Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections

Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the pos...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 195; no. 12; pp. 1617 - 1628
Main Authors Hisert, Katherine B., Heltshe, Sonya L., Pope, Christopher, Jorth, Peter, Wu, Xia, Edwards, Rachael M., Radey, Matthew, Accurso, Frank J., Wolter, Daniel J., Cooke, Gordon, Adam, Ryan J., Carter, Suzanne, Grogan, Brenda, Launspach, Janice L., Donnelly, Seamas C., Gallagher, Charles G., Bruce, James E., Stoltz, David A., Welsh, Michael J., Hoffman, Lucas R., McKone, Edward F., Singh, Pradeep K.
Format Journal Article
LanguageEnglish
Published United States American Thoracic Society 15.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.
AbstractList Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.
RATIONALEPrevious work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established.OBJECTIVESTo better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections.METHODSWe studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans.MEASUREMENTS AND MAIN RESULTSIvacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging.CONCLUSIONSIvacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.
Abstract Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. Objectives: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. Conclusions: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. [...]P. aeruginosa airway infection persisted. [...]measures that control infection may be required to realize the full benefits of CFTR-targeting treatments. Keywords: cystic fibrosis; Pseudomonas aeruginosa; ivacaftor; inflammation Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a membrane anion channel (1). The most important clinical manifestation of CF is lung disease, and respiratory failure is the major cause of death in people with CF (2). CF lung disease is a consequence of a series of events beginning with host defense defects caused by CFTR dysfunction. Quantitative culture, polymerase chain reaction (PCR), 16S rRNA gene sequencing, and measurements of inflammatory markers were performed on spontaneously expectorated sputum. Multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) fingerprinting were performed on cultured P. aeruginosa.
Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. Objectives: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. Methods: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Measurements and Main Results: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa . Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Conclusions: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.
Author Launspach, Janice L.
Radey, Matthew
Grogan, Brenda
Bruce, James E.
Wolter, Daniel J.
Cooke, Gordon
Singh, Pradeep K.
Adam, Ryan J.
Hisert, Katherine B.
Pope, Christopher
Carter, Suzanne
Gallagher, Charles G.
Jorth, Peter
Donnelly, Seamas C.
McKone, Edward F.
Heltshe, Sonya L.
Edwards, Rachael M.
Welsh, Michael J.
Accurso, Frank J.
Stoltz, David A.
Hoffman, Lucas R.
Wu, Xia
Author_xml – sequence: 1
  givenname: Katherine B.
  surname: Hisert
  fullname: Hisert, Katherine B.
  organization: Department of Medicine
– sequence: 2
  givenname: Sonya L.
  surname: Heltshe
  fullname: Heltshe, Sonya L.
  organization: Department of Pediatrics
– sequence: 3
  givenname: Christopher
  surname: Pope
  fullname: Pope, Christopher
  organization: Department of Pediatrics
– sequence: 4
  givenname: Peter
  surname: Jorth
  fullname: Jorth, Peter
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
– sequence: 5
  givenname: Xia
  surname: Wu
  fullname: Wu, Xia
  organization: Department of Genome Sciences
– sequence: 6
  givenname: Rachael M.
  surname: Edwards
  fullname: Edwards, Rachael M.
  organization: Department of Radiology, and
– sequence: 7
  givenname: Matthew
  surname: Radey
  fullname: Radey, Matthew
  organization: Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
– sequence: 8
  givenname: Frank J.
  surname: Accurso
  fullname: Accurso, Frank J.
  organization: Department of Pediatrics, University of Colorado, Aurora, Colorado
– sequence: 9
  givenname: Daniel J.
  surname: Wolter
  fullname: Wolter, Daniel J.
  organization: Department of Pediatrics
– sequence: 10
  givenname: Gordon
  surname: Cooke
  fullname: Cooke, Gordon
  organization: St. Vincent's University Hospital, Dublin, Ireland
– sequence: 11
  givenname: Ryan J.
  surname: Adam
  fullname: Adam, Ryan J.
  organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and
– sequence: 12
  givenname: Suzanne
  surname: Carter
  fullname: Carter, Suzanne
  organization: St. Vincent's University Hospital, Dublin, Ireland
– sequence: 13
  givenname: Brenda
  surname: Grogan
  fullname: Grogan, Brenda
  organization: St. Vincent's University Hospital, Dublin, Ireland
– sequence: 14
  givenname: Janice L.
  surname: Launspach
  fullname: Launspach, Janice L.
  organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and
– sequence: 15
  givenname: Seamas C.
  surname: Donnelly
  fullname: Donnelly, Seamas C.
  organization: Trinity College Dublin, Dublin, Ireland
– sequence: 16
  givenname: Charles G.
  surname: Gallagher
  fullname: Gallagher, Charles G.
  organization: St. Vincent's University Hospital, Dublin, Ireland
– sequence: 17
  givenname: James E.
  surname: Bruce
  fullname: Bruce, James E.
  organization: Department of Genome Sciences
– sequence: 18
  givenname: David A.
  surname: Stoltz
  fullname: Stoltz, David A.
  organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and
– sequence: 19
  givenname: Michael J.
  surname: Welsh
  fullname: Welsh, Michael J.
  organization: Department of Internal Medicine, University of Iowa, Iowa City, Iowa; and
– sequence: 20
  givenname: Lucas R.
  surname: Hoffman
  fullname: Hoffman, Lucas R.
  organization: Department of Pediatrics, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
– sequence: 21
  givenname: Edward F.
  surname: McKone
  fullname: McKone, Edward F.
  organization: St. Vincent's University Hospital, Dublin, Ireland
– sequence: 22
  givenname: Pradeep K.
  surname: Singh
  fullname: Singh, Pradeep K.
  organization: Department of Medicine, Department of Microbiology, University of Washington School of Medicine, Seattle, Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28222269$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_YA_wAFZ4sIlxXbsxL4gtRELlVYqqorEzXIcZ9dVYi92QrV_iV_J7G6LoEj4MtbMe2-ex3OKjkIMDqHXlJxTWvH3ydrxnBFaEVVQJfh18wydUFGKgquaHMGd1GXBufp2jE5zviOEMknJC3TMJINTqRP088blKSYfVrjZ5slbvPBtitlnfJtMyKMbW4gONzF0s51MsA7fuNU8GKDhxRzs5GOAFFRdxhc-3ZstvjR2cskbbEKHr0I_mHE0e6AP-IuLm8Hhez-t_2m6wzfrFAMklzO4ArLbt8gv0fPeDNm9eohn6Ovi423zuVhef7pqLpaFLWU1FV2rrGS9Uq1rOe16RVtjhRUdKaV0nbCy7oykXAjLaEVZV_eWV641VS1qZkh5hj4cdDdzO7rOujAlM-hN8qNJWx2N139Xgl_rVfyhBa8rRRkIvHsQSPH7DPPVo8_WDQPMMc5ZU1kTJRXhFKBvn0Dv4pwCPE9TBd_HKUgC6s2fjn5befxGAMgDwMIUc3K9tn7azxsM-kFToncbo3cbow8bow8bA1T2hPqo_h_SL0Coyco
CitedBy_id crossref_primary_10_1016_j_jcf_2017_10_004
crossref_primary_10_1177_20406223221098136
crossref_primary_10_1002_ppul_23773
crossref_primary_10_1016_j_jcf_2024_09_018
crossref_primary_10_1097_MCP_0000000000000616
crossref_primary_10_1177_2470289720937025
crossref_primary_10_3390_jpm14010093
crossref_primary_10_1016_j_heliyon_2020_e04104
crossref_primary_10_1186_s12931_023_02495_2
crossref_primary_10_3390_ijtm4030037
crossref_primary_10_3390_jcm11041021
crossref_primary_10_1172_jci_insight_121468
crossref_primary_10_1183_23120541_00502_2024
crossref_primary_10_1002_ppul_26362
crossref_primary_10_1183_16000617_0256_2022
crossref_primary_10_4049_jimmunol_2100424
crossref_primary_10_1016_j_jcf_2019_06_011
crossref_primary_10_1186_s12931_023_02593_1
crossref_primary_10_2139_ssrn_4075836
crossref_primary_10_3390_microorganisms9030660
crossref_primary_10_3389_fimmu_2021_642180
crossref_primary_10_3390_cells11071243
crossref_primary_10_3390_cells12222618
crossref_primary_10_3390_medicina59091635
crossref_primary_10_1016_j_jcf_2020_09_008
crossref_primary_10_1164_rccm_201910_1943SO
crossref_primary_10_1186_s12931_019_1214_8
crossref_primary_10_3389_fphar_2021_628722
crossref_primary_10_3389_fphar_2020_01219
crossref_primary_10_3389_fphar_2023_1293578
crossref_primary_10_1038_s41467_023_36244_2
crossref_primary_10_1007_s00108_017_0327_8
crossref_primary_10_1007_s40272_022_00509_y
crossref_primary_10_1016_j_jcf_2022_09_004
crossref_primary_10_1016_j_jcf_2019_10_021
crossref_primary_10_1183_23120541_00731_2020
crossref_primary_10_1128_mbio_03883_24
crossref_primary_10_3390_microorganisms9050932
crossref_primary_10_1002_ppul_24522
crossref_primary_10_1080_17476348_2019_1666715
crossref_primary_10_1183_16000617_0071_2024
crossref_primary_10_1183_16000617_0001_2024
crossref_primary_10_1128_spectrum_01454_22
crossref_primary_10_1021_acs_jproteome_9b00122
crossref_primary_10_1182_blood_2021014699
crossref_primary_10_3390_ijms22126193
crossref_primary_10_1126_sciadv_ade8039
crossref_primary_10_1183_16000617_0068_2024
crossref_primary_10_1016_j_jcf_2020_10_008
crossref_primary_10_1002_ppul_24081
crossref_primary_10_1042_BSR20160618
crossref_primary_10_1093_ejcts_ezae338
crossref_primary_10_2147_COPD_S257474
crossref_primary_10_3389_fphar_2021_581645
crossref_primary_10_1002_ppul_26261
crossref_primary_10_1186_s12866_023_03073_8
crossref_primary_10_1152_physiolgenomics_00035_2017
crossref_primary_10_3389_fcimb_2021_548613
crossref_primary_10_1016_j_coph_2022_102262
crossref_primary_10_1016_j_freeradbiomed_2018_11_023
crossref_primary_10_1080_17476348_2024_2394694
crossref_primary_10_1093_jpids_piac036
crossref_primary_10_1183_13993003_00946_2020
crossref_primary_10_1016_S0140_6736_20_32542_3
crossref_primary_10_1080_17425255_2021_1836157
crossref_primary_10_1016_j_ejphar_2023_176047
crossref_primary_10_1164_rccm_202108_1986OC
crossref_primary_10_1096_fj_202001952R
crossref_primary_10_3390_genes14101966
crossref_primary_10_1164_rccm_202001_0180OC
crossref_primary_10_3389_fimmu_2023_1107437
crossref_primary_10_1513_AnnalsATS_202008_1054OC
crossref_primary_10_1152_ajplung_00461_2017
crossref_primary_10_1016_j_ssnmr_2024_101975
crossref_primary_10_1164_rccm_202004_1322OC
crossref_primary_10_3390_ijms21176379
crossref_primary_10_1016_j_molmed_2019_07_008
crossref_primary_10_3389_fphar_2019_00252
crossref_primary_10_1159_000533457
crossref_primary_10_1016_j_isci_2023_106475
crossref_primary_10_1016_j_jcf_2021_08_007
crossref_primary_10_1016_j_rmed_2021_106646
crossref_primary_10_1128_mbio_00519_24
crossref_primary_10_3390_genes12030453
crossref_primary_10_1002_ppul_25190
crossref_primary_10_1038_s41598_023_38300_9
crossref_primary_10_1016_S2213_2600_19_30335_2
crossref_primary_10_1093_infdis_jiae051
crossref_primary_10_1093_jac_dkaa482
crossref_primary_10_1080_21678707_2020_1713748
crossref_primary_10_1128_spectrum_01556_23
crossref_primary_10_1177_1179548419849939
crossref_primary_10_1164_rccm_201903_0529ED
crossref_primary_10_1016_S2213_2600_19_30334_0
crossref_primary_10_3389_fphar_2023_1147348
crossref_primary_10_1016_j_jcf_2022_12_001
crossref_primary_10_1177_17534666241254090
crossref_primary_10_1128_spectrum_00419_22
crossref_primary_10_1183_13993003_00216_2023
crossref_primary_10_1016_j_jcf_2018_05_004
crossref_primary_10_1097_MCP_0000000000000918
crossref_primary_10_1164_rccm_201906_1190PP
crossref_primary_10_1513_AnnalsATS_201807_449OC
crossref_primary_10_2217_fmb_2021_0150
crossref_primary_10_1093_femsle_fnx121
crossref_primary_10_3390_cells9091952
crossref_primary_10_1136_thorax_2022_219943
crossref_primary_10_3390_antibiotics12071158
crossref_primary_10_1016_j_rmed_2023_107328
crossref_primary_10_1165_rcmb_2021_0406OC
crossref_primary_10_1093_pnasnexus_pgae390
crossref_primary_10_3390_ijms22147606
crossref_primary_10_1016_j_jcf_2020_03_008
crossref_primary_10_1016_j_jcf_2023_10_001
crossref_primary_10_1183_16000617_0154_2022
crossref_primary_10_1016_j_celrep_2021_108782
crossref_primary_10_1038_s41579_022_00821_x
crossref_primary_10_3390_jcm10071527
crossref_primary_10_1016_j_jcf_2023_03_007
crossref_primary_10_1186_s12931_024_03029_0
crossref_primary_10_1038_s41598_018_35151_7
crossref_primary_10_1152_ajplung_00082_2021
crossref_primary_10_1016_j_bioflm_2024_100206
crossref_primary_10_1513_AnnalsATS_202001_082RL
crossref_primary_10_1183_23120541_00318_2019
crossref_primary_10_1183_13993003_01008_2023
crossref_primary_10_1152_ajplung_00381_2023
crossref_primary_10_1165_rcmb_2022_0285ED
crossref_primary_10_1016_j_jcf_2017_07_001
crossref_primary_10_1038_nm_4339
crossref_primary_10_1172_jci_insight_181836
crossref_primary_10_1002_ppul_26063
crossref_primary_10_1007_s15006_021_9804_z
crossref_primary_10_1164_rccm_201806_1018OC
crossref_primary_10_1164_rccm_202305_0818OC
crossref_primary_10_1164_rccm_202303_0458OC
crossref_primary_10_1183_13993003_00746_2021
crossref_primary_10_1183_20734735_0119_2021
crossref_primary_10_3390_children9121898
crossref_primary_10_7554_eLife_54556
crossref_primary_10_1016_j_jcf_2022_02_017
crossref_primary_10_1038_s41385_020_0262_1
crossref_primary_10_1093_hmg_ddx367
crossref_primary_10_1016_j_rmed_2022_107002
crossref_primary_10_3390_microorganisms9091874
crossref_primary_10_1016_j_jcf_2023_10_019
crossref_primary_10_3389_fphar_2018_01270
crossref_primary_10_1164_rccm_201708_1616OC
crossref_primary_10_3389_fcimb_2024_1275940
crossref_primary_10_1128_CMR_00138_18
crossref_primary_10_3390_ijms24108709
crossref_primary_10_1002_14651858_CD001401_pub4
crossref_primary_10_1016_j_celrep_2023_112270
crossref_primary_10_1164_rccm_202102_0451OC
crossref_primary_10_1183_13993003_01307_2022
crossref_primary_10_1183_13993003_02861_2021
crossref_primary_10_1016_j_heliyon_2023_e23428
crossref_primary_10_1080_17843286_2022_2145684
crossref_primary_10_3389_fphar_2024_1362325
crossref_primary_10_1080_14728222_2018_1501361
crossref_primary_10_1164_rccm_202308_1451OC
crossref_primary_10_1007_s40261_019_00861_x
crossref_primary_10_3389_fimmu_2024_1405376
crossref_primary_10_1016_j_ijpharm_2017_11_022
crossref_primary_10_1016_j_jcf_2020_12_023
crossref_primary_10_3389_fphar_2023_1157459
crossref_primary_10_1016_j_jcf_2018_10_010
crossref_primary_10_1016_j_rmed_2023_107499
crossref_primary_10_1164_rccm_201710_1983OC
crossref_primary_10_1016_j_jcf_2024_07_002
crossref_primary_10_1002_ppul_24341
crossref_primary_10_1016_S2213_2600_19_30337_6
crossref_primary_10_1038_s41598_025_85948_6
crossref_primary_10_3390_ijms24021246
crossref_primary_10_1002_ppul_24118
crossref_primary_10_3390_ijms25031933
crossref_primary_10_1093_femsre_fuad029
crossref_primary_10_1016_j_jcf_2023_02_010
crossref_primary_10_1183_13993003_02320_2019
crossref_primary_10_3389_fimmu_2020_00595
crossref_primary_10_1080_14712598_2018_1484447
crossref_primary_10_1111_jcpt_12616
crossref_primary_10_1128_spectrum_04083_22
crossref_primary_10_1128_mBio_00275_18
crossref_primary_10_1099_mgen_0_000981
crossref_primary_10_1016_j_mimet_2021_106133
crossref_primary_10_1164_rccm_202012_4332LE
crossref_primary_10_1016_j_jcf_2020_12_015
crossref_primary_10_1164_rccm_202112_2704PP
crossref_primary_10_3390_antibiotics10070766
crossref_primary_10_1080_17476348_2020_1778469
crossref_primary_10_1128_JB_00365_18
crossref_primary_10_1016_j_jcf_2023_05_003
crossref_primary_10_1016_j_jcf_2023_05_004
crossref_primary_10_1183_13993003_01581_2021
crossref_primary_10_1016_j_jcf_2021_05_001
crossref_primary_10_1183_13993003_02153_2022
crossref_primary_10_3389_fphar_2020_01059
crossref_primary_10_1016_j_idc_2023_12_002
crossref_primary_10_1172_jci_insight_152472
crossref_primary_10_3390_cells10113260
crossref_primary_10_1016_j_jcf_2024_04_017
crossref_primary_10_1183_13993003_03502_2020
crossref_primary_10_1002_ppul_24129
crossref_primary_10_1016_j_ccm_2022_06_005
crossref_primary_10_3390_nu14183717
crossref_primary_10_1016_j_ccm_2022_06_006
crossref_primary_10_1016_j_ccm_2022_06_007
crossref_primary_10_1128_JB_00561_17
crossref_primary_10_1016_j_ccm_2022_06_008
crossref_primary_10_1164_rccm_202003_0735OC
crossref_primary_10_1080_17476348_2021_2001333
crossref_primary_10_1183_13993003_01133_2018
crossref_primary_10_1016_j_jcf_2020_12_002
crossref_primary_10_3389_fphar_2024_1497173
crossref_primary_10_1016_j_jcf_2021_10_009
crossref_primary_10_3390_ijms26062636
crossref_primary_10_1183_16000617_0045_2024
crossref_primary_10_1016_j_jcf_2019_07_008
crossref_primary_10_1002_ppul_24364
crossref_primary_10_1128_mBio_02863_20
crossref_primary_10_1128_msphere_00104_22
crossref_primary_10_1016_j_jcf_2019_08_021
crossref_primary_10_1016_j_xcrm_2023_101371
crossref_primary_10_1126_scitranslmed_adk9145
crossref_primary_10_1136_bmjresp_2022_001590
crossref_primary_10_3389_fmed_2023_1340388
crossref_primary_10_3390_biomedicines12020431
crossref_primary_10_1016_j_omtn_2021_06_010
crossref_primary_10_1164_rccm_201905_0990OC
crossref_primary_10_1016_j_ymthe_2020_12_003
crossref_primary_10_1111_jcpt_12722
crossref_primary_10_3390_pharmaceutics17030347
crossref_primary_10_1016_j_jcf_2022_03_012
crossref_primary_10_1016_j_ccm_2022_06_010
crossref_primary_10_3389_fimmu_2020_00581
crossref_primary_10_1164_rccm_202002_0369OC
crossref_primary_10_1016_j_chest_2018_04_036
crossref_primary_10_2174_0929867330666221014110730
crossref_primary_10_1080_17476348_2024_2357210
crossref_primary_10_1164_rccm_202210_1938LE
crossref_primary_10_1002_ppul_23972
crossref_primary_10_1016_j_coph_2022_102239
crossref_primary_10_3390_ijms24044052
crossref_primary_10_1016_j_cca_2020_05_015
crossref_primary_10_1093_jleuko_qiad139
crossref_primary_10_1371_journal_pone_0245696
crossref_primary_10_20344_amp_20106
crossref_primary_10_3390_ijms22041952
crossref_primary_10_1371_journal_pone_0257838
crossref_primary_10_1183_23120541_00986_2023
crossref_primary_10_1016_j_jcf_2022_08_002
crossref_primary_10_1097_MCP_0000000000000419
crossref_primary_10_3389_fphar_2020_01129
crossref_primary_10_1016_j_jcf_2019_11_007
crossref_primary_10_1016_j_jcf_2021_06_008
crossref_primary_10_1128_spectrum_00787_24
crossref_primary_10_1016_j_celrep_2019_03_086
crossref_primary_10_1128_mbio_01424_22
crossref_primary_10_1513_AnnalsATS_201908_596ED
crossref_primary_10_3390_cells12081104
crossref_primary_10_1164_rccm_201701_0220ED
crossref_primary_10_1016_j_resmer_2022_100972
crossref_primary_10_3390_ijms23073513
crossref_primary_10_1055_s_0042_1758732
crossref_primary_10_1002_ppul_24157
crossref_primary_10_1513_AnnalsATS_201907_493OC
crossref_primary_10_1172_JCI184171
crossref_primary_10_3389_fcimb_2022_819554
crossref_primary_10_1126_sciadv_aax9093
crossref_primary_10_1136_bmjresp_2023_002049
crossref_primary_10_1016_j_jcf_2022_08_013
crossref_primary_10_1016_S2213_2600_23_00324_7
crossref_primary_10_1172_JCI150398
crossref_primary_10_1183_13993003_02443_2019
crossref_primary_10_3390_ijms22063063
crossref_primary_10_1016_j_jcf_2020_11_018
crossref_primary_10_3390_life11020094
crossref_primary_10_1093_cid_ciac117
crossref_primary_10_1164_rccm_202006_2330ED
crossref_primary_10_1371_journal_pone_0288002
crossref_primary_10_1016_j_jcf_2021_02_003
crossref_primary_10_1016_j_bmcl_2021_128243
crossref_primary_10_1038_s41598_020_78817_x
crossref_primary_10_1002_ppul_24968
crossref_primary_10_1016_j_rmed_2025_108042
crossref_primary_10_1093_jpids_piac062
crossref_primary_10_1093_jpids_piac061
crossref_primary_10_1128_mbio_03148_21
crossref_primary_10_3390_ijms252211865
crossref_primary_10_3389_fimmu_2018_03067
crossref_primary_10_1016_j_heliyon_2024_e29188
crossref_primary_10_3389_fmicb_2024_1476041
crossref_primary_10_1073_pnas_2315190121
crossref_primary_10_1016_j_jcf_2020_05_011
crossref_primary_10_1080_14656566_2018_1505864
crossref_primary_10_1093_jpids_piac077
crossref_primary_10_1038_s41598_020_75886_w
crossref_primary_10_1128_spectrum_02251_22
crossref_primary_10_1172_JCI167957
crossref_primary_10_4187_respcare_06052
crossref_primary_10_3389_fcimb_2023_1271117
crossref_primary_10_1016_j_rmed_2020_106073
crossref_primary_10_1016_j_cell_2022_04_024
crossref_primary_10_3389_fcimb_2022_805170
crossref_primary_10_1080_13543784_2020_1805733
crossref_primary_10_3390_cells10123380
crossref_primary_10_1155_2017_3028082
crossref_primary_10_3389_fimmu_2023_1242381
crossref_primary_10_1152_ajplung_00198_2017
crossref_primary_10_1080_17476348_2020_1741352
crossref_primary_10_3389_fmicb_2024_1356926
crossref_primary_10_1513_AnnalsATS_201902_122OC
crossref_primary_10_3389_fphar_2019_01662
crossref_primary_10_1164_rccm_202110_2249OC
Cites_doi 10.1172/jci.insight.86183
10.1056/NEJMoa0909825
10.1513/AnnalsATS.201404-166OC
10.1016/j.jcf.2014.02.004
10.1164/rccm.201207-1160OE
10.1038/srep07649
10.1164/rccm.200407-989OC
10.1016/j.chom.2015.07.006
10.1165/rcmb.2015-0322LE
10.1164/rccm.200304-505SO
10.1186/1471-2105-11-595
10.1016/j.jcf.2015.05.009
10.1056/NEJMoa1105185
10.1093/cid/ciu944
10.1056/NEJM199901073400104
10.3389/fcimb.2015.00069
10.1371/journal.pone.0124124
10.1016/j.jcf.2013.04.003
10.1164/rccm.201404-0703OC
10.1513/AnnalsATS.201407-310OC
10.2307/2529876
10.1164/rccm.201409-1646OC
ContentType Journal Article
Copyright Copyright American Thoracic Society Jun 15, 2017
Copyright © 2017 by the American Thoracic Society 2017
Copyright_xml – notice: Copyright American Thoracic Society Jun 15, 2017
– notice: Copyright © 2017 by the American Thoracic Society 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1164/rccm.201609-1954OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 1628
ExternalDocumentID PMC5476912
28222269
10_1164_rccm_201609_1954OC
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: K24 HL102246
– fundername: NHLBI NIH HHS
  grantid: P01 HL091842
– fundername: NHLBI NIH HHS
  grantid: P01 HL051670
– fundername: NIDDK NIH HHS
  grantid: P30 DK089507
– fundername: NIAID NIH HHS
  grantid: R01 AI101307
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
~02
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c386t-db9c82f99beb41df91bac5c5d0388ed5c87da81455c21612d7fc46eba67572a03
IEDL.DBID 7X7
ISSN 1073-449X
IngestDate Thu Aug 21 14:06:33 EDT 2025
Fri Jul 11 02:08:23 EDT 2025
Fri Jul 25 05:47:37 EDT 2025
Mon Jul 21 05:59:51 EDT 2025
Tue Jul 01 02:01:03 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Pseudomonas aeruginosa
ivacaftor
inflammation
cystic fibrosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-db9c82f99beb41df91bac5c5d0388ed5c87da81455c21612d7fc46eba67572a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Present address: Institute of Technology Tallaght, Dublin, Ireland.
PMID 28222269
PQID 1910741769
PQPubID 40575
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5476912
proquest_miscellaneous_1870989041
proquest_journals_1910741769
pubmed_primary_28222269
crossref_citationtrail_10_1164_rccm_201609_1954OC
crossref_primary_10_1164_rccm_201609_1954OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-15
2017-Jun-15
20170615
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2017
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References Hisert KB (bib8) 2016; 51
bib14
bib15
bib12
bib13
bib10
bib11
Evaldson G (bib21) 1982; 35
bib25
bib23
bib24
bib22
bib20
bib9
Welsh MJ (bib1) 2001
bib7
bib5
bib18
bib6
bib19
bib3
bib16
bib4
bib17
bib2
22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72
25578031 - Sci Rep. 2015 Jan 12;5:7649
14555458 - Am J Respir Crit Care Med. 2003 Oct 15;168(8):918-51
27158673 - JCI Insight. 2016 Apr 7;1(4):e86183
26299432 - Cell Host Microbe. 2015 Sep 9;18(3):307-19
9878641 - N Engl J Med. 1999 Jan 7;340(1):23-30
26074007 - J Cyst Fibros. 2015 Sep;14 (5):621-6
25590983 - Am J Respir Crit Care Med. 2015 Apr 1;191(7):775-85
28617081 - Am J Respir Crit Care Med. 2017 Jun 15;195(12 ):1550-1552
24618508 - J Cyst Fibros. 2014 Sep;13(5):515-9
24927234 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):175-84
23540878 - Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9
6762655 - Scand J Infect Dis Suppl. 1982;35:9-15
21143983 - BMC Bioinformatics. 2010 Dec 10;11:595
26484315 - Front Cell Infect Microbiol. 2015 Oct 01;5:69
25474078 - Ann Am Thorac Soc. 2015 Feb;12(2):221-9
7168798 - Biometrics. 1982 Dec;38(4):963-74
25549030 - Ann Am Thorac Soc. 2014 Dec;11(10):1640-50
25853698 - PLoS One. 2015 Apr 08;10 (4):e0124124
16100015 - Am J Respir Crit Care Med. 2005 Nov 1;172(9):1128-32
23642644 - J Cyst Fibros. 2013 Dec;12(6):790-3
25425629 - Clin Infect Dis. 2015 Mar 1;60(5):703-12
27035067 - Am J Respir Cell Mol Biol. 2016 Apr;54(4):594-7
21083385 - N Engl J Med. 2010 Nov 18;363(21):1991-2003
References_xml – ident: bib10
  doi: 10.1172/jci.insight.86183
– start-page: 5121
  volume-title: The metabolic and molecular basis of inherited diseases
  year: 2001
  ident: bib1
– ident: bib4
  doi: 10.1056/NEJMoa0909825
– volume: 35
  start-page: 9
  year: 1982
  ident: bib21
  publication-title: Scand J Infect Dis Suppl
– ident: bib12
  doi: 10.1513/AnnalsATS.201404-166OC
– ident: bib23
  doi: 10.1016/j.jcf.2014.02.004
– ident: bib13
  doi: 10.1164/rccm.201207-1160OE
– ident: bib16
  doi: 10.1038/srep07649
– ident: bib22
  doi: 10.1164/rccm.200407-989OC
– ident: bib17
  doi: 10.1016/j.chom.2015.07.006
– ident: bib11
  doi: 10.1165/rcmb.2015-0322LE
– ident: bib2
  doi: 10.1164/rccm.200304-505SO
– ident: bib14
  doi: 10.1186/1471-2105-11-595
– ident: bib25
  doi: 10.1016/j.jcf.2015.05.009
– ident: bib3
  doi: 10.1056/NEJMoa1105185
– volume: 51
  start-page: 299
  year: 2016
  ident: bib8
  publication-title: Pediatr Pulmonol
– ident: bib7
  doi: 10.1093/cid/ciu944
– ident: bib24
  doi: 10.1056/NEJM199901073400104
– ident: bib19
  doi: 10.3389/fcimb.2015.00069
– ident: bib6
  doi: 10.1371/journal.pone.0124124
– ident: bib15
  doi: 10.1016/j.jcf.2013.04.003
– ident: bib5
  doi: 10.1164/rccm.201404-0703OC
– ident: bib20
  doi: 10.1513/AnnalsATS.201407-310OC
– ident: bib9
  doi: 10.2307/2529876
– ident: bib18
  doi: 10.1164/rccm.201409-1646OC
– reference: 25425629 - Clin Infect Dis. 2015 Mar 1;60(5):703-12
– reference: 24927234 - Am J Respir Crit Care Med. 2014 Jul 15;190(2):175-84
– reference: 26299432 - Cell Host Microbe. 2015 Sep 9;18(3):307-19
– reference: 27035067 - Am J Respir Cell Mol Biol. 2016 Apr;54(4):594-7
– reference: 23540878 - Am J Respir Crit Care Med. 2013 Apr 1;187(7):680-9
– reference: 14555458 - Am J Respir Crit Care Med. 2003 Oct 15;168(8):918-51
– reference: 7168798 - Biometrics. 1982 Dec;38(4):963-74
– reference: 6762655 - Scand J Infect Dis Suppl. 1982;35:9-15
– reference: 25549030 - Ann Am Thorac Soc. 2014 Dec;11(10):1640-50
– reference: 9878641 - N Engl J Med. 1999 Jan 7;340(1):23-30
– reference: 16100015 - Am J Respir Crit Care Med. 2005 Nov 1;172(9):1128-32
– reference: 27158673 - JCI Insight. 2016 Apr 7;1(4):e86183
– reference: 25853698 - PLoS One. 2015 Apr 08;10 (4):e0124124
– reference: 22047557 - N Engl J Med. 2011 Nov 3;365(18):1663-72
– reference: 26074007 - J Cyst Fibros. 2015 Sep;14 (5):621-6
– reference: 24618508 - J Cyst Fibros. 2014 Sep;13(5):515-9
– reference: 25590983 - Am J Respir Crit Care Med. 2015 Apr 1;191(7):775-85
– reference: 26484315 - Front Cell Infect Microbiol. 2015 Oct 01;5:69
– reference: 25474078 - Ann Am Thorac Soc. 2015 Feb;12(2):221-9
– reference: 23642644 - J Cyst Fibros. 2013 Dec;12(6):790-3
– reference: 25578031 - Sci Rep. 2015 Jan 12;5:7649
– reference: 28617081 - Am J Respir Crit Care Med. 2017 Jun 15;195(12 ):1550-1552
– reference: 21143983 - BMC Bioinformatics. 2010 Dec 10;11:595
– reference: 21083385 - N Engl J Med. 2010 Nov 18;363(21):1991-2003
SSID ssj0012810
Score 2.6450348
Snippet Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic...
Abstract Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in...
RATIONALEPrevious work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with...
Rationale: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1617
SubjectTerms Adult
Aminophenols - therapeutic use
Bacteria
Chloride Channel Agonists - therapeutic use
Clinical medicine
Cystic fibrosis
Cystic Fibrosis - diagnostic imaging
Cystic Fibrosis - drug therapy
Cystic Fibrosis - metabolism
Cystic Fibrosis Transmembrane Conductance Regulator - drug effects
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Cysts
Female
Humans
Infections
Inflammation
Inflammation - metabolism
Inflammation - prevention & control
Lung - diagnostic imaging
Lung - metabolism
Lung diseases
Male
Mutation
Original
Pathogenesis
Quinolones - therapeutic use
Respiratory Tract Infections - metabolism
Respiratory Tract Infections - prevention & control
Sputum - drug effects
Sputum - metabolism
Tomography
Tomography, X-Ray Computed
Title Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/28222269
https://www.proquest.com/docview/1910741769
https://www.proquest.com/docview/1870989041
https://pubmed.ncbi.nlm.nih.gov/PMC5476912
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtAqWXkj6zTRpU6K2Y-CFZ0qkkJktamjQsDezN6GW60MjJekPJX-qv7IzldbsN5GKDJSHDN9LMaEbfEPIhFU1uhNCJ4KwEB8WaxGhjEzBFGsVdI1KJl5PPzsvTS_ZlzufDgVs3pFWu98R-o3atxTPyQ_ArUPuJUn26vkmwahRGV4cSGo_JNlKXYUqXmI8OFwaJIhuBKBLG1Hx9aaZkh0tr8R56VmI1AMXZt2pTMd2zNv9PmvxHC013yLPBfKRHEe_n5JEPL8iTsyFA_pL8nvWVYkAf0eoOKZjpFPzhtlt0tNdKV_4K3OPgadUGZHpFzOks1qNvl3QKWg6Rgk_Q6jt6tFj-0nf0OHI6a6qDo59DA2IUrzzSRaAXfRI6xRPde5Ni_4F_l36FfQUH98lfoXtFLqcn36vTZCjHkNhClqvEGWVl3ihlvGGZa1RmtOWWOySU8Y5bKZyWSHxuc7Ajcycay0pvNPgkItdp8ZpshTb4XUK9lWnBTO4ky-BVaMlALnwmnW681GJCsjUWtR24yrFkxs-691lKViN-dcSvjvhNyMdxzHVk6niw9_4a4npYtV39V8Ym5P3YDOsNgyiATXsLfWCDU1KlLJuQN1EixukwJRfMWRgtNmRl7IBc3pstYfGj5_TmDGbN8rcP_9YeeZqjWYG1k_g-2Votb_07MIpW5qCXfHjKKjsg28cn5xezP6aHEpc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVIJeEG8CBRYJTsiqvV571weE2tAooUmoolbKzezLNBK1S5yqyl_iwG9kxo9AqNRbT5ayu95I8-08vDPfEPLOFxnTQihPRDyGAMVoTyttPHBFsiSymfAlFiePJ_HglH-ZRbMt8ruthcG0ylYnVoraFga_ke9BXIHWT8TJp4ufHnaNwtvVtoVGDYsjt7qCkK38OPwM8n3PWP_wpDfwmq4CngllvPSsToxkWZJop3lgsyTQykQmssiL4mxkpLBKIn-3YeAOMSsyw2OnFbjWgik_hPfeIds8hFCmQ7YPDifH0_W9BZMN_4EIPc6TWVumE_O9hTFY-R7E2H8gifjX3qYpvObf_p-m-Y_d6z8g9xuHle7XCHtItlz-iNwdN1fyj8mvadWbBiwg7a2Q9Jn2IQIvynlJKzt47s4hIM8d7RU5cssiyujUfce2YcWC9sGuIjbgJxh1Jd2fL67Uih7ULNKKqtzSYZ4BcOsiSzrP6XGV9k7xG_K1TXF-w_hLR6DJcHGVbpaXT8jprYjqKenkRe6eE-qM9EOumZU8gEeoJAckukBalTmpRJcErSxS07CjY5OOH2kVJcU8RfmltfzSWn5d8mG95qLmBrlx9m4r4rTRE2X6F9Vd8nY9DCccr21ANsUlzAGVmsjE50GXPKsRsd4Ok4DBgYbVYgMr6wnIHr45ks_PKhbxiMOuAXtx8996Q-4NTsajdDScHL0kOwydGuzcFO2SznJx6V6BS7bUr5tzQMm32z56fwCMG09v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiHe3FDASnFC0m8SO7QNCZUvUpQ-qikp7C34FVqJJu9mq2r_ET-DXMZMXLJV66ylSbMeR5m3PfEPIm5HIIyOEDgRnCQQo1gRGGxuAK5Ir7nIxklicfHiU7J2yz1M-XSO_u1oYTKvsdGKtqF1p8Yx8CHEFWj-RqGHepkUc76Yfzi8C7CCFN61dO42GRfb98grCt-r9ZBdo_TaK0k9fx3tB22EgsLFMFoEzysooV8p4w0KXq9Boyy13iJHiHbdSOC0Ry9tG4BpFTuSWJd5ocLNFpEcxfPcOuStiHqKMiWkf7OEFVYOEIOKAMTXtCnYSNpxbizXwYYKdCBRnX8arRvGap_t_wuY_FjB9QO63rivdaXjtIVnzxSOycdhezj8mv07qLjVgC-l4ifDPNIVYvKxmFa0t4pk_g9C88HRcFogyi_xGT_x3bCBWzmkKFha5BF7BqK_ozmx-pZf0Y4MnrakuHJ0UObBwU25JZwU9rhPgKZ4mX9sU57fYv_QAdBourhPPiuoJOb0VQj0l60VZ-E1CvZWjmJnISRbCI9aSAU_6UDqde6nFgIQdLTLb4qRju46fWR0vJSxD-mUN_bKGfgPyrl9z3qCE3Dh7uyNx1mqMKvvL3wPyuh8GWccLHKBNeQlzQLkqqUYsHJBnDUf022E6MLjSsFqs8Eo_AXHEV0eK2Y8aT5wz2DWMtm7-rVdkAwQuO5gc7T8n9yL0brCFE98m64v5pX8BvtnCvKyFgJJvty11fwAoylI_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+Cystic+Fibrosis+Transmembrane+Conductance+Regulator+Function+Reduces+Airway+Bacteria+and+Inflammation+in+People+with+Cystic+Fibrosis+and+Chronic+Lung+Infections&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Hisert%2C+Katherine+B&rft.au=Heltshe%2C+Sonya+L&rft.au=Pope%2C+Christopher&rft.au=Jorth%2C+Peter&rft.date=2017-06-15&rft.eissn=1535-4970&rft.volume=195&rft.issue=12&rft.spage=1617&rft.epage=1628&rft_id=info:doi/10.1164%2Frccm.201609-1954OC&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon