What tau distribution maximizes fast axonal transport toward the axonal synapse?
•We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward th...
Saved in:
Published in | Mathematical biosciences Vol. 253; pp. 19 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward the synapse.•We compared the optimal tau distribution with the experimentally measured one.
This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal–distal increase in healthy axons and a proximal–distal decrease in degenerating axons in Alzheimer’s disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal–distal increase in tau concentration leads to a higher organelle flux while a proximal–distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang–bang principle in optimal control theory. |
---|---|
AbstractList | This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory. •We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward the synapse.•We compared the optimal tau distribution with the experimentally measured one. This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal–distal increase in healthy axons and a proximal–distal decrease in degenerating axons in Alzheimer’s disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal–distal increase in tau concentration leads to a higher organelle flux while a proximal–distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang–bang principle in optimal control theory. This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory.This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory. |
Author | Kuznetsov, I.A. Kuznetsov, A.V. |
Author_xml | – sequence: 1 givenname: I.A. surname: Kuznetsov fullname: Kuznetsov, I.A. email: ikuznet1@jhu.edu organization: Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218-2694, USA – sequence: 2 givenname: A.V. surname: Kuznetsov fullname: Kuznetsov, A.V. email: avkuznet@ncsu.edu organization: Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24747683$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFEEQhhuJmE30B3iROXqZtaq_ZgYPIsEvCOhB8dj015BeZqbX7p6Y-OvtZbMXD0EoqEM9Tx3e94KcLXHxhLxE2CKgfLPbziZvKSDfQh3AJ2SDfTe0DBk_IxsAKlohJD8nFznvKtAhymfknPKOd7JnG_Lt540uTdFr40IuKZi1hLg0s74Lc_jjczPqXBp9Fxc9NSXpJe9jqkL8rZNryo0_3fL9ovfZv3tOno56yv7Fw74kPz5--H71ub3--unL1fvr1rJeltaYgUlkg9PjSI1lHL10AhAFFSAo81aMvaTOCOh6gw5GNnLkHnoQ2hnOLsnr4999ir9Wn4uaQ7Z-mvTi45oVCg6UQjf8D0qHnjPZQ0VfPaCrmb1T-xRmne7VKbAKdEfApphz8qOyoehDZjWcMCkEdahG7VStRh2qUVAHsJr4j3l6_pjz9uj4muRt8EllG_xivQvJ26JcDI_YfwEZd6XY |
CitedBy_id | crossref_primary_10_1088_1478_3975_aba5e5 crossref_primary_10_1016_j_jtbi_2018_11_022 crossref_primary_10_1080_10255842_2014_920830 crossref_primary_10_1002_1873_3468_12907 crossref_primary_10_1016_j_ijbiomac_2022_07_158 crossref_primary_10_1038_s41419_019_1489_1 crossref_primary_10_1098_rspa_2017_0045 |
Cites_doi | 10.1137/1022026 10.1126/science.1152993 10.1016/j.bpj.2011.11.4024 10.1038/nsmb.2555 10.1152/physrev.00048.2009 10.1016/j.bpj.2013.10.006 10.1083/jcb.200108057 10.1038/35036345 10.1016/j.neuron.2011.04.009 10.1529/biophysj.106.097881 10.1126/science.1105681 10.1093/emboj/cdf503 10.1038/nrn2194 10.1038/380451a0 10.1523/JNEUROSCI.16-18-05727.1996 10.1083/jcb.143.3.777 10.1016/j.bpj.2010.02.037 10.1523/JNEUROSCI.22-15-06394.2002 10.1016/j.bbamem.2009.11.012 10.1186/1750-1326-6-39 10.1096/fj.08-109181 10.3389/fneur.2013.00093 10.1523/JNEUROSCI.16-18-05583.1996 10.1146/annurev.neuro.23.1.39 10.1016/S0006-3495(01)75994-2 10.1242/jcs.00967 10.1038/nature03528 10.1242/jcs.02558 10.1038/nrn2631 10.1074/jbc.M111.292987 10.1523/JNEUROSCI.16-11-03601.1996 10.1002/jnr.21154 10.1523/JNEUROSCI.5242-07.2008 10.1016/j.cell.2006.05.046 10.1038/71338 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 |
DOI | 10.1016/j.mbs.2014.04.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1879-3134 |
EndPage | 24 |
ExternalDocumentID | 24747683 10_1016_j_mbs_2014_04_001 S002555641400073X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AETEA AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 |
ID | FETCH-LOGICAL-c386t-bb936139daff2bc341e6d50115250523ec5f862db5078b1d0f3f414e0805adb43 |
IEDL.DBID | .~1 |
ISSN | 0025-5564 1879-3134 |
IngestDate | Thu Jul 10 18:14:33 EDT 2025 Fri Jul 11 08:25:43 EDT 2025 Thu Apr 03 07:08:44 EDT 2025 Tue Jul 01 03:34:32 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tau protein Alzheimer’s disease Optimal control Organelle transport |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-bb936139daff2bc341e6d50115250523ec5f862db5078b1d0f3f414e0805adb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24747683 |
PQID | 1529843680 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1540220794 proquest_miscellaneous_1529843680 pubmed_primary_24747683 crossref_citationtrail_10_1016_j_mbs_2014_04_001 crossref_primary_10_1016_j_mbs_2014_04_001 elsevier_sciencedirect_doi_10_1016_j_mbs_2014_04_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences |
PublicationTitleAlternate | Math Biosci |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | McVicker, Chrin, Berger (b0085) 2011; 286 Artstein (b0125) 1980; 22 M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, S.P. Gross, Multiple-motor based transport and its regulation by tau, Proc Natl Acad Sci USA 104 (2007) 87. Peter, Mofrad (b0010) 2012; 102 Conde, Caceres (b0015) 2009; 10 King, Schroer (b0145) 2000; 2 Debanne, Campanac, Bialowas, Carlier, Alcaraz (b0165) 2011; 91 Xu, King, Lapierre-Landry, Nemec (b0065) 2013; 105 Stamer, Vogel, Thies, Mandelkow, Mandelkow (b0060) 2002; 156 Athans, Falb (b0115) 2007 Beeg, Klumpp, Dimova, Gracia, Unger, Lipowsky (b0135) 2008; 94 Dixit, Ross, Goldman, Holzbaur (b0005) 2008; 319 Seitz, Kojima, Oiwa, Mandelkow, Song, Mandelkow (b0105) 2002; 21 Yuan, Kumar, Peterhoff, Duff, Nixon (b0080) 2008; 28 Lasagna-Reeves, Castillo-Carranza, Sengupta, Clos, Jackson, Kayed (b0045) 2011; 6 Mandell, Banker (b0095) 1996; 16 Cuchillo-Ibanez, Seereeram, Byers, Leung, Ward, Anderton, Hanger (b0200) 2008; 22 Morfini, Pigino, Mizuno, Kikkawa, Brady (b0075) 2007; 85 Kirk (b0120) 2004 Black, Slaughter, Moshiach, Obrocka, Fischer (b0100) 1996; 16 Selkoe (b0035) 2013; 18 Gerson, Kayed (b0040) 2013; 4 Utton, Connell, Asuni, van Slegtenhorst, Hutton, de Silva, Lees, Miller, Anderton (b0185) 2002; 22 Smith, Simmons (b0110) 2001; 80 Cohen, Friedmann, Hwang, Marmorstein, Lee (b0030) 2013; 20 Utton, Noble, Hill, Anderton, Hanger (b0190) 2005; 118 Kempf, Clement, Faissner, Lee, Brandt (b0090) 1996; 16 Müller, Klumpp, Lipowsky (b0130) 2010; 98 Leduc, Campas, Joanny, Prost, Bassereau (b0140) 2010; 1798 Schnitzer, Visscher, Block (b0155) 2000; 2 Vale, Funatsu, Pierce, Romberg, Harada, Yanagida (b0160) 1996; 380 Morris, Maeda, Vossel, Mucke (b0020) 2011; 70 S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein, Proc Natl Acad Sci USA 103 (2006) 5741. Ebneth, Godemann, Stamer, Illenberger, Trinczek, Mandelkow, Mandelkow (b0055) 1998; 143 Ballatore, Lee, Trojanowski (b0025) 2007; 8 Stokin, Lillo, Falzone, Brusch, Rockenstein, Mount, Raman, Davies, Masliah, Williams, Goldstein (b0050) 2005; 307 Carter, Cross (b0170) 2005; 435 Goldstein, Yang (b0180) 2000; 23 Saha, Hill, Utton, Asuni, Ackerley, Grierson, Miller, Davies, Buchman, Anderton, Hanger (b0195) 2004; 117 Reck-Peterson, Yildiz, Carter, Gennerich, Zhang, Vale (b0150) 2006; 126 Morris (10.1016/j.mbs.2014.04.001_b0020) 2011; 70 King (10.1016/j.mbs.2014.04.001_b0145) 2000; 2 Ballatore (10.1016/j.mbs.2014.04.001_b0025) 2007; 8 Mandell (10.1016/j.mbs.2014.04.001_b0095) 1996; 16 Gerson (10.1016/j.mbs.2014.04.001_b0040) 2013; 4 Stamer (10.1016/j.mbs.2014.04.001_b0060) 2002; 156 Kempf (10.1016/j.mbs.2014.04.001_b0090) 1996; 16 Vale (10.1016/j.mbs.2014.04.001_b0160) 1996; 380 Cohen (10.1016/j.mbs.2014.04.001_b0030) 2013; 20 McVicker (10.1016/j.mbs.2014.04.001_b0085) 2011; 286 Beeg (10.1016/j.mbs.2014.04.001_b0135) 2008; 94 Kirk (10.1016/j.mbs.2014.04.001_b0120) 2004 Utton (10.1016/j.mbs.2014.04.001_b0185) 2002; 22 Morfini (10.1016/j.mbs.2014.04.001_b0075) 2007; 85 Yuan (10.1016/j.mbs.2014.04.001_b0080) 2008; 28 Peter (10.1016/j.mbs.2014.04.001_b0010) 2012; 102 Dixit (10.1016/j.mbs.2014.04.001_b0005) 2008; 319 Reck-Peterson (10.1016/j.mbs.2014.04.001_b0150) 2006; 126 Saha (10.1016/j.mbs.2014.04.001_b0195) 2004; 117 Athans (10.1016/j.mbs.2014.04.001_b0115) 2007 10.1016/j.mbs.2014.04.001_b0070 Artstein (10.1016/j.mbs.2014.04.001_b0125) 1980; 22 Xu (10.1016/j.mbs.2014.04.001_b0065) 2013; 105 10.1016/j.mbs.2014.04.001_b0175 Lasagna-Reeves (10.1016/j.mbs.2014.04.001_b0045) 2011; 6 Debanne (10.1016/j.mbs.2014.04.001_b0165) 2011; 91 Goldstein (10.1016/j.mbs.2014.04.001_b0180) 2000; 23 Black (10.1016/j.mbs.2014.04.001_b0100) 1996; 16 Conde (10.1016/j.mbs.2014.04.001_b0015) 2009; 10 Müller (10.1016/j.mbs.2014.04.001_b0130) 2010; 98 Carter (10.1016/j.mbs.2014.04.001_b0170) 2005; 435 Schnitzer (10.1016/j.mbs.2014.04.001_b0155) 2000; 2 Stokin (10.1016/j.mbs.2014.04.001_b0050) 2005; 307 Smith (10.1016/j.mbs.2014.04.001_b0110) 2001; 80 Utton (10.1016/j.mbs.2014.04.001_b0190) 2005; 118 Selkoe (10.1016/j.mbs.2014.04.001_b0035) 2013; 18 Ebneth (10.1016/j.mbs.2014.04.001_b0055) 1998; 143 Leduc (10.1016/j.mbs.2014.04.001_b0140) 2010; 1798 Cuchillo-Ibanez (10.1016/j.mbs.2014.04.001_b0200) 2008; 22 Seitz (10.1016/j.mbs.2014.04.001_b0105) 2002; 21 |
References_xml | – volume: 307 start-page: 1282 year: 2005 ident: b0050 article-title: Axonopathy and transport deficits early in the pathogenesis of alzheimer’s disease publication-title: Science – volume: 1798 start-page: 1418 year: 2010 ident: b0140 article-title: Mechanism of membrane nanotube formation by molecular motors publication-title: Biochimica Et Biophysica Acta-Biomembranes – volume: 117 start-page: 1017 year: 2004 ident: b0195 article-title: Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons publication-title: J. Cell Sci. – volume: 70 start-page: 410 year: 2011 ident: b0020 article-title: The many faces of tau publication-title: Neuron – volume: 94 start-page: 532 year: 2008 ident: b0135 article-title: Transport of beads by several kinesin motors publication-title: Biophys. J. – volume: 21 start-page: 4896 year: 2002 ident: b0105 article-title: Single-molecule investigation of the interference between kinesin, tau and MAP2c publication-title: Embo J. – volume: 22 start-page: 3186 year: 2008 ident: b0200 article-title: Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin publication-title: Faseb J. – year: 2007 ident: b0115 article-title: Optimal Contol Theory: An Introduction – volume: 16 start-page: 5583 year: 1996 ident: b0090 article-title: Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner publication-title: J. Neurosci. – volume: 16 start-page: 5727 year: 1996 ident: b0095 article-title: A spatial gradient of tau protein phosphorylation in nascent axons publication-title: J. Neurosci. – reference: M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, S.P. Gross, Multiple-motor based transport and its regulation by tau, Proc Natl Acad Sci USA 104 (2007) 87. – volume: 80 start-page: 45 year: 2001 ident: b0110 article-title: Models of motor-assisted transport of intracellular particles publication-title: Biophys. J. – volume: 2 start-page: 718 year: 2000 ident: b0155 article-title: Force production by single kinesin motors publication-title: Nat. Cell Biol. – volume: 16 start-page: 3601 year: 1996 ident: b0100 article-title: Tau is enriched on dynamic microtubules in the distal region of growing axons publication-title: J. Neurosci. – volume: 98 start-page: 2610 year: 2010 ident: b0130 article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces publication-title: Biophys. J. – volume: 23 start-page: 39 year: 2000 ident: b0180 article-title: Microtubule-based transport systems in neurons: the roles of kinesins and dyneins publication-title: Annu. Rev. Neurosci. – volume: 126 start-page: 335 year: 2006 ident: b0150 article-title: Single-molecule analysis of dynein processivity and stepping behavior publication-title: Cell – volume: 435 start-page: 308 year: 2005 ident: b0170 article-title: Mechanics of the kinesin step publication-title: Nature – volume: 319 start-page: 1086 year: 2008 ident: b0005 article-title: Differential regulation of dynein and kinesin motor proteins by tau publication-title: Science – volume: 18 year: 2013 ident: b0035 article-title: Snapshot: pathology of alzheimer’s disease publication-title: Cell – volume: 105 start-page: L23 year: 2013 ident: b0065 article-title: Interplay between velocity and travel distance of kinesin-based transport in the presence of tau publication-title: Biophys. J. – volume: 286 start-page: 42873 year: 2011 ident: b0085 article-title: The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of tau to inhibit kinesin-mediated transport publication-title: J. Biol. Chem. – volume: 8 start-page: 663 year: 2007 ident: b0025 article-title: Tau-mediated neurodegeneration in alzheimer’s disease and related disorders publication-title: Nat. Rev. Neurosci. – volume: 28 start-page: 1682 year: 2008 ident: b0080 article-title: Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice publication-title: J. Neurosci. – volume: 102 start-page: 749 year: 2012 ident: b0010 article-title: Computational modeling of axonal microtubule bundles under tension publication-title: Biophys. J. – volume: 22 start-page: 172 year: 1980 ident: b0125 article-title: Discrete and continuous bang–bang and facial spaces or – look for the extreme-points publication-title: SIAM Rev. – volume: 380 start-page: 451 year: 1996 ident: b0160 article-title: Direct observation of single kinesin molecules moving along microtubules publication-title: Nature – volume: 91 start-page: 555 year: 2011 ident: b0165 article-title: Axon physiology publication-title: Physiol. Rev. – volume: 6 start-page: 39 year: 2011 ident: b0045 article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice publication-title: Mol. Neurodegener. – volume: 156 start-page: 1051 year: 2002 ident: b0060 article-title: Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress publication-title: J. Cell Biol. – year: 2004 ident: b0120 article-title: Optimal Control Theory: An Introduction – volume: 20 start-page: 756 year: 2013 ident: b0030 article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity publication-title: Nat. Struct. Mol. Biol. – volume: 2 start-page: 20 year: 2000 ident: b0145 article-title: Dynactin increases the processivity of the cytoplasmic dynein motor publication-title: Nat. Cell Biol. – reference: S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein, Proc Natl Acad Sci USA 103 (2006) 5741. – volume: 118 start-page: 4645 year: 2005 ident: b0190 article-title: Molecular motors implicated in the axonal transport of tau and alpha-synuclein publication-title: J. Cell Sci. – volume: 85 start-page: 2620 year: 2007 ident: b0075 article-title: Tau binding to microtubules does not directly affect microtubule-based vesicle motility publication-title: J. Neurosci. Res. – volume: 143 start-page: 777 year: 1998 ident: b0055 article-title: Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for alzheimer’s disease publication-title: J. Cell Biol. – volume: 22 start-page: 6394 year: 2002 ident: b0185 article-title: The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons publication-title: J. Neurosci. – volume: 4 start-page: 93 year: 2013 ident: b0040 article-title: Formation and propagation of tau oligomeric seeds publication-title: Front. Neurol. – volume: 10 start-page: 319 year: 2009 ident: b0015 article-title: Microtubule assembly, organization and dynamics in axons and dendrites publication-title: Nat. Rev. Neurosci. – volume: 22 start-page: 172 year: 1980 ident: 10.1016/j.mbs.2014.04.001_b0125 article-title: Discrete and continuous bang–bang and facial spaces or – look for the extreme-points publication-title: SIAM Rev. doi: 10.1137/1022026 – volume: 319 start-page: 1086 year: 2008 ident: 10.1016/j.mbs.2014.04.001_b0005 article-title: Differential regulation of dynein and kinesin motor proteins by tau publication-title: Science doi: 10.1126/science.1152993 – volume: 102 start-page: 749 year: 2012 ident: 10.1016/j.mbs.2014.04.001_b0010 article-title: Computational modeling of axonal microtubule bundles under tension publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.11.4024 – volume: 20 start-page: 756 year: 2013 ident: 10.1016/j.mbs.2014.04.001_b0030 article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2555 – volume: 91 start-page: 555 year: 2011 ident: 10.1016/j.mbs.2014.04.001_b0165 article-title: Axon physiology publication-title: Physiol. Rev. doi: 10.1152/physrev.00048.2009 – volume: 105 start-page: L23 year: 2013 ident: 10.1016/j.mbs.2014.04.001_b0065 article-title: Interplay between velocity and travel distance of kinesin-based transport in the presence of tau publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.10.006 – ident: 10.1016/j.mbs.2014.04.001_b0070 – volume: 156 start-page: 1051 year: 2002 ident: 10.1016/j.mbs.2014.04.001_b0060 article-title: Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress publication-title: J. Cell Biol. doi: 10.1083/jcb.200108057 – volume: 2 start-page: 718 year: 2000 ident: 10.1016/j.mbs.2014.04.001_b0155 article-title: Force production by single kinesin motors publication-title: Nat. Cell Biol. doi: 10.1038/35036345 – volume: 70 start-page: 410 year: 2011 ident: 10.1016/j.mbs.2014.04.001_b0020 article-title: The many faces of tau publication-title: Neuron doi: 10.1016/j.neuron.2011.04.009 – volume: 94 start-page: 532 year: 2008 ident: 10.1016/j.mbs.2014.04.001_b0135 article-title: Transport of beads by several kinesin motors publication-title: Biophys. J. doi: 10.1529/biophysj.106.097881 – volume: 307 start-page: 1282 year: 2005 ident: 10.1016/j.mbs.2014.04.001_b0050 article-title: Axonopathy and transport deficits early in the pathogenesis of alzheimer’s disease publication-title: Science doi: 10.1126/science.1105681 – volume: 21 start-page: 4896 year: 2002 ident: 10.1016/j.mbs.2014.04.001_b0105 article-title: Single-molecule investigation of the interference between kinesin, tau and MAP2c publication-title: Embo J. doi: 10.1093/emboj/cdf503 – volume: 8 start-page: 663 year: 2007 ident: 10.1016/j.mbs.2014.04.001_b0025 article-title: Tau-mediated neurodegeneration in alzheimer’s disease and related disorders publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2194 – year: 2004 ident: 10.1016/j.mbs.2014.04.001_b0120 – volume: 380 start-page: 451 year: 1996 ident: 10.1016/j.mbs.2014.04.001_b0160 article-title: Direct observation of single kinesin molecules moving along microtubules publication-title: Nature doi: 10.1038/380451a0 – volume: 16 start-page: 5727 year: 1996 ident: 10.1016/j.mbs.2014.04.001_b0095 article-title: A spatial gradient of tau protein phosphorylation in nascent axons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-18-05727.1996 – ident: 10.1016/j.mbs.2014.04.001_b0175 – volume: 143 start-page: 777 year: 1998 ident: 10.1016/j.mbs.2014.04.001_b0055 article-title: Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for alzheimer’s disease publication-title: J. Cell Biol. doi: 10.1083/jcb.143.3.777 – volume: 98 start-page: 2610 year: 2010 ident: 10.1016/j.mbs.2014.04.001_b0130 article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.02.037 – volume: 22 start-page: 6394 year: 2002 ident: 10.1016/j.mbs.2014.04.001_b0185 article-title: The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-15-06394.2002 – volume: 1798 start-page: 1418 year: 2010 ident: 10.1016/j.mbs.2014.04.001_b0140 article-title: Mechanism of membrane nanotube formation by molecular motors publication-title: Biochimica Et Biophysica Acta-Biomembranes doi: 10.1016/j.bbamem.2009.11.012 – volume: 6 start-page: 39 year: 2011 ident: 10.1016/j.mbs.2014.04.001_b0045 article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-6-39 – volume: 22 start-page: 3186 year: 2008 ident: 10.1016/j.mbs.2014.04.001_b0200 article-title: Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin publication-title: Faseb J. doi: 10.1096/fj.08-109181 – volume: 4 start-page: 93 year: 2013 ident: 10.1016/j.mbs.2014.04.001_b0040 article-title: Formation and propagation of tau oligomeric seeds publication-title: Front. Neurol. doi: 10.3389/fneur.2013.00093 – volume: 18 year: 2013 ident: 10.1016/j.mbs.2014.04.001_b0035 article-title: Snapshot: pathology of alzheimer’s disease publication-title: Cell – volume: 16 start-page: 5583 year: 1996 ident: 10.1016/j.mbs.2014.04.001_b0090 article-title: Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-18-05583.1996 – volume: 23 start-page: 39 year: 2000 ident: 10.1016/j.mbs.2014.04.001_b0180 article-title: Microtubule-based transport systems in neurons: the roles of kinesins and dyneins publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.39 – volume: 80 start-page: 45 year: 2001 ident: 10.1016/j.mbs.2014.04.001_b0110 article-title: Models of motor-assisted transport of intracellular particles publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75994-2 – volume: 117 start-page: 1017 year: 2004 ident: 10.1016/j.mbs.2014.04.001_b0195 article-title: Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons publication-title: J. Cell Sci. doi: 10.1242/jcs.00967 – year: 2007 ident: 10.1016/j.mbs.2014.04.001_b0115 – volume: 435 start-page: 308 year: 2005 ident: 10.1016/j.mbs.2014.04.001_b0170 article-title: Mechanics of the kinesin step publication-title: Nature doi: 10.1038/nature03528 – volume: 118 start-page: 4645 year: 2005 ident: 10.1016/j.mbs.2014.04.001_b0190 article-title: Molecular motors implicated in the axonal transport of tau and alpha-synuclein publication-title: J. Cell Sci. doi: 10.1242/jcs.02558 – volume: 10 start-page: 319 year: 2009 ident: 10.1016/j.mbs.2014.04.001_b0015 article-title: Microtubule assembly, organization and dynamics in axons and dendrites publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2631 – volume: 286 start-page: 42873 year: 2011 ident: 10.1016/j.mbs.2014.04.001_b0085 article-title: The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of tau to inhibit kinesin-mediated transport publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.292987 – volume: 16 start-page: 3601 year: 1996 ident: 10.1016/j.mbs.2014.04.001_b0100 article-title: Tau is enriched on dynamic microtubules in the distal region of growing axons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-11-03601.1996 – volume: 85 start-page: 2620 year: 2007 ident: 10.1016/j.mbs.2014.04.001_b0075 article-title: Tau binding to microtubules does not directly affect microtubule-based vesicle motility publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21154 – volume: 28 start-page: 1682 year: 2008 ident: 10.1016/j.mbs.2014.04.001_b0080 article-title: Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5242-07.2008 – volume: 126 start-page: 335 year: 2006 ident: 10.1016/j.mbs.2014.04.001_b0150 article-title: Single-molecule analysis of dynein processivity and stepping behavior publication-title: Cell doi: 10.1016/j.cell.2006.05.046 – volume: 2 start-page: 20 year: 2000 ident: 10.1016/j.mbs.2014.04.001_b0145 article-title: Dynactin increases the processivity of the cytoplasmic dynein motor publication-title: Nat. Cell Biol. doi: 10.1038/71338 |
SSID | ssj0017116 |
Score | 2.0995276 |
Snippet | •We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along... This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19 |
SubjectTerms | Alzheimer’s disease Axonal Transport - physiology Axons - metabolism Humans Kinesin - metabolism Mathematical Concepts Microtubules - metabolism Models, Neurological Optimal control Organelle transport Synapses - metabolism Tau protein tau Proteins - metabolism |
Title | What tau distribution maximizes fast axonal transport toward the axonal synapse? |
URI | https://dx.doi.org/10.1016/j.mbs.2014.04.001 https://www.ncbi.nlm.nih.gov/pubmed/24747683 https://www.proquest.com/docview/1529843680 https://www.proquest.com/docview/1540220794 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEfQgvl1fRPAkVNtN2m1PIqKsLoqI4t5C0qSw4tbFdkE9-NudSdsFQffgqbSdljCTznxpZr4BOOQqMW3BtZdpoT1hdOKpjPuespFxHFPK_e-4uY26j-K6H_Zn4LyphaG0ytr3Vz7deev6ykmtzZPRYEA1vgiHw0jgEoH2m_pUwS46NMuPvyZpHkEncO1PXdtWkm52Nl2O11ATY3cgHNtp3Rfml9j0F_Z0MehyGZZq8MjOqvGtwIzNV2G-aif5sQqLNxMO1mIN7oiVm5VqzAyR49Z9rdhQvQ-Gg09bsEwVJVPvBMVZ2XCcs9Ll0TJ8UXOv-MjVqLCn6_B4efFw3vXq_gleyuOo9LROOEbrxKgsa-sU4xUaICQMSLinzW0aZrigMRoxYawD42c8Q21aBJGhMlrwDZjNX3O7BSxGWBZHCiNqqoQKA42ozBo_ilGsYzp-C_xGczKtycWpx8WLbLLIniUqW5KypS8ok64FR5NHRhWzxjRh0ZhD_pgeEj3_tMcOGtNJ_GxoL0Tl9nVcSNRBEhP7vj9NRlAdMnqsFmxWdp-MtC1wHRbFfPt_A9uBBTqr8n53YbZ8G9s9RDel3nfTdx_mzq563Vs69u6fet-W9vnX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6xomnwMDE2oAw2T9rTpIi0dtLkCVUIVFZa7QGkvll27EhBNFQklYBfz53jVEIafeA19kXWnXP3OXf-DuA3V6npC66DXAsdCKPTQOU8DJSNjeOYUu5_x2Qaj27E31k024Cz9i4MlVV639_4dOet_ZMTr82TRVHQHV-Ew1Es8IhA-abZB9gkdqqoA5vDy_FoukomDHquA6rr3EoCbXLTlXnNNZF294QjPPWtYf4Tnt6Cny4MXezAZ48f2bBZ4hfYsOUufGw6Sj7twvZkRcNafYV_RMzNarVkhvhxfWsrNlePxbx4thXLVVUz9UhonNUtzTmrXSktwxe1Y9VTqRaVPf0GNxfn12ejwLdQCDKexHWgdcoxYKdG5XlfZxiy0AYRwUCCPn1usyjHM43RCAsT3TNhznNUqEUcGSmjBd-DTnlf2gNgCSKzJFYYVDMlVNTTCMysCeMEpw3MIOxC2GpOZp5fnNpc3Mm2kOxWorIlKVuGgorpuvBnJbJoyDXWTRatOeSrHSLR-a8T-9WaTuKXQ-kQVdr7ZSVRB2lCBPzhujmCriKj0-rCfmP31Ur7Ao9iccIP37ewn_BpdD25kleX0_F32KKRpgz4CDr1w9IeI9ip9Q-_mV8AU1H65Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+tau+distribution+maximizes+fast+axonal+transport+toward+the+axonal+synapse%3F&rft.jtitle=Mathematical+biosciences&rft.au=Kuznetsov%2C+I.A.&rft.au=Kuznetsov%2C+A.V.&rft.date=2014-07-01&rft.issn=0025-5564&rft.volume=253&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1016%2Fj.mbs.2014.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2014_04_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |