Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity

Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 63; p. 103387
Main Authors Gallay, Thierry, Mascia, Corrado
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and by (U±,V±) its asymptotic states at ±∞, we investigate existence in the regimes d>1:(U−,V−)=(0,1)and(U+,V+)=(1,0),d<1:(U−,V−)=(1−d,1)and(U+,V+)=(1,0),which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c→0.
AbstractList Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby-Gawlinski modelwhere f (u) = 1 -u and the parameters d, r are positive. Denoting by (U, V) the traveling wave profile and by (U±, V±) its asymptotic states at ±∞, we investigate existence in the regimesand U+, V+ = 1, 0 , which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c → 0.
Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski model∂tU=Uf(U)−dV,∂tV=∂xf(U)∂xV+rVf(V),where f(u)=1−u and the parameters d,r are positive. Denoting by (U,V) the traveling wave profile and by (U±,V±) its asymptotic states at ±∞, we investigate existence in the regimes d>1:(U−,V−)=(0,1)and(U+,V+)=(1,0),d<1:(U−,V−)=(1−d,1)and(U+,V+)=(1,0),which are called, respectively, homogeneous invasion and heterogeneous invasion. In both cases, we prove that a propagating front exists whenever the speed parameter c is strictly positive. We also derive an accurate approximation of the front profile in the singular limit c→0.
ArticleNumber 103387
Author Mascia, Corrado
Gallay, Thierry
Author_xml – sequence: 1
  givenname: Thierry
  surname: Gallay
  fullname: Gallay, Thierry
  email: Thierry.Gallay@univ-grenoble-alpes.fr
  organization: Institut Fourier, Université Grenoble Alpes, CNRS, 100 rue des Maths 38610 Gières, France
– sequence: 2
  givenname: Corrado
  orcidid: 0000-0002-7294-492X
  surname: Mascia
  fullname: Mascia, Corrado
  email: corrado.mascia@uniroma1.it
  organization: Dipartimento di Matematica Guido Castelnuovo, Sapienza, Università di Roma, Piazzale Aldo Moro 5 00185 Roma, Italy
BackLink https://hal.science/hal-04709566$$DView record in HAL
BookMark eNqFkEFrGzEQhUVJoUnaf9CDrj2sK60sabeHQghNHTA0h_QstNLIGbOWjKTY5N9nnU0uObSXmeExb-bxXZCzmCIQ8pWzBWdcfd8uJiEf7aJlLZ8kITr9gZzzTneN1Lw_m-al6hre8u4TuShlyxjXXPBzgnc57e3GVkyRhpxiLRQjtbTgbj9iQPB0lzyMNAVaH3cp001Ox_pAjzgVDxuIkG0F6nIqpfGwh-ghVlpgDI3HEB4LHrA-fSYfgx0LfHntl-Tvza_761Wz_vP79vpq3TjRqdoAa0HoYeillAOwKb6CIJ0UrNOcAbQiSG7loHotBjW0nvcOQCvlBiZVcOKSfJvvPtjR7DPubH4yyaJZXa3NSWNLzXqp1IFPuz_m3ZfwGYJxWF9Y1GxxNJyZE2CzNTNgcwJsZsCTefnO_PbtP7afsw0mCAeEbIpDiA48ZnDV-IT_PvAMsrKbRA
CitedBy_id crossref_primary_10_1103_PhysRevE_107_054405
crossref_primary_10_1007_s11538_022_01005_7
crossref_primary_10_1088_1361_6544_ada50d
crossref_primary_10_1016_j_nonrwa_2024_104176
crossref_primary_10_3390_axioms13050281
crossref_primary_10_3934_dcdss_2021146
crossref_primary_10_1098_rspa_2021_0593
Cites_doi 10.3934/cpaa.2007.6.1145
10.1017/S144618111100054X
10.1093/imamat/hxu055
10.1085/jgp.8.6.519
10.1515/ans-2005-0204
10.4171/ifb/284
10.1006/jdeq.1995.1055
10.1007/BF00160178
10.1016/0022-5193(80)90024-7
10.1088/0305-4470/38/15/009
10.1007/s00023-018-0692-4
10.3934/mbe.2016.13.193
10.1016/j.jde.2003.06.005
10.1007/s40819-017-0345-1
10.1016/j.jtbi.2010.08.028
10.1016/0022-0396(79)90152-9
10.1007/s00285-013-0665-7
10.18632/oncoscience.109
10.1016/j.mbs.2009.04.001
10.1016/j.ecocom.2016.10.003
10.1016/0022-5193(71)90051-8
10.1007/s10440-008-9354-8
10.1006/jtbi.1997.0462
10.1007/s10884-019-09772-z
10.1051/mmnp/20105505
10.4171/ifb/62
10.1016/j.amc.2013.11.018
10.1137/0512074
10.1007/s11538-018-0532-1
10.1090/S0002-9939-1985-0770540-6
10.1002/mma.5772
10.1007/s002850050073
10.1016/0022-5193(79)90258-3
10.1016/j.mbs.2015.09.007
10.1137/130925633
10.1111/j.1469-1809.1937.tb02153.x
10.1080/000187300405228
10.1016/j.jde.2008.02.018
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.nonrwa.2021.103387
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID oai_HAL_hal_04709566v1
10_1016_j_nonrwa_2021_103387
S1468121821000997
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c386t-e02e37bb9555be05716ef5c5308710ee23f51a5b6973b6b2d19cee766cb056fc3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Fri May 09 12:12:26 EDT 2025
Tue Jul 01 04:03:14 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Fri Feb 23 02:41:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Degenerate diffusion
Reaction–diffusion systems
Cross-dependent self-diffusivity
Traveling wave solutions
Singular perturbation
2010 Mathematics Subject Classification. 35C07 35K57 34D10 92-10 Reaction-diffusion systems cross-dependent self-diffusivity traveling wave solutions degenerate diffusion singular perturbation
traveling wave solutions
singular perturbation
cross-dependent self-diffusivity
degenerate diffusion
2010 Mathematics Subject Classification. 35C07 35K57 34D10 92-10 Reaction-diffusion systems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-e02e37bb9555be05716ef5c5308710ee23f51a5b6973b6b2d19cee766cb056fc3
ORCID 0000-0002-7294-492X
OpenAccessLink https://hal.science/hal-04709566
ParticipantIDs hal_primary_oai_HAL_hal_04709566v1
crossref_citationtrail_10_1016_j_nonrwa_2021_103387
crossref_primary_10_1016_j_nonrwa_2021_103387
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2021_103387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tao, Tello (b53) 2016; 13
Colson, Sánchez-Garduno, Byrne, Maini, Lorenzi (b44) 2021
Barrett, Deckelinck (b51) 2012; 14
Alfarouk, Verduzco, Rauch, Muddathir, Bashir, Elhassen, Ibrahim, Orozco, Cardone, Reshkin, Harguindey (b3) 2014; 1
Moschetta, Simeoni (b12) 2019; 40
Keller, Segel (b32) 1971; 30
Holder, Rodrigo (b7) 2015; 270
Fenichel (b50) 1979; 31
Haragus, Iooss (b48) 2011
Stinner, Surulescu, Meral (b9) 2015; 80
Sánchez-Garduno, Maini (b20) 1997; 35
Gatenby, Gawlinski (b4) 1996; 56
Meyries, Rademacher, Siero (b31) 2014; 13
Ben-Jacob, Cohen, Levine (b35) 2000; 49
Coddington, Levinson (b49) 1955
Malaguti, Marcelli (b17) 2003; 195
Märkl, Meral, Surulescu (b54) 2013
Malaguti, Marcelli (b24) 2005; 5
Kolmogorov, Petrovskii, Piscounov (b29) 1991; vol. 25
Atkinson, Reuter, Ridler-Rowe (b26) 1981; 12
Mansour (b37) 2010; 109
Satnoianu, Maini, no, Armitage (b39) 2001; 1
Drábek, Takác (b23) 2020
Guckenheimer, Holmes (b47) 1983; vol. 42
Barrett, Nürnberg (b52) 2002; 4
Browning, Haridas, Simpson (b42) 2019; 81
Kawasaki, Mochizuki, Matsushita, Umeda, Shigesada (b34) 1997; 188
Chow, Li, Wang (b46) 1994
Sánchez-Garduno, Maini (b19) 1994; 33
El-Hachema, McCuea, Simpson (b43) 2021
McGillen, Gaffney, Martin, Maini (b5) 2014; 68
de Araujo, Fassoni, Salvino (b6) 2019; 42
Mansour (b25) 2010; 52
Aronson (b14) 1980; vol. 44
Hilhorst, Kersner, Logak, Mimura (b45) 2008; 244
Lewis, Petrovskii, Potts (b1) 2016; vol. 44
Sherratt (b22) 2010; 5
Davis, van Heijster, Marangell, Rodrigo (b40) 2021
Mascia, Moschetta, Simeoni (b11) 2021
Leyva, Plaza (b30) 2020; 32
Fasano, Herrero, Rodrigo (b10) 2009; 220
Holder, Rodrigo, Herrero (b41) 2014; 227
Fisher (b28) 1937; 7
Martin, Gaffney, Gatenby, Maini (b8) 2010; 267
Engler (b15) 1985; 93
Gilding, Kersner (b16) 2005; 38
Newman (b18) 1980; 85
Feng, Zhou (b36) 2007; 6
Shigesada, Kawasaki, Teramoto (b33) 1979; 79
Mansour (b38) 2017; 3
Benguria, Depassier (b27) 2018; 19
Warburg, Wind, Negelein (b2) 1927; 8
Fassoni, Yang (b13) 2017; 30
Sánchez-Garduno, Maini (b21) 1995; 117
Kawasaki (10.1016/j.nonrwa.2021.103387_b34) 1997; 188
Sherratt (10.1016/j.nonrwa.2021.103387_b22) 2010; 5
Meyries (10.1016/j.nonrwa.2021.103387_b31) 2014; 13
Gilding (10.1016/j.nonrwa.2021.103387_b16) 2005; 38
Kolmogorov (10.1016/j.nonrwa.2021.103387_b29) 1991; vol. 25
Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b21) 1995; 117
Colson (10.1016/j.nonrwa.2021.103387_b44) 2021
Chow (10.1016/j.nonrwa.2021.103387_b46) 1994
Tao (10.1016/j.nonrwa.2021.103387_b53) 2016; 13
Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b20) 1997; 35
Atkinson (10.1016/j.nonrwa.2021.103387_b26) 1981; 12
Davis (10.1016/j.nonrwa.2021.103387_b40) 2021
Lewis (10.1016/j.nonrwa.2021.103387_b1) 2016; vol. 44
Drábek (10.1016/j.nonrwa.2021.103387_b23) 2020
de Araujo (10.1016/j.nonrwa.2021.103387_b6) 2019; 42
Holder (10.1016/j.nonrwa.2021.103387_b7) 2015; 270
Malaguti (10.1016/j.nonrwa.2021.103387_b17) 2003; 195
Mansour (10.1016/j.nonrwa.2021.103387_b38) 2017; 3
Mansour (10.1016/j.nonrwa.2021.103387_b25) 2010; 52
Browning (10.1016/j.nonrwa.2021.103387_b42) 2019; 81
Holder (10.1016/j.nonrwa.2021.103387_b41) 2014; 227
Alfarouk (10.1016/j.nonrwa.2021.103387_b3) 2014; 1
Moschetta (10.1016/j.nonrwa.2021.103387_b12) 2019; 40
Shigesada (10.1016/j.nonrwa.2021.103387_b33) 1979; 79
Sánchez-Garduno (10.1016/j.nonrwa.2021.103387_b19) 1994; 33
Satnoianu (10.1016/j.nonrwa.2021.103387_b39) 2001; 1
Haragus (10.1016/j.nonrwa.2021.103387_b48) 2011
Aronson (10.1016/j.nonrwa.2021.103387_b14) 1980; vol. 44
Fassoni (10.1016/j.nonrwa.2021.103387_b13) 2017; 30
Märkl (10.1016/j.nonrwa.2021.103387_b54) 2013
Ben-Jacob (10.1016/j.nonrwa.2021.103387_b35) 2000; 49
Gatenby (10.1016/j.nonrwa.2021.103387_b4) 1996; 56
Leyva (10.1016/j.nonrwa.2021.103387_b30) 2020; 32
Fasano (10.1016/j.nonrwa.2021.103387_b10) 2009; 220
Newman (10.1016/j.nonrwa.2021.103387_b18) 1980; 85
Warburg (10.1016/j.nonrwa.2021.103387_b2) 1927; 8
Stinner (10.1016/j.nonrwa.2021.103387_b9) 2015; 80
Feng (10.1016/j.nonrwa.2021.103387_b36) 2007; 6
Benguria (10.1016/j.nonrwa.2021.103387_b27) 2018; 19
Coddington (10.1016/j.nonrwa.2021.103387_b49) 1955
Hilhorst (10.1016/j.nonrwa.2021.103387_b45) 2008; 244
Mansour (10.1016/j.nonrwa.2021.103387_b37) 2010; 109
Fisher (10.1016/j.nonrwa.2021.103387_b28) 1937; 7
McGillen (10.1016/j.nonrwa.2021.103387_b5) 2014; 68
Guckenheimer (10.1016/j.nonrwa.2021.103387_b47) 1983; vol. 42
Barrett (10.1016/j.nonrwa.2021.103387_b51) 2012; 14
Fenichel (10.1016/j.nonrwa.2021.103387_b50) 1979; 31
Mascia (10.1016/j.nonrwa.2021.103387_b11) 2021
Engler (10.1016/j.nonrwa.2021.103387_b15) 1985; 93
El-Hachema (10.1016/j.nonrwa.2021.103387_b43) 2021
Martin (10.1016/j.nonrwa.2021.103387_b8) 2010; 267
Malaguti (10.1016/j.nonrwa.2021.103387_b24) 2005; 5
Barrett (10.1016/j.nonrwa.2021.103387_b52) 2002; 4
Keller (10.1016/j.nonrwa.2021.103387_b32) 1971; 30
References_xml – volume: 85
  start-page: 325
  year: 1980
  end-page: 334
  ident: b18
  article-title: Some exact solutions to a non-linear diffusion problem in population genetics and combustion
  publication-title: J. Theoret. Biol.
– volume: 33
  start-page: 163
  year: 1994
  end-page: 192
  ident: b19
  article-title: Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher–KPP equations
  publication-title: J. Math. Biol.
– volume: 52
  start-page: 101
  year: 2010
  end-page: 109
  ident: b25
  article-title: Travelling wave solutions for doubly degenerate reaction-diffusion equations
  publication-title: ANZIAM J.
– volume: 79
  start-page: 83
  year: 1979
  end-page: 99
  ident: b33
  article-title: Spatial segregation of interacting species
  publication-title: J. Theoret. Biol.
– year: 2021
  ident: b40
  article-title: Traveling wave solutions in a model for tumor invasion with the acid-mediation hypothesis
– volume: 7
  start-page: 355
  year: 1937
  end-page: 369
  ident: b28
  article-title: The wave of advance of advantageous genes
  publication-title: Ann. Eugen.
– volume: 109
  start-page: 939
  year: 2010
  end-page: 947
  ident: b37
  article-title: A numerical study of traveling fronts for a reaction-diffusion-advection model
  publication-title: Acta Appl. Math.
– volume: 32
  start-page: 1311
  year: 2020
  end-page: 1342
  ident: b30
  article-title: Spectral stability of traveling fronts for reaction diffusion-degenerate Fisher–KPP equations
  publication-title: J. Dynam. Differential Equations
– volume: 68
  start-page: 1199
  year: 2014
  end-page: 1224
  ident: b5
  article-title: A general reaction-diffusion model of acidity in cancer invasion
  publication-title: J. Math. Biol.
– volume: 30
  start-page: 34
  year: 2017
  end-page: 46
  ident: b13
  article-title: An ecological resilience perspective on cancer: Insights from a toy model
  publication-title: Ecol. Complex.
– year: 2020
  ident: b23
  article-title: Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion
  publication-title: Appl. Math. Opt.
– volume: 30
  start-page: 235
  year: 1971
  end-page: 248
  ident: b32
  article-title: Traveling bands of chemotactic bacteria: a theoretical analysis
  publication-title: J. Theoret. Biol.
– volume: 4
  start-page: 277
  year: 2002
  end-page: 307
  ident: b52
  article-title: Finite-element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation
  publication-title: Interfaces Free Bound.
– volume: 270
  start-page: 10
  year: 2015
  end-page: 29
  ident: b7
  article-title: Model for acid-mediated tumour invasion with chemotherapy intervention II: Spatially heterogeneous populations
  publication-title: Math. Biosci.
– volume: 1
  start-page: 339
  year: 2001
  end-page: 362
  ident: b39
  article-title: Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation
  publication-title: Discrete Contin. Dyn. Syst. B
– volume: 8
  start-page: 519
  year: 1927
  end-page: 530
  ident: b2
  article-title: The metabolism of tumors in the body
  publication-title: J Gen. Phyisiol.
– volume: vol. 44
  year: 2016
  ident: b1
  publication-title: The Mathematics behind Biological Invasions
– volume: 267
  start-page: 461
  year: 2010
  end-page: 470
  ident: b8
  article-title: Tumour-stromal interactions in acid-mediated invasion: A mathematical model
  publication-title: J. Theoret. Biol.
– volume: 1
  start-page: 777
  year: 2014
  end-page: 802
  ident: b3
  article-title: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question
  publication-title: Oncoscience
– volume: 49
  start-page: 395
  year: 2000
  end-page: 554
  ident: b35
  article-title: Cooperative self-organization of microorganisms
  publication-title: Adv. Phys.
– volume: 31
  start-page: 53
  year: 1979
  end-page: 98
  ident: b50
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
– volume: 6
  start-page: 1145
  year: 2007
  end-page: 1165
  ident: b36
  article-title: Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony
  publication-title: Commun. Pure Appl. Anal.
– volume: 227
  start-page: 176
  year: 2014
  end-page: 198
  ident: b41
  article-title: A model for acid-mediated tumour growth with nonlinear acid production term
  publication-title: Appl. Math. Comput.
– volume: 117
  start-page: 281
  year: 1995
  end-page: 319
  ident: b21
  article-title: Travelling wave phenomena in some degenerate reaction-diffusion equations
  publication-title: J. Differential Equations
– volume: 188
  start-page: 177
  year: 1997
  end-page: 185
  ident: b34
  article-title: Modeling spatio-temporal patterns generated by
  publication-title: J. Theoret. Biol.
– volume: 38
  start-page: 3367
  year: 2005
  end-page: 3379
  ident: b16
  article-title: A Fisher/KPP-type equation with density-dependent diffusion and convection: traveling-wave solutions
  publication-title: J. Phys. A: Math. Gen.
– volume: 220
  start-page: 45
  year: 2009
  end-page: 56
  ident: b10
  article-title: Slow and fast invasion waves in a model of acid-mediated tumour growth
  publication-title: Math. Biosci.
– volume: 81
  start-page: 676
  year: 2019
  end-page: 698
  ident: b42
  article-title: A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin
  publication-title: Bull. Math. Biol.
– volume: vol. 42
  year: 1983
  ident: b47
  publication-title: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
– year: 1955
  ident: b49
  article-title: Theory of Ordinary Differential Equations
– volume: 13
  start-page: 193
  year: 2016
  end-page: 207
  ident: b53
  article-title: Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion
  publication-title: Math. Biosci. Eng.
– volume: 244
  start-page: 2870
  year: 2008
  end-page: 2889
  ident: b45
  article-title: Interface dynamics of the Fisher equation with degenerate diffusion
  publication-title: J. Differential Equations
– year: 2011
  ident: b48
  publication-title: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
– volume: 80
  start-page: 1300
  year: 2015
  end-page: 1321
  ident: b9
  article-title: A multiscale model for pH-tactic invasion with time-varying carrying capacities
  publication-title: IMA J. Appl. Math.
– year: 2021
  ident: b44
  article-title: Travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion
– volume: 19
  start-page: 2717
  year: 2018
  end-page: 2726
  ident: b27
  article-title: Variational characterization of the speed of reaction-diffusion fronts for gradient dependent diffusion
  publication-title: Ann. Henri Poincare
– volume: 5
  start-page: 223
  year: 2005
  end-page: 252
  ident: b24
  article-title: Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations
  publication-title: Adv. Nonlinear Studies
– start-page: 1
  year: 2013
  end-page: 15
  ident: b54
  article-title: Mathematical analysis and numerical simulations for a system modeling acid-mediated tumor cell invasion
  publication-title: Int. J. Anal.
– volume: 56
  start-page: 5745
  year: 1996
  end-page: 5753
  ident: b4
  article-title: A reaction-diffusion model of cancer invasion
  publication-title: Cancer Res.
– volume: 40
  start-page: 258
  year: 2019
  end-page: 287
  ident: b12
  article-title: Numerical investigation of the Gatenby-Gawlinski model for acid-mediated tumour invasion
  publication-title: Rend. Mat. Appl.
– volume: 12
  start-page: 880
  year: 1981
  end-page: 892
  ident: b26
  article-title: Traveling wave solution for some nonlinear diffusion equations
  publication-title: SIAM J. Math. Anal.
– volume: 93
  start-page: 297
  year: 1985
  end-page: 302
  ident: b15
  article-title: Relations between travelling wave solutions of quasilinear parabolic equations
  publication-title: Proc. Amer. Math. Soc.
– year: 2021
  ident: b11
  article-title: Numerical investigation of some reductions for the gatenby–gawlinski model
– volume: 5
  start-page: 64
  year: 2010
  end-page: 79
  ident: b22
  article-title: On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion
  publication-title: Math. Model. Nat. Phenom.
– volume: vol. 44
  start-page: 161
  year: 1980
  end-page: 176
  ident: b14
  article-title: Density dependent interaction systems
  publication-title: Dynamics and Modelling of Reactive Systems
– volume: 13
  start-page: 249
  year: 2014
  end-page: 275
  ident: b31
  article-title: Quasi-linear parabolic reaction-diffusion systems: a user’s guide to well-posedness, spectra, and stability of travelling waves
  publication-title: SIAM J. Appl. Dyn. Syst.
– year: 1994
  ident: b46
  article-title: Normal Forms and Bifurcation of Planar Vector Fields
– volume: vol. 25
  start-page: 248
  year: 1991
  end-page: 270
  ident: b29
  article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem
  publication-title: Selected Works of A. N. Kolmogorov I
– volume: 35
  start-page: 713
  year: 1997
  end-page: 728
  ident: b20
  article-title: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
  publication-title: J. Math. Biol.
– volume: 195
  start-page: 471
  year: 2003
  end-page: 496
  ident: b17
  article-title: Sharp profiles in degenerate and doubly degenerate Fisher–KPP equations
  publication-title: J. Differential Equations
– year: 2021
  ident: b43
  article-title: Travelling wave analysis of cellular invasion into surrounding tissues
– volume: 14
  start-page: 343
  year: 2012
  end-page: 363
  ident: b51
  article-title: Existence and approximation of nonlinear degenerate parabolic system modelling acid-mediated tumarrour invasion
  publication-title: Interfaces Free Bound.
– volume: 42
  start-page: 6686
  year: 2019
  end-page: 6705
  ident: b6
  article-title: An analysis of a mathematical model describing acid-mediated tumor invasion
  publication-title: Math. Methods Appl. Sci.
– volume: 3
  start-page: S1289
  year: 2017
  end-page: S1297
  ident: b38
  article-title: On traveling wave fronts in a degenerate nonlinear parabolic system modeling bacterial pattern formation
  publication-title: Int. J. Appl. Comput. Math.
– year: 2021
  ident: 10.1016/j.nonrwa.2021.103387_b11
– volume: 6
  start-page: 1145
  issue: 4
  year: 2007
  ident: 10.1016/j.nonrwa.2021.103387_b36
  article-title: Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2007.6.1145
– volume: 52
  start-page: 101
  issue: 1
  year: 2010
  ident: 10.1016/j.nonrwa.2021.103387_b25
  article-title: Travelling wave solutions for doubly degenerate reaction-diffusion equations
  publication-title: ANZIAM J.
  doi: 10.1017/S144618111100054X
– volume: 80
  start-page: 1300
  issue: 5
  year: 2015
  ident: 10.1016/j.nonrwa.2021.103387_b9
  article-title: A multiscale model for pH-tactic invasion with time-varying carrying capacities
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxu055
– volume: 8
  start-page: 519
  issue: 6
  year: 1927
  ident: 10.1016/j.nonrwa.2021.103387_b2
  article-title: The metabolism of tumors in the body
  publication-title: J Gen. Phyisiol.
  doi: 10.1085/jgp.8.6.519
– volume: 40
  start-page: 258
  issue: 3–4
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103387_b12
  article-title: Numerical investigation of the Gatenby-Gawlinski model for acid-mediated tumour invasion
  publication-title: Rend. Mat. Appl.
– volume: vol. 25
  start-page: 248
  year: 1991
  ident: 10.1016/j.nonrwa.2021.103387_b29
  article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem
– volume: 56
  start-page: 5745
  issue: 24
  year: 1996
  ident: 10.1016/j.nonrwa.2021.103387_b4
  article-title: A reaction-diffusion model of cancer invasion
  publication-title: Cancer Res.
– year: 2021
  ident: 10.1016/j.nonrwa.2021.103387_b44
– volume: 5
  start-page: 223
  issue: 2
  year: 2005
  ident: 10.1016/j.nonrwa.2021.103387_b24
  article-title: Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations
  publication-title: Adv. Nonlinear Studies
  doi: 10.1515/ans-2005-0204
– volume: 14
  start-page: 343
  issue: 3
  year: 2012
  ident: 10.1016/j.nonrwa.2021.103387_b51
  article-title: Existence and approximation of nonlinear degenerate parabolic system modelling acid-mediated tumarrour invasion
  publication-title: Interfaces Free Bound.
  doi: 10.4171/ifb/284
– volume: 117
  start-page: 281
  issue: 2
  year: 1995
  ident: 10.1016/j.nonrwa.2021.103387_b21
  article-title: Travelling wave phenomena in some degenerate reaction-diffusion equations
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1995.1055
– volume: vol. 44
  year: 2016
  ident: 10.1016/j.nonrwa.2021.103387_b1
– year: 1955
  ident: 10.1016/j.nonrwa.2021.103387_b49
– volume: 1
  start-page: 339
  issue: 3
  year: 2001
  ident: 10.1016/j.nonrwa.2021.103387_b39
  article-title: Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation
  publication-title: Discrete Contin. Dyn. Syst. B
– volume: 33
  start-page: 163
  issue: 2
  year: 1994
  ident: 10.1016/j.nonrwa.2021.103387_b19
  article-title: Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher–KPP equations
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00160178
– volume: 85
  start-page: 325
  issue: 2
  year: 1980
  ident: 10.1016/j.nonrwa.2021.103387_b18
  article-title: Some exact solutions to a non-linear diffusion problem in population genetics and combustion
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(80)90024-7
– volume: 38
  start-page: 3367
  issue: 15
  year: 2005
  ident: 10.1016/j.nonrwa.2021.103387_b16
  article-title: A Fisher/KPP-type equation with density-dependent diffusion and convection: traveling-wave solutions
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/38/15/009
– volume: 19
  start-page: 2717
  issue: 9
  year: 2018
  ident: 10.1016/j.nonrwa.2021.103387_b27
  article-title: Variational characterization of the speed of reaction-diffusion fronts for gradient dependent diffusion
  publication-title: Ann. Henri Poincare
  doi: 10.1007/s00023-018-0692-4
– volume: 13
  start-page: 193
  issue: 1
  year: 2016
  ident: 10.1016/j.nonrwa.2021.103387_b53
  article-title: Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2016.13.193
– volume: 195
  start-page: 471
  issue: 2
  year: 2003
  ident: 10.1016/j.nonrwa.2021.103387_b17
  article-title: Sharp profiles in degenerate and doubly degenerate Fisher–KPP equations
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2003.06.005
– volume: 3
  start-page: S1289
  issue: suppl. 1
  year: 2017
  ident: 10.1016/j.nonrwa.2021.103387_b38
  article-title: On traveling wave fronts in a degenerate nonlinear parabolic system modeling bacterial pattern formation
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-017-0345-1
– volume: 267
  start-page: 461
  issue: 3
  year: 2010
  ident: 10.1016/j.nonrwa.2021.103387_b8
  article-title: Tumour-stromal interactions in acid-mediated invasion: A mathematical model
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2010.08.028
– year: 2021
  ident: 10.1016/j.nonrwa.2021.103387_b43
– year: 2021
  ident: 10.1016/j.nonrwa.2021.103387_b40
– volume: 31
  start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.nonrwa.2021.103387_b50
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(79)90152-9
– volume: 68
  start-page: 1199
  issue: 5
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103387_b5
  article-title: A general reaction-diffusion model of acidity in cancer invasion
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-013-0665-7
– year: 2020
  ident: 10.1016/j.nonrwa.2021.103387_b23
  article-title: Travelling waves in the Fisher–KPP equation with nonlinear degenerate or singular diffusion
  publication-title: Appl. Math. Opt.
– volume: 1
  start-page: 777
  issue: 12
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103387_b3
  article-title: Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.109
– volume: 220
  start-page: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.nonrwa.2021.103387_b10
  article-title: Slow and fast invasion waves in a model of acid-mediated tumour growth
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2009.04.001
– volume: 30
  start-page: 34
  year: 2017
  ident: 10.1016/j.nonrwa.2021.103387_b13
  article-title: An ecological resilience perspective on cancer: Insights from a toy model
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2016.10.003
– volume: 30
  start-page: 235
  issue: 2
  year: 1971
  ident: 10.1016/j.nonrwa.2021.103387_b32
  article-title: Traveling bands of chemotactic bacteria: a theoretical analysis
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(71)90051-8
– volume: 109
  start-page: 939
  issue: 3
  year: 2010
  ident: 10.1016/j.nonrwa.2021.103387_b37
  article-title: A numerical study of traveling fronts for a reaction-diffusion-advection model
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-008-9354-8
– year: 1994
  ident: 10.1016/j.nonrwa.2021.103387_b46
– start-page: 1
  year: 2013
  ident: 10.1016/j.nonrwa.2021.103387_b54
  article-title: Mathematical analysis and numerical simulations for a system modeling acid-mediated tumor cell invasion
  publication-title: Int. J. Anal.
– volume: 188
  start-page: 177
  issue: 2
  year: 1997
  ident: 10.1016/j.nonrwa.2021.103387_b34
  article-title: Modeling spatio-temporal patterns generated by Bacillus subtilis
  publication-title: J. Theoret. Biol.
  doi: 10.1006/jtbi.1997.0462
– volume: vol. 44
  start-page: 161
  year: 1980
  ident: 10.1016/j.nonrwa.2021.103387_b14
  article-title: Density dependent interaction systems
– volume: 32
  start-page: 1311
  issue: 3
  year: 2020
  ident: 10.1016/j.nonrwa.2021.103387_b30
  article-title: Spectral stability of traveling fronts for reaction diffusion-degenerate Fisher–KPP equations
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-019-09772-z
– year: 2011
  ident: 10.1016/j.nonrwa.2021.103387_b48
– volume: vol. 42
  year: 1983
  ident: 10.1016/j.nonrwa.2021.103387_b47
– volume: 5
  start-page: 64
  issue: 5
  year: 2010
  ident: 10.1016/j.nonrwa.2021.103387_b22
  article-title: On the form of smooth-front travelling waves in a reaction-diffusion equation with degenerate nonlinear diffusion
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/20105505
– volume: 4
  start-page: 277
  issue: 3
  year: 2002
  ident: 10.1016/j.nonrwa.2021.103387_b52
  article-title: Finite-element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation
  publication-title: Interfaces Free Bound.
  doi: 10.4171/ifb/62
– volume: 227
  start-page: 176
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103387_b41
  article-title: A model for acid-mediated tumour growth with nonlinear acid production term
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.11.018
– volume: 12
  start-page: 880
  issue: 6
  year: 1981
  ident: 10.1016/j.nonrwa.2021.103387_b26
  article-title: Traveling wave solution for some nonlinear diffusion equations
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0512074
– volume: 81
  start-page: 676
  issue: 3
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103387_b42
  article-title: A Bayesian sequential learning framework to parameterise continuum models of melanoma invasion into human skin
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-018-0532-1
– volume: 93
  start-page: 297
  issue: 2
  year: 1985
  ident: 10.1016/j.nonrwa.2021.103387_b15
  article-title: Relations between travelling wave solutions of quasilinear parabolic equations
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1985-0770540-6
– volume: 42
  start-page: 6686
  issue: 18
  year: 2019
  ident: 10.1016/j.nonrwa.2021.103387_b6
  article-title: An analysis of a mathematical model describing acid-mediated tumor invasion
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5772
– volume: 35
  start-page: 713
  issue: 6
  year: 1997
  ident: 10.1016/j.nonrwa.2021.103387_b20
  article-title: Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850050073
– volume: 79
  start-page: 83
  issue: 1
  year: 1979
  ident: 10.1016/j.nonrwa.2021.103387_b33
  article-title: Spatial segregation of interacting species
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(79)90258-3
– volume: 270
  start-page: 10
  year: 2015
  ident: 10.1016/j.nonrwa.2021.103387_b7
  article-title: Model for acid-mediated tumour invasion with chemotherapy intervention II: Spatially heterogeneous populations
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2015.09.007
– volume: 13
  start-page: 249
  issue: 1
  year: 2014
  ident: 10.1016/j.nonrwa.2021.103387_b31
  article-title: Quasi-linear parabolic reaction-diffusion systems: a user’s guide to well-posedness, spectra, and stability of travelling waves
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/130925633
– volume: 7
  start-page: 355
  year: 1937
  ident: 10.1016/j.nonrwa.2021.103387_b28
  article-title: The wave of advance of advantageous genes
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– volume: 49
  start-page: 395
  issue: 4
  year: 2000
  ident: 10.1016/j.nonrwa.2021.103387_b35
  article-title: Cooperative self-organization of microorganisms
  publication-title: Adv. Phys.
  doi: 10.1080/000187300405228
– volume: 244
  start-page: 2870
  issue: 11
  year: 2008
  ident: 10.1016/j.nonrwa.2021.103387_b45
  article-title: Interface dynamics of the Fisher equation with degenerate diffusion
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.02.018
SSID ssj0017131
Score 2.3591664
Snippet Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby–Gawlinski...
Motivated by tumor growth in Cancer Biology, we provide a complete analysis of existence and non-existence of invasive fronts for the reduced Gatenby-Gawlinski...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103387
SubjectTerms Cross-dependent self-diffusivity
Degenerate diffusion
Mathematics
Reaction–diffusion systems
Singular perturbation
Traveling wave solutions
Title Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity
URI https://dx.doi.org/10.1016/j.nonrwa.2021.103387
https://hal.science/hal-04709566
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XvQgPnF9EcRr3E3TpO1xWZT1ifgAb6Vpk7Wy6tJ29eZvdyZtFwRB8FQISRq-hMw3YeYbQo6DLAvRFDGhZMrA4oUsyaxhmW8zHeoITCQ-6F_fqNGjf_EknxbIsM2FwbDK5u6v73R3WzctvQbN3jTPe_eYNMRRgJw7noMZ5b4f4Ck_-ZqHeXBwwnibYYS92_Q5F-MFHnbxiepDHsfsc4GBdb-bp8Xn9qHVGZ6zNbLaMEY6qBe1ThbM2wZZuZ7LrZabJL8twPcdO5CpRUmCkuZvNKFljgHjFmgmdSVv6Lul1ez1vaBjcL-rZ4rPsDQzYyc-XRnqVsXayrgVLc3EMiyiMitdlYkt8nh2-jAcsaaGAktFqCpm-p4RgdaRlFIbIGdcGStTiUKAvG-MJ6zkidQqCoRW2st4BGYzUCrVQI1sKrZJB1AyO4Savk0El1ZrIGGhiZJUcB8mSIEBWZskXSJa6OK0ERjHOheTuI0ke4lrwGMEPK4B7xI2HzWtBTb-6B-0uxL_OCgx2IA_Rh7BJs5_grrao8FVjG19P0BBRvXBd_89_R5Z9jA1wkV075NOVczMARCWSh-6E3lIlgbDu6tb_J5fjm6-AdM37dw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcqAcUFuoykdbq-Jq7TpeO8lxhUCh7K4qFSRuVpzYSxAFtMnC32fGSVZCqoTUqxV_aGz5vXFm3gCcxGWZEBRxqVXBEfESnpfe8XLsS5vYFCGSHvRnc51dj3_dqJsNOO1zYSissrv72zs93NZdy7Cz5vCpqoZ_KGlIkAC5CDwn3oQtUqdSA9iaXFxm8_XPBPTDRJ9kRB36DLoQ5oVO9vKFBIgiQQnokmLr_o1Qm7f9W2vAnvOPsNuRRjZp1_UJNtzDZ9iZrRVX6z2ofi_R_V0EOzNPqgQ1qx5YzuqKYsY9Mk0Wqt6wR8-a1d_HJVugB97cMnqJZaVbBP3pxrGwKt4Xx21Y7e49pzoqqzoUmtiH6_Ozq9OMd2UUeCET3XA3ipyMrU2VUtYhPxPaeVUo0gIUI-ci6ZXIldVpLK22USlSRM5Y68IiO_KF_AIDtJL7CsyNfC6F8tYiD0tcmhdSjHGAAkmQ93l-ALI3nSk6jXEqdXFv-mCyO9Ma3JDBTWvwA-DrXk-txsY738f9rpg3Z8UgDLzT8ydu4noSktbOJlNDbaNxTJqM-lkc_vfwP2A7u5pNzfRifnkEHyLKlAgB3scwaJYr9w35S2O_d-fzFYRA7vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propagation+fronts+in+a+simplified+model+of+tumor+growth+with+degenerate+cross-dependent+self-diffusivity&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Gallay%2C+Thierry&rft.au=Mascia%2C+Corrado&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=63&rft_id=info:doi/10.1016%2Fj.nonrwa.2021.103387&rft.externalDocID=S1468121821000997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon