General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study

Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk functi...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 117; no. 6; pp. 743 - 753
Main Authors D'AGOSTINO, Ralph B, VASAN, Ramachandran S, PENCINA, Michael J, WOLF, Philip A, COBAIN, Mark, MASSARO, Joseph M, KANNEL, William B
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 12.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors. A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
AbstractList BACKGROUNDSeparate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents.METHODS AND RESULTSWe used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors.CONCLUSIONSA sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
Background— Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. Methods and Results— We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions (“general CVD” algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P <0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non–laboratory-based predictors. Conclusions— A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors. A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care.
Author KANNEL, William B
WOLF, Philip A
D'AGOSTINO, Ralph B
PENCINA, Michael J
VASAN, Ramachandran S
COBAIN, Mark
MASSARO, Joseph M
Author_xml – sequence: 1
  givenname: Ralph B
  surname: D'AGOSTINO
  fullname: D'AGOSTINO, Ralph B
  organization: Boston University, Department of Mathematics and Statistics, United States
– sequence: 2
  givenname: Ramachandran S
  surname: VASAN
  fullname: VASAN, Ramachandran S
  organization: Framingham Heart Study, Framingham, Mass, United States
– sequence: 3
  givenname: Michael J
  surname: PENCINA
  fullname: PENCINA, Michael J
  organization: Boston University, Department of Mathematics and Statistics, United States
– sequence: 4
  givenname: Philip A
  surname: WOLF
  fullname: WOLF, Philip A
  organization: Framingham Heart Study, Framingham, Mass, United States
– sequence: 5
  givenname: Mark
  surname: COBAIN
  fullname: COBAIN, Mark
  organization: Unilever Research, Corporate Biology, Colworth Park, United Kingdom
– sequence: 6
  givenname: Joseph M
  surname: MASSARO
  fullname: MASSARO, Joseph M
  organization: Framingham Heart Study, Framingham, Mass, United States
– sequence: 7
  givenname: William B
  surname: KANNEL
  fullname: KANNEL, William B
  organization: Framingham Heart Study, Framingham, Mass, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20086624$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18212285$$D View this record in MEDLINE/PubMed
BookMark eNpVkEtLAzEQgINU7EP_gsSD3rbmsckmx7LYBxQrtfW6pGliV_dRk67Qf2_KFsW5DDN8M8N8fdCp6soAcIfREGOOH9PZMl3PR6vZ4nk0HQ0xSoZcSpbIC9DDjMRRzKjsgB5CSEYJJaQL-t5_hJLThF2BLhYEEyJYD7xNTGWcKmCq3Davv5XXTaEcXOb-E7642uaFgbZ2cO0NzKvQykvljifcwNXOwLFTZV6971QJp0a5A3w9NNvjNbi0qvDm5pwHYD1-WqXTaL6YzNLRPNJU8EOksTBiQ2yCTAglJOVICs62llIuiCYxkYJRZTkOHApfxTaWiCoWbzSONR2Ah3bv3tVfjfGHrMy9NkWhKlM3PksQSSQjIoCyBbWrvXfGZvv2kwyj7CQ1-y81tJOslRpmb89Hmk1ptn-TZ4sBuD8DQZ8qrFOVzv0vRxASnJOY_gAjV4Iy
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1080_03630242_2022_2100034
crossref_primary_10_1186_s13063_020_4114_9
crossref_primary_10_3389_fnagi_2023_1096798
crossref_primary_10_1007_s10067_021_05795_4
crossref_primary_10_35755_jmedassocthai_2020_05_10004
crossref_primary_10_5124_jkma_2023_66_4_224
crossref_primary_10_1155_2015_759610
crossref_primary_10_1007_s10753_024_02063_w
crossref_primary_10_1161_CIRCOUTCOMES_109_869727
crossref_primary_10_33889_IJMEMS_2023_8_6_066
crossref_primary_10_1155_2022_8244047
crossref_primary_10_1155_2019_9246138
crossref_primary_10_18332_tpc_76549
crossref_primary_10_1161_STROKEAHA_110_593244
crossref_primary_10_1007_s11239_019_01969_9
crossref_primary_10_47102_annals_acadmedsg_2023141
crossref_primary_10_2147_IJGM_S425122
crossref_primary_10_3389_fphys_2023_1339873
crossref_primary_10_15420_aer_2022_34
crossref_primary_10_4093_dmj_2023_0197
crossref_primary_10_1007_s11764_023_01350_z
crossref_primary_10_1155_2015_921021
crossref_primary_10_1155_2018_6572785
crossref_primary_10_1161_CIRCULATIONAHA_109_849166
crossref_primary_10_1155_2016_7479357
crossref_primary_10_2147_IJGM_S374190
crossref_primary_10_1007_s11739_024_03626_3
crossref_primary_10_1161_CIRCGENETICS_108_785659
crossref_primary_10_1161_JAHA_122_027095
crossref_primary_10_1007_s00784_016_2029_3
crossref_primary_10_3389_fphys_2021_675811
crossref_primary_10_1038_s41598_024_65037_w
crossref_primary_10_1152_ajpregu_00141_2021
crossref_primary_10_1155_2016_3016245
crossref_primary_10_46833_reumatologiasp_2021_20_4_20_31
crossref_primary_10_3389_fnins_2021_678503
crossref_primary_10_1155_2019_5931975
crossref_primary_10_2147_RMHP_S337466
crossref_primary_10_36740_WLek202212122
crossref_primary_10_1161_CIRCULATIONAHA_108_835470
crossref_primary_10_1155_2020_2091341
crossref_primary_10_1161_CIRCIMAGING_119_010340
crossref_primary_10_1161_STROKEAHA_110_581306
crossref_primary_10_1186_s12889_023_16063_2
crossref_primary_10_1007_s00059_019_4838_z
crossref_primary_10_1038_srep43045
crossref_primary_10_1161_CIRCULATIONAHA_109_921072
crossref_primary_10_1007_s00394_019_01902_z
crossref_primary_10_1161_CIRCULATIONAHA_109_881995
crossref_primary_10_1007_s00228_024_03699_1
crossref_primary_10_1161_JAHA_116_003867
crossref_primary_10_4178_epih_e2023052
crossref_primary_10_1155_2016_8173905
crossref_primary_10_1002_gps_6064
crossref_primary_10_15420_japsc_2022_26
crossref_primary_10_1109_ACCESS_2022_3231743
crossref_primary_10_1161_CIRCGENETICS_108_813337
crossref_primary_10_1038_s41598_021_99103_4
crossref_primary_10_1161_CIRCGENETICS_109_894527
crossref_primary_10_1161_CIRCULATIONAHA_109_192667
crossref_primary_10_3389_fendo_2023_1259062
crossref_primary_10_34172_jcvtr_2022_25
crossref_primary_10_1002_ana_26460
crossref_primary_10_1007_s11845_017_1718_5
crossref_primary_10_1155_2015_174821
crossref_primary_10_1186_s40795_021_00432_4
crossref_primary_10_3389_fnagi_2023_1088050
crossref_primary_10_1161_STROKEAHA_110_586222
crossref_primary_10_1161_CIRCULATIONAHA_108_191261
crossref_primary_10_3389_fcvm_2023_1140025
crossref_primary_10_1007_s00125_022_05731_4
crossref_primary_10_1155_2016_9124676
crossref_primary_10_1161_HYPERTENSIONAHA_109_148007
crossref_primary_10_1007_s00394_023_03238_1
crossref_primary_10_1161_CIRCGEN_122_003858
crossref_primary_10_1161_CIRCULATIONAHA_108_816694
crossref_primary_10_1007_s00198_017_4203_0
crossref_primary_10_1007_s40121_024_00943_0
crossref_primary_10_1007_s40256_022_00552_7
crossref_primary_10_37349_emed_2021_00030
crossref_primary_10_2196_37385
crossref_primary_10_1007_s11906_019_1014_z
crossref_primary_10_1007_s00787_020_01505_8
crossref_primary_10_1002_oby_24062
crossref_primary_10_1007_s00784_020_03670_1
crossref_primary_10_1212_WNL_0000000000209530
crossref_primary_10_47102_annals_acadmedsg_19110
crossref_primary_10_1161_ATVBAHA_109_200394
crossref_primary_10_1155_2015_516984
crossref_primary_10_1161_JAHA_121_022349
crossref_primary_10_3389_fendo_2018_00718
crossref_primary_10_1038_s41598_023_28751_5
crossref_primary_10_1161_STROKEAHA_112_650317
crossref_primary_10_15420_ecr_2021_47
crossref_primary_10_1109_TIM_2021_3139693
crossref_primary_10_1002_hec_4632
crossref_primary_10_33549_physiolres_932524
crossref_primary_10_1161_JAHA_119_014634
crossref_primary_10_2147_CIA_S454060
crossref_primary_10_1007_s10067_022_06349_y
crossref_primary_10_1161_CIRCULATIONAHA_108_772962
crossref_primary_10_1007_s42000_024_00558_7
crossref_primary_10_3389_fimmu_2022_930087
crossref_primary_10_1155_2015_942695
crossref_primary_10_1161_CIRCULATIONAHA_109_192617
crossref_primary_10_1177_2165079916633222
crossref_primary_10_1155_2021_8862762
crossref_primary_10_35118_apjmbb_2024_032_3_01
crossref_primary_10_1161_CIRCULATIONAHA_109_852756
crossref_primary_10_3389_fpubh_2019_00126
crossref_primary_10_1038_s41598_022_08369_9
crossref_primary_10_1161_CIRCULATIONAHA_108_814251
crossref_primary_10_46833_reumatologiasp_2018_17_3_19_23
crossref_primary_10_1007_s10067_016_3536_y
crossref_primary_10_1111_jsr_13904
crossref_primary_10_1186_s12872_022_02681_y
crossref_primary_10_3389_fcvm_2022_853917
crossref_primary_10_1063_5_0191990
crossref_primary_10_3389_fnagi_2021_685683
crossref_primary_10_3350_cmh_2024_0157
crossref_primary_10_1161_CIRCOUTCOMES_108_831073
crossref_primary_10_1161_CIRCULATIONAHA_110_984047
crossref_primary_10_1007_s12552_024_09418_w
crossref_primary_10_1007_s10554_016_0982_1
crossref_primary_10_1080_13697137_2023_2282685
crossref_primary_10_1161_CIRCOUTCOMES_108_831198
crossref_primary_10_14366_usg_21197
Cites_doi 10.1016/S0169-7161(03)23001-7
10.1161/circulationaha.105.548206
10.1161/circ.97.18.1837
10.1001/jama.285.19.2486
10.1111/j.2517-6161.1972.tb00899.x
10.1016/S0140-6736(06)68770-9
10.1016/j.numecd.2005.07.007
10.1016/0735-1097(96)87730-8
10.1136/jech.57.8.634
10.1002/sim.2929
10.1002/sim.1742
10.1001/archinte.165.22.2644
10.1093/ije/dyh405
10.1016/0735-1097(96)87732-1
10.1016/0002-9149(76)90061-8
10.1001/archinte.159.11.1197
10.1016/S0895-4356(00)00343-7
10.1161/circ.100.9.988
10.1016/S0140-6736(04)17018-9
10.1136/hrt.2006.108167
10.1016/S0195-668X(03)00347-6
10.1161/str.22.3.2003301
10.1081/STA-200026579
10.1016/0735-1097(96)87734-5
10.1016/0002-8703(91)90861-B
10.1002/sim.1802
10.1136/hrt.2006.087932
10.1016/S0195-668X(03)00114-3
10.1016/S0140-6736(05)70240-3
10.1001/jama.297.6.611
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1136/hrt.2004.042515
10.1001/jama.286.2.180
10.2105/AJPH.41.3.279
10.1001/jama.291.21.2591
10.1136/bmj.39261.471806.55
10.1161/circ.96.1.44
10.1161/circ.105.3.310
10.1016/0735-1097(96)87733-3
10.1136/bmj.320.7236.709
10.1161/circulationaha.106.179918
10.1093/oxfordjournals.aje.a112813
10.1161/circ.83.1.1984895
10.1097/01.mol.0000236362.56216.44
10.1016/j.jclinepi.2005.01.013
10.1016/j.ahj.2003.10.022
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1161/CIRCULATIONAHA.107.699579
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 753
ExternalDocumentID 10_1161_CIRCULATIONAHA_107_699579
18212285
20086624
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: N01-HC-25195
– fundername: NHLBI NIH HHS
  grantid: 2K24 HL04334
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
08R
0R~
0ZK
18M
1CY
1J1
29B
2FS
2WC
354
40H
41~
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAXR
AAEJM
AAGIX
AAHPQ
AAJCS
AAMOA
AAMTA
AAPBV
AAQKA
AARTV
AASOK
AASXQ
AAUGY
AAWTL
AAXQO
AAYOK
ABASU
ABBUW
ABDIG
ABOCM
ABPMR
ABPTK
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACRZS
ACWDW
ACWRI
ACXNZ
ADBBV
ADCYY
ADFPA
ADGGA
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFCHL
AFDTB
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHRYX
AHVBC
AIJEX
AJIOK
AJJEV
AJNWD
AJNYG
AKALU
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
ASPBG
AVWKF
AWKKM
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BS7
BYPQX
C1A
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FEDTE
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
IPNFZ
IQODW
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
MVM
N4W
N9A
NEJ
N~7
N~B
N~M
O9-
OAG
OAH
OBH
OCB
OCUKA
ODA
ODMTH
OGEVE
OHH
OHT
OHYEH
OJAPA
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WHG
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YQJ
YSK
YXB
YYM
YYP
YZZ
ZA5
ZFV
ZGI
ZXP
ZY1
ZZMQN
~H1
AAAAV
AAIQE
AAUEB
ABJNI
ADHPY
AFEXH
AHQNM
AINUH
AJZMW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c386t-c18e8b2f70eeeea893609865df33682c2429853af61e8b05394f4903a54bc14c3
ISSN 0009-7322
IngestDate Sat Oct 26 00:06:28 EDT 2024
Fri Aug 23 02:32:59 EDT 2024
Tue Oct 15 23:31:40 EDT 2024
Sun Oct 22 16:09:46 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Heart failure
Nervous system diseases
Stroke
risk factors
Cardiovascular disease
cardiovascular diseases
Coronary heart disease
Cerebral disorder
Vascular disease
coronary disease
Central nervous system disease
Risk factor
Cerebrovascular disease
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-c18e8b2f70eeeea893609865df33682c2429853af61e8b05394f4903a54bc14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18212285
PQID 70279528
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_70279528
crossref_primary_10_1161_CIRCULATIONAHA_107_699579
pubmed_primary_18212285
pascalfrancis_primary_20086624
PublicationCentury 2000
PublicationDate 2008-02-12
PublicationDateYYYYMMDD 2008-02-12
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-12
  day: 12
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2008
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
(e_1_3_2_28_2) 1972; 34
References_xml – ident: e_1_3_2_29_2
  doi: 10.1016/S0169-7161(03)23001-7
– ident: e_1_3_2_37_2
  doi: 10.1161/circulationaha.105.548206
– ident: e_1_3_2_16_2
  doi: 10.1161/circ.97.18.1837
– ident: e_1_3_2_9_2
  doi: 10.1001/jama.285.19.2486
– volume: 34
  start-page: 187
  year: 1972
  ident: e_1_3_2_28_2
  publication-title: J Royal Stat Soc
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_3_2_36_2
  doi: 10.1016/S0140-6736(06)68770-9
– ident: e_1_3_2_8_2
  doi: 10.1016/j.numecd.2005.07.007
– ident: e_1_3_2_1_2
– ident: e_1_3_2_38_2
  doi: 10.1016/0735-1097(96)87730-8
– ident: e_1_3_2_23_2
  doi: 10.1136/jech.57.8.634
– ident: e_1_3_2_33_2
  doi: 10.1002/sim.2929
– ident: e_1_3_2_34_2
  doi: 10.1002/sim.1742
– ident: e_1_3_2_47_2
  doi: 10.1001/archinte.165.22.2644
– ident: e_1_3_2_15_2
  doi: 10.1093/ije/dyh405
– ident: e_1_3_2_43_2
  doi: 10.1016/0735-1097(96)87732-1
– ident: e_1_3_2_46_2
  doi: 10.1016/0002-9149(76)90061-8
– ident: e_1_3_2_20_2
  doi: 10.1001/archinte.159.11.1197
– ident: e_1_3_2_45_2
  doi: 10.1016/S0895-4356(00)00343-7
– ident: e_1_3_2_39_2
  doi: 10.1161/circ.100.9.988
– ident: e_1_3_2_41_2
  doi: 10.1016/S0140-6736(04)17018-9
– ident: e_1_3_2_12_2
  doi: 10.1136/hrt.2006.108167
– ident: e_1_3_2_6_2
  doi: 10.1016/S0195-668X(03)00347-6
– ident: e_1_3_2_18_2
  doi: 10.1161/str.22.3.2003301
– ident: e_1_3_2_32_2
  doi: 10.1081/STA-200026579
– ident: e_1_3_2_44_2
  doi: 10.1016/0735-1097(96)87734-5
– ident: e_1_3_2_3_2
  doi: 10.1016/0002-8703(91)90861-B
– ident: e_1_3_2_30_2
  doi: 10.1002/sim.1802
– ident: e_1_3_2_48_2
  doi: 10.1136/hrt.2006.087932
– ident: e_1_3_2_5_2
  doi: 10.1016/S0195-668X(03)00114-3
– ident: e_1_3_2_2_2
  doi: 10.1016/S0140-6736(05)70240-3
– ident: e_1_3_2_10_2
  doi: 10.1001/jama.297.6.611
– ident: e_1_3_2_31_2
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– ident: e_1_3_2_4_2
  doi: 10.1136/hrt.2004.042515
– ident: e_1_3_2_21_2
  doi: 10.1001/jama.286.2.180
– ident: e_1_3_2_25_2
  doi: 10.2105/AJPH.41.3.279
– ident: e_1_3_2_27_2
– ident: e_1_3_2_22_2
  doi: 10.1001/jama.291.21.2591
– ident: e_1_3_2_11_2
  doi: 10.1136/bmj.39261.471806.55
– ident: e_1_3_2_19_2
  doi: 10.1161/circ.96.1.44
– ident: e_1_3_2_14_2
  doi: 10.1161/circ.105.3.310
– ident: e_1_3_2_42_2
  doi: 10.1016/0735-1097(96)87733-3
– ident: e_1_3_2_7_2
  doi: 10.1136/bmj.320.7236.709
– ident: e_1_3_2_35_2
  doi: 10.1161/circulationaha.106.179918
– ident: e_1_3_2_26_2
  doi: 10.1093/oxfordjournals.aje.a112813
– ident: e_1_3_2_13_2
  doi: 10.1161/circ.83.1.1984895
– ident: e_1_3_2_24_2
  doi: 10.1097/01.mol.0000236362.56216.44
– ident: e_1_3_2_17_2
  doi: 10.1016/j.jclinepi.2005.01.013
– ident: e_1_3_2_40_2
  doi: 10.1016/j.ahj.2003.10.022
SSID ssj0006375
Score 2.5811965
Snippet Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart...
Background— Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie,...
BACKGROUNDSeparate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 743
SubjectTerms Adult
Aged
Algorithms
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Cardiovascular Diseases
Coronary heart disease
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Female
Heart
Humans
Longitudinal Studies
Male
Medical sciences
Middle Aged
Multivariate Analysis
Primary Health Care
Proportional Hazards Models
Risk Assessment - methods
Risk Factors
Sex Factors
Title General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study
URI https://www.ncbi.nlm.nih.gov/pubmed/18212285
https://search.proquest.com/docview/70279528
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkCakCcHGpQOGkRAvVULiJHYsnkoBdYOhqVphb5HjOKjSlky9PMD_4X9yfEnawCZgfYiq1HVdny-fj31uCL1kUhszlfBYmFMvFhGDR4pzj3BSFLIseWKi-I8_0_E0PjpLznq9nxteS6tl7ssfV8aV3ESqcA_kqqNk_0OybadwA96DfOEKEobrP8nY5YzWXhubTqUT7S5-YotxGzfC6cKkBjlxmSV0zNGmUjqazaWr4nVVcZ6Nw4J3jW8EH36rgRxM3e7BRAfsDt76TasvYuGsS-JC6MjiYq5ZxF_TcCVnNhbNee0PjtoPv9bn5fqkZzD0O-cSqWeqpHS4lnssslHHvnL0SmIvTmz6opZ_bfCmA9ommzKbwcktzMxmFf6T86nm_NHhZDT9ZDMIj4c-7Gp9yrUNcr3QNcb939a_1ivR7IdomHW7yqCrzHZ1C90mwGfGG-DwY7vg04glTcE-_Ye30Qs3rtfXjqqjBu1cAkDEeWlLqVy_1zE6z-k9dNdtVvDQIu8-6qlqF-0NK7GsL77jV9i4Dxu7zC7aPnZeGnvojcMl7uISa1xih0sMuMSASzyrsMOlbq4eoOmH96ejseeKdHgySunSk2Gq0pyULFDwEqD-0oCnNCnKKKIpkaACclAJRUlDaAeUz-My5kEkkjiXYSyjh2irqiv1GOEkZpwTGeaFqROpCxEwEVGqKAkSyeM-Is2cZZd2ZNlfZdZHB53Zbb-pMUspgV6fN9OdAbVqe5moVL1aZCwAaSck7aNHVgrrX01B4yNpsn-TET1Bd9bPy1O0tZyv1DPQbJf5gcHVL57Alf4
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Cardiovascular+Risk+Profile+for+Use+in+Primary+Care&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=D%E2%80%99Agostino%2C+Ralph+B.&rft.au=Vasan%2C+Ramachandran+S.&rft.au=Pencina%2C+Michael+J.&rft.au=Wolf%2C+Philip+A.&rft.date=2008-02-12&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=117&rft.issue=6&rft.spage=743&rft.epage=753&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.107.699579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCULATIONAHA_107_699579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon