Fitting a straight line when both variables are subject to error: pharmaceutical applications

In many pharmaceutical applications one postulates a linear relationship between variables. The usual linear least-squares methods are appropriate when the values of the independent variable are constants, and the dependent variable is subject to error. When both variables are subject to error, as i...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmaceutical and biomedical analysis Vol. 12; no. 10; p. 1265
Main Author Roy, T
Format Journal Article
LanguageEnglish
Published England 01.10.1994
Subjects
Online AccessGet more information
ISSN0731-7085
DOI10.1016/0731-7085(94)00057-3

Cover

Abstract In many pharmaceutical applications one postulates a linear relationship between variables. The usual linear least-squares methods are appropriate when the values of the independent variable are constants, and the dependent variable is subject to error. When both variables are subject to error, as in assay validation, calibration, and general correlation, the measurement error model (also called errors-in-variables) should be used especially when independent variable error is appreciable. In this paper, the theoretical properties of errors-in-variables methods are demonstrated with examples, and a technique for assessing the variability of parameter estimates without normality assumptions is presented. Robust methods resistant to outliers and not requiring normality assumptions, are also described.
AbstractList In many pharmaceutical applications one postulates a linear relationship between variables. The usual linear least-squares methods are appropriate when the values of the independent variable are constants, and the dependent variable is subject to error. When both variables are subject to error, as in assay validation, calibration, and general correlation, the measurement error model (also called errors-in-variables) should be used especially when independent variable error is appreciable. In this paper, the theoretical properties of errors-in-variables methods are demonstrated with examples, and a technique for assessing the variability of parameter estimates without normality assumptions is presented. Robust methods resistant to outliers and not requiring normality assumptions, are also described.
Author Roy, T
Author_xml – sequence: 1
  givenname: T
  surname: Roy
  fullname: Roy, T
  organization: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7841221$$D View this record in MEDLINE/PubMed
BookMark eNo9j8FLwzAYxXOYzG36HyjkqIdqkjZN403GpsLAix5lfEm_rBldW5JU8b934vD0Hu8Hj_fmZNL1HRJyxdkdZ7y8ZyrnmWKVvNHFLWNMqiyfkNl_fE7mMe5_AdfFlExVVXAh-Ix8rH1KvttRoDEF8Lsm0dZ3SL8a7KjpU0M_IXgwLUYKAWkczR5toqmnGEIfHujQQDiAxTF5Cy2FYWiPJvm-ixfkzEEb8fKkC_K-Xr0tn7PN69PL8nGT2bwqU4YAOTdM1aV2wmqni1pZrqXQKAvnrJTOVELk4ji5rAslhXGmdk4jz7lyUizI9V_vMJoD1tsh-AOE7-3ppvgBIupWZQ
CitedBy_id crossref_primary_10_1029_2020EA001250
crossref_primary_10_1016_0731_7085_95_01310_H
crossref_primary_10_1016_0731_7085_95_01540_2
crossref_primary_10_1016_S0378_4347_98_00378_8
crossref_primary_10_1016_j_envres_2017_05_030
crossref_primary_10_1016_j_icheatmasstransfer_2022_106182
crossref_primary_10_1289_ehp_1409614
crossref_primary_10_1016_S0731_7085_97_00236_7
crossref_primary_10_1016_j_icheatmasstransfer_2024_108065
crossref_primary_10_1016_0731_7085_95_01654_6
crossref_primary_10_1016_S0731_7085_96_01848_1
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/0731-7085(94)00057-3
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
ExternalDocumentID 7841221
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJQLL
AJSZI
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EFJIC
EIF
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HMU
HVGLF
HZ~
IHE
J1W
KOM
M34
M36
M41
MO0
N9A
NPM
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSK
SSP
SSZ
T5K
TEORI
WUQ
XPP
YK3
~G-
ID FETCH-LOGICAL-c386t-eaa31b07d69f2c9f94d7c19529e54ffc55fb822322216d4752bfbdff9e1317f52
ISSN 0731-7085
IngestDate Wed Feb 19 02:35:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-eaa31b07d69f2c9f94d7c19529e54ffc55fb822322216d4752bfbdff9e1317f52
PMID 7841221
ParticipantIDs pubmed_primary_7841221
PublicationCentury 1900
PublicationDate 1994-10-01
PublicationDateYYYYMMDD 1994-10-01
PublicationDate_xml – month: 10
  year: 1994
  text: 1994-10-01
  day: 01
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of pharmaceutical and biomedical analysis
PublicationTitleAlternate J Pharm Biomed Anal
PublicationYear 1994
SSID ssj0005194
Score 1.498453
Snippet In many pharmaceutical applications one postulates a linear relationship between variables. The usual linear least-squares methods are appropriate when the...
SourceID pubmed
SourceType Index Database
StartPage 1265
SubjectTerms Chemical Phenomena
Chemistry, Pharmaceutical - methods
Chemistry, Physical
Least-Squares Analysis
Models, Statistical
Title Fitting a straight line when both variables are subject to error: pharmaceutical applications
URI https://www.ncbi.nlm.nih.gov/pubmed/7841221
Volume 12
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2IKReEK-Kt3yACrQ1xI5jr7khRFVxqCqxlXpBlZ9qD2RX3S1o-fWMH5ukC0XAJUpsxUr8fZl8tmc8CL2QKlRmQgVxxnLCtTFEGe-Ig3-5t1xMdEgOsofi4Jh_OmlORqPPA6-ly6V5Y3_8Nq7kf1CFMsA1Rsn-A7Jdo1AA54AvHAFhOP4Vxvvn2WtZx5APHYfZ46Qav5_5dmwAg_E3GArH4KjFOHp4LS5NnHaJetNfXMxShsj52ZVJ7eGC9jXCdfOOFjRsCuIvl3mXk34lZ9X7YrsSb8c7R7W1FZI1JbLKeXU6k8mG1KgGBpCynPrhF8ucJwm61kA-K_6S5ZSlpB7eAu8-_5oQi2uiLAdQ_7FyY8fsUrOFtqSMtvowTuCsvX5oyo3ZPcc6mpKKt13ZK8Vfl-faRrdKaxvDjiQ_pnfQ7dL9-H0mwV008u09tHuUoVjt4WkfR7fYw7v4qN-SfHUffSlMwRqvmYIjU3BkCo5MwR1TMDAFF6bg5QwnprzDV1HHQ548QMf7H6cfDkhJrEFsPRFL4rWuqamkEyowq4LiTlqqGqZ8w0OwTRMMCMe4CEeF47JhJhgXgvIU5GZo2A660c5a_xBhVhkLIpNraiUXda19bQKtlBXxS3fVI7STu-10nndPOS39-fi6iidou-fhU3QzwMfqn4HyW5rnCcufBWBX_w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitting+a+straight+line+when+both+variables+are+subject+to+error%3A+pharmaceutical+applications&rft.jtitle=Journal+of+pharmaceutical+and+biomedical+analysis&rft.au=Roy%2C+T&rft.date=1994-10-01&rft.issn=0731-7085&rft.volume=12&rft.issue=10&rft.spage=1265&rft_id=info:doi/10.1016%2F0731-7085%2894%2900057-3&rft_id=info%3Apmid%2F7841221&rft_id=info%3Apmid%2F7841221&rft.externalDocID=7841221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0731-7085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0731-7085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0731-7085&client=summon