Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network
Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethy...
Saved in:
Published in | Composites science and technology Vol. 184; p. 107863 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
10.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0266-3538 1879-1050 |
DOI | 10.1016/j.compscitech.2019.107863 |
Cover
Loading…
Abstract | Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethylene oxide/lithium chlorate (PEO/LiClO4) was in-situ formed inside the 3D porous Li6.28La3Zr2Al0.24O12 (LLZAO) network by simply using a cleanroom wiper as the template. The obtained 3D LLZAO-PEO/LiClO4 composite solid electrolyte exhibited a high ionic conductivity of 2.25 × 10−5 S cm−1 at 30 °C, being 30.7 times higher than that of pristine PEO/LiClO4 electrolyte. The improved ionic conductivity was attributed to the 3D porous LLZAO structure with continuous fast ion transport pathways. In addition, the 3D LLZAO network can effectively inhibited the growth of lithium dendrite, leading to excellent stability and desirable safety during lithium stripping/plating cycling. Furthermore, the all-solid-state LiFePO4/Li battery system based on the obtained 3D LLZAO-PEO/LiClO4 electrolyte showed a high initial discharge specific capacity of 143.8 mAh·g−1 and a high capacity retention of 86% after 200 cycles at 60 °C. This 3D composite solid electrolyte design is very effective in reducing the interfacial impedance and provides a solution for the further development of high-performance solid electrolyte for all-solid-state rechargeable batteries. |
---|---|
AbstractList | Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethylene oxide/lithium chlorate (PEO/LiClO4) was in-situ formed inside the 3D porous Li6.28La3Zr2Al0.24O12 (LLZAO) network by simply using a cleanroom wiper as the template. The obtained 3D LLZAO-PEO/LiClO4 composite solid electrolyte exhibited a high ionic conductivity of 2.25 × 10−5 S cm−1 at 30 °C, being 30.7 times higher than that of pristine PEO/LiClO4 electrolyte. The improved ionic conductivity was attributed to the 3D porous LLZAO structure with continuous fast ion transport pathways. In addition, the 3D LLZAO network can effectively inhibited the growth of lithium dendrite, leading to excellent stability and desirable safety during lithium stripping/plating cycling. Furthermore, the all-solid-state LiFePO4/Li battery system based on the obtained 3D LLZAO-PEO/LiClO4 electrolyte showed a high initial discharge specific capacity of 143.8 mAh·g−1 and a high capacity retention of 86% after 200 cycles at 60 °C. This 3D composite solid electrolyte design is very effective in reducing the interfacial impedance and provides a solution for the further development of high-performance solid electrolyte for all-solid-state rechargeable batteries. |
ArticleNumber | 107863 |
Author | Fu, Xuelian Lu, Zhouguang Gong, Weiping Yang, Mingyang Liao, Chengzhu Tjong, Sie Chin Li, Yuchao Li, Robert Kwok Yiu |
Author_xml | – sequence: 1 givenname: Xuelian surname: Fu fullname: Fu, Xuelian organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China – sequence: 2 givenname: Yuchao surname: Li fullname: Li, Yuchao email: liyuchao@lcu.edu.cn organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China – sequence: 3 givenname: Chengzhu surname: Liao fullname: Liao, Chengzhu email: liaocz@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China – sequence: 4 givenname: Weiping surname: Gong fullname: Gong, Weiping organization: Laboratory of Electronic Functional Materials, Huizhou University, Huizhou, 516001, China – sequence: 5 givenname: Mingyang surname: Yang fullname: Yang, Mingyang organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China – sequence: 6 givenname: Robert Kwok Yiu surname: Li fullname: Li, Robert Kwok Yiu organization: Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Town, Hong Kong SAR, China – sequence: 7 givenname: Sie Chin surname: Tjong fullname: Tjong, Sie Chin organization: Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Town, Hong Kong SAR, China – sequence: 8 givenname: Zhouguang surname: Lu fullname: Lu, Zhouguang email: luzg@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China |
BookMark | eNqNkc1uGyEURlGVSnXSvgNV1zOBiweGVRW57o80krtoN90gCndk3PEwBdwob18sJ1LVVVZX4p7vQxyuydUcZyTkLWctZ1zeHloXj0t2oaDbt8C4rueql-IFWfFe6Yazjl2RFQMpG9GJ_hW5zvnAGFOdhhUp23lvZ4ee4oSupOj2eAzOTnTBNMZ0PC9pHGmOU_D063Z3O4TNtFs_8dNDwUzvQ9lTS8UHusQUT5kOQbbQD1b8SHA3sRbWOw50xnIf06_X5OVop4xvHucN-f5x-23zuRl2n75s7obGiV6WxvXCaVufqTrglivU3sqfyjtcs1EoGIX0ijPvJHq_dhbsCBK04L53oG0nbsi7S--S4u8T5mIO8ZTmeqUBAVoBMOCV0hfKpZhzwtEsKRxtejCcmbNkczD_SDZnyeYiuWbf_5etkC0hziXZMD2rYXNpwCriT8BkKoXnHwmpCjY-hme0_AUoWaHO |
CitedBy_id | crossref_primary_10_1021_acsaem_3c01472 crossref_primary_10_1149_1945_7111_ac0944 crossref_primary_10_1080_15583724_2024_2365782 crossref_primary_10_1149_1945_7111_ac384d crossref_primary_10_1002_eng2_12448 crossref_primary_10_1021_acsami_4c09099 crossref_primary_10_1016_j_jallcom_2022_167077 crossref_primary_10_1016_j_memsci_2023_121552 crossref_primary_10_1007_s11581_024_05641_y crossref_primary_10_1016_j_matchemphys_2021_124701 crossref_primary_10_1002_asia_202200929 crossref_primary_10_1016_j_indcrop_2023_116426 crossref_primary_10_1039_D4CS00214H crossref_primary_10_1016_j_ijoes_2023_100202 crossref_primary_10_1021_acsami_2c16402 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1007_s41918_024_00230_z crossref_primary_10_1016_j_cej_2024_153874 crossref_primary_10_1039_D2CC02306G crossref_primary_10_1111_ijac_14523 crossref_primary_10_1016_j_ensm_2023_03_008 crossref_primary_10_3390_ma17174344 crossref_primary_10_1002_cnma_202100262 crossref_primary_10_1007_s41918_020_00076_1 crossref_primary_10_1016_j_ensm_2021_06_030 crossref_primary_10_1016_j_jallcom_2025_179686 crossref_primary_10_1016_j_cej_2021_131948 crossref_primary_10_1016_j_cej_2020_124993 crossref_primary_10_1002_aenm_202303527 crossref_primary_10_1021_acsami_9b20104 crossref_primary_10_1016_j_electacta_2022_141155 crossref_primary_10_3390_ma17010239 crossref_primary_10_1021_acs_nanolett_0c02457 crossref_primary_10_1016_j_ceramint_2023_06_153 crossref_primary_10_1016_j_ensm_2021_01_002 crossref_primary_10_1002_adma_202310245 crossref_primary_10_1039_D3QM00736G crossref_primary_10_3390_ma14133585 crossref_primary_10_1002_asia_202200839 crossref_primary_10_1016_j_jechem_2020_03_017 crossref_primary_10_1016_j_jpowsour_2024_236027 crossref_primary_10_1016_j_mtcomm_2022_103597 crossref_primary_10_3390_nano12152680 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1016_j_memsci_2021_119432 crossref_primary_10_1002_aenm_202003154 |
Cites_doi | 10.1038/natrevmats.2016.103 10.1073/pnas.1600422113 10.1039/C7TA04320A 10.1016/S0167-2738(01)00688-9 10.1073/pnas.1708489114 10.1021/acs.jpcc.5b03589 10.1039/C7TA10517G 10.1038/s41560-017-0047-2 10.1002/aenm.201703474 10.1002/adma.201707132 10.1016/j.ensm.2018.03.016 10.1021/acsami.7b18123 10.1016/j.nanoen.2017.12.037 10.1149/1.1393423 10.1016/j.ssi.2016.04.014 10.1016/j.jpowsour.2018.07.005 10.1016/j.jpowsour.2005.10.104 10.1016/j.mattod.2018.01.001 10.1016/j.jpowsour.2011.05.065 10.1021/jacs.7b06364 10.1016/j.nanoen.2018.01.028 10.1016/j.compscitech.2019.02.030 10.1021/acs.jpcc.8b02556 10.1021/ma052277v 10.1039/C6TA10066J 10.1021/acsami.7b03806 10.1016/j.electacta.2017.08.162 10.1021/acsami.8b17279 10.1002/aenm.201501082 10.1002/adma.200401286 10.1016/j.jpowsour.2018.05.006 10.1039/C9TA00560A 10.1002/anie.201710841 10.1016/j.chempr.2018.12.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 10, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 10, 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1016/j.compscitech.2019.107863 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-1050 |
ExternalDocumentID | 10_1016_j_compscitech_2019_107863 S0266353819312813 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABMAC ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS SSH T9H VH1 WUQ 7SR 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c386t-c83c9a1017521a17e9da6b7dce40f372f36d710dc6edd4ca2af262931d8c29a53 |
IEDL.DBID | .~1 |
ISSN | 0266-3538 |
IngestDate | Sun Jul 13 05:01:55 EDT 2025 Tue Jul 01 02:20:26 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Tue Dec 03 03:45:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium battery Templating method 3D porous network Solid-state electrolyte Polyethylene oxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-c83c9a1017521a17e9da6b7dce40f372f36d710dc6edd4ca2af262931d8c29a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2329722021 |
PQPubID | 2045270 |
ParticipantIDs | proquest_journals_2329722021 crossref_primary_10_1016_j_compscitech_2019_107863 crossref_citationtrail_10_1016_j_compscitech_2019_107863 elsevier_sciencedirect_doi_10_1016_j_compscitech_2019_107863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-10 |
PublicationDateYYYYMMDD | 2019-11-10 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Composites science and technology |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yang, Gordon, Li, Chan (bib5) 2015; 119 Zhu, Yan, Dirican, Zhu, Zang, Selvan, Chung, Jia, Li, Kiyak, Wu, Zhang (bib4) 2018; 6 Albertus, Babinec, Litzelman, Newman (bib1) 2017; 3 Mizuno, Hayashi, Tadanaga, Tatsumisago (bib6) 2005; 17 McOwen, Xu, Gong, Wen, Godbey, Gritton, Hamann, Dai, Hitz, Hu, Wachsman (bib17) 2018; 30 Gong, Fu, Xu, Dai, Hamann, Zhang, Hitz, Fu, Ma, McOwen, Han, Hu, Wachsman (bib19) 2018; 21 Yang, Zheng, Cheng, Hu, Chan (bib9) 2017; 9 Zhang, Liu, Zhang, Huang, Xu, Lin, Xu, Li, Nan, Shen (bib10) 2017; 139 He, Chen, Zhang, Liu, Fan (bib28) 2018; 392 Fu, Gong, Dai, Gong, Han, Yao, Wang, Wang, Chen, Yan, Li, Wachsman, Hu (bib16) 2016; 113 Li, Huang, Zhu, Wu, Yang, Wei, Guo (bib14) 2019; 11 Scrosati, Croce, Persi (bib29) 2000; 147 Zha, Chen, Yang, Shen, Zhang (bib26) 2018; 397 Langer, Bardenhagen, Glenneberg, Kun (bib24) 2016; 291 Chen, Li, Li, Fan, Nan, Goodenough (bib33) 2018; 46 Bae, Li, Zhang, Zhou, Zhao, Shi, Goodenough, Yu (bib27) 2018; 57 Zhang, Zang, Wen, Dong, Chai, Li, Chen, Zhao, Dong, Ma, Yue, Liu, Guo, Cui, Chen (bib34) 2017; 5 Takada, Tansho, Yanase, Inada, Kajiyama, Kouguchi, Kondo, Watanabe (bib3) 2001; 139 Zhang, Nie, Li, Wang, Sun (bib31) 2018; 45 Cheng, Zhao, Yao, Liu, Zhang (bib2) 2019; 5 Zhang, Zhao, Yue, Wang, Chai, Liu, Zhou, Li, Guo, Cui, Chen (bib11) 2015; 5 Cheng, He, Liu, Zha, Kamruzzaman, Ma, Dang, Li, Chung (bib13) 2017; 253 He, Chen, Fan, Liu, Liao, Xu, Tang, Li (bib15) 2019; 175 Ban, Zhang, Chen, Sun (bib23) 2018; 122 Bae, Li, Zhao, Zhou, Ding, Yu (bib18) 2018; 15 Zhu, Cao, Chen, Yu, Li (bib30) 2019; 7 Zhang, Zhao, Chen, Xie, Yao, Cui, Xu (bib25) 2017; 5 Manthiram, Yu, Wang (bib7) 2017; 2 Jin, McGinn (bib21) 2011; 196 Zhao, Zhang, Cheng, Zhang, Xu, Chen, Peng, Huang, Zhang (bib32) 2017; 114 Wang, Pan, Kim (bib12) 2006; 159 Li, Chen, Wang, Fan (bib22) 2018; 10 Borodin, Smith (bib8) 2006; 39 Xie, Yang, Fu, Yao, Jiang, Hitz, Liu, Wang, Hu (bib20) 2018; 8 Bae (10.1016/j.compscitech.2019.107863_bib18) 2018; 15 Bae (10.1016/j.compscitech.2019.107863_bib27) 2018; 57 Fu (10.1016/j.compscitech.2019.107863_bib16) 2016; 113 He (10.1016/j.compscitech.2019.107863_bib28) 2018; 392 Chen (10.1016/j.compscitech.2019.107863_bib33) 2018; 46 Cheng (10.1016/j.compscitech.2019.107863_bib2) 2019; 5 Zhang (10.1016/j.compscitech.2019.107863_bib10) 2017; 139 Xie (10.1016/j.compscitech.2019.107863_bib20) 2018; 8 Zhu (10.1016/j.compscitech.2019.107863_bib30) 2019; 7 McOwen (10.1016/j.compscitech.2019.107863_bib17) 2018; 30 Manthiram (10.1016/j.compscitech.2019.107863_bib7) 2017; 2 Takada (10.1016/j.compscitech.2019.107863_bib3) 2001; 139 Yang (10.1016/j.compscitech.2019.107863_bib5) 2015; 119 Borodin (10.1016/j.compscitech.2019.107863_bib8) 2006; 39 Zhang (10.1016/j.compscitech.2019.107863_bib11) 2015; 5 Li (10.1016/j.compscitech.2019.107863_bib22) 2018; 10 He (10.1016/j.compscitech.2019.107863_bib15) 2019; 175 Ban (10.1016/j.compscitech.2019.107863_bib23) 2018; 122 Zhang (10.1016/j.compscitech.2019.107863_bib31) 2018; 45 Zhang (10.1016/j.compscitech.2019.107863_bib34) 2017; 5 Zhang (10.1016/j.compscitech.2019.107863_bib25) 2017; 5 Gong (10.1016/j.compscitech.2019.107863_bib19) 2018; 21 Jin (10.1016/j.compscitech.2019.107863_bib21) 2011; 196 Scrosati (10.1016/j.compscitech.2019.107863_bib29) 2000; 147 Cheng (10.1016/j.compscitech.2019.107863_bib13) 2017; 253 Zha (10.1016/j.compscitech.2019.107863_bib26) 2018; 397 Zhao (10.1016/j.compscitech.2019.107863_bib32) 2017; 114 Mizuno (10.1016/j.compscitech.2019.107863_bib6) 2005; 17 Yang (10.1016/j.compscitech.2019.107863_bib9) 2017; 9 Langer (10.1016/j.compscitech.2019.107863_bib24) 2016; 291 Li (10.1016/j.compscitech.2019.107863_bib14) 2019; 11 Albertus (10.1016/j.compscitech.2019.107863_bib1) 2017; 3 Zhu (10.1016/j.compscitech.2019.107863_bib4) 2018; 6 Wang (10.1016/j.compscitech.2019.107863_bib12) 2006; 159 |
References_xml | – volume: 253 start-page: 430 year: 2017 end-page: 438 ident: bib13 article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO publication-title: Electrochim. Acta – volume: 15 start-page: 46 year: 2018 end-page: 52 ident: bib18 article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries publication-title: Energy Storage Mater – volume: 9 start-page: 21773 year: 2017 end-page: 21780 ident: bib9 article-title: Composite polymer electrolytes with Li publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 ident: bib11 article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries publication-title: Adv. Energy Mater. – volume: 114 start-page: 11069 year: 2017 end-page: 11074 ident: bib32 article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 175 start-page: 28 year: 2019 end-page: 34 ident: bib15 article-title: Polyethylene oxide/garnet-type Li publication-title: Compos. Sci. Technol. – volume: 39 start-page: 1620 year: 2006 end-page: 1629 ident: bib8 article-title: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations publication-title: Macromolecules – volume: 30 start-page: 1707132 year: 2018 ident: bib17 article-title: 3D-printing electrolytes for solid-state batteries publication-title: Adv. Mater. – volume: 5 start-page: 4940 year: 2017 end-page: 4948 ident: bib34 article-title: High-voltage and free-standing poly(propylene carbonate)/Li publication-title: J. Mater. Chem. – volume: 113 start-page: 7094 year: 2016 end-page: 7099 ident: bib16 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 10 start-page: 7069 year: 2018 end-page: 7078 ident: bib22 article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 16 year: 2017 end-page: 21 ident: bib1 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy – volume: 139 start-page: 241 year: 2001 end-page: 247 ident: bib3 article-title: Lithium ion conduction in LiTi publication-title: Solid State Ion. – volume: 57 start-page: 2096 year: 2018 end-page: 2100 ident: bib27 article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte publication-title: Angew. Chem., Int. Ed. Engl. – volume: 5 start-page: 74 year: 2019 end-page: 96 ident: bib2 article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes publication-title: Chem – volume: 196 start-page: 8683 year: 2011 end-page: 8687 ident: bib21 article-title: Al-doped Li publication-title: J. Power Sources – volume: 5 start-page: 16984 year: 2017 end-page: 16993 ident: bib25 article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life publication-title: J. Mater. Chem. – volume: 159 start-page: 690 year: 2006 end-page: 701 ident: bib12 article-title: Conductivity studies on ceramic Li publication-title: J. Power Sources – volume: 392 start-page: 232 year: 2018 end-page: 238 ident: bib28 article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries publication-title: J. Power Sources – volume: 397 start-page: 87 year: 2018 end-page: 94 ident: bib26 article-title: High-performance Li publication-title: J. Power Sources – volume: 2 year: 2017 ident: bib7 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. – volume: 6 start-page: 4279 year: 2018 end-page: 4285 ident: bib4 article-title: Li publication-title: J. Mater. Chem. – volume: 11 start-page: 784 year: 2019 end-page: 791 ident: bib14 article-title: Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites publication-title: ACS Appl. Mater. Interfaces – volume: 291 start-page: 8 year: 2016 end-page: 13 ident: bib24 article-title: Microstructure and temperature dependent lithium ion transport of ceramic-polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li publication-title: Solid State Ion. – volume: 122 start-page: 9852 year: 2018 end-page: 9858 ident: bib23 article-title: A high-Performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery publication-title: J. Phys. Chem. C – volume: 46 start-page: 176 year: 2018 end-page: 184 ident: bib33 article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic” publication-title: Nano Energy – volume: 139 start-page: 13779 year: 2017 end-page: 13785 ident: bib10 article-title: Synergistic coupling between Li publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 594 year: 2018 end-page: 601 ident: bib19 article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries publication-title: Mater. Today – volume: 147 start-page: 1718 year: 2000 end-page: 1721 ident: bib29 article-title: Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes publication-title: J. Electrochem. Soc. – volume: 8 year: 2018 ident: bib20 article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose publication-title: Adv. Energy Mater. – volume: 7 start-page: 6832 year: 2019 end-page: 6839 ident: bib30 article-title: High electrochemical stability of a 3D cross-linked network PEO@nano-SiO publication-title: J. Mater. Chem. – volume: 119 start-page: 14947 year: 2015 end-page: 14953 ident: bib5 article-title: Nanostructured garnet-type solid electrolytes for lithium batteries: electrospinning synthesis of Li publication-title: J. Phys. Chem. C – volume: 45 start-page: 413 year: 2018 end-page: 419 ident: bib31 article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane publication-title: Nano Energy – volume: 17 start-page: 918 year: 2005 end-page: 921 ident: bib6 article-title: New, highly ion‐conductive crystals precipitated from Li publication-title: Adv. Mater. – volume: 2 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib7 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 113 start-page: 7094 year: 2016 ident: 10.1016/j.compscitech.2019.107863_bib16 article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1600422113 – volume: 5 start-page: 16984 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib25 article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life publication-title: J. Mater. Chem. doi: 10.1039/C7TA04320A – volume: 139 start-page: 241 year: 2001 ident: 10.1016/j.compscitech.2019.107863_bib3 article-title: Lithium ion conduction in LiTi2(PO4)3 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(01)00688-9 – volume: 114 start-page: 11069 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib32 article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1708489114 – volume: 119 start-page: 14947 year: 2015 ident: 10.1016/j.compscitech.2019.107863_bib5 article-title: Nanostructured garnet-type solid electrolytes for lithium batteries: electrospinning synthesis of Li7La3Zr2O12 nanowires and particle size-dependent phase transformation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03589 – volume: 6 start-page: 4279 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib4 article-title: Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries publication-title: J. Mater. Chem. doi: 10.1039/C7TA10517G – volume: 3 start-page: 16 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib1 article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries publication-title: Nat. Energy doi: 10.1038/s41560-017-0047-2 – volume: 8 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib20 article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703474 – volume: 30 start-page: 1707132 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib17 article-title: 3D-printing electrolytes for solid-state batteries publication-title: Adv. Mater. doi: 10.1002/adma.201707132 – volume: 15 start-page: 46 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib18 article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.03.016 – volume: 10 start-page: 7069 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib22 article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18123 – volume: 46 start-page: 176 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib33 article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic” publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.037 – volume: 147 start-page: 1718 year: 2000 ident: 10.1016/j.compscitech.2019.107863_bib29 article-title: Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393423 – volume: 291 start-page: 8 year: 2016 ident: 10.1016/j.compscitech.2019.107863_bib24 article-title: Microstructure and temperature dependent lithium ion transport of ceramic-polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7La3Zr2O12 publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.04.014 – volume: 397 start-page: 87 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib26 article-title: High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.005 – volume: 159 start-page: 690 year: 2006 ident: 10.1016/j.compscitech.2019.107863_bib12 article-title: Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.10.104 – volume: 21 start-page: 594 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib19 article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.001 – volume: 196 start-page: 8683 year: 2011 ident: 10.1016/j.compscitech.2019.107863_bib21 article-title: Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.065 – volume: 139 start-page: 13779 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib10 article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06364 – volume: 45 start-page: 413 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib31 article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.028 – volume: 175 start-page: 28 year: 2019 ident: 10.1016/j.compscitech.2019.107863_bib15 article-title: Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.02.030 – volume: 122 start-page: 9852 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib23 article-title: A high-Performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02556 – volume: 39 start-page: 1620 year: 2006 ident: 10.1016/j.compscitech.2019.107863_bib8 article-title: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations publication-title: Macromolecules doi: 10.1021/ma052277v – volume: 5 start-page: 4940 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib34 article-title: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery publication-title: J. Mater. Chem. doi: 10.1039/C6TA10066J – volume: 9 start-page: 21773 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib9 article-title: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03806 – volume: 253 start-page: 430 year: 2017 ident: 10.1016/j.compscitech.2019.107863_bib13 article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.162 – volume: 11 start-page: 784 year: 2019 ident: 10.1016/j.compscitech.2019.107863_bib14 article-title: Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17279 – volume: 5 year: 2015 ident: 10.1016/j.compscitech.2019.107863_bib11 article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501082 – volume: 17 start-page: 918 year: 2005 ident: 10.1016/j.compscitech.2019.107863_bib6 article-title: New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses publication-title: Adv. Mater. doi: 10.1002/adma.200401286 – volume: 392 start-page: 232 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib28 article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.05.006 – volume: 7 start-page: 6832 year: 2019 ident: 10.1016/j.compscitech.2019.107863_bib30 article-title: High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries publication-title: J. Mater. Chem. doi: 10.1039/C9TA00560A – volume: 57 start-page: 2096 year: 2018 ident: 10.1016/j.compscitech.2019.107863_bib27 article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201710841 – volume: 5 start-page: 74 year: 2019 ident: 10.1016/j.compscitech.2019.107863_bib2 article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes publication-title: Chem doi: 10.1016/j.chempr.2018.12.002 |
SSID | ssj0007592 |
Score | 2.4983895 |
Snippet | Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107863 |
SubjectTerms | 3D porous network Batteries Cleanrooms Conductivity Dendritic structure Electrochemical analysis Electrolytes Impedance Ion currents Ion transport Lithium Lithium battery Molten salt electrolytes Polyethylene Polyethylene oxide Product safety Rechargeable batteries Solid electrolytes Solid state Solid-state electrolyte Templating method Three dimensional composites |
Title | Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network |
URI | https://dx.doi.org/10.1016/j.compscitech.2019.107863 https://www.proquest.com/docview/2329722021 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxQxFH6UFvxxKFoVa2uJ4DX7I8lkEvCybLesunYFLRQvIZNk6Mgyu3S3h176t_syk3GrIBQ8TkjCMC9578vke98DeM-0s-h6A82KoaYiyzVVhbfUchswPkpty5go_OVcTi_Ep8vscgfGXS5MpFUm39_69MZbp5Z--pr9VVX1v-HpAaNlPHHweB0UFT-FyKN-fu9uS_PIs6YwcuxMY-9H8G7L8Yq0bZw7yqVGlpfG9lxJ_q8Y9Ze3bkLQ2TPYT9iRjNrXew47oT6Ax11q8foAnt5TF3wBm0l91dzvk1TrxiVxALLaZguQZUlw-VWefJ3M-7NqvJiLrv_iFnEoiX9qiSX8lCBUX96syaySPaZmlv-4ZqPFoMfEfMhI3fLJX8LF2eT7eEpTkQXquJIb6hR32saNiYHcDvOgvZVF7l0Qg5LnrOTSIwrxTgbvhbPMlkwiRhh65Zi2GX8Fu_WyDq-BqOAFnlYy3NOZKDOL2MspKwot2YCjrzgE1X1W45ICeSyEsTAd1eynuWcREy1iWoscAvs9dNXKcDxk0IfOduaPNWUwXDxk-HFnb5M29togANU5Y4iM3vzf7EfwJD7RhlF4DLub65vwFvHNpjhpFvAJ7I0-fp6e_wIHL_pV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9qBasPotVitWoEX3Mf-doEfCnnlVO3PcEWii8hm-ziyrF39K4Pvvi3O9nNelUQCr7miyUzmfll85sZgLfMeIemt6SyGBsqZGaoLoKjjrsS_aMyroqBwqdnanYhPl7Kyx2Y9LEwkVaZbH9n01trnVqGaTeHq7oefsHbA3rLeOPg8TmI34G7QvIsqvbg55bnkcm2MnIcTePwe_BmS_KKvG1cPOZLjTQvg-2ZVvxfTuovc936oJNH8DCBR3Lcfd9j2CmbfdjrY4vX-_DgRnrBJ7CZNt_aB36Sit34lB2ArLbhAmRZEdS_OpDP0_kwryeLuejHL34gECXxVy1xhL8niNWX12uS12rAdO741yt2vBgNmJiPGWk6QvlTuDiZnk9mNFVZoJ5rtaFec29cPJnoyd04K01wqsiCL8Wo4hmruAoIQ4JXZQjCO-YqphAkjIP2zDjJD2C3WTblMyC6DAKvKxIPtRSVdAi-vHaiMIqNOBqLQ9D9tlqfUpDHShgL23PNvtsbErFRIraTyCGw31NXXR6O20x618vO_qFUFv3FbaYf9fK26WSvLSJQkzGG0Oj5_63-GvZm56e5zT-cfXoB92MPbemFR7C7ubouXyLY2RSvWmX-Bc8C--s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+solid+PEO%2FLiClO4+electrolytes+with+a+3D+porous+Li6.28La3Zr2Al0.24O12+network&rft.jtitle=Composites+science+and+technology&rft.au=Fu%2C+Xuelian&rft.au=Li%2C+Yuchao&rft.au=Liao%2C+Chengzhu&rft.au=Gong%2C+Weiping&rft.date=2019-11-10&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2019.107863&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |