Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections
Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the pos...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 195; no. 12; pp. 1617 - 1628 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
15.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established.
To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections.
We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans.
Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging.
Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. |
---|---|
AbstractList | Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established.
To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections.
We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans.
Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging.
Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. RATIONALEPrevious work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established.OBJECTIVESTo better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections.METHODSWe studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans.MEASUREMENTS AND MAIN RESULTSIvacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging.CONCLUSIONSIvacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. Abstract Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. Objectives: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. Conclusions: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. [...]P. aeruginosa airway infection persisted. [...]measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. Keywords: cystic fibrosis; Pseudomonas aeruginosa; ivacaftor; inflammation Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a membrane anion channel (1). The most important clinical manifestation of CF is lung disease, and respiratory failure is the major cause of death in people with CF (2). CF lung disease is a consequence of a series of events beginning with host defense defects caused by CFTR dysfunction. Quantitative culture, polymerase chain reaction (PCR), 16S rRNA gene sequencing, and measurements of inflammatory markers were performed on spontaneously expectorated sputum. Multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) fingerprinting were performed on cultured P. aeruginosa. Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. Objectives: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. Methods: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Measurements and Main Results: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa . Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Conclusions: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. |
Author | Launspach, Janice L. Radey, Matthew Grogan, Brenda Bruce, James E. Wolter, Daniel J. Cooke, Gordon Singh, Pradeep K. Adam, Ryan J. Hisert, Katherine B. Pope, Christopher Carter, Suzanne Gallagher, Charles G. Jorth, Peter Donnelly, Seamas C. McKone, Edward F. Heltshe, Sonya L. Edwards, Rachael M. Welsh, Michael J. Accurso, Frank J. Stoltz, David A. Hoffman, Lucas R. Wu, Xia |
Author_xml | – sequence: 1 givenname: Katherine B. surname: Hisert fullname: Hisert, Katherine B. organization: Department of Medicine – sequence: 2 givenname: Sonya L. surname: Heltshe fullname: Heltshe, Sonya L. organization: Department of Pediatrics – sequence: 3 givenname: Christopher surname: Pope fullname: Pope, Christopher organization: Department of Pediatrics – sequence: 4 givenname: Peter surname: Jorth fullname: Jorth, Peter organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California – sequence: 5 givenname: Xia surname: Wu fullname: Wu, Xia organization: Department of Genome Sciences – sequence: 6 givenname: Rachael M. surname: Edwards fullname: Edwards, Rachael M. organization: Department of Radiology, and – sequence: 7 givenname: Matthew surname: Radey fullname: Radey, Matthew organization: Department of Microbiology, University of Washington School of Medicine, Seattle, Washington – sequence: 8 givenname: Frank J. surname: Accurso fullname: Accurso, Frank J. organization: Department of Pediatrics, University of Colorado, Aurora, Colorado – sequence: 9 givenname: Daniel J. surname: Wolter fullname: Wolter, Daniel J. organization: Department of Pediatrics – sequence: 10 givenname: Gordon surname: Cooke fullname: Cooke, Gordon organization: St. Vincent's University Hospital, Dublin, Ireland – sequence: 11 givenname: Ryan J. surname: Adam fullname: Adam, Ryan J. organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and – sequence: 12 givenname: Suzanne surname: Carter fullname: Carter, Suzanne organization: St. Vincent's University Hospital, Dublin, Ireland – sequence: 13 givenname: Brenda surname: Grogan fullname: Grogan, Brenda organization: St. Vincent's University Hospital, Dublin, Ireland – sequence: 14 givenname: Janice L. surname: Launspach fullname: Launspach, Janice L. organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and – sequence: 15 givenname: Seamas C. surname: Donnelly fullname: Donnelly, Seamas C. organization: Trinity College Dublin, Dublin, Ireland – sequence: 16 givenname: Charles G. surname: Gallagher fullname: Gallagher, Charles G. organization: St. Vincent's University Hospital, Dublin, Ireland – sequence: 17 givenname: James E. surname: Bruce fullname: Bruce, James E. organization: Department of Genome Sciences – sequence: 18 givenname: David A. surname: Stoltz fullname: Stoltz, David A. organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and – sequence: 19 givenname: Michael J. surname: Welsh fullname: Welsh, Michael J. organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and – sequence: 20 givenname: Lucas R. surname: Hoffman fullname: Hoffman, Lucas R. organization: Department of Pediatrics, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington – sequence: 21 givenname: Edward F. surname: McKone fullname: McKone, Edward F. organization: St. Vincent's University Hospital, Dublin, Ireland – sequence: 22 givenname: Pradeep K. surname: Singh fullname: Singh, Pradeep K. organization: Department of Medicine, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28222269$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVAR_YA_wAFZ4sIlxXbsxL4gtRELlVYqqorEzXIcZ9dVYi92QrV_iV_J7G6LoEj4MtbMe2-ex3OKjkIMDqHXlJxTWvH3ydrxnBFaEVVQJfh18wydUFGKgquaHMGd1GXBufp2jE5zviOEMknJC3TMJINTqRP088blKSYfVrjZ5slbvPBtitlnfJtMyKMbW4gONzF0s51MsA7fuNU8GKDhxRzs5GOAFFRdxhc-3ZstvjR2cskbbEKHr0I_mHE0e6AP-IuLm8Hhez-t_2m6wzfrFAMklzO4ArLbt8gv0fPeDNm9eohn6Ovi423zuVhef7pqLpaFLWU1FV2rrGS9Uq1rOe16RVtjhRUdKaV0nbCy7oykXAjLaEVZV_eWV641VS1qZkh5hj4cdDdzO7rOujAlM-hN8qNJWx2N139Xgl_rVfyhBa8rRRkIvHsQSPH7DPPVo8_WDQPMMc5ZU1kTJRXhFKBvn0Dv4pwCPE9TBd_HKUgC6s2fjn5befxGAMgDwMIUc3K9tn7azxsM-kFToncbo3cbow8bow8bA1T2hPqo_h_SL0Coyco |
CitedBy_id | crossref_primary_10_1016_j_jcf_2017_10_004 crossref_primary_10_1177_20406223221098136 crossref_primary_10_1002_ppul_23773 crossref_primary_10_1016_j_jcf_2024_09_018 crossref_primary_10_1097_MCP_0000000000000616 crossref_primary_10_1177_2470289720937025 crossref_primary_10_3390_jpm14010093 crossref_primary_10_1016_j_heliyon_2020_e04104 crossref_primary_10_1186_s12931_023_02495_2 crossref_primary_10_3390_ijtm4030037 crossref_primary_10_3390_jcm11041021 crossref_primary_10_1172_jci_insight_121468 crossref_primary_10_1183_23120541_00502_2024 crossref_primary_10_1002_ppul_26362 crossref_primary_10_1183_16000617_0256_2022 crossref_primary_10_4049_jimmunol_2100424 crossref_primary_10_1016_j_jcf_2019_06_011 crossref_primary_10_1186_s12931_023_02593_1 crossref_primary_10_2139_ssrn_4075836 crossref_primary_10_3390_microorganisms9030660 crossref_primary_10_3389_fimmu_2021_642180 crossref_primary_10_3390_cells11071243 crossref_primary_10_3390_cells12222618 crossref_primary_10_3390_medicina59091635 crossref_primary_10_1016_j_jcf_2020_09_008 crossref_primary_10_1164_rccm_201910_1943SO crossref_primary_10_1186_s12931_019_1214_8 crossref_primary_10_3389_fphar_2021_628722 crossref_primary_10_3389_fphar_2020_01219 crossref_primary_10_3389_fphar_2023_1293578 crossref_primary_10_1038_s41467_023_36244_2 crossref_primary_10_1007_s00108_017_0327_8 crossref_primary_10_1007_s40272_022_00509_y crossref_primary_10_1016_j_jcf_2022_09_004 crossref_primary_10_1016_j_jcf_2019_10_021 crossref_primary_10_1183_23120541_00731_2020 crossref_primary_10_1128_mbio_03883_24 crossref_primary_10_3390_microorganisms9050932 crossref_primary_10_1002_ppul_24522 crossref_primary_10_1080_17476348_2019_1666715 crossref_primary_10_1183_16000617_0071_2024 crossref_primary_10_1183_16000617_0001_2024 crossref_primary_10_1128_spectrum_01454_22 crossref_primary_10_1021_acs_jproteome_9b00122 crossref_primary_10_1182_blood_2021014699 crossref_primary_10_3390_ijms22126193 crossref_primary_10_1126_sciadv_ade8039 crossref_primary_10_1183_16000617_0068_2024 crossref_primary_10_1016_j_jcf_2020_10_008 crossref_primary_10_1002_ppul_24081 crossref_primary_10_1042_BSR20160618 crossref_primary_10_1093_ejcts_ezae338 crossref_primary_10_2147_COPD_S257474 crossref_primary_10_3389_fphar_2021_581645 crossref_primary_10_1002_ppul_26261 crossref_primary_10_1186_s12866_023_03073_8 crossref_primary_10_1152_physiolgenomics_00035_2017 crossref_primary_10_3389_fcimb_2021_548613 crossref_primary_10_1016_j_coph_2022_102262 crossref_primary_10_1016_j_freeradbiomed_2018_11_023 crossref_primary_10_1080_17476348_2024_2394694 crossref_primary_10_1093_jpids_piac036 crossref_primary_10_1183_13993003_00946_2020 crossref_primary_10_1016_S0140_6736_20_32542_3 crossref_primary_10_1080_17425255_2021_1836157 crossref_primary_10_1016_j_ejphar_2023_176047 crossref_primary_10_1164_rccm_202108_1986OC crossref_primary_10_1096_fj_202001952R crossref_primary_10_3390_genes14101966 crossref_primary_10_1164_rccm_202001_0180OC crossref_primary_10_3389_fimmu_2023_1107437 crossref_primary_10_1513_AnnalsATS_202008_1054OC crossref_primary_10_1152_ajplung_00461_2017 crossref_primary_10_1016_j_ssnmr_2024_101975 crossref_primary_10_1164_rccm_202004_1322OC crossref_primary_10_3390_ijms21176379 crossref_primary_10_1016_j_molmed_2019_07_008 crossref_primary_10_3389_fphar_2019_00252 crossref_primary_10_1159_000533457 crossref_primary_10_1016_j_isci_2023_106475 crossref_primary_10_1016_j_jcf_2021_08_007 crossref_primary_10_1016_j_rmed_2021_106646 crossref_primary_10_1128_mbio_00519_24 crossref_primary_10_3390_genes12030453 crossref_primary_10_1002_ppul_25190 crossref_primary_10_1038_s41598_023_38300_9 crossref_primary_10_1016_S2213_2600_19_30335_2 crossref_primary_10_1093_infdis_jiae051 crossref_primary_10_1093_jac_dkaa482 crossref_primary_10_1080_21678707_2020_1713748 crossref_primary_10_1128_spectrum_01556_23 crossref_primary_10_1177_1179548419849939 crossref_primary_10_1164_rccm_201903_0529ED crossref_primary_10_1016_S2213_2600_19_30334_0 crossref_primary_10_3389_fphar_2023_1147348 crossref_primary_10_1016_j_jcf_2022_12_001 crossref_primary_10_1177_17534666241254090 crossref_primary_10_1128_spectrum_00419_22 crossref_primary_10_1183_13993003_00216_2023 crossref_primary_10_1016_j_jcf_2018_05_004 crossref_primary_10_1097_MCP_0000000000000918 crossref_primary_10_1164_rccm_201906_1190PP crossref_primary_10_1513_AnnalsATS_201807_449OC crossref_primary_10_2217_fmb_2021_0150 crossref_primary_10_1093_femsle_fnx121 crossref_primary_10_3390_cells9091952 crossref_primary_10_1136_thorax_2022_219943 crossref_primary_10_3390_antibiotics12071158 crossref_primary_10_1016_j_rmed_2023_107328 crossref_primary_10_1165_rcmb_2021_0406OC crossref_primary_10_1093_pnasnexus_pgae390 crossref_primary_10_3390_ijms22147606 crossref_primary_10_1016_j_jcf_2020_03_008 crossref_primary_10_1016_j_jcf_2023_10_001 crossref_primary_10_1183_16000617_0154_2022 crossref_primary_10_1016_j_celrep_2021_108782 crossref_primary_10_1038_s41579_022_00821_x crossref_primary_10_3390_jcm10071527 crossref_primary_10_1016_j_jcf_2023_03_007 crossref_primary_10_1186_s12931_024_03029_0 crossref_primary_10_1038_s41598_018_35151_7 crossref_primary_10_1152_ajplung_00082_2021 crossref_primary_10_1016_j_bioflm_2024_100206 crossref_primary_10_1513_AnnalsATS_202001_082RL crossref_primary_10_1183_23120541_00318_2019 crossref_primary_10_1183_13993003_01008_2023 crossref_primary_10_1152_ajplung_00381_2023 crossref_primary_10_1165_rcmb_2022_0285ED crossref_primary_10_1016_j_jcf_2017_07_001 crossref_primary_10_1038_nm_4339 crossref_primary_10_1172_jci_insight_181836 crossref_primary_10_1002_ppul_26063 crossref_primary_10_1007_s15006_021_9804_z crossref_primary_10_1164_rccm_201806_1018OC crossref_primary_10_1164_rccm_202305_0818OC crossref_primary_10_1164_rccm_202303_0458OC crossref_primary_10_1183_13993003_00746_2021 crossref_primary_10_1183_20734735_0119_2021 crossref_primary_10_3390_children9121898 crossref_primary_10_7554_eLife_54556 crossref_primary_10_1016_j_jcf_2022_02_017 crossref_primary_10_1038_s41385_020_0262_1 crossref_primary_10_1093_hmg_ddx367 crossref_primary_10_1016_j_rmed_2022_107002 crossref_primary_10_3390_microorganisms9091874 crossref_primary_10_1016_j_jcf_2023_10_019 crossref_primary_10_3389_fphar_2018_01270 crossref_primary_10_1164_rccm_201708_1616OC crossref_primary_10_3389_fcimb_2024_1275940 crossref_primary_10_1128_CMR_00138_18 crossref_primary_10_3390_ijms24108709 crossref_primary_10_1002_14651858_CD001401_pub4 crossref_primary_10_1016_j_celrep_2023_112270 crossref_primary_10_1164_rccm_202102_0451OC crossref_primary_10_1183_13993003_01307_2022 crossref_primary_10_1183_13993003_02861_2021 crossref_primary_10_1016_j_heliyon_2023_e23428 crossref_primary_10_1080_17843286_2022_2145684 crossref_primary_10_3389_fphar_2024_1362325 crossref_primary_10_1080_14728222_2018_1501361 crossref_primary_10_1164_rccm_202308_1451OC crossref_primary_10_1007_s40261_019_00861_x crossref_primary_10_3389_fimmu_2024_1405376 crossref_primary_10_1016_j_ijpharm_2017_11_022 crossref_primary_10_1016_j_jcf_2020_12_023 crossref_primary_10_3389_fphar_2023_1157459 crossref_primary_10_1016_j_jcf_2018_10_010 crossref_primary_10_1016_j_rmed_2023_107499 crossref_primary_10_1164_rccm_201710_1983OC crossref_primary_10_1016_j_jcf_2024_07_002 crossref_primary_10_1002_ppul_24341 crossref_primary_10_1016_S2213_2600_19_30337_6 crossref_primary_10_1038_s41598_025_85948_6 crossref_primary_10_3390_ijms24021246 crossref_primary_10_1002_ppul_24118 crossref_primary_10_3390_ijms25031933 crossref_primary_10_1093_femsre_fuad029 crossref_primary_10_1016_j_jcf_2023_02_010 crossref_primary_10_1183_13993003_02320_2019 crossref_primary_10_3389_fimmu_2020_00595 crossref_primary_10_1080_14712598_2018_1484447 crossref_primary_10_1111_jcpt_12616 crossref_primary_10_1128_spectrum_04083_22 crossref_primary_10_1128_mBio_00275_18 crossref_primary_10_1099_mgen_0_000981 crossref_primary_10_1016_j_mimet_2021_106133 crossref_primary_10_1164_rccm_202012_4332LE crossref_primary_10_1016_j_jcf_2020_12_015 crossref_primary_10_1164_rccm_202112_2704PP crossref_primary_10_3390_antibiotics10070766 crossref_primary_10_1080_17476348_2020_1778469 crossref_primary_10_1128_JB_00365_18 crossref_primary_10_1016_j_jcf_2023_05_003 crossref_primary_10_1016_j_jcf_2023_05_004 crossref_primary_10_1183_13993003_01581_2021 crossref_primary_10_1016_j_jcf_2021_05_001 crossref_primary_10_1183_13993003_02153_2022 crossref_primary_10_3389_fphar_2020_01059 crossref_primary_10_1016_j_idc_2023_12_002 crossref_primary_10_1172_jci_insight_152472 crossref_primary_10_3390_cells10113260 crossref_primary_10_1016_j_jcf_2024_04_017 crossref_primary_10_1183_13993003_03502_2020 crossref_primary_10_1002_ppul_24129 crossref_primary_10_1016_j_ccm_2022_06_005 crossref_primary_10_3390_nu14183717 crossref_primary_10_1016_j_ccm_2022_06_006 crossref_primary_10_1016_j_ccm_2022_06_007 crossref_primary_10_1128_JB_00561_17 crossref_primary_10_1016_j_ccm_2022_06_008 crossref_primary_10_1164_rccm_202003_0735OC crossref_primary_10_1080_17476348_2021_2001333 crossref_primary_10_1183_13993003_01133_2018 crossref_primary_10_1016_j_jcf_2020_12_002 crossref_primary_10_3389_fphar_2024_1497173 crossref_primary_10_1016_j_jcf_2021_10_009 crossref_primary_10_3390_ijms26062636 crossref_primary_10_1183_16000617_0045_2024 crossref_primary_10_1016_j_jcf_2019_07_008 crossref_primary_10_1002_ppul_24364 crossref_primary_10_1128_mBio_02863_20 crossref_primary_10_1128_msphere_00104_22 crossref_primary_10_1016_j_jcf_2019_08_021 crossref_primary_10_1016_j_xcrm_2023_101371 crossref_primary_10_1126_scitranslmed_adk9145 crossref_primary_10_1136_bmjresp_2022_001590 crossref_primary_10_3389_fmed_2023_1340388 crossref_primary_10_3390_biomedicines12020431 crossref_primary_10_1016_j_omtn_2021_06_010 crossref_primary_10_1164_rccm_201905_0990OC crossref_primary_10_1016_j_ymthe_2020_12_003 crossref_primary_10_1111_jcpt_12722 crossref_primary_10_3390_pharmaceutics17030347 crossref_primary_10_1016_j_jcf_2022_03_012 crossref_primary_10_1016_j_ccm_2022_06_010 crossref_primary_10_3389_fimmu_2020_00581 crossref_primary_10_1164_rccm_202002_0369OC crossref_primary_10_1016_j_chest_2018_04_036 crossref_primary_10_2174_0929867330666221014110730 crossref_primary_10_1080_17476348_2024_2357210 crossref_primary_10_1164_rccm_202210_1938LE crossref_primary_10_1002_ppul_23972 crossref_primary_10_1016_j_coph_2022_102239 crossref_primary_10_3390_ijms24044052 crossref_primary_10_1016_j_cca_2020_05_015 crossref_primary_10_1093_jleuko_qiad139 crossref_primary_10_1371_journal_pone_0245696 crossref_primary_10_20344_amp_20106 crossref_primary_10_3390_ijms22041952 crossref_primary_10_1371_journal_pone_0257838 crossref_primary_10_1183_23120541_00986_2023 crossref_primary_10_1016_j_jcf_2022_08_002 crossref_primary_10_1097_MCP_0000000000000419 crossref_primary_10_3389_fphar_2020_01129 crossref_primary_10_1016_j_jcf_2019_11_007 crossref_primary_10_1016_j_jcf_2021_06_008 crossref_primary_10_1128_spectrum_00787_24 crossref_primary_10_1016_j_celrep_2019_03_086 crossref_primary_10_1128_mbio_01424_22 crossref_primary_10_1513_AnnalsATS_201908_596ED crossref_primary_10_3390_cells12081104 crossref_primary_10_1164_rccm_201701_0220ED crossref_primary_10_1016_j_resmer_2022_100972 crossref_primary_10_3390_ijms23073513 crossref_primary_10_1055_s_0042_1758732 crossref_primary_10_1002_ppul_24157 crossref_primary_10_1513_AnnalsATS_201907_493OC crossref_primary_10_1172_JCI184171 crossref_primary_10_3389_fcimb_2022_819554 crossref_primary_10_1126_sciadv_aax9093 crossref_primary_10_1136_bmjresp_2023_002049 crossref_primary_10_1016_j_jcf_2022_08_013 crossref_primary_10_1016_S2213_2600_23_00324_7 crossref_primary_10_1172_JCI150398 crossref_primary_10_1183_13993003_02443_2019 crossref_primary_10_3390_ijms22063063 crossref_primary_10_1016_j_jcf_2020_11_018 crossref_primary_10_3390_life11020094 crossref_primary_10_1093_cid_ciac117 crossref_primary_10_1164_rccm_202006_2330ED crossref_primary_10_1371_journal_pone_0288002 crossref_primary_10_1016_j_jcf_2021_02_003 crossref_primary_10_1016_j_bmcl_2021_128243 crossref_primary_10_1038_s41598_020_78817_x crossref_primary_10_1002_ppul_24968 crossref_primary_10_1016_j_rmed_2025_108042 crossref_primary_10_1093_jpids_piac062 crossref_primary_10_1093_jpids_piac061 crossref_primary_10_1128_mbio_03148_21 crossref_primary_10_3390_ijms252211865 crossref_primary_10_3389_fimmu_2018_03067 crossref_primary_10_1016_j_heliyon_2024_e29188 crossref_primary_10_3389_fmicb_2024_1476041 crossref_primary_10_1073_pnas_2315190121 crossref_primary_10_1016_j_jcf_2020_05_011 crossref_primary_10_1080_14656566_2018_1505864 crossref_primary_10_1093_jpids_piac077 crossref_primary_10_1038_s41598_020_75886_w crossref_primary_10_1128_spectrum_02251_22 crossref_primary_10_1172_JCI167957 crossref_primary_10_4187_respcare_06052 crossref_primary_10_3389_fcimb_2023_1271117 crossref_primary_10_1016_j_rmed_2020_106073 crossref_primary_10_1016_j_cell_2022_04_024 crossref_primary_10_3389_fcimb_2022_805170 crossref_primary_10_1080_13543784_2020_1805733 crossref_primary_10_3390_cells10123380 crossref_primary_10_1155_2017_3028082 crossref_primary_10_3389_fimmu_2023_1242381 crossref_primary_10_1152_ajplung_00198_2017 crossref_primary_10_1080_17476348_2020_1741352 crossref_primary_10_3389_fmicb_2024_1356926 crossref_primary_10_1513_AnnalsATS_201902_122OC crossref_primary_10_3389_fphar_2019_01662 crossref_primary_10_1164_rccm_202110_2249OC |
Cites_doi | 10.1172/jci.insight.86183 10.1056/NEJMoa0909825 10.1513/AnnalsATS.201404-166OC 10.1016/j.jcf.2014.02.004 10.1164/rccm.201207-1160OE 10.1038/srep07649 10.1164/rccm.200407-989OC 10.1016/j.chom.2015.07.006 10.1165/rcmb.2015-0322LE 10.1164/rccm.200304-505SO 10.1186/1471-2105-11-595 10.1016/j.jcf.2015.05.009 10.1056/NEJMoa1105185 10.1093/cid/ciu944 10.1056/NEJM199901073400104 10.3389/fcimb.2015.00069 10.1371/journal.pone.0124124 10.1016/j.jcf.2013.04.003 10.1164/rccm.201404-0703OC 10.1513/AnnalsATS.201407-310OC 10.2307/2529876 10.1164/rccm.201409-1646OC |
ContentType | Journal Article |
Copyright | Copyright American Thoracic Society Jun 15, 2017 Copyright © 2017 by the American Thoracic Society 2017 |
Copyright_xml | – notice: Copyright American Thoracic Society Jun 15, 2017 – notice: Copyright © 2017 by the American Thoracic Society 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1164/rccm.201609-1954OC |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central ProQuest One ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 1628 |
ExternalDocumentID | PMC5476912 28222269 10_1164_rccm_201609_1954OC |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: K24 HL102246 – fundername: NHLBI NIH HHS grantid: P01 HL091842 – fundername: NHLBI NIH HHS grantid: P01 HL051670 – fundername: NIDDK NIH HHS grantid: P30 DK089507 – fundername: NIAID NIH HHS grantid: R01 AI101307 |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M ~02 CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c386t-db9c82f99beb41df91bac5c5d0388ed5c87da81455c21612d7fc46eba67572a03 |
IEDL.DBID | 7X7 |
ISSN | 1073-449X |
IngestDate | Thu Aug 21 14:06:33 EDT 2025 Fri Jul 11 02:08:23 EDT 2025 Fri Jul 25 05:47:37 EDT 2025 Mon Jul 21 05:59:51 EDT 2025 Tue Jul 01 02:01:03 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Pseudomonas aeruginosa ivacaftor inflammation cystic fibrosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-db9c82f99beb41df91bac5c5d0388ed5c87da81455c21612d7fc46eba67572a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Present address: Institute of Technology Tallaght, Dublin, Ireland. |
PMID | 28222269 |
PQID | 1910741769 |
PQPubID | 40575 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476912 proquest_miscellaneous_1870989041 proquest_journals_1910741769 pubmed_primary_28222269 crossref_citationtrail_10_1164_rccm_201609_1954OC crossref_primary_10_1164_rccm_201609_1954OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-15 2017-Jun-15 20170615 |
PublicationDateYYYYMMDD | 2017-06-15 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2017 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | Hisert KB (bib8) 2016; 51 bib14 bib15 bib12 bib13 bib10 bib11 Evaldson G (bib21) 1982; 35 bib25 bib23 bib24 bib22 bib20 bib9 Welsh MJ (bib1) 2001 bib7 bib5 bib18 bib6 bib19 bib3 bib16 bib4 bib17 bib2 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72 25578031 - Sci Rep. 2015 Jan 12;5:7649 14555458 - Am J Respir Crit Care Med. 2003 Oct 15;168(8):918-51 27158673 - JCI Insight. 2016 Apr 7;1(4):e86183 26299432 - Cell Host Microbe. 2015 Sep 9;18(3):307-19 9878641 - N Engl J Med. 1999 Jan 7;340(1):23-30 26074007 - J Cyst Fibros. 2015 Sep;14 (5):621-6 25590983 - Am J Respir Crit Care Med. 2015 Apr 1;191(7):775-85 28617081 - Am J Respir Crit Care Med. 2017 Jun 15;195(12 ):1550-1552 24618508 - J Cyst Fibros. 2014 Sep;13(5):515-9 24927234 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):175-84 23540878 - Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15 21143983 - BMC Bioinformatics. 2010 Dec 10;11:595 26484315 - Front Cell Infect Microbiol. 2015 Oct 01;5:69 25474078 - Ann Am Thorac Soc. 2015 Feb;12(2):221-9 7168798 - Biometrics. 1982 Dec;38(4):963-74 25549030 - Ann Am Thorac Soc. 2014 Dec;11(10):1640-50 25853698 - PLoS One. 2015 Apr 08;10 (4):e0124124 16100015 - Am J Respir Crit Care Med. 2005 Nov 1;172(9):1128-32 23642644 - J Cyst Fibros. 2013 Dec;12(6):790-3 25425629 - Clin Infect Dis. 2015 Mar 1;60(5):703-12 27035067 - Am J Respir Cell Mol Biol. 2016 Apr;54(4):594-7 21083385 - N Engl J Med. 2010 Nov 18;363(21):1991-2003 |
References_xml | – ident: bib10 doi: 10.1172/jci.insight.86183 – start-page: 5121 volume-title: The metabolic and molecular basis of inherited diseases year: 2001 ident: bib1 – ident: bib4 doi: 10.1056/NEJMoa0909825 – volume: 35 start-page: 9 year: 1982 ident: bib21 publication-title: Scand J Infect Dis Suppl – ident: bib12 doi: 10.1513/AnnalsATS.201404-166OC – ident: bib23 doi: 10.1016/j.jcf.2014.02.004 – ident: bib13 doi: 10.1164/rccm.201207-1160OE – ident: bib16 doi: 10.1038/srep07649 – ident: bib22 doi: 10.1164/rccm.200407-989OC – ident: bib17 doi: 10.1016/j.chom.2015.07.006 – ident: bib11 doi: 10.1165/rcmb.2015-0322LE – ident: bib2 doi: 10.1164/rccm.200304-505SO – ident: bib14 doi: 10.1186/1471-2105-11-595 – ident: bib25 doi: 10.1016/j.jcf.2015.05.009 – ident: bib3 doi: 10.1056/NEJMoa1105185 – volume: 51 start-page: 299 year: 2016 ident: bib8 publication-title: Pediatr Pulmonol – ident: bib7 doi: 10.1093/cid/ciu944 – ident: bib24 doi: 10.1056/NEJM199901073400104 – ident: bib19 doi: 10.3389/fcimb.2015.00069 – ident: bib6 doi: 10.1371/journal.pone.0124124 – ident: bib15 doi: 10.1016/j.jcf.2013.04.003 – ident: bib5 doi: 10.1164/rccm.201404-0703OC – ident: bib20 doi: 10.1513/AnnalsATS.201407-310OC – ident: bib9 doi: 10.2307/2529876 – ident: bib18 doi: 10.1164/rccm.201409-1646OC – reference: 25425629 - Clin Infect Dis. 2015 Mar 1;60(5):703-12 – reference: 24927234 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):175-84 – reference: 26299432 - Cell Host Microbe. 2015 Sep 9;18(3):307-19 – reference: 27035067 - Am J Respir Cell Mol Biol. 2016 Apr;54(4):594-7 – reference: 23540878 - Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9 – reference: 14555458 - Am J Respir Crit Care Med. 2003 Oct 15;168(8):918-51 – reference: 7168798 - Biometrics. 1982 Dec;38(4):963-74 – reference: 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15 – reference: 25549030 - Ann Am Thorac Soc. 2014 Dec;11(10):1640-50 – reference: 9878641 - N Engl J Med. 1999 Jan 7;340(1):23-30 – reference: 16100015 - Am J Respir Crit Care Med. 2005 Nov 1;172(9):1128-32 – reference: 27158673 - JCI Insight. 2016 Apr 7;1(4):e86183 – reference: 25853698 - PLoS One. 2015 Apr 08;10 (4):e0124124 – reference: 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72 – reference: 26074007 - J Cyst Fibros. 2015 Sep;14 (5):621-6 – reference: 24618508 - J Cyst Fibros. 2014 Sep;13(5):515-9 – reference: 25590983 - Am J Respir Crit Care Med. 2015 Apr 1;191(7):775-85 – reference: 26484315 - Front Cell Infect Microbiol. 2015 Oct 01;5:69 – reference: 25474078 - Ann Am Thorac Soc. 2015 Feb;12(2):221-9 – reference: 23642644 - J Cyst Fibros. 2013 Dec;12(6):790-3 – reference: 25578031 - Sci Rep. 2015 Jan 12;5:7649 – reference: 28617081 - Am J Respir Crit Care Med. 2017 Jun 15;195(12 ):1550-1552 – reference: 21143983 - BMC Bioinformatics. 2010 Dec 10;11:595 – reference: 21083385 - N Engl J Med. 2010 Nov 18;363(21):1991-2003 |
SSID | ssj0012810 |
Score | 2.6450348 |
Snippet | Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic... Abstract Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in... RATIONALEPrevious work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with... Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1617 |
SubjectTerms | Adult Aminophenols - therapeutic use Bacteria Chloride Channel Agonists - therapeutic use Clinical medicine Cystic fibrosis Cystic Fibrosis - diagnostic imaging Cystic Fibrosis - drug therapy Cystic Fibrosis - metabolism Cystic Fibrosis Transmembrane Conductance Regulator - drug effects Cystic Fibrosis Transmembrane Conductance Regulator - metabolism Cysts Female Humans Infections Inflammation Inflammation - metabolism Inflammation - prevention & control Lung - diagnostic imaging Lung - metabolism Lung diseases Male Mutation Original Pathogenesis Quinolones - therapeutic use Respiratory Tract Infections - metabolism Respiratory Tract Infections - prevention & control Sputum - drug effects Sputum - metabolism Tomography Tomography, X-Ray Computed |
Title | Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28222269 https://www.proquest.com/docview/1910741769 https://www.proquest.com/docview/1870989041 https://pubmed.ncbi.nlm.nih.gov/PMC5476912 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtAqWXkj6zTRpU6K2Y-CFZ0qkkJktamjQsDezN6GW60MjJekPJX-qv7IzldbsN5GKDJSHDN9LMaEbfEPIhFU1uhNCJ4KwEB8WaxGhjEzBFGsVdI1KJl5PPzsvTS_ZlzufDgVs3pFWu98R-o3atxTPyQ_ArUPuJUn26vkmwahRGV4cSGo_JNlKXYUqXmI8OFwaJIhuBKBLG1Hx9aaZkh0tr8R56VmI1AMXZt2pTMd2zNv9PmvxHC013yLPBfKRHEe_n5JEPL8iTsyFA_pL8nvWVYkAf0eoOKZjpFPzhtlt0tNdKV_4K3OPgadUGZHpFzOks1qNvl3QKWg6Rgk_Q6jt6tFj-0nf0OHI6a6qDo59DA2IUrzzSRaAXfRI6xRPde5Ni_4F_l36FfQUH98lfoXtFLqcn36vTZCjHkNhClqvEGWVl3ihlvGGZa1RmtOWWOySU8Y5bKZyWSHxuc7Ajcycay0pvNPgkItdp8ZpshTb4XUK9lWnBTO4ky-BVaMlALnwmnW681GJCsjUWtR24yrFkxs-691lKViN-dcSvjvhNyMdxzHVk6niw9_4a4npYtV39V8Ym5P3YDOsNgyiATXsLfWCDU1KlLJuQN1EixukwJRfMWRgtNmRl7IBc3pstYfGj5_TmDGbN8rcP_9YeeZqjWYG1k_g-2Votb_07MIpW5qCXfHjKKjsg28cn5xezP6aHEpc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVIJeEG8CBRYJTsiqvV571weE2tAooUmoolbKzezLNBK1S5yqyl_iwG9kxo9AqNRbT5ayu95I8-08vDPfEPLOFxnTQihPRDyGAMVoTyttPHBFsiSymfAlFiePJ_HglH-ZRbMt8ruthcG0ylYnVoraFga_ke9BXIHWT8TJp4ufHnaNwtvVtoVGDYsjt7qCkK38OPwM8n3PWP_wpDfwmq4CngllvPSsToxkWZJop3lgsyTQykQmssiL4mxkpLBKIn-3YeAOMSsyw2OnFbjWgik_hPfeIds8hFCmQ7YPDifH0_W9BZMN_4EIPc6TWVumE_O9hTFY-R7E2H8gifjX3qYpvObf_p-m-Y_d6z8g9xuHle7XCHtItlz-iNwdN1fyj8mvadWbBiwg7a2Q9Jn2IQIvynlJKzt47s4hIM8d7RU5cssiyujUfce2YcWC9sGuIjbgJxh1Jd2fL67Uih7ULNKKqtzSYZ4BcOsiSzrP6XGV9k7xG_K1TXF-w_hLR6DJcHGVbpaXT8jprYjqKenkRe6eE-qM9EOumZU8gEeoJAckukBalTmpRJcErSxS07CjY5OOH2kVJcU8RfmltfzSWn5d8mG95qLmBrlx9m4r4rTRE2X6F9Vd8nY9DCccr21ANsUlzAGVmsjE50GXPKsRsd4Ok4DBgYbVYgMr6wnIHr45ks_PKhbxiMOuAXtx8996Q-4NTsajdDScHL0kOwydGuzcFO2SznJx6V6BS7bUr5tzQMm32z56fwCMG09v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiHe3FDASnFC0m8SO7QNCZUvUpQ-qikp7C34FVqJJu9mq2r_ET-DXMZMXLJV66ylSbMeR5m3PfEPIm5HIIyOEDgRnCQQo1gRGGxuAK5Ir7nIxklicfHiU7J2yz1M-XSO_u1oYTKvsdGKtqF1p8Yx8CHEFWj-RqGHepkUc76Yfzi8C7CCFN61dO42GRfb98grCt-r9ZBdo_TaK0k9fx3tB22EgsLFMFoEzysooV8p4w0KXq9Boyy13iJHiHbdSOC0Ry9tG4BpFTuSWJd5ocLNFpEcxfPcOuStiHqKMiWkf7OEFVYOEIOKAMTXtCnYSNpxbizXwYYKdCBRnX8arRvGap_t_wuY_FjB9QO63rivdaXjtIVnzxSOycdhezj8mv07qLjVgC-l4ifDPNIVYvKxmFa0t4pk_g9C88HRcFogyi_xGT_x3bCBWzmkKFha5BF7BqK_ozmx-pZf0Y4MnrakuHJ0UObBwU25JZwU9rhPgKZ4mX9sU57fYv_QAdBourhPPiuoJOb0VQj0l60VZ-E1CvZWjmJnISRbCI9aSAU_6UDqde6nFgIQdLTLb4qRju46fWR0vJSxD-mUN_bKGfgPyrl9z3qCE3Dh7uyNx1mqMKvvL3wPyuh8GWccLHKBNeQlzQLkqqUYsHJBnDUf022E6MLjSsFqs8Eo_AXHEV0eK2Y8aT5wz2DWMtm7-rVdkAwQuO5gc7T8n9yL0brCFE98m64v5pX8BvtnCvKyFgJJvty11fwAoylI_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+Cystic+Fibrosis+Transmembrane+Conductance+Regulator+Function+Reduces+Airway+Bacteria+and+Inflammation+in+People+with+Cystic+Fibrosis+and+Chronic+Lung+Infections&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Hisert%2C+Katherine+B&rft.au=Heltshe%2C+Sonya+L&rft.au=Pope%2C+Christopher&rft.au=Jorth%2C+Peter&rft.date=2017-06-15&rft.eissn=1535-4970&rft.volume=195&rft.issue=12&rft.spage=1617&rft.epage=1628&rft_id=info:doi/10.1164%2Frccm.201609-1954OC&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |