General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study
Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk functi...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 117; no. 6; pp. 743 - 753 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
12.02.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents.
We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors.
A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care. |
---|---|
AbstractList | BACKGROUNDSeparate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents.METHODS AND RESULTSWe used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors.CONCLUSIONSA sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care. Background— Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. Methods and Results— We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions (“general CVD” algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P <0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non–laboratory-based predictors. Conclusions— A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care. Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure. The present report presents a single multivariable risk function that predicts risk of developing all CVD and of its constituents. We used Cox proportional-hazards regression to evaluate the risk of developing a first CVD event in 8491 Framingham study participants (mean age, 49 years; 4522 women) who attended a routine examination between 30 and 74 years of age and were free of CVD. Sex-specific multivariable risk functions ("general CVD" algorithms) were derived that incorporated age, total and high-density lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smoking, and diabetes status. We assessed the performance of the general CVD algorithms for predicting individual CVD events (coronary heart disease, stroke, peripheral artery disease, or heart failure). Over 12 years of follow-up, 1174 participants (456 women) developed a first CVD event. All traditional risk factors evaluated predicted CVD risk (multivariable-adjusted P<0.0001). The general CVD algorithm demonstrated good discrimination (C statistic, 0.763 [men] and 0.793 [women]) and calibration. Simple adjustments to the general CVD risk algorithms allowed estimation of the risks of each CVD component. Two simple risk scores are presented, 1 based on all traditional risk factors and the other based on non-laboratory-based predictors. A sex-specific multivariable risk factor algorithm can be conveniently used to assess general CVD risk and risk of individual CVD events (coronary, cerebrovascular, and peripheral arterial disease and heart failure). The estimated absolute CVD event rates can be used to quantify risk and to guide preventive care. |
Author | KANNEL, William B WOLF, Philip A D'AGOSTINO, Ralph B PENCINA, Michael J VASAN, Ramachandran S COBAIN, Mark MASSARO, Joseph M |
Author_xml | – sequence: 1 givenname: Ralph B surname: D'AGOSTINO fullname: D'AGOSTINO, Ralph B organization: Boston University, Department of Mathematics and Statistics, United States – sequence: 2 givenname: Ramachandran S surname: VASAN fullname: VASAN, Ramachandran S organization: Framingham Heart Study, Framingham, Mass, United States – sequence: 3 givenname: Michael J surname: PENCINA fullname: PENCINA, Michael J organization: Boston University, Department of Mathematics and Statistics, United States – sequence: 4 givenname: Philip A surname: WOLF fullname: WOLF, Philip A organization: Framingham Heart Study, Framingham, Mass, United States – sequence: 5 givenname: Mark surname: COBAIN fullname: COBAIN, Mark organization: Unilever Research, Corporate Biology, Colworth Park, United Kingdom – sequence: 6 givenname: Joseph M surname: MASSARO fullname: MASSARO, Joseph M organization: Framingham Heart Study, Framingham, Mass, United States – sequence: 7 givenname: William B surname: KANNEL fullname: KANNEL, William B organization: Framingham Heart Study, Framingham, Mass, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20086624$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18212285$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkEtLAzEQgINU7EP_gsSD3rbmsckmx7LYBxQrtfW6pGliV_dRk67Qf2_KFsW5DDN8M8N8fdCp6soAcIfREGOOH9PZMl3PR6vZ4nk0HQ0xSoZcSpbIC9DDjMRRzKjsgB5CSEYJJaQL-t5_hJLThF2BLhYEEyJYD7xNTGWcKmCq3Davv5XXTaEcXOb-E7642uaFgbZ2cO0NzKvQykvljifcwNXOwLFTZV6971QJp0a5A3w9NNvjNbi0qvDm5pwHYD1-WqXTaL6YzNLRPNJU8EOksTBiQ2yCTAglJOVICs62llIuiCYxkYJRZTkOHApfxTaWiCoWbzSONR2Ah3bv3tVfjfGHrMy9NkWhKlM3PksQSSQjIoCyBbWrvXfGZvv2kwyj7CQ1-y81tJOslRpmb89Hmk1ptn-TZ4sBuD8DQZ8qrFOVzv0vRxASnJOY_gAjV4Iy |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1080_03630242_2022_2100034 crossref_primary_10_1186_s13063_020_4114_9 crossref_primary_10_3389_fnagi_2023_1096798 crossref_primary_10_1007_s10067_021_05795_4 crossref_primary_10_35755_jmedassocthai_2020_05_10004 crossref_primary_10_5124_jkma_2023_66_4_224 crossref_primary_10_1155_2015_759610 crossref_primary_10_1007_s10753_024_02063_w crossref_primary_10_1161_CIRCOUTCOMES_109_869727 crossref_primary_10_33889_IJMEMS_2023_8_6_066 crossref_primary_10_1155_2022_8244047 crossref_primary_10_1155_2019_9246138 crossref_primary_10_18332_tpc_76549 crossref_primary_10_1161_STROKEAHA_110_593244 crossref_primary_10_1007_s11239_019_01969_9 crossref_primary_10_47102_annals_acadmedsg_2023141 crossref_primary_10_2147_IJGM_S425122 crossref_primary_10_3389_fphys_2023_1339873 crossref_primary_10_15420_aer_2022_34 crossref_primary_10_4093_dmj_2023_0197 crossref_primary_10_1007_s11764_023_01350_z crossref_primary_10_1155_2015_921021 crossref_primary_10_1155_2018_6572785 crossref_primary_10_1161_CIRCULATIONAHA_109_849166 crossref_primary_10_1155_2016_7479357 crossref_primary_10_2147_IJGM_S374190 crossref_primary_10_1007_s11739_024_03626_3 crossref_primary_10_1161_CIRCGENETICS_108_785659 crossref_primary_10_1161_JAHA_122_027095 crossref_primary_10_1007_s00784_016_2029_3 crossref_primary_10_3389_fphys_2021_675811 crossref_primary_10_1038_s41598_024_65037_w crossref_primary_10_1152_ajpregu_00141_2021 crossref_primary_10_1155_2016_3016245 crossref_primary_10_46833_reumatologiasp_2021_20_4_20_31 crossref_primary_10_3389_fnins_2021_678503 crossref_primary_10_1155_2019_5931975 crossref_primary_10_2147_RMHP_S337466 crossref_primary_10_36740_WLek202212122 crossref_primary_10_1161_CIRCULATIONAHA_108_835470 crossref_primary_10_1155_2020_2091341 crossref_primary_10_1161_CIRCIMAGING_119_010340 crossref_primary_10_1161_STROKEAHA_110_581306 crossref_primary_10_1186_s12889_023_16063_2 crossref_primary_10_1007_s00059_019_4838_z crossref_primary_10_1038_srep43045 crossref_primary_10_1161_CIRCULATIONAHA_109_921072 crossref_primary_10_1007_s00394_019_01902_z crossref_primary_10_1161_CIRCULATIONAHA_109_881995 crossref_primary_10_1007_s00228_024_03699_1 crossref_primary_10_1161_JAHA_116_003867 crossref_primary_10_4178_epih_e2023052 crossref_primary_10_1155_2016_8173905 crossref_primary_10_1002_gps_6064 crossref_primary_10_15420_japsc_2022_26 crossref_primary_10_1109_ACCESS_2022_3231743 crossref_primary_10_1161_CIRCGENETICS_108_813337 crossref_primary_10_1038_s41598_021_99103_4 crossref_primary_10_1161_CIRCGENETICS_109_894527 crossref_primary_10_1161_CIRCULATIONAHA_109_192667 crossref_primary_10_3389_fendo_2023_1259062 crossref_primary_10_34172_jcvtr_2022_25 crossref_primary_10_1002_ana_26460 crossref_primary_10_1007_s11845_017_1718_5 crossref_primary_10_1155_2015_174821 crossref_primary_10_1186_s40795_021_00432_4 crossref_primary_10_3389_fnagi_2023_1088050 crossref_primary_10_1161_STROKEAHA_110_586222 crossref_primary_10_1161_CIRCULATIONAHA_108_191261 crossref_primary_10_3389_fcvm_2023_1140025 crossref_primary_10_1007_s00125_022_05731_4 crossref_primary_10_1155_2016_9124676 crossref_primary_10_1161_HYPERTENSIONAHA_109_148007 crossref_primary_10_1007_s00394_023_03238_1 crossref_primary_10_1161_CIRCGEN_122_003858 crossref_primary_10_1161_CIRCULATIONAHA_108_816694 crossref_primary_10_1007_s00198_017_4203_0 crossref_primary_10_1007_s40121_024_00943_0 crossref_primary_10_1007_s40256_022_00552_7 crossref_primary_10_37349_emed_2021_00030 crossref_primary_10_2196_37385 crossref_primary_10_1007_s11906_019_1014_z crossref_primary_10_1007_s00787_020_01505_8 crossref_primary_10_1002_oby_24062 crossref_primary_10_1007_s00784_020_03670_1 crossref_primary_10_1212_WNL_0000000000209530 crossref_primary_10_47102_annals_acadmedsg_19110 crossref_primary_10_1161_ATVBAHA_109_200394 crossref_primary_10_1155_2015_516984 crossref_primary_10_1161_JAHA_121_022349 crossref_primary_10_3389_fendo_2018_00718 crossref_primary_10_1038_s41598_023_28751_5 crossref_primary_10_1161_STROKEAHA_112_650317 crossref_primary_10_15420_ecr_2021_47 crossref_primary_10_1109_TIM_2021_3139693 crossref_primary_10_1002_hec_4632 crossref_primary_10_33549_physiolres_932524 crossref_primary_10_1161_JAHA_119_014634 crossref_primary_10_2147_CIA_S454060 crossref_primary_10_1007_s10067_022_06349_y crossref_primary_10_1161_CIRCULATIONAHA_108_772962 crossref_primary_10_1007_s42000_024_00558_7 crossref_primary_10_3389_fimmu_2022_930087 crossref_primary_10_1155_2015_942695 crossref_primary_10_1161_CIRCULATIONAHA_109_192617 crossref_primary_10_1177_2165079916633222 crossref_primary_10_1155_2021_8862762 crossref_primary_10_35118_apjmbb_2024_032_3_01 crossref_primary_10_1161_CIRCULATIONAHA_109_852756 crossref_primary_10_3389_fpubh_2019_00126 crossref_primary_10_1038_s41598_022_08369_9 crossref_primary_10_1161_CIRCULATIONAHA_108_814251 crossref_primary_10_46833_reumatologiasp_2018_17_3_19_23 crossref_primary_10_1007_s10067_016_3536_y crossref_primary_10_1111_jsr_13904 crossref_primary_10_1186_s12872_022_02681_y crossref_primary_10_3389_fcvm_2022_853917 crossref_primary_10_1063_5_0191990 crossref_primary_10_3389_fnagi_2021_685683 crossref_primary_10_3350_cmh_2024_0157 crossref_primary_10_1161_CIRCOUTCOMES_108_831073 crossref_primary_10_1161_CIRCULATIONAHA_110_984047 crossref_primary_10_1007_s12552_024_09418_w crossref_primary_10_1007_s10554_016_0982_1 crossref_primary_10_1080_13697137_2023_2282685 crossref_primary_10_1161_CIRCOUTCOMES_108_831198 crossref_primary_10_14366_usg_21197 |
Cites_doi | 10.1016/S0169-7161(03)23001-7 10.1161/circulationaha.105.548206 10.1161/circ.97.18.1837 10.1001/jama.285.19.2486 10.1111/j.2517-6161.1972.tb00899.x 10.1016/S0140-6736(06)68770-9 10.1016/j.numecd.2005.07.007 10.1016/0735-1097(96)87730-8 10.1136/jech.57.8.634 10.1002/sim.2929 10.1002/sim.1742 10.1001/archinte.165.22.2644 10.1093/ije/dyh405 10.1016/0735-1097(96)87732-1 10.1016/0002-9149(76)90061-8 10.1001/archinte.159.11.1197 10.1016/S0895-4356(00)00343-7 10.1161/circ.100.9.988 10.1016/S0140-6736(04)17018-9 10.1136/hrt.2006.108167 10.1016/S0195-668X(03)00347-6 10.1161/str.22.3.2003301 10.1081/STA-200026579 10.1016/0735-1097(96)87734-5 10.1016/0002-8703(91)90861-B 10.1002/sim.1802 10.1136/hrt.2006.087932 10.1016/S0195-668X(03)00114-3 10.1016/S0140-6736(05)70240-3 10.1001/jama.297.6.611 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1136/hrt.2004.042515 10.1001/jama.286.2.180 10.2105/AJPH.41.3.279 10.1001/jama.291.21.2591 10.1136/bmj.39261.471806.55 10.1161/circ.96.1.44 10.1161/circ.105.3.310 10.1016/0735-1097(96)87733-3 10.1136/bmj.320.7236.709 10.1161/circulationaha.106.179918 10.1093/oxfordjournals.aje.a112813 10.1161/circ.83.1.1984895 10.1097/01.mol.0000236362.56216.44 10.1016/j.jclinepi.2005.01.013 10.1016/j.ahj.2003.10.022 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1161/CIRCULATIONAHA.107.699579 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 753 |
ExternalDocumentID | 10_1161_CIRCULATIONAHA_107_699579 18212285 20086624 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: N01-HC-25195 – fundername: NHLBI NIH HHS grantid: 2K24 HL04334 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 08R 0R~ 0ZK 18M 1CY 1J1 29B 2FS 2WC 354 40H 41~ 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAXR AAEJM AAGIX AAHPQ AAJCS AAMOA AAMTA AAPBV AAQKA AARTV AASOK AASXQ AAUGY AAWTL AAXQO AAYOK ABASU ABBUW ABDIG ABOCM ABPMR ABPTK ABQRW ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACRZS ACWDW ACWRI ACXNZ ADBBV ADCYY ADFPA ADGGA ADNKB AE3 AE6 AEBDS AEETU AENEX AFCHL AFDTB AFFNX AFUWQ AGINI AHMBA AHOMT AHRYX AHVBC AIJEX AJIOK AJJEV AJNWD AJNYG AKALU AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW ASPBG AVWKF AWKKM AYCSE AZFZN BAWUL BOYCO BQLVK BS7 BYPQX C1A C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD EX3 F2K F2L F2M F2N F5P FCALG FEDTE FL- FW0 GNXGY GQDEL GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ IPNFZ IQODW J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 MVM N4W N9A NEJ N~7 N~B N~M O9- OAG OAH OBH OCB OCUKA ODA ODMTH OGEVE OHH OHT OHYEH OJAPA OK1 OL1 OLB OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RHF RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WHG WOQ WOW X3V X3W X7M XXN XYM YFH YOC YQJ YSK YXB YYM YYP YZZ ZA5 ZFV ZGI ZXP ZY1 ZZMQN ~H1 AAAAV AAIQE AAUEB ABJNI ADHPY AFEXH AHQNM AINUH AJZMW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c386t-c18e8b2f70eeeea893609865df33682c2429853af61e8b05394f4903a54bc14c3 |
ISSN | 0009-7322 |
IngestDate | Sat Oct 26 00:06:28 EDT 2024 Fri Aug 23 02:32:59 EDT 2024 Tue Oct 15 23:31:40 EDT 2024 Sun Oct 22 16:09:46 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Heart failure Nervous system diseases Stroke risk factors Cardiovascular disease cardiovascular diseases Coronary heart disease Cerebral disorder Vascular disease coronary disease Central nervous system disease Risk factor Cerebrovascular disease |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-c18e8b2f70eeeea893609865df33682c2429853af61e8b05394f4903a54bc14c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18212285 |
PQID | 70279528 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_70279528 crossref_primary_10_1161_CIRCULATIONAHA_107_699579 pubmed_primary_18212285 pascalfrancis_primary_20086624 |
PublicationCentury | 2000 |
PublicationDate | 2008-02-12 |
PublicationDateYYYYMMDD | 2008-02-12 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-12 day: 12 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2008 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_28_2) 1972; 34 |
References_xml | – ident: e_1_3_2_29_2 doi: 10.1016/S0169-7161(03)23001-7 – ident: e_1_3_2_37_2 doi: 10.1161/circulationaha.105.548206 – ident: e_1_3_2_16_2 doi: 10.1161/circ.97.18.1837 – ident: e_1_3_2_9_2 doi: 10.1001/jama.285.19.2486 – volume: 34 start-page: 187 year: 1972 ident: e_1_3_2_28_2 publication-title: J Royal Stat Soc doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_3_2_36_2 doi: 10.1016/S0140-6736(06)68770-9 – ident: e_1_3_2_8_2 doi: 10.1016/j.numecd.2005.07.007 – ident: e_1_3_2_1_2 – ident: e_1_3_2_38_2 doi: 10.1016/0735-1097(96)87730-8 – ident: e_1_3_2_23_2 doi: 10.1136/jech.57.8.634 – ident: e_1_3_2_33_2 doi: 10.1002/sim.2929 – ident: e_1_3_2_34_2 doi: 10.1002/sim.1742 – ident: e_1_3_2_47_2 doi: 10.1001/archinte.165.22.2644 – ident: e_1_3_2_15_2 doi: 10.1093/ije/dyh405 – ident: e_1_3_2_43_2 doi: 10.1016/0735-1097(96)87732-1 – ident: e_1_3_2_46_2 doi: 10.1016/0002-9149(76)90061-8 – ident: e_1_3_2_20_2 doi: 10.1001/archinte.159.11.1197 – ident: e_1_3_2_45_2 doi: 10.1016/S0895-4356(00)00343-7 – ident: e_1_3_2_39_2 doi: 10.1161/circ.100.9.988 – ident: e_1_3_2_41_2 doi: 10.1016/S0140-6736(04)17018-9 – ident: e_1_3_2_12_2 doi: 10.1136/hrt.2006.108167 – ident: e_1_3_2_6_2 doi: 10.1016/S0195-668X(03)00347-6 – ident: e_1_3_2_18_2 doi: 10.1161/str.22.3.2003301 – ident: e_1_3_2_32_2 doi: 10.1081/STA-200026579 – ident: e_1_3_2_44_2 doi: 10.1016/0735-1097(96)87734-5 – ident: e_1_3_2_3_2 doi: 10.1016/0002-8703(91)90861-B – ident: e_1_3_2_30_2 doi: 10.1002/sim.1802 – ident: e_1_3_2_48_2 doi: 10.1136/hrt.2006.087932 – ident: e_1_3_2_5_2 doi: 10.1016/S0195-668X(03)00114-3 – ident: e_1_3_2_2_2 doi: 10.1016/S0140-6736(05)70240-3 – ident: e_1_3_2_10_2 doi: 10.1001/jama.297.6.611 – ident: e_1_3_2_31_2 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: e_1_3_2_4_2 doi: 10.1136/hrt.2004.042515 – ident: e_1_3_2_21_2 doi: 10.1001/jama.286.2.180 – ident: e_1_3_2_25_2 doi: 10.2105/AJPH.41.3.279 – ident: e_1_3_2_27_2 – ident: e_1_3_2_22_2 doi: 10.1001/jama.291.21.2591 – ident: e_1_3_2_11_2 doi: 10.1136/bmj.39261.471806.55 – ident: e_1_3_2_19_2 doi: 10.1161/circ.96.1.44 – ident: e_1_3_2_14_2 doi: 10.1161/circ.105.3.310 – ident: e_1_3_2_42_2 doi: 10.1016/0735-1097(96)87733-3 – ident: e_1_3_2_7_2 doi: 10.1136/bmj.320.7236.709 – ident: e_1_3_2_35_2 doi: 10.1161/circulationaha.106.179918 – ident: e_1_3_2_26_2 doi: 10.1093/oxfordjournals.aje.a112813 – ident: e_1_3_2_13_2 doi: 10.1161/circ.83.1.1984895 – ident: e_1_3_2_24_2 doi: 10.1097/01.mol.0000236362.56216.44 – ident: e_1_3_2_17_2 doi: 10.1016/j.jclinepi.2005.01.013 – ident: e_1_3_2_40_2 doi: 10.1016/j.ahj.2003.10.022 |
SSID | ssj0006375 |
Score | 2.5811965 |
Snippet | Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary heart... Background— Separate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie,... BACKGROUNDSeparate multivariable risk algorithms are commonly used to assess risk of specific atherosclerotic cardiovascular disease (CVD) events, ie, coronary... |
SourceID | proquest crossref pubmed pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 743 |
SubjectTerms | Adult Aged Algorithms Biological and medical sciences Blood and lymphatic vessels Cardiology. Vascular system Cardiovascular Diseases Coronary heart disease Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Female Heart Humans Longitudinal Studies Male Medical sciences Middle Aged Multivariate Analysis Primary Health Care Proportional Hazards Models Risk Assessment - methods Risk Factors Sex Factors |
Title | General Cardiovascular Risk Profile for Use in Primary Care The Framingham Heart Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18212285 https://search.proquest.com/docview/70279528 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkCakCcHGpQOGkRAvVULiJHYsnkoBdYOhqVphb5HjOKjSlky9PMD_4X9yfEnawCZgfYiq1HVdny-fj31uCL1kUhszlfBYmFMvFhGDR4pzj3BSFLIseWKi-I8_0_E0PjpLznq9nxteS6tl7ssfV8aV3ESqcA_kqqNk_0OybadwA96DfOEKEobrP8nY5YzWXhubTqUT7S5-YotxGzfC6cKkBjlxmSV0zNGmUjqazaWr4nVVcZ6Nw4J3jW8EH36rgRxM3e7BRAfsDt76TasvYuGsS-JC6MjiYq5ZxF_TcCVnNhbNee0PjtoPv9bn5fqkZzD0O-cSqWeqpHS4lnssslHHvnL0SmIvTmz6opZ_bfCmA9ommzKbwcktzMxmFf6T86nm_NHhZDT9ZDMIj4c-7Gp9yrUNcr3QNcb939a_1ivR7IdomHW7yqCrzHZ1C90mwGfGG-DwY7vg04glTcE-_Ye30Qs3rtfXjqqjBu1cAkDEeWlLqVy_1zE6z-k9dNdtVvDQIu8-6qlqF-0NK7GsL77jV9i4Dxu7zC7aPnZeGnvojcMl7uISa1xih0sMuMSASzyrsMOlbq4eoOmH96ejseeKdHgySunSk2Gq0pyULFDwEqD-0oCnNCnKKKIpkaACclAJRUlDaAeUz-My5kEkkjiXYSyjh2irqiv1GOEkZpwTGeaFqROpCxEwEVGqKAkSyeM-Is2cZZd2ZNlfZdZHB53Zbb-pMUspgV6fN9OdAbVqe5moVL1aZCwAaSck7aNHVgrrX01B4yNpsn-TET1Bd9bPy1O0tZyv1DPQbJf5gcHVL57Alf4 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Cardiovascular+Risk+Profile+for+Use+in+Primary+Care&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=D%E2%80%99Agostino%2C+Ralph+B.&rft.au=Vasan%2C+Ramachandran+S.&rft.au=Pencina%2C+Michael+J.&rft.au=Wolf%2C+Philip+A.&rft.date=2008-02-12&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=117&rft.issue=6&rft.spage=743&rft.epage=753&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.107.699579&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_CIRCULATIONAHA_107_699579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |