Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network

Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethy...

Full description

Saved in:
Bibliographic Details
Published inComposites science and technology Vol. 184; p. 107863
Main Authors Fu, Xuelian, Li, Yuchao, Liao, Chengzhu, Gong, Weiping, Yang, Mingyang, Li, Robert Kwok Yiu, Tjong, Sie Chin, Lu, Zhouguang
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 10.11.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0266-3538
1879-1050
DOI10.1016/j.compscitech.2019.107863

Cover

Loading…
Abstract Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethylene oxide/lithium chlorate (PEO/LiClO4) was in-situ formed inside the 3D porous Li6.28La3Zr2Al0.24O12 (LLZAO) network by simply using a cleanroom wiper as the template. The obtained 3D LLZAO-PEO/LiClO4 composite solid electrolyte exhibited a high ionic conductivity of 2.25 × 10−5 S cm−1 at 30 °C, being 30.7 times higher than that of pristine PEO/LiClO4 electrolyte. The improved ionic conductivity was attributed to the 3D porous LLZAO structure with continuous fast ion transport pathways. In addition, the 3D LLZAO network can effectively inhibited the growth of lithium dendrite, leading to excellent stability and desirable safety during lithium stripping/plating cycling. Furthermore, the all-solid-state LiFePO4/Li battery system based on the obtained 3D LLZAO-PEO/LiClO4 electrolyte showed a high initial discharge specific capacity of 143.8 mAh·g−1 and a high capacity retention of 86% after 200 cycles at 60 °C. This 3D composite solid electrolyte design is very effective in reducing the interfacial impedance and provides a solution for the further development of high-performance solid electrolyte for all-solid-state rechargeable batteries.
AbstractList Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes. In this study, a novel 3D hierarchical solid electrolyte was developed to tackle the large interfacial impedance problem. A flexible polyethylene oxide/lithium chlorate (PEO/LiClO4) was in-situ formed inside the 3D porous Li6.28La3Zr2Al0.24O12 (LLZAO) network by simply using a cleanroom wiper as the template. The obtained 3D LLZAO-PEO/LiClO4 composite solid electrolyte exhibited a high ionic conductivity of 2.25 × 10−5 S cm−1 at 30 °C, being 30.7 times higher than that of pristine PEO/LiClO4 electrolyte. The improved ionic conductivity was attributed to the 3D porous LLZAO structure with continuous fast ion transport pathways. In addition, the 3D LLZAO network can effectively inhibited the growth of lithium dendrite, leading to excellent stability and desirable safety during lithium stripping/plating cycling. Furthermore, the all-solid-state LiFePO4/Li battery system based on the obtained 3D LLZAO-PEO/LiClO4 electrolyte showed a high initial discharge specific capacity of 143.8 mAh·g−1 and a high capacity retention of 86% after 200 cycles at 60 °C. This 3D composite solid electrolyte design is very effective in reducing the interfacial impedance and provides a solution for the further development of high-performance solid electrolyte for all-solid-state rechargeable batteries.
ArticleNumber 107863
Author Fu, Xuelian
Lu, Zhouguang
Gong, Weiping
Yang, Mingyang
Liao, Chengzhu
Tjong, Sie Chin
Li, Yuchao
Li, Robert Kwok Yiu
Author_xml – sequence: 1
  givenname: Xuelian
  surname: Fu
  fullname: Fu, Xuelian
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
– sequence: 2
  givenname: Yuchao
  surname: Li
  fullname: Li, Yuchao
  email: liyuchao@lcu.edu.cn
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
– sequence: 3
  givenname: Chengzhu
  surname: Liao
  fullname: Liao, Chengzhu
  email: liaocz@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
– sequence: 4
  givenname: Weiping
  surname: Gong
  fullname: Gong, Weiping
  organization: Laboratory of Electronic Functional Materials, Huizhou University, Huizhou, 516001, China
– sequence: 5
  givenname: Mingyang
  surname: Yang
  fullname: Yang, Mingyang
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
– sequence: 6
  givenname: Robert Kwok Yiu
  surname: Li
  fullname: Li, Robert Kwok Yiu
  organization: Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Town, Hong Kong SAR, China
– sequence: 7
  givenname: Sie Chin
  surname: Tjong
  fullname: Tjong, Sie Chin
  organization: Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Town, Hong Kong SAR, China
– sequence: 8
  givenname: Zhouguang
  surname: Lu
  fullname: Lu, Zhouguang
  email: luzg@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
BookMark eNqNkc1uGyEURlGVSnXSvgNV1zOBiweGVRW57o80krtoN90gCndk3PEwBdwob18sJ1LVVVZX4p7vQxyuydUcZyTkLWctZ1zeHloXj0t2oaDbt8C4rueql-IFWfFe6Yazjl2RFQMpG9GJ_hW5zvnAGFOdhhUp23lvZ4ee4oSupOj2eAzOTnTBNMZ0PC9pHGmOU_D063Z3O4TNtFs_8dNDwUzvQ9lTS8UHusQUT5kOQbbQD1b8SHA3sRbWOw50xnIf06_X5OVop4xvHucN-f5x-23zuRl2n75s7obGiV6WxvXCaVufqTrglivU3sqfyjtcs1EoGIX0ijPvJHq_dhbsCBK04L53oG0nbsi7S--S4u8T5mIO8ZTmeqUBAVoBMOCV0hfKpZhzwtEsKRxtejCcmbNkczD_SDZnyeYiuWbf_5etkC0hziXZMD2rYXNpwCriT8BkKoXnHwmpCjY-hme0_AUoWaHO
CitedBy_id crossref_primary_10_1021_acsaem_3c01472
crossref_primary_10_1149_1945_7111_ac0944
crossref_primary_10_1080_15583724_2024_2365782
crossref_primary_10_1149_1945_7111_ac384d
crossref_primary_10_1002_eng2_12448
crossref_primary_10_1021_acsami_4c09099
crossref_primary_10_1016_j_jallcom_2022_167077
crossref_primary_10_1016_j_memsci_2023_121552
crossref_primary_10_1007_s11581_024_05641_y
crossref_primary_10_1016_j_matchemphys_2021_124701
crossref_primary_10_1002_asia_202200929
crossref_primary_10_1016_j_indcrop_2023_116426
crossref_primary_10_1039_D4CS00214H
crossref_primary_10_1016_j_ijoes_2023_100202
crossref_primary_10_1021_acsami_2c16402
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1007_s41918_024_00230_z
crossref_primary_10_1016_j_cej_2024_153874
crossref_primary_10_1039_D2CC02306G
crossref_primary_10_1111_ijac_14523
crossref_primary_10_1016_j_ensm_2023_03_008
crossref_primary_10_3390_ma17174344
crossref_primary_10_1002_cnma_202100262
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1016_j_ensm_2021_06_030
crossref_primary_10_1016_j_jallcom_2025_179686
crossref_primary_10_1016_j_cej_2021_131948
crossref_primary_10_1016_j_cej_2020_124993
crossref_primary_10_1002_aenm_202303527
crossref_primary_10_1021_acsami_9b20104
crossref_primary_10_1016_j_electacta_2022_141155
crossref_primary_10_3390_ma17010239
crossref_primary_10_1021_acs_nanolett_0c02457
crossref_primary_10_1016_j_ceramint_2023_06_153
crossref_primary_10_1016_j_ensm_2021_01_002
crossref_primary_10_1002_adma_202310245
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_3390_ma14133585
crossref_primary_10_1002_asia_202200839
crossref_primary_10_1016_j_jechem_2020_03_017
crossref_primary_10_1016_j_jpowsour_2024_236027
crossref_primary_10_1016_j_mtcomm_2022_103597
crossref_primary_10_3390_nano12152680
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1016_j_memsci_2021_119432
crossref_primary_10_1002_aenm_202003154
Cites_doi 10.1038/natrevmats.2016.103
10.1073/pnas.1600422113
10.1039/C7TA04320A
10.1016/S0167-2738(01)00688-9
10.1073/pnas.1708489114
10.1021/acs.jpcc.5b03589
10.1039/C7TA10517G
10.1038/s41560-017-0047-2
10.1002/aenm.201703474
10.1002/adma.201707132
10.1016/j.ensm.2018.03.016
10.1021/acsami.7b18123
10.1016/j.nanoen.2017.12.037
10.1149/1.1393423
10.1016/j.ssi.2016.04.014
10.1016/j.jpowsour.2018.07.005
10.1016/j.jpowsour.2005.10.104
10.1016/j.mattod.2018.01.001
10.1016/j.jpowsour.2011.05.065
10.1021/jacs.7b06364
10.1016/j.nanoen.2018.01.028
10.1016/j.compscitech.2019.02.030
10.1021/acs.jpcc.8b02556
10.1021/ma052277v
10.1039/C6TA10066J
10.1021/acsami.7b03806
10.1016/j.electacta.2017.08.162
10.1021/acsami.8b17279
10.1002/aenm.201501082
10.1002/adma.200401286
10.1016/j.jpowsour.2018.05.006
10.1039/C9TA00560A
10.1002/anie.201710841
10.1016/j.chempr.2018.12.002
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 10, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 10, 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2019.107863
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2019_107863
S0266353819312813
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
.-4
29F
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
SSH
T9H
VH1
WUQ
7SR
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c386t-c83c9a1017521a17e9da6b7dce40f372f36d710dc6edd4ca2af262931d8c29a53
IEDL.DBID .~1
ISSN 0266-3538
IngestDate Sun Jul 13 05:01:55 EDT 2025
Tue Jul 01 02:20:26 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Tue Dec 03 03:45:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium battery
Templating method
3D porous network
Solid-state electrolyte
Polyethylene oxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-c83c9a1017521a17e9da6b7dce40f372f36d710dc6edd4ca2af262931d8c29a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2329722021
PQPubID 2045270
ParticipantIDs proquest_journals_2329722021
crossref_primary_10_1016_j_compscitech_2019_107863
crossref_citationtrail_10_1016_j_compscitech_2019_107863
elsevier_sciencedirect_doi_10_1016_j_compscitech_2019_107863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-10
PublicationDateYYYYMMDD 2019-11-10
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-10
  day: 10
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Composites science and technology
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang, Gordon, Li, Chan (bib5) 2015; 119
Zhu, Yan, Dirican, Zhu, Zang, Selvan, Chung, Jia, Li, Kiyak, Wu, Zhang (bib4) 2018; 6
Albertus, Babinec, Litzelman, Newman (bib1) 2017; 3
Mizuno, Hayashi, Tadanaga, Tatsumisago (bib6) 2005; 17
McOwen, Xu, Gong, Wen, Godbey, Gritton, Hamann, Dai, Hitz, Hu, Wachsman (bib17) 2018; 30
Gong, Fu, Xu, Dai, Hamann, Zhang, Hitz, Fu, Ma, McOwen, Han, Hu, Wachsman (bib19) 2018; 21
Yang, Zheng, Cheng, Hu, Chan (bib9) 2017; 9
Zhang, Liu, Zhang, Huang, Xu, Lin, Xu, Li, Nan, Shen (bib10) 2017; 139
He, Chen, Zhang, Liu, Fan (bib28) 2018; 392
Fu, Gong, Dai, Gong, Han, Yao, Wang, Wang, Chen, Yan, Li, Wachsman, Hu (bib16) 2016; 113
Li, Huang, Zhu, Wu, Yang, Wei, Guo (bib14) 2019; 11
Scrosati, Croce, Persi (bib29) 2000; 147
Zha, Chen, Yang, Shen, Zhang (bib26) 2018; 397
Langer, Bardenhagen, Glenneberg, Kun (bib24) 2016; 291
Chen, Li, Li, Fan, Nan, Goodenough (bib33) 2018; 46
Bae, Li, Zhang, Zhou, Zhao, Shi, Goodenough, Yu (bib27) 2018; 57
Zhang, Zang, Wen, Dong, Chai, Li, Chen, Zhao, Dong, Ma, Yue, Liu, Guo, Cui, Chen (bib34) 2017; 5
Takada, Tansho, Yanase, Inada, Kajiyama, Kouguchi, Kondo, Watanabe (bib3) 2001; 139
Zhang, Nie, Li, Wang, Sun (bib31) 2018; 45
Cheng, Zhao, Yao, Liu, Zhang (bib2) 2019; 5
Zhang, Zhao, Yue, Wang, Chai, Liu, Zhou, Li, Guo, Cui, Chen (bib11) 2015; 5
Cheng, He, Liu, Zha, Kamruzzaman, Ma, Dang, Li, Chung (bib13) 2017; 253
He, Chen, Fan, Liu, Liao, Xu, Tang, Li (bib15) 2019; 175
Ban, Zhang, Chen, Sun (bib23) 2018; 122
Bae, Li, Zhao, Zhou, Ding, Yu (bib18) 2018; 15
Zhu, Cao, Chen, Yu, Li (bib30) 2019; 7
Zhang, Zhao, Chen, Xie, Yao, Cui, Xu (bib25) 2017; 5
Manthiram, Yu, Wang (bib7) 2017; 2
Jin, McGinn (bib21) 2011; 196
Zhao, Zhang, Cheng, Zhang, Xu, Chen, Peng, Huang, Zhang (bib32) 2017; 114
Wang, Pan, Kim (bib12) 2006; 159
Li, Chen, Wang, Fan (bib22) 2018; 10
Borodin, Smith (bib8) 2006; 39
Xie, Yang, Fu, Yao, Jiang, Hitz, Liu, Wang, Hu (bib20) 2018; 8
Bae (10.1016/j.compscitech.2019.107863_bib18) 2018; 15
Bae (10.1016/j.compscitech.2019.107863_bib27) 2018; 57
Fu (10.1016/j.compscitech.2019.107863_bib16) 2016; 113
He (10.1016/j.compscitech.2019.107863_bib28) 2018; 392
Chen (10.1016/j.compscitech.2019.107863_bib33) 2018; 46
Cheng (10.1016/j.compscitech.2019.107863_bib2) 2019; 5
Zhang (10.1016/j.compscitech.2019.107863_bib10) 2017; 139
Xie (10.1016/j.compscitech.2019.107863_bib20) 2018; 8
Zhu (10.1016/j.compscitech.2019.107863_bib30) 2019; 7
McOwen (10.1016/j.compscitech.2019.107863_bib17) 2018; 30
Manthiram (10.1016/j.compscitech.2019.107863_bib7) 2017; 2
Takada (10.1016/j.compscitech.2019.107863_bib3) 2001; 139
Yang (10.1016/j.compscitech.2019.107863_bib5) 2015; 119
Borodin (10.1016/j.compscitech.2019.107863_bib8) 2006; 39
Zhang (10.1016/j.compscitech.2019.107863_bib11) 2015; 5
Li (10.1016/j.compscitech.2019.107863_bib22) 2018; 10
He (10.1016/j.compscitech.2019.107863_bib15) 2019; 175
Ban (10.1016/j.compscitech.2019.107863_bib23) 2018; 122
Zhang (10.1016/j.compscitech.2019.107863_bib31) 2018; 45
Zhang (10.1016/j.compscitech.2019.107863_bib34) 2017; 5
Zhang (10.1016/j.compscitech.2019.107863_bib25) 2017; 5
Gong (10.1016/j.compscitech.2019.107863_bib19) 2018; 21
Jin (10.1016/j.compscitech.2019.107863_bib21) 2011; 196
Scrosati (10.1016/j.compscitech.2019.107863_bib29) 2000; 147
Cheng (10.1016/j.compscitech.2019.107863_bib13) 2017; 253
Zha (10.1016/j.compscitech.2019.107863_bib26) 2018; 397
Zhao (10.1016/j.compscitech.2019.107863_bib32) 2017; 114
Mizuno (10.1016/j.compscitech.2019.107863_bib6) 2005; 17
Yang (10.1016/j.compscitech.2019.107863_bib9) 2017; 9
Langer (10.1016/j.compscitech.2019.107863_bib24) 2016; 291
Li (10.1016/j.compscitech.2019.107863_bib14) 2019; 11
Albertus (10.1016/j.compscitech.2019.107863_bib1) 2017; 3
Zhu (10.1016/j.compscitech.2019.107863_bib4) 2018; 6
Wang (10.1016/j.compscitech.2019.107863_bib12) 2006; 159
References_xml – volume: 253
  start-page: 430
  year: 2017
  end-page: 438
  ident: bib13
  article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 46
  year: 2018
  end-page: 52
  ident: bib18
  article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries
  publication-title: Energy Storage Mater
– volume: 9
  start-page: 21773
  year: 2017
  end-page: 21780
  ident: bib9
  article-title: Composite polymer electrolytes with Li
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  ident: bib11
  article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 114
  start-page: 11069
  year: 2017
  end-page: 11074
  ident: bib32
  article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 175
  start-page: 28
  year: 2019
  end-page: 34
  ident: bib15
  article-title: Polyethylene oxide/garnet-type Li
  publication-title: Compos. Sci. Technol.
– volume: 39
  start-page: 1620
  year: 2006
  end-page: 1629
  ident: bib8
  article-title: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations
  publication-title: Macromolecules
– volume: 30
  start-page: 1707132
  year: 2018
  ident: bib17
  article-title: 3D-printing electrolytes for solid-state batteries
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4940
  year: 2017
  end-page: 4948
  ident: bib34
  article-title: High-voltage and free-standing poly(propylene carbonate)/Li
  publication-title: J. Mater. Chem.
– volume: 113
  start-page: 7094
  year: 2016
  end-page: 7099
  ident: bib16
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 10
  start-page: 7069
  year: 2018
  end-page: 7078
  ident: bib22
  article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 16
  year: 2017
  end-page: 21
  ident: bib1
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
– volume: 139
  start-page: 241
  year: 2001
  end-page: 247
  ident: bib3
  article-title: Lithium ion conduction in LiTi
  publication-title: Solid State Ion.
– volume: 57
  start-page: 2096
  year: 2018
  end-page: 2100
  ident: bib27
  article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 5
  start-page: 74
  year: 2019
  end-page: 96
  ident: bib2
  article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes
  publication-title: Chem
– volume: 196
  start-page: 8683
  year: 2011
  end-page: 8687
  ident: bib21
  article-title: Al-doped Li
  publication-title: J. Power Sources
– volume: 5
  start-page: 16984
  year: 2017
  end-page: 16993
  ident: bib25
  article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life
  publication-title: J. Mater. Chem.
– volume: 159
  start-page: 690
  year: 2006
  end-page: 701
  ident: bib12
  article-title: Conductivity studies on ceramic Li
  publication-title: J. Power Sources
– volume: 392
  start-page: 232
  year: 2018
  end-page: 238
  ident: bib28
  article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries
  publication-title: J. Power Sources
– volume: 397
  start-page: 87
  year: 2018
  end-page: 94
  ident: bib26
  article-title: High-performance Li
  publication-title: J. Power Sources
– volume: 2
  year: 2017
  ident: bib7
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 4279
  year: 2018
  end-page: 4285
  ident: bib4
  article-title: Li
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 784
  year: 2019
  end-page: 791
  ident: bib14
  article-title: Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 291
  start-page: 8
  year: 2016
  end-page: 13
  ident: bib24
  article-title: Microstructure and temperature dependent lithium ion transport of ceramic-polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li
  publication-title: Solid State Ion.
– volume: 122
  start-page: 9852
  year: 2018
  end-page: 9858
  ident: bib23
  article-title: A high-Performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  ident: bib33
  article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”
  publication-title: Nano Energy
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  ident: bib10
  article-title: Synergistic coupling between Li
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 594
  year: 2018
  end-page: 601
  ident: bib19
  article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries
  publication-title: Mater. Today
– volume: 147
  start-page: 1718
  year: 2000
  end-page: 1721
  ident: bib29
  article-title: Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2018
  ident: bib20
  article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 6832
  year: 2019
  end-page: 6839
  ident: bib30
  article-title: High electrochemical stability of a 3D cross-linked network PEO@nano-SiO
  publication-title: J. Mater. Chem.
– volume: 119
  start-page: 14947
  year: 2015
  end-page: 14953
  ident: bib5
  article-title: Nanostructured garnet-type solid electrolytes for lithium batteries: electrospinning synthesis of Li
  publication-title: J. Phys. Chem. C
– volume: 45
  start-page: 413
  year: 2018
  end-page: 419
  ident: bib31
  article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane
  publication-title: Nano Energy
– volume: 17
  start-page: 918
  year: 2005
  end-page: 921
  ident: bib6
  article-title: New, highly ion‐conductive crystals precipitated from Li
  publication-title: Adv. Mater.
– volume: 2
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib7
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 113
  start-page: 7094
  year: 2016
  ident: 10.1016/j.compscitech.2019.107863_bib16
  article-title: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1600422113
– volume: 5
  start-page: 16984
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib25
  article-title: An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA04320A
– volume: 139
  start-page: 241
  year: 2001
  ident: 10.1016/j.compscitech.2019.107863_bib3
  article-title: Lithium ion conduction in LiTi2(PO4)3
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(01)00688-9
– volume: 114
  start-page: 11069
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib32
  article-title: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1708489114
– volume: 119
  start-page: 14947
  year: 2015
  ident: 10.1016/j.compscitech.2019.107863_bib5
  article-title: Nanostructured garnet-type solid electrolytes for lithium batteries: electrospinning synthesis of Li7La3Zr2O12 nanowires and particle size-dependent phase transformation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03589
– volume: 6
  start-page: 4279
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib4
  article-title: Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA10517G
– volume: 3
  start-page: 16
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib1
  article-title: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0047-2
– volume: 8
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib20
  article-title: Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703474
– volume: 30
  start-page: 1707132
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib17
  article-title: 3D-printing electrolytes for solid-state batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707132
– volume: 15
  start-page: 46
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib18
  article-title: Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2018.03.016
– volume: 10
  start-page: 7069
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib22
  article-title: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18123
– volume: 46
  start-page: 176
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib33
  article-title: PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.037
– volume: 147
  start-page: 1718
  year: 2000
  ident: 10.1016/j.compscitech.2019.107863_bib29
  article-title: Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393423
– volume: 291
  start-page: 8
  year: 2016
  ident: 10.1016/j.compscitech.2019.107863_bib24
  article-title: Microstructure and temperature dependent lithium ion transport of ceramic-polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7La3Zr2O12
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.04.014
– volume: 397
  start-page: 87
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib26
  article-title: High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.005
– volume: 159
  start-page: 690
  year: 2006
  ident: 10.1016/j.compscitech.2019.107863_bib12
  article-title: Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.104
– volume: 21
  start-page: 594
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib19
  article-title: Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.01.001
– volume: 196
  start-page: 8683
  year: 2011
  ident: 10.1016/j.compscitech.2019.107863_bib21
  article-title: Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.05.065
– volume: 139
  start-page: 13779
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib10
  article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06364
– volume: 45
  start-page: 413
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib31
  article-title: A durable and safe solid-state lithium battery with a hybrid electrolyte membrane
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.028
– volume: 175
  start-page: 28
  year: 2019
  ident: 10.1016/j.compscitech.2019.107863_bib15
  article-title: Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.02.030
– volume: 122
  start-page: 9852
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib23
  article-title: A high-Performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02556
– volume: 39
  start-page: 1620
  year: 2006
  ident: 10.1016/j.compscitech.2019.107863_bib8
  article-title: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations
  publication-title: Macromolecules
  doi: 10.1021/ma052277v
– volume: 5
  start-page: 4940
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib34
  article-title: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA10066J
– volume: 9
  start-page: 21773
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib9
  article-title: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03806
– volume: 253
  start-page: 430
  year: 2017
  ident: 10.1016/j.compscitech.2019.107863_bib13
  article-title: Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.162
– volume: 11
  start-page: 784
  year: 2019
  ident: 10.1016/j.compscitech.2019.107863_bib14
  article-title: Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17279
– volume: 5
  year: 2015
  ident: 10.1016/j.compscitech.2019.107863_bib11
  article-title: Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501082
– volume: 17
  start-page: 918
  year: 2005
  ident: 10.1016/j.compscitech.2019.107863_bib6
  article-title: New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401286
– volume: 392
  start-page: 232
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib28
  article-title: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.05.006
– volume: 7
  start-page: 6832
  year: 2019
  ident: 10.1016/j.compscitech.2019.107863_bib30
  article-title: High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA00560A
– volume: 57
  start-page: 2096
  year: 2018
  ident: 10.1016/j.compscitech.2019.107863_bib27
  article-title: A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201710841
– volume: 5
  start-page: 74
  year: 2019
  ident: 10.1016/j.compscitech.2019.107863_bib2
  article-title: Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.002
SSID ssj0007592
Score 2.4983895
Snippet Low ionic conductivity and large interfacial impedance between the electrode and electrolyte are the main bottleneck issues of the current solid electrolytes....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107863
SubjectTerms 3D porous network
Batteries
Cleanrooms
Conductivity
Dendritic structure
Electrochemical analysis
Electrolytes
Impedance
Ion currents
Ion transport
Lithium
Lithium battery
Molten salt electrolytes
Polyethylene
Polyethylene oxide
Product safety
Rechargeable batteries
Solid electrolytes
Solid state
Solid-state electrolyte
Templating method
Three dimensional composites
Title Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porous Li6.28La3Zr2Al0.24O12 network
URI https://dx.doi.org/10.1016/j.compscitech.2019.107863
https://www.proquest.com/docview/2329722021
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxQxFH6UFvxxKFoVa2uJ4DX7I8lkEvCybLesunYFLRQvIZNk6Mgyu3S3h176t_syk3GrIBQ8TkjCMC9578vke98DeM-0s-h6A82KoaYiyzVVhbfUchswPkpty5go_OVcTi_Ep8vscgfGXS5MpFUm39_69MZbp5Z--pr9VVX1v-HpAaNlPHHweB0UFT-FyKN-fu9uS_PIs6YwcuxMY-9H8G7L8Yq0bZw7yqVGlpfG9lxJ_q8Y9Ze3bkLQ2TPYT9iRjNrXew47oT6Ax11q8foAnt5TF3wBm0l91dzvk1TrxiVxALLaZguQZUlw-VWefJ3M-7NqvJiLrv_iFnEoiX9qiSX8lCBUX96syaySPaZmlv-4ZqPFoMfEfMhI3fLJX8LF2eT7eEpTkQXquJIb6hR32saNiYHcDvOgvZVF7l0Qg5LnrOTSIwrxTgbvhbPMlkwiRhh65Zi2GX8Fu_WyDq-BqOAFnlYy3NOZKDOL2MspKwot2YCjrzgE1X1W45ICeSyEsTAd1eynuWcREy1iWoscAvs9dNXKcDxk0IfOduaPNWUwXDxk-HFnb5M29togANU5Y4iM3vzf7EfwJD7RhlF4DLub65vwFvHNpjhpFvAJ7I0-fp6e_wIHL_pV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9qBasPotVitWoEX3Mf-doEfCnnlVO3PcEWii8hm-ziyrF39K4Pvvi3O9nNelUQCr7miyUzmfll85sZgLfMeIemt6SyGBsqZGaoLoKjjrsS_aMyroqBwqdnanYhPl7Kyx2Y9LEwkVaZbH9n01trnVqGaTeHq7oefsHbA3rLeOPg8TmI34G7QvIsqvbg55bnkcm2MnIcTePwe_BmS_KKvG1cPOZLjTQvg-2ZVvxfTuovc936oJNH8DCBR3Lcfd9j2CmbfdjrY4vX-_DgRnrBJ7CZNt_aB36Sit34lB2ArLbhAmRZEdS_OpDP0_kwryeLuejHL34gECXxVy1xhL8niNWX12uS12rAdO741yt2vBgNmJiPGWk6QvlTuDiZnk9mNFVZoJ5rtaFec29cPJnoyd04K01wqsiCL8Wo4hmruAoIQ4JXZQjCO-YqphAkjIP2zDjJD2C3WTblMyC6DAKvKxIPtRSVdAi-vHaiMIqNOBqLQ9D9tlqfUpDHShgL23PNvtsbErFRIraTyCGw31NXXR6O20x618vO_qFUFv3FbaYf9fK26WSvLSJQkzGG0Oj5_63-GvZm56e5zT-cfXoB92MPbemFR7C7ubouXyLY2RSvWmX-Bc8C--s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+solid+PEO%2FLiClO4+electrolytes+with+a+3D+porous+Li6.28La3Zr2Al0.24O12+network&rft.jtitle=Composites+science+and+technology&rft.au=Fu%2C+Xuelian&rft.au=Li%2C+Yuchao&rft.au=Liao%2C+Chengzhu&rft.au=Gong%2C+Weiping&rft.date=2019-11-10&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=184&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2019.107863&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon