 article-title: Optimization by direct search: new perspectives on some classical and modern methods publication-title: SIAM Rev contributor: fullname: Torczon – volume: 162 start-page: 1220 year: 2006 end-page: 1225 ident: bib17 article-title: Nonlinear modeling of a SOFC stack based on a least squares support vector machine publication-title: J Power Sources contributor: fullname: Cao – volume: 56 start-page: 3731 year: 2011 end-page: 3757 ident: bib4 article-title: Recent trends and developments in polymer electrolyte membrane fuel cell modeling publication-title: Electrochimica Acta contributor: fullname: Walsh – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: bib18 article-title: Artificial neural networks in renewable energy systems application: a review publication-title: Renew Sustain Energy Rev contributor: fullname: Kalogirou – volume: 95 start-page: 967 year: 2005 end-page: 974 ident: bib27 article-title: Melt index modeling with support vector machines, partial least squares, and artificial neural networks publication-title: J Appl Polym Sci contributor: fullname: Chung – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: bib28 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw contributor: fullname: Hornik – year: 2011 ident: bib37 article-title: Global optimization toolbox user's guide contributor: fullname: Mathworks – volume: 40 start-page: 7246 year: 2015 end-page: 7251 ident: bib21 article-title: Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network publication-title: Int J Hydrog Energy contributor: fullname: Milewski – year: 2012 ident: bib3 article-title: Next-generation batteries and fuel cells for commercial, military, and space applications contributor: fullname: Jha – volume: 29 start-page: 961 year: 2004 end-page: 966 ident: bib7 article-title: Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks publication-title: Int J Hydrogen Energy contributor: fullname: Kim – volume: 38 start-page: 11138 year: 2013 end-page: 11143 ident: bib1 article-title: Development of a small fuel cell underwater vehicle publication-title: Int J Hydrogen Energy contributor: fullname: Hsiao – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib35 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett contributor: fullname: Vandewalle – volume: 28 start-page: 1263 year: 2003 end-page: 1272 ident: bib41 article-title: A parametric study of PEM fuel cell performances publication-title: Int J Hydrog Energy contributor: fullname: Liu – volume: 45 start-page: 670 year: 2006 end-page: 680 ident: bib32 article-title: Modeling and optimization of the condensing steam turbine network of a chemical plant publication-title: Ind Eng Chem Res contributor: fullname: Han – volume: 17 start-page: 113 year: 2004 end-page: 126 ident: bib19 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw contributor: fullname: Ma – volume: 270 start-page: 151 year: 2014 end-page: 157 ident: bib26 article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures publication-title: J Power Sources contributor: fullname: Chen – volume: 9 start-page: 201 year: 2013 end-page: 211 ident: bib33 article-title: On the parameter optimization of support vector machines for binary classification publication-title: J Integr Bioinform contributor: fullname: Oliveira – volume: 38 start-page: 6289 year: 2013 end-page: 6297 ident: bib23 article-title: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant publication-title: Int J Hydrog Energy contributor: fullname: Ebrahimi – volume: 175 start-page: 303 year: 2008 end-page: 316 ident: bib15 article-title: Identification of the hammerstein model of a PEMFC stack based on least square support vector machines publication-title: J Power Sources contributor: fullname: Hu – volume: 38 start-page: 11628 year: 2013 end-page: 11638 ident: bib10 article-title: Data driven models for a PEM fuel cell stack performance prediction publication-title: Int J Hydrogen Energy contributor: fullname: Antonucci – volume: 32 start-page: 269 year: 2007 end-page: 280 ident: bib6 article-title: Computational modeling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities publication-title: Energy contributor: fullname: Djilali – volume: 35 start-page: 12125 year: 2010 end-page: 12133 ident: bib9 article-title: High power fuel cell simulator based on artificial neural network publication-title: Int J Hydrogen Energy contributor: fullname: Sergi – year: 2014 ident: bib24 article-title: Neural network design contributor: fullname: De Jesus – volume: 64 start-page: 4131 year: 2009 end-page: 4136 ident: bib30 article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach publication-title: Chem Eng Sci contributor: fullname: Zhao – year: 2006 ident: bib20 article-title: Particle swarm optimization contributor: fullname: Clerc – volume: 40 start-page: 14573 year: 2015 end-page: 14583 ident: bib2 article-title: Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles publication-title: Int J Hydrogen Energy contributor: fullname: Sanchez – year: 2003 ident: bib40 article-title: Fuel cell systems explained contributor: fullname: Dicks – year: 2006 ident: 10.1016/j.ijhydene.2016.04.247_bib20 contributor: fullname: Clerc – volume: 175 start-page: 303 year: 2008 ident: 10.1016/j.ijhydene.2016.04.247_bib15 article-title: Identification of the hammerstein model of a PEMFC stack based on least square support vector machines publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.09.049 contributor: fullname: Li – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.ijhydene.2016.04.247_bib35 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 contributor: fullname: Suykens – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.ijhydene.2016.04.247_bib19 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00169-2 contributor: fullname: Cherkassky – volume: 32 start-page: 269 year: 2007 ident: 10.1016/j.ijhydene.2016.04.247_bib6 article-title: Computational modeling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities publication-title: Energy doi: 10.1016/j.energy.2006.08.007 contributor: fullname: Djilali – volume: 40 start-page: 5897 year: 2015 ident: 10.1016/j.ijhydene.2016.04.247_bib25 article-title: Water gas shift reaction in membrane reactors: theoretical investigation by artificial neural networks model and experimental validation publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2015.03.039 contributor: fullname: Basile – volume: 172 start-page: 749 year: 2007 ident: 10.1016/j.ijhydene.2016.04.247_bib8 article-title: Neural network model for a commercial PEM fuel cell system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.05.039 contributor: fullname: Saengrung – volume: 39 start-page: 13777 year: 2014 ident: 10.1016/j.ijhydene.2016.04.247_bib16 article-title: Nonlinear multivariable modeling of locomotive proton exchange membrane fuel cell system publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2013.12.211 contributor: fullname: Li – volume: 45 start-page: 385 year: 2003 ident: 10.1016/j.ijhydene.2016.04.247_bib36 article-title: Optimization by direct search: new perspectives on some classical and modern methods publication-title: SIAM Rev doi: 10.1137/S003614450242889 contributor: fullname: Kolda – volume: 38 start-page: 11138 year: 2013 ident: 10.1016/j.ijhydene.2016.04.247_bib1 article-title: Development of a small fuel cell underwater vehicle publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.095 contributor: fullname: Shih – year: 2012 ident: 10.1016/j.ijhydene.2016.04.247_bib3 contributor: fullname: Jha – volume: 25 start-page: 491 year: 2014 ident: 10.1016/j.ijhydene.2016.04.247_bib31 article-title: Soft sensor development for predicting the relative humidity of a membrane humidifier for PEM fuel cells publication-title: Trans Korean Hydrogen New Energy Soc doi: 10.7316/KHNES.2014.25.5.491 contributor: fullname: Han – volume: 40 start-page: 14573 year: 2015 ident: 10.1016/j.ijhydene.2016.04.247_bib2 article-title: Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.071 contributor: fullname: Renau – year: 2005 ident: 10.1016/j.ijhydene.2016.04.247_bib39 contributor: fullname: Barbir – volume: 160 start-page: 293 year: 2006 ident: 10.1016/j.ijhydene.2016.04.247_bib14 article-title: Modeling a PEMFC by a support vector machine publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.01.040 contributor: fullname: Zhong – volume: 53 start-page: 236 year: 2015 ident: 10.1016/j.ijhydene.2016.04.247_bib11 article-title: Modeling of a PEM fuel cell stack using partial least squares and artificial neural networks publication-title: Korean Chem Eng Res doi: 10.9713/kcer.2015.53.2.236 contributor: fullname: Han – volume: 38 start-page: 11628 year: 2013 ident: 10.1016/j.ijhydene.2016.04.247_bib10 article-title: Data driven models for a PEM fuel cell stack performance prediction publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.135 contributor: fullname: Napoli – volume: 162 start-page: 1220 year: 2006 ident: 10.1016/j.ijhydene.2016.04.247_bib17 article-title: Nonlinear modeling of a SOFC stack based on a least squares support vector machine publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.07.031 contributor: fullname: Huo – volume: 124 start-page: 191 year: 2000 ident: 10.1016/j.ijhydene.2016.04.247_bib38 article-title: Direct search methods: then and now publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(00)00423-4 contributor: fullname: Lewis – volume: 33 start-page: 1131 year: 2008 ident: 10.1016/j.ijhydene.2016.04.247_bib5 article-title: Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells publication-title: Energy doi: 10.1016/j.energy.2008.04.015 contributor: fullname: Siegel – year: 2011 ident: 10.1016/j.ijhydene.2016.04.247_bib37 contributor: fullname: Mathworks – volume: 64 start-page: 4131 year: 2009 ident: 10.1016/j.ijhydene.2016.04.247_bib30 article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach publication-title: Chem Eng Sci doi: 10.1016/j.ces.2009.06.017 contributor: fullname: Zhao – volume: 35 start-page: 12125 year: 2010 ident: 10.1016/j.ijhydene.2016.04.247_bib9 article-title: High power fuel cell simulator based on artificial neural network publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.09.071 contributor: fullname: Chavez-Ramirez – volume: 56 start-page: 3731 year: 2011 ident: 10.1016/j.ijhydene.2016.04.247_bib4 article-title: Recent trends and developments in polymer electrolyte membrane fuel cell modeling publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2010.10.046 contributor: fullname: Shah – year: 2014 ident: 10.1016/j.ijhydene.2016.04.247_bib24 contributor: fullname: Hagan – year: 1999 ident: 10.1016/j.ijhydene.2016.04.247_bib29 contributor: fullname: Vapnik – volume: 95 start-page: 967 year: 2005 ident: 10.1016/j.ijhydene.2016.04.247_bib27 article-title: Melt index modeling with support vector machines, partial least squares, and artificial neural networks publication-title: J Appl Polym Sci doi: 10.1002/app.20979 contributor: fullname: Han – volume: 45 start-page: 670 year: 2006 ident: 10.1016/j.ijhydene.2016.04.247_bib32 article-title: Modeling and optimization of the condensing steam turbine network of a chemical plant publication-title: Ind Eng Chem Res doi: 10.1021/ie049425a contributor: fullname: Han – volume: 11 start-page: 203 year: 2007 ident: 10.1016/j.ijhydene.2016.04.247_bib34 article-title: Support vector regression publication-title: Neural Inf Process Lett Rev contributor: fullname: Basak – volume: 246 start-page: 581 year: 2014 ident: 10.1016/j.ijhydene.2016.04.247_bib12 article-title: Artificial neural network model of a short stack solid oxide fuel cell based on experimental data publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.018 contributor: fullname: Razbani – volume: 28 start-page: 1263 year: 2003 ident: 10.1016/j.ijhydene.2016.04.247_bib41 article-title: A parametric study of PEM fuel cell performances publication-title: Int J Hydrog Energy doi: 10.1016/S0360-3199(02)00284-7 contributor: fullname: Wang – volume: 4 start-page: 251 year: 1991 ident: 10.1016/j.ijhydene.2016.04.247_bib28 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw doi: 10.1016/0893-6080(91)90009-T contributor: fullname: Hornik – year: 2003 ident: 10.1016/j.ijhydene.2016.04.247_bib40 contributor: fullname: Larminie – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.ijhydene.2016.04.247_bib18 article-title: Artificial neural networks in renewable energy systems application: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/S1364-0321(01)00006-5 contributor: fullname: Kalogirou – volume: 40 start-page: 7246 year: 2015 ident: 10.1016/j.ijhydene.2016.04.247_bib21 article-title: Modeling electrical behavior of solid oxide electrolyzer cells by using artificial neural network publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2015.04.042 contributor: fullname: Zahadat – volume: 270 start-page: 151 year: 2014 ident: 10.1016/j.ijhydene.2016.04.247_bib26 article-title: A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.107 contributor: fullname: Liu – volume: 38 start-page: 3189 year: 2013 ident: 10.1016/j.ijhydene.2016.04.247_bib22 article-title: Application of artificial neural networks for modeling of biohydrogen production publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2012.12.109 contributor: fullname: Nasr – volume: 9 start-page: 201 year: 2013 ident: 10.1016/j.ijhydene.2016.04.247_bib33 article-title: On the parameter optimization of support vector machines for binary classification publication-title: J Integr Bioinform contributor: fullname: Gaspar – volume: 29 start-page: 961 year: 2004 ident: 10.1016/j.ijhydene.2016.04.247_bib7 article-title: Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2003.01.002 contributor: fullname: Lee – volume: 192 start-page: 190 year: 2009 ident: 10.1016/j.ijhydene.2016.04.247_bib13 article-title: The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: effect of temperature publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.079 contributor: fullname: Lobato – volume: 38 start-page: 6289 year: 2013 ident: 10.1016/j.ijhydene.2016.04.247_bib23 article-title: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2013.02.136 contributor: fullname: Zamaniyan |
SSID | ssj0017049 |
Score | 2.5447285 |
Snippet | Two data-driven models are presented to predict and analyze the performance of a PEM fuel cell operating on pure oxygen that can be used as an effective power... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 10202 |
SubjectTerms | Artificial neural network (ANN) Artificial neural networks Data-driven model Fuel cells Learning theory Mathematical models Neural networks Oxygen Polymer electrolyte membrane (PEM) fuel cell Pure oxygen Stacks Support vector machine (SVM) Support vector machines |
Title | Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine |
URI | https://dx.doi.org/10.1016/j.ijhydene.2016.04.247 https://search.proquest.com/docview/1825542957 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoED4inKoxokru4mu7GTcFtVrRZQq0pQaW-W7YxhV5BE2Q2iF34Sv5EZb1IKQuLAIYoSOU7kGc-M42--EeKVDlNM7NRLb52SmSq9dEXQsnLk3nWBQcf6KWfnenGZvV2q5Z44HnNhGFY52P6dTY_WergzGUZz0q5Wk_dkezkFp6Q5yyxxS85gJ_dHOn30_RrmkeZDCEyNJbe-kSW8PlqtP13R9Ga6zFQz5emUy6z83UH9Yaqj_zm9J-4OgSPMd992X-xh_UDcuUEn-FD8uPiVBQBtx1swPOxg64qOHfkINAEsXJycQejxM_B_e2haZlamLoAat32H0Hy7IsUCBsV_BAaRyqpjswixcM7mNczBXxcwjF12EXNEygzMkBlPEV8eX77pWw7z4WvcIoAvEcCJj8Tl6cmH44Uc6jFIPyv0VqIrePdX2dInTlUzR_41dxgyZ1FVtshsOkvRlwki-iR3eZ64UPo0n-k0Lr4ei_26qfGJgFI7rwNqFxRmuiKHQQsXUuqCtCNVvjgQk1EIpt3RbpgRj7Y2o9gMi80kmSGxHYhylJX5TYEM-YZ_PvtyFK6h2cVDb2ts-o2h1Zfiil4qf_of_T8Tt_mKEWbT8rnY33Y9vqBYZusOo7IeilvzN-8W5z8BPPr7Bg |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFOU5yBxdTfZjZ2EW1W1WqBbVaKV9mbFzrjsCpIou0H00p_U38iMNykFIXHgEEVKHCfyjGfG8TffCPFO-zFGxdhJV1glE5U7aTOvZWnJvesMvQ71U2bHenqWfJyr-ZbYH3JhGFbZ2_6NTQ_Wur8y6kdz1CwWo89kezkFJ6c5yyxx81vidsLxMSn17uU1ziNO-xiYWktufiNNeLm7WH65oPnNfJmxZs7TMddZ-buH-sNWBwd0-EDc7yNH2Nt83EOxhdUjce8Gn-BjcXXyKw0Ampb3YHjcoahKOjbsI1B7KODkYAa-w6_AP-6hbphamboAatx0LUL944I0CxgVfw6MIpVly3YRQuWc1XvYA3ddwTB02QbQEWkzMEVmOAWAeXj5qms4zofvYY8AvgUEJz4RZ4cHp_tT2RdkkG6S6bVEm_H2rypyF1lVTiw52NSiT2yBqiyypIgnMbo8QkQXpTZNI-tzF6cTHYfV11OxXdUVPhOQa-u0R229wkSX5DFo5UJanZF6xMplO2I0CME0G94NMwDSlmYQm2GxmSgxJLYdkQ-yMr9pkCHn8M9n3w7CNTS9eOiLCutuZWj5pbikl0qf_0f_b8Sd6ensyBx9OP70QtzlOww3G-cvxfa67fAVBTZr-zoo7k8Kn_yf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+prediction+and+analysis+of+a+PEM+fuel+cell+operating+on+pure+oxygen+using+data-driven+models%3A+A+comparison+of+artificial+neural+network+and+support+vector+machine&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Han%2C+In-Su&rft.au=Chung%2C+Chang-Bock&rft.date=2016-06-29&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=41&rft.issue=24&rft.spage=10202&rft.epage=10211&rft_id=info:doi/10.1016%2Fj.ijhydene.2016.04.247&rft.externalDocID=S036031991530389X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |