Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity
Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 63; p. 103387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and by (U±,V±) its asymptotic states at ±∞, we investigate existence in the regimes d>1:(U−,V−)=(0,1)and(U+,V+)=(1,0),d<1:(U−,V−)=(1−d,1)and(U+,V+)=(1,0),which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c→0. |
---|---|
AbstractList | Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby-Gawlinski modelwhere f (u) = 1 -u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimesand U+, V+ = 1, 0 , which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0. Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and by (U±,V±) its asymptotic states at ±∞, we investigate existence in the regimes d>1:(U−,V−)=(0,1)and(U+,V+)=(1,0),d<1:(U−,V−)=(1−d,1)and(U+,V+)=(1,0),which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c→0. |
ArticleNumber | 103387 |
Author | Mascia, Corrado Gallay, Thierry |
Author_xml | – sequence: 1 givenname: Thierry surname: Gallay fullname: Gallay, Thierry email: Thierry.Gallay@univ-grenoble-alpes.fr organization: Institut Fourier, Université Grenoble Alpes, CNRS, 100 rue des Maths 38610 Gières, France – sequence: 2 givenname: Corrado orcidid: 0000-0002-7294-492X surname: Mascia fullname: Mascia, Corrado email: corrado.mascia@uniroma1.it organization: Dipartimento di Matematica Guido Castelnuovo, Sapienza, Università di Roma, Piazzale Aldo Moro 5 00185 Roma, Italy |
BackLink | https://hal.science/hal-04709566$$DView record in HAL |
BookMark | eNqFkEFrGzEQhUVJoUnaf9CDrj2sK60sabeHQghNHTA0h_QstNLIGbOWjKTY5N9nnU0uObSXmeExb-bxXZCzmCIQ8pWzBWdcfd8uJiEf7aJlLZ8kITr9gZzzTneN1Lw_m-al6hre8u4TuShlyxjXXPBzgnc57e3GVkyRhpxiLRQjtbTgbj9iQPB0lzyMNAVaH3cp001Ox_pAjzgVDxuIkG0F6nIqpfGwh-ghVlpgDI3HEB4LHrA-fSYfgx0LfHntl-Tvza_761Wz_vP79vpq3TjRqdoAa0HoYeillAOwKb6CIJ0UrNOcAbQiSG7loHotBjW0nvcOQCvlBiZVcOKSfJvvPtjR7DPubH4yyaJZXa3NSWNLzXqp1IFPuz_m3ZfwGYJxWF9Y1GxxNJyZE2CzNTNgcwJsZsCTefnO_PbtP7afsw0mCAeEbIpDiA48ZnDV-IT_PvAMsrKbRA |
CitedBy_id | crossref_primary_10_1103_PhysRevE_107_054405 crossref_primary_10_1007_s11538_022_01005_7 crossref_primary_10_1088_1361_6544_ada50d crossref_primary_10_1016_j_nonrwa_2024_104176 crossref_primary_10_3390_axioms13050281 crossref_primary_10_3934_dcdss_2021146 crossref_primary_10_1098_rspa_2021_0593 |
Cites_doi | 10.3934/cpaa.2007.6.1145 10.1017/S144618111100054X 10.1093/imamat/hxu055 10.1085/jgp.8.6.519 10.1515/ans-2005-0204 10.4171/ifb/284 10.1006/jdeq.1995.1055 10.1007/BF00160178 10.1016/0022-5193(80)90024-7 10.1088/0305-4470/38/15/009 10.1007/s00023-018-0692-4 10.3934/mbe.2016.13.193 10.1016/j.jde.2003.06.005 10.1007/s40819-017-0345-1 10.1016/j.jtbi.2010.08.028 10.1016/0022-0396(79)90152-9 10.1007/s00285-013-0665-7 10.18632/oncoscience.109 10.1016/j.mbs.2009.04.001 10.1016/j.ecocom.2016.10.003 10.1016/0022-5193(71)90051-8 10.1007/s10440-008-9354-8 10.1006/jtbi.1997.0462 10.1007/s10884-019-09772-z 10.1051/mmnp/20105505 10.4171/ifb/62 10.1016/j.amc.2013.11.018 10.1137/0512074 10.1007/s11538-018-0532-1 10.1090/S0002-9939-1985-0770540-6 10.1002/mma.5772 10.1007/s002850050073 10.1016/0022-5193(79)90258-3 10.1016/j.mbs.2015.09.007 10.1137/130925633 10.1111/j.1469-1809.1937.tb02153.x 10.1080/000187300405228 10.1016/j.jde.2008.02.018 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.nonrwa.2021.103387 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | oai_HAL_hal_04709566v1 10_1016_j_nonrwa_2021_103387 S1468121821000997 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c386t-e02e37bb9555be05716ef5c5308710ee23f51a5b6973b6b2d19cee766cb056fc3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Fri May 09 12:12:26 EDT 2025 Tue Jul 01 04:03:14 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Fri Feb 23 02:41:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Degenerate diffusion Reaction–diffusion systems Cross-dependent self-diffusivity Traveling wave solutions Singular perturbation 2010 Mathematics Subject Classification. 35C07 35K57 34D10 92-10 Reaction-diffusion systems cross-dependent self-diffusivity traveling wave solutions degenerate diffusion singular perturbation traveling wave solutions singular perturbation cross-dependent self-diffusivity degenerate diffusion 2010 Mathematics Subject Classification. 35C07 35K57 34D10 92-10 Reaction-diffusion systems |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-e02e37bb9555be05716ef5c5308710ee23f51a5b6973b6b2d19cee766cb056fc3 |
ORCID | 0000-0002-7294-492X |
OpenAccessLink | https://hal.science/hal-04709566 |
ParticipantIDs | hal_primary_oai_HAL_hal_04709566v1 crossref_citationtrail_10_1016_j_nonrwa_2021_103387 crossref_primary_10_1016_j_nonrwa_2021_103387 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2021_103387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-02 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Tao, Tello (b53) 2016; 13 Colson, Sánchez-Garduno, Byrne, Maini, Lorenzi (b44) 2021 Barrett, Deckelinck (b51) 2012; 14 Alfarouk, Verduzco, Rauch, Muddathir, Bashir, Elhassen, Ibrahim, Orozco, Cardone, Reshkin, Harguindey (b3) 2014; 1 Moschetta, Simeoni (b12) 2019; 40 Keller, Segel (b32) 1971; 30 Holder, Rodrigo (b7) 2015; 270 Fenichel (b50) 1979; 31 Haragus, Iooss (b48) 2011 Stinner, Surulescu, Meral (b9) 2015; 80 Sánchez-Garduno, Maini (b20) 1997; 35 Gatenby, Gawlinski (b4) 1996; 56 Meyries, Rademacher, Siero (b31) 2014; 13 Ben-Jacob, Cohen, Levine (b35) 2000; 49 Coddington, Levinson (b49) 1955 Malaguti, Marcelli (b17) 2003; 195 Märkl, Meral, Surulescu (b54) 2013 Malaguti, Marcelli (b24) 2005; 5 Kolmogorov, Petrovskii, Piscounov (b29) 1991; vol. 25 Atkinson, Reuter, Ridler-Rowe (b26) 1981; 12 Mansour (b37) 2010; 109 Satnoianu, Maini, no, Armitage (b39) 2001; 1 Drábek, Takác (b23) 2020 Guckenheimer, Holmes (b47) 1983; vol. 42 Barrett, Nürnberg (b52) 2002; 4 Browning, Haridas, Simpson (b42) 2019; 81 Kawasaki, Mochizuki, Matsushita, Umeda, Shigesada (b34) 1997; 188 Chow, Li, Wang (b46) 1994 Sánchez-Garduno, Maini (b19) 1994; 33 El-Hachema, McCuea, Simpson (b43) 2021 McGillen, Gaffney, Martin, Maini (b5) 2014; 68 de Araujo, Fassoni, Salvino (b6) 2019; 42 Mansour (b25) 2010; 52 Aronson (b14) 1980; vol. 44 Hilhorst, Kersner, Logak, Mimura (b45) 2008; 244 Lewis, Petrovskii, Potts (b1) 2016; vol. 44 Sherratt (b22) 2010; 5 Davis, van Heijster, Marangell, Rodrigo (b40) 2021 Mascia, Moschetta, Simeoni (b11) 2021 Leyva, Plaza (b30) 2020; 32 Fasano, Herrero, Rodrigo (b10) 2009; 220 Holder, Rodrigo, Herrero (b41) 2014; 227 Fisher (b28) 1937; 7 Martin, Gaffney, Gatenby, Maini (b8) 2010; 267 Engler (b15) 1985; 93 Gilding, Kersner (b16) 2005; 38 Newman (b18) 1980; 85 Feng, Zhou (b36) 2007; 6 Shigesada, Kawasaki, Teramoto (b33) 1979; 79 Mansour (b38) 2017; 3 Benguria, Depassier (b27) 2018; 19 Warburg, Wind, Negelein (b2) 1927; 8 Fassoni, Yang (b13) 2017; 30 Sánchez-Garduno, Maini (b21) 1995; 117 Kawasaki (10.1016/j.nonrwa.2021.103387_b34) 1997; 188 Sherratt (10.1016/j.nonrwa.2021.103387_b22) 2010; 5 Meyries (10.1016/j.nonrwa.2021.103387_b31) 2014; 13 Gilding (10.1016/j.nonrwa.2021.103387_b16) 2005; 38 Kolmogorov (10.1016/j.nonrwa.2021.103387_b29) 1991; vol. 25 Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b21) 1995; 117 Colson (10.1016/j.nonrwa.2021.103387_b44) 2021 Chow (10.1016/j.nonrwa.2021.103387_b46) 1994 Tao (10.1016/j.nonrwa.2021.103387_b53) 2016; 13 Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b20) 1997; 35 Atkinson (10.1016/j.nonrwa.2021.103387_b26) 1981; 12 Davis (10.1016/j.nonrwa.2021.103387_b40) 2021 Lewis (10.1016/j.nonrwa.2021.103387_b1) 2016; vol. 44 Drábek (10.1016/j.nonrwa.2021.103387_b23) 2020 de Araujo (10.1016/j.nonrwa.2021.103387_b6) 2019; 42 Holder (10.1016/j.nonrwa.2021.103387_b7) 2015; 270 Malaguti (10.1016/j.nonrwa.2021.103387_b17) 2003; 195 Mansour (10.1016/j.nonrwa.2021.103387_b38) 2017; 3 Mansour (10.1016/j.nonrwa.2021.103387_b25) 2010; 52 Browning (10.1016/j.nonrwa.2021.103387_b42) 2019; 81 Holder (10.1016/j.nonrwa.2021.103387_b41) 2014; 227 Alfarouk (10.1016/j.nonrwa.2021.103387_b3) 2014; 1 Moschetta (10.1016/j.nonrwa.2021.103387_b12) 2019; 40 Shigesada (10.1016/j.nonrwa.2021.103387_b33) 1979; 79 Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b19) 1994; 33 Satnoianu (10.1016/j.nonrwa.2021.103387_b39) 2001; 1 Haragus (10.1016/j.nonrwa.2021.103387_b48) 2011 Aronson (10.1016/j.nonrwa.2021.103387_b14) 1980; vol. 44 Fassoni (10.1016/j.nonrwa.2021.103387_b13) 2017; 30 Märkl (10.1016/j.nonrwa.2021.103387_b54) 2013 Ben-Jacob (10.1016/j.nonrwa.2021.103387_b35) 2000; 49 Gatenby (10.1016/j.nonrwa.2021.103387_b4) 1996; 56 Leyva (10.1016/j.nonrwa.2021.103387_b30) 2020; 32 Fasano (10.1016/j.nonrwa.2021.103387_b10) 2009; 220 Newman (10.1016/j.nonrwa.2021.103387_b18) 1980; 85 Warburg (10.1016/j.nonrwa.2021.103387_b2) 1927; 8 Stinner (10.1016/j.nonrwa.2021.103387_b9) 2015; 80 Feng (10.1016/j.nonrwa.2021.103387_b36) 2007; 6 Benguria (10.1016/j.nonrwa.2021.103387_b27) 2018; 19 Coddington (10.1016/j.nonrwa.2021.103387_b49) 1955 Hilhorst (10.1016/j.nonrwa.2021.103387_b45) 2008; 244 Mansour (10.1016/j.nonrwa.2021.103387_b37) 2010; 109 Fisher (10.1016/j.nonrwa.2021.103387_b28) 1937; 7 McGillen (10.1016/j.nonrwa.2021.103387_b5) 2014; 68 Guckenheimer (10.1016/j.nonrwa.2021.103387_b47) 1983; vol. 42 Barrett (10.1016/j.nonrwa.2021.103387_b51) 2012; 14 Fenichel (10.1016/j.nonrwa.2021.103387_b50) 1979; 31 Mascia (10.1016/j.nonrwa.2021.103387_b11) 2021 Engler (10.1016/j.nonrwa.2021.103387_b15) 1985; 93 El-Hachema (10.1016/j.nonrwa.2021.103387_b43) 2021 Martin (10.1016/j.nonrwa.2021.103387_b8) 2010; 267 Malaguti (10.1016/j.nonrwa.2021.103387_b24) 2005; 5 Barrett (10.1016/j.nonrwa.2021.103387_b52) 2002; 4 Keller (10.1016/j.nonrwa.2021.103387_b32) 1971; 30 |
References_xml | – volume: 85 start-page: 325 year: 1980 end-page: 334 ident: b18 article-title: Some exact solutions to a non-linear diffusion problem in population genetics and combustion publication-title: J. Theoret. Biol. – volume: 33 start-page: 163 year: 1994 end-page: 192 ident: b19 article-title: Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher–KPP equations publication-title: J. Math. Biol. – volume: 52 start-page: 101 year: 2010 end-page: 109 ident: b25 article-title: Travelling wave solutions for doubly degenerate reaction-diffusion equations publication-title: ANZIAM J. – volume: 79 start-page: 83 year: 1979 end-page: 99 ident: b33 article-title: Spatial segregation of interacting species publication-title: J. Theoret. Biol. – year: 2021 ident: b40 article-title: Traveling wave solutions in a model for tumor invasion with the acid-mediation hypothesis – volume: 7 start-page: 355 year: 1937 end-page: 369 ident: b28 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugen. – volume: 109 start-page: 939 year: 2010 end-page: 947 ident: b37 article-title: A numerical study of traveling fronts for a reaction-diffusion-advection model publication-title: Acta Appl. Math. – volume: 32 start-page: 1311 year: 2020 end-page: 1342 ident: b30 article-title: Spectral stability of traveling fronts for reaction diffusion-degenerate Fisher–KPP equations publication-title: J. Dynam. Differential Equations – volume: 68 start-page: 1199 year: 2014 end-page: 1224 ident: b5 article-title: A general reaction-diffusion model of acidity in cancer invasion publication-title: J. Math. Biol. – volume: 30 start-page: 34 year: 2017 end-page: 46 ident: b13 article-title: An ecological resilience perspective on cancer: Insights from a toy model publication-title: Ecol. Complex. – year: 2020 ident: b23 article-title: Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion publication-title: Appl. Math. Opt. – volume: 30 start-page: 235 year: 1971 end-page: 248 ident: b32 article-title: Traveling bands of chemotactic bacteria: a theoretical analysis publication-title: J. Theoret. Biol. – volume: 4 start-page: 277 year: 2002 end-page: 307 ident: b52 article-title: Finite-element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation publication-title: Interfaces Free Bound. – volume: 270 start-page: 10 year: 2015 end-page: 29 ident: b7 article-title: Model for acid-mediated tumour invasion with chemotherapy intervention II: Spatially heterogeneous populations publication-title: Math. Biosci. – volume: 1 start-page: 339 year: 2001 end-page: 362 ident: b39 article-title: Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation publication-title: Discrete Contin. Dyn. Syst. B – volume: 8 start-page: 519 year: 1927 end-page: 530 ident: b2 article-title: The metabolism of tumors in the body publication-title: J Gen. Phyisiol. – volume: vol. 44 year: 2016 ident: b1 publication-title: The Mathematics behind Biological Invasions – volume: 267 start-page: 461 year: 2010 end-page: 470 ident: b8 article-title: Tumour-stromal interactions in acid-mediated invasion: A mathematical model publication-title: J. Theoret. Biol. – volume: 1 start-page: 777 year: 2014 end-page: 802 ident: b3 article-title: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question publication-title: Oncoscience – volume: 49 start-page: 395 year: 2000 end-page: 554 ident: b35 article-title: Cooperative self-organization of microorganisms publication-title: Adv. Phys. – volume: 31 start-page: 53 year: 1979 end-page: 98 ident: b50 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations – volume: 6 start-page: 1145 year: 2007 end-page: 1165 ident: b36 article-title: Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony publication-title: Commun. Pure Appl. Anal. – volume: 227 start-page: 176 year: 2014 end-page: 198 ident: b41 article-title: A model for acid-mediated tumour growth with nonlinear acid production term publication-title: Appl. Math. Comput. – volume: 117 start-page: 281 year: 1995 end-page: 319 ident: b21 article-title: Travelling wave phenomena in some degenerate reaction-diffusion equations publication-title: J. Differential Equations – volume: 188 start-page: 177 year: 1997 end-page: 185 ident: b34 article-title: Modeling spatio-temporal patterns generated by publication-title: J. Theoret. Biol. – volume: 38 start-page: 3367 year: 2005 end-page: 3379 ident: b16 article-title: A Fisher/KPP-type equation with density-dependent diffusion and convection: traveling-wave solutions publication-title: J. Phys. A: Math. Gen. – volume: 220 start-page: 45 year: 2009 end-page: 56 ident: b10 article-title: Slow and fast invasion waves in a model of acid-mediated tumour growth publication-title: Math. Biosci. – volume: 81 start-page: 676 year: 2019 end-page: 698 ident: b42 article-title: A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin publication-title: Bull. Math. Biol. – volume: vol. 42 year: 1983 ident: b47 publication-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields – year: 1955 ident: b49 article-title: Theory of Ordinary Differential Equations – volume: 13 start-page: 193 year: 2016 end-page: 207 ident: b53 article-title: Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion publication-title: Math. Biosci. Eng. – volume: 244 start-page: 2870 year: 2008 end-page: 2889 ident: b45 article-title: Interface dynamics of the Fisher equation with degenerate diffusion publication-title: J. Differential Equations – year: 2011 ident: b48 publication-title: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems – volume: 80 start-page: 1300 year: 2015 end-page: 1321 ident: b9 article-title: A multiscale model for pH-tactic invasion with time-varying carrying capacities publication-title: IMA J. Appl. Math. – year: 2021 ident: b44 article-title: Travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion – volume: 19 start-page: 2717 year: 2018 end-page: 2726 ident: b27 article-title: Variational characterization of the speed of reaction-diffusion fronts for gradient dependent diffusion publication-title: Ann. Henri Poincare – volume: 5 start-page: 223 year: 2005 end-page: 252 ident: b24 article-title: Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations publication-title: Adv. Nonlinear Studies – start-page: 1 year: 2013 end-page: 15 ident: b54 article-title: Mathematical analysis and numerical simulations for a system modeling acid-mediated tumor cell invasion publication-title: Int. J. Anal. – volume: 56 start-page: 5745 year: 1996 end-page: 5753 ident: b4 article-title: A reaction-diffusion model of cancer invasion publication-title: Cancer Res. – volume: 40 start-page: 258 year: 2019 end-page: 287 ident: b12 article-title: Numerical investigation of the Gatenby-Gawlinski model for acid-mediated tumour invasion publication-title: Rend. Mat. Appl. – volume: 12 start-page: 880 year: 1981 end-page: 892 ident: b26 article-title: Traveling wave solution for some nonlinear diffusion equations publication-title: SIAM J. Math. Anal. – volume: 93 start-page: 297 year: 1985 end-page: 302 ident: b15 article-title: Relations between travelling wave solutions of quasilinear parabolic equations publication-title: Proc. Amer. Math. Soc. – year: 2021 ident: b11 article-title: Numerical investigation of some reductions for the gatenby–gawlinski model – volume: 5 start-page: 64 year: 2010 end-page: 79 ident: b22 article-title: On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion publication-title: Math. Model. Nat. Phenom. – volume: vol. 44 start-page: 161 year: 1980 end-page: 176 ident: b14 article-title: Density dependent interaction systems publication-title: Dynamics and Modelling of Reactive Systems – volume: 13 start-page: 249 year: 2014 end-page: 275 ident: b31 article-title: Quasi-linear parabolic reaction-diffusion systems: a user’s guide to well-posedness, spectra, and stability of travelling waves publication-title: SIAM J. Appl. Dyn. Syst. – year: 1994 ident: b46 article-title: Normal Forms and Bifurcation of Planar Vector Fields – volume: vol. 25 start-page: 248 year: 1991 end-page: 270 ident: b29 article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem publication-title: Selected Works of A. N. Kolmogorov I – volume: 35 start-page: 713 year: 1997 end-page: 728 ident: b20 article-title: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations publication-title: J. Math. Biol. – volume: 195 start-page: 471 year: 2003 end-page: 496 ident: b17 article-title: Sharp profiles in degenerate and doubly degenerate Fisher–KPP equations publication-title: J. Differential Equations – year: 2021 ident: b43 article-title: Travelling wave analysis of cellular invasion into surrounding tissues – volume: 14 start-page: 343 year: 2012 end-page: 363 ident: b51 article-title: Existence and approximation of nonlinear degenerate parabolic system modelling acid-mediated tumarrour invasion publication-title: Interfaces Free Bound. – volume: 42 start-page: 6686 year: 2019 end-page: 6705 ident: b6 article-title: An analysis of a mathematical model describing acid-mediated tumor invasion publication-title: Math. Methods Appl. Sci. – volume: 3 start-page: S1289 year: 2017 end-page: S1297 ident: b38 article-title: On traveling wave fronts in a degenerate nonlinear parabolic system modeling bacterial pattern formation publication-title: Int. J. Appl. Comput. Math. – year: 2021 ident: 10.1016/j.nonrwa.2021.103387_b11 – volume: 6 start-page: 1145 issue: 4 year: 2007 ident: 10.1016/j.nonrwa.2021.103387_b36 article-title: Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2007.6.1145 – volume: 52 start-page: 101 issue: 1 year: 2010 ident: 10.1016/j.nonrwa.2021.103387_b25 article-title: Travelling wave solutions for doubly degenerate reaction-diffusion equations publication-title: ANZIAM J. doi: 10.1017/S144618111100054X – volume: 80 start-page: 1300 issue: 5 year: 2015 ident: 10.1016/j.nonrwa.2021.103387_b9 article-title: A multiscale model for pH-tactic invasion with time-varying carrying capacities publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxu055 – volume: 8 start-page: 519 issue: 6 year: 1927 ident: 10.1016/j.nonrwa.2021.103387_b2 article-title: The metabolism of tumors in the body publication-title: J Gen. Phyisiol. doi: 10.1085/jgp.8.6.519 – volume: 40 start-page: 258 issue: 3–4 year: 2019 ident: 10.1016/j.nonrwa.2021.103387_b12 article-title: Numerical investigation of the Gatenby-Gawlinski model for acid-mediated tumour invasion publication-title: Rend. Mat. Appl. – volume: vol. 25 start-page: 248 year: 1991 ident: 10.1016/j.nonrwa.2021.103387_b29 article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem – volume: 56 start-page: 5745 issue: 24 year: 1996 ident: 10.1016/j.nonrwa.2021.103387_b4 article-title: A reaction-diffusion model of cancer invasion publication-title: Cancer Res. – year: 2021 ident: 10.1016/j.nonrwa.2021.103387_b44 – volume: 5 start-page: 223 issue: 2 year: 2005 ident: 10.1016/j.nonrwa.2021.103387_b24 article-title: Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations publication-title: Adv. Nonlinear Studies doi: 10.1515/ans-2005-0204 – volume: 14 start-page: 343 issue: 3 year: 2012 ident: 10.1016/j.nonrwa.2021.103387_b51 article-title: Existence and approximation of nonlinear degenerate parabolic system modelling acid-mediated tumarrour invasion publication-title: Interfaces Free Bound. doi: 10.4171/ifb/284 – volume: 117 start-page: 281 issue: 2 year: 1995 ident: 10.1016/j.nonrwa.2021.103387_b21 article-title: Travelling wave phenomena in some degenerate reaction-diffusion equations publication-title: J. Differential Equations doi: 10.1006/jdeq.1995.1055 – volume: vol. 44 year: 2016 ident: 10.1016/j.nonrwa.2021.103387_b1 – year: 1955 ident: 10.1016/j.nonrwa.2021.103387_b49 – volume: 1 start-page: 339 issue: 3 year: 2001 ident: 10.1016/j.nonrwa.2021.103387_b39 article-title: Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation publication-title: Discrete Contin. Dyn. Syst. B – volume: 33 start-page: 163 issue: 2 year: 1994 ident: 10.1016/j.nonrwa.2021.103387_b19 article-title: Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher–KPP equations publication-title: J. Math. Biol. doi: 10.1007/BF00160178 – volume: 85 start-page: 325 issue: 2 year: 1980 ident: 10.1016/j.nonrwa.2021.103387_b18 article-title: Some exact solutions to a non-linear diffusion problem in population genetics and combustion publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(80)90024-7 – volume: 38 start-page: 3367 issue: 15 year: 2005 ident: 10.1016/j.nonrwa.2021.103387_b16 article-title: A Fisher/KPP-type equation with density-dependent diffusion and convection: traveling-wave solutions publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/38/15/009 – volume: 19 start-page: 2717 issue: 9 year: 2018 ident: 10.1016/j.nonrwa.2021.103387_b27 article-title: Variational characterization of the speed of reaction-diffusion fronts for gradient dependent diffusion publication-title: Ann. Henri Poincare doi: 10.1007/s00023-018-0692-4 – volume: 13 start-page: 193 issue: 1 year: 2016 ident: 10.1016/j.nonrwa.2021.103387_b53 article-title: Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2016.13.193 – volume: 195 start-page: 471 issue: 2 year: 2003 ident: 10.1016/j.nonrwa.2021.103387_b17 article-title: Sharp profiles in degenerate and doubly degenerate Fisher–KPP equations publication-title: J. Differential Equations doi: 10.1016/j.jde.2003.06.005 – volume: 3 start-page: S1289 issue: suppl. 1 year: 2017 ident: 10.1016/j.nonrwa.2021.103387_b38 article-title: On traveling wave fronts in a degenerate nonlinear parabolic system modeling bacterial pattern formation publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-017-0345-1 – volume: 267 start-page: 461 issue: 3 year: 2010 ident: 10.1016/j.nonrwa.2021.103387_b8 article-title: Tumour-stromal interactions in acid-mediated invasion: A mathematical model publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2010.08.028 – year: 2021 ident: 10.1016/j.nonrwa.2021.103387_b43 – year: 2021 ident: 10.1016/j.nonrwa.2021.103387_b40 – volume: 31 start-page: 53 issue: 1 year: 1979 ident: 10.1016/j.nonrwa.2021.103387_b50 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(79)90152-9 – volume: 68 start-page: 1199 issue: 5 year: 2014 ident: 10.1016/j.nonrwa.2021.103387_b5 article-title: A general reaction-diffusion model of acidity in cancer invasion publication-title: J. Math. Biol. doi: 10.1007/s00285-013-0665-7 – year: 2020 ident: 10.1016/j.nonrwa.2021.103387_b23 article-title: Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion publication-title: Appl. Math. Opt. – volume: 1 start-page: 777 issue: 12 year: 2014 ident: 10.1016/j.nonrwa.2021.103387_b3 article-title: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question publication-title: Oncoscience doi: 10.18632/oncoscience.109 – volume: 220 start-page: 45 issue: 1 year: 2009 ident: 10.1016/j.nonrwa.2021.103387_b10 article-title: Slow and fast invasion waves in a model of acid-mediated tumour growth publication-title: Math. Biosci. doi: 10.1016/j.mbs.2009.04.001 – volume: 30 start-page: 34 year: 2017 ident: 10.1016/j.nonrwa.2021.103387_b13 article-title: An ecological resilience perspective on cancer: Insights from a toy model publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2016.10.003 – volume: 30 start-page: 235 issue: 2 year: 1971 ident: 10.1016/j.nonrwa.2021.103387_b32 article-title: Traveling bands of chemotactic bacteria: a theoretical analysis publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(71)90051-8 – volume: 109 start-page: 939 issue: 3 year: 2010 ident: 10.1016/j.nonrwa.2021.103387_b37 article-title: A numerical study of traveling fronts for a reaction-diffusion-advection model publication-title: Acta Appl. Math. doi: 10.1007/s10440-008-9354-8 – year: 1994 ident: 10.1016/j.nonrwa.2021.103387_b46 – start-page: 1 year: 2013 ident: 10.1016/j.nonrwa.2021.103387_b54 article-title: Mathematical analysis and numerical simulations for a system modeling acid-mediated tumor cell invasion publication-title: Int. J. Anal. – volume: 188 start-page: 177 issue: 2 year: 1997 ident: 10.1016/j.nonrwa.2021.103387_b34 article-title: Modeling spatio-temporal patterns generated by Bacillus subtilis publication-title: J. Theoret. Biol. doi: 10.1006/jtbi.1997.0462 – volume: vol. 44 start-page: 161 year: 1980 ident: 10.1016/j.nonrwa.2021.103387_b14 article-title: Density dependent interaction systems – volume: 32 start-page: 1311 issue: 3 year: 2020 ident: 10.1016/j.nonrwa.2021.103387_b30 article-title: Spectral stability of traveling fronts for reaction diffusion-degenerate Fisher–KPP equations publication-title: J. Dynam. Differential Equations doi: 10.1007/s10884-019-09772-z – year: 2011 ident: 10.1016/j.nonrwa.2021.103387_b48 – volume: vol. 42 year: 1983 ident: 10.1016/j.nonrwa.2021.103387_b47 – volume: 5 start-page: 64 issue: 5 year: 2010 ident: 10.1016/j.nonrwa.2021.103387_b22 article-title: On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/20105505 – volume: 4 start-page: 277 issue: 3 year: 2002 ident: 10.1016/j.nonrwa.2021.103387_b52 article-title: Finite-element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation publication-title: Interfaces Free Bound. doi: 10.4171/ifb/62 – volume: 227 start-page: 176 year: 2014 ident: 10.1016/j.nonrwa.2021.103387_b41 article-title: A model for acid-mediated tumour growth with nonlinear acid production term publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.11.018 – volume: 12 start-page: 880 issue: 6 year: 1981 ident: 10.1016/j.nonrwa.2021.103387_b26 article-title: Traveling wave solution for some nonlinear diffusion equations publication-title: SIAM J. Math. Anal. doi: 10.1137/0512074 – volume: 81 start-page: 676 issue: 3 year: 2019 ident: 10.1016/j.nonrwa.2021.103387_b42 article-title: A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin publication-title: Bull. Math. Biol. doi: 10.1007/s11538-018-0532-1 – volume: 93 start-page: 297 issue: 2 year: 1985 ident: 10.1016/j.nonrwa.2021.103387_b15 article-title: Relations between travelling wave solutions of quasilinear parabolic equations publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1985-0770540-6 – volume: 42 start-page: 6686 issue: 18 year: 2019 ident: 10.1016/j.nonrwa.2021.103387_b6 article-title: An analysis of a mathematical model describing acid-mediated tumor invasion publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5772 – volume: 35 start-page: 713 issue: 6 year: 1997 ident: 10.1016/j.nonrwa.2021.103387_b20 article-title: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations publication-title: J. Math. Biol. doi: 10.1007/s002850050073 – volume: 79 start-page: 83 issue: 1 year: 1979 ident: 10.1016/j.nonrwa.2021.103387_b33 article-title: Spatial segregation of interacting species publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(79)90258-3 – volume: 270 start-page: 10 year: 2015 ident: 10.1016/j.nonrwa.2021.103387_b7 article-title: Model for acid-mediated tumour invasion with chemotherapy intervention II: Spatially heterogeneous populations publication-title: Math. Biosci. doi: 10.1016/j.mbs.2015.09.007 – volume: 13 start-page: 249 issue: 1 year: 2014 ident: 10.1016/j.nonrwa.2021.103387_b31 article-title: Quasi-linear parabolic reaction-diffusion systems: a user’s guide to well-posedness, spectra, and stability of travelling waves publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/130925633 – volume: 7 start-page: 355 year: 1937 ident: 10.1016/j.nonrwa.2021.103387_b28 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1937.tb02153.x – volume: 49 start-page: 395 issue: 4 year: 2000 ident: 10.1016/j.nonrwa.2021.103387_b35 article-title: Cooperative self-organization of microorganisms publication-title: Adv. Phys. doi: 10.1080/000187300405228 – volume: 244 start-page: 2870 issue: 11 year: 2008 ident: 10.1016/j.nonrwa.2021.103387_b45 article-title: Interface dynamics of the Fisher equation with degenerate diffusion publication-title: J. Differential Equations doi: 10.1016/j.jde.2008.02.018 |
SSID | ssj0017131 |
Score | 2.3591664 |
Snippet | Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski... Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby-Gawlinski... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 103387 |
SubjectTerms | Cross-dependent self-diffusivity Degenerate diffusion Mathematics Reaction–diffusion systems Singular perturbation Traveling wave solutions |
Title | Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity |
URI | https://dx.doi.org/10.1016/j.nonrwa.2021.103387 https://hal.science/hal-04709566 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPnF9EcRr3E3TpO1xWZT1ifgAb6Vpk7Wy6tJ29eZvdyZtFwRB8FQISRq-hMw3YeYbQo6DLAvRFDGhZMrA4oUsyaxhmW8zHeoITCQ-6F_fqNGjf_EknxbIsM2FwbDK5u6v73R3WzctvQbN3jTPe_eYNMRRgJw7noMZ5b4f4Ck_-ZqHeXBwwnibYYS92_Q5F-MFHnbxiepDHsfsc4GBdb-bp8Xn9qHVGZ6zNbLaMEY6qBe1ThbM2wZZuZ7LrZabJL8twPcdO5CpRUmCkuZvNKFljgHjFmgmdSVv6Lul1ez1vaBjcL-rZ4rPsDQzYyc-XRnqVsXayrgVLc3EMiyiMitdlYkt8nh2-jAcsaaGAktFqCpm-p4RgdaRlFIbIGdcGStTiUKAvG-MJ6zkidQqCoRW2st4BGYzUCrVQI1sKrZJB1AyO4Savk0El1ZrIGGhiZJUcB8mSIEBWZskXSJa6OK0ERjHOheTuI0ke4lrwGMEPK4B7xI2HzWtBTb-6B-0uxL_OCgx2IA_Rh7BJs5_grrao8FVjG19P0BBRvXBd_89_R5Z9jA1wkV075NOVczMARCWSh-6E3lIlgbDu6tb_J5fjm6-AdM37dw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcqAcUFuoykdbq-Jq7TpeO8lxhUCh7K4qFSRuVpzYSxAFtMnC32fGSVZCqoTUqxV_aGz5vXFm3gCcxGWZEBRxqVXBEfESnpfe8XLsS5vYFCGSHvRnc51dj3_dqJsNOO1zYSissrv72zs93NZdy7Cz5vCpqoZ_KGlIkAC5CDwn3oQtUqdSA9iaXFxm8_XPBPTDRJ9kRB36DLoQ5oVO9vKFBIgiQQnokmLr_o1Qm7f9W2vAnvOPsNuRRjZp1_UJNtzDZ9iZrRVX6z2ofi_R_V0EOzNPqgQ1qx5YzuqKYsY9Mk0Wqt6wR8-a1d_HJVugB97cMnqJZaVbBP3pxrGwKt4Xx21Y7e49pzoqqzoUmtiH6_Ozq9OMd2UUeCET3XA3ipyMrU2VUtYhPxPaeVUo0gIUI-ci6ZXIldVpLK22USlSRM5Y68IiO_KF_AIDtJL7CsyNfC6F8tYiD0tcmhdSjHGAAkmQ93l-ALI3nSk6jXEqdXFv-mCyO9Ma3JDBTWvwA-DrXk-txsY738f9rpg3Z8UgDLzT8ydu4noSktbOJlNDbaNxTJqM-lkc_vfwP2A7u5pNzfRifnkEHyLKlAgB3scwaJYr9w35S2O_d-fzFYRA7vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+fronts+in+a+simplified+model+of+tumor+growth+with+degenerate+cross-dependent+self-diffusivity&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Gallay%2C+Thierry&rft.au=Mascia%2C+Corrado&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=63&rft_id=info:doi/10.1016%2Fj.nonrwa.2021.103387&rft.externalDocID=S1468121821000997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |