Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids
Quantitative predictions of the behavior of many deterministic systems are uncertain due to ubiquitous heterogeneity and insufficient characterization by data. We present a computational approach to quantify predictive uncertainty in complex phenomena, which is modeled by (partial) differential equa...
Saved in:
Published in | Journal of computational physics Vol. 229; no. 19; pp. 6995 - 7012 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Inc
20.09.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1016/j.jcp.2010.05.036 |
Cover
Summary: | Quantitative predictions of the behavior of many deterministic systems are uncertain due to ubiquitous heterogeneity and insufficient characterization by data. We present a computational approach to quantify predictive uncertainty in complex phenomena, which is modeled by (partial) differential equations with uncertain parameters exhibiting multi-scale variability. The approach is motivated by flow in random composites whose internal architecture (spatial arrangement of constitutive materials) and spatial variability of properties of each material are both uncertain. The proposed two-scale framework combines a random domain decomposition (RDD) and a probabilistic collocation method (PCM) on sparse grids to quantify these two sources of uncertainty, respectively. The use of sparse grid points significantly reduces the overall computational cost, especially for random processes with small correlation lengths. A series of one-, two-, and three-dimensional computational examples demonstrate that the combined RDD–PCM approach yields efficient, robust and non-intrusive approximations for the statistics of diffusion in random composites. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 USDOE AC05-76RL01830 PNNL-SA-67919 |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2010.05.036 |