What tau distribution maximizes fast axonal transport toward the axonal synapse?

•We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward th...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences Vol. 253; pp. 19 - 24
Main Authors Kuznetsov, I.A., Kuznetsov, A.V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward the synapse.•We compared the optimal tau distribution with the experimentally measured one. This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal–distal increase in healthy axons and a proximal–distal decrease in degenerating axons in Alzheimer’s disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal–distal increase in tau concentration leads to a higher organelle flux while a proximal–distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang–bang principle in optimal control theory.
AbstractList This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory.
•We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along the axon length on organelle flux toward the axon synapse.•We computed what tau distribution would give the largest organelle flux toward the synapse.•We compared the optimal tau distribution with the experimentally measured one. This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal–distal increase in healthy axons and a proximal–distal decrease in degenerating axons in Alzheimer’s disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal–distal increase in tau concentration leads to a higher organelle flux while a proximal–distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang–bang principle in optimal control theory.
This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory.This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a proximal-distal decrease in degenerating axons in Alzheimer's disease. We developed a model of fast axonal transport toward the axon synapse. The model is based on recently published experimental results by Dixit et al. (2008) [1] who reported that the attachment rate of kinesin-1 to MTs is reduced by tau. Cytoplasmic dynein is affected less by tau (dynein is affected at much higher tau concentrations than those that affect kinesin-1). We used the model to investigate the effect of various tau distributions along the axon length on organelle flux toward the axon synapse. We found that a proximal-distal increase in tau concentration leads to a higher organelle flux while a proximal-distal decrease in tau concentration leads to a smaller organelle flux than a uniform tau concentration. We also computed what tau distribution would give the largest organelle flux toward the synapse. We found that in order to maximize organelle flux, the tau concentration has to be at its minimum level in the proximal axon and its maximum level at the distal axon, which is in agreement with the bang-bang principle in optimal control theory.
Author Kuznetsov, I.A.
Kuznetsov, A.V.
Author_xml – sequence: 1
  givenname: I.A.
  surname: Kuznetsov
  fullname: Kuznetsov, I.A.
  email: ikuznet1@jhu.edu
  organization: Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218-2694, USA
– sequence: 2
  givenname: A.V.
  surname: Kuznetsov
  fullname: Kuznetsov, A.V.
  email: avkuznet@ncsu.edu
  organization: Dept. of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24747683$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFEEQhhuJmE30B3iROXqZtaq_ZgYPIsEvCOhB8dj015BeZqbX7p6Y-OvtZbMXD0EoqEM9Tx3e94KcLXHxhLxE2CKgfLPbziZvKSDfQh3AJ2SDfTe0DBk_IxsAKlohJD8nFznvKtAhymfknPKOd7JnG_Lt540uTdFr40IuKZi1hLg0s74Lc_jjczPqXBp9Fxc9NSXpJe9jqkL8rZNryo0_3fL9ovfZv3tOno56yv7Fw74kPz5--H71ub3--unL1fvr1rJeltaYgUlkg9PjSI1lHL10AhAFFSAo81aMvaTOCOh6gw5GNnLkHnoQ2hnOLsnr4999ir9Wn4uaQ7Z-mvTi45oVCg6UQjf8D0qHnjPZQ0VfPaCrmb1T-xRmne7VKbAKdEfApphz8qOyoehDZjWcMCkEdahG7VStRh2qUVAHsJr4j3l6_pjz9uj4muRt8EllG_xivQvJ26JcDI_YfwEZd6XY
CitedBy_id crossref_primary_10_1088_1478_3975_aba5e5
crossref_primary_10_1016_j_jtbi_2018_11_022
crossref_primary_10_1080_10255842_2014_920830
crossref_primary_10_1002_1873_3468_12907
crossref_primary_10_1016_j_ijbiomac_2022_07_158
crossref_primary_10_1038_s41419_019_1489_1
crossref_primary_10_1098_rspa_2017_0045
Cites_doi 10.1137/1022026
10.1126/science.1152993
10.1016/j.bpj.2011.11.4024
10.1038/nsmb.2555
10.1152/physrev.00048.2009
10.1016/j.bpj.2013.10.006
10.1083/jcb.200108057
10.1038/35036345
10.1016/j.neuron.2011.04.009
10.1529/biophysj.106.097881
10.1126/science.1105681
10.1093/emboj/cdf503
10.1038/nrn2194
10.1038/380451a0
10.1523/JNEUROSCI.16-18-05727.1996
10.1083/jcb.143.3.777
10.1016/j.bpj.2010.02.037
10.1523/JNEUROSCI.22-15-06394.2002
10.1016/j.bbamem.2009.11.012
10.1186/1750-1326-6-39
10.1096/fj.08-109181
10.3389/fneur.2013.00093
10.1523/JNEUROSCI.16-18-05583.1996
10.1146/annurev.neuro.23.1.39
10.1016/S0006-3495(01)75994-2
10.1242/jcs.00967
10.1038/nature03528
10.1242/jcs.02558
10.1038/nrn2631
10.1074/jbc.M111.292987
10.1523/JNEUROSCI.16-11-03601.1996
10.1002/jnr.21154
10.1523/JNEUROSCI.5242-07.2008
10.1016/j.cell.2006.05.046
10.1038/71338
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1016/j.mbs.2014.04.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
EndPage 24
ExternalDocumentID 24747683
10_1016_j_mbs_2014_04_001
S002555641400073X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AETEA
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c386t-bb936139daff2bc341e6d50115250523ec5f862db5078b1d0f3f414e0805adb43
IEDL.DBID .~1
ISSN 0025-5564
1879-3134
IngestDate Thu Jul 10 18:14:33 EDT 2025
Fri Jul 11 08:25:43 EDT 2025
Thu Apr 03 07:08:44 EDT 2025
Tue Jul 01 03:34:32 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tau protein
Alzheimer’s disease
Optimal control
Organelle transport
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-bb936139daff2bc341e6d50115250523ec5f862db5078b1d0f3f414e0805adb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24747683
PQID 1529843680
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1540220794
proquest_miscellaneous_1529843680
pubmed_primary_24747683
crossref_citationtrail_10_1016_j_mbs_2014_04_001
crossref_primary_10_1016_j_mbs_2014_04_001
elsevier_sciencedirect_doi_10_1016_j_mbs_2014_04_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References McVicker, Chrin, Berger (b0085) 2011; 286
Artstein (b0125) 1980; 22
M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, S.P. Gross, Multiple-motor based transport and its regulation by tau, Proc Natl Acad Sci USA 104 (2007) 87.
Peter, Mofrad (b0010) 2012; 102
Conde, Caceres (b0015) 2009; 10
King, Schroer (b0145) 2000; 2
Debanne, Campanac, Bialowas, Carlier, Alcaraz (b0165) 2011; 91
Xu, King, Lapierre-Landry, Nemec (b0065) 2013; 105
Stamer, Vogel, Thies, Mandelkow, Mandelkow (b0060) 2002; 156
Athans, Falb (b0115) 2007
Beeg, Klumpp, Dimova, Gracia, Unger, Lipowsky (b0135) 2008; 94
Dixit, Ross, Goldman, Holzbaur (b0005) 2008; 319
Seitz, Kojima, Oiwa, Mandelkow, Song, Mandelkow (b0105) 2002; 21
Yuan, Kumar, Peterhoff, Duff, Nixon (b0080) 2008; 28
Lasagna-Reeves, Castillo-Carranza, Sengupta, Clos, Jackson, Kayed (b0045) 2011; 6
Mandell, Banker (b0095) 1996; 16
Cuchillo-Ibanez, Seereeram, Byers, Leung, Ward, Anderton, Hanger (b0200) 2008; 22
Morfini, Pigino, Mizuno, Kikkawa, Brady (b0075) 2007; 85
Kirk (b0120) 2004
Black, Slaughter, Moshiach, Obrocka, Fischer (b0100) 1996; 16
Selkoe (b0035) 2013; 18
Gerson, Kayed (b0040) 2013; 4
Utton, Connell, Asuni, van Slegtenhorst, Hutton, de Silva, Lees, Miller, Anderton (b0185) 2002; 22
Smith, Simmons (b0110) 2001; 80
Cohen, Friedmann, Hwang, Marmorstein, Lee (b0030) 2013; 20
Utton, Noble, Hill, Anderton, Hanger (b0190) 2005; 118
Kempf, Clement, Faissner, Lee, Brandt (b0090) 1996; 16
Müller, Klumpp, Lipowsky (b0130) 2010; 98
Leduc, Campas, Joanny, Prost, Bassereau (b0140) 2010; 1798
Schnitzer, Visscher, Block (b0155) 2000; 2
Vale, Funatsu, Pierce, Romberg, Harada, Yanagida (b0160) 1996; 380
Morris, Maeda, Vossel, Mucke (b0020) 2011; 70
S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein, Proc Natl Acad Sci USA 103 (2006) 5741.
Ebneth, Godemann, Stamer, Illenberger, Trinczek, Mandelkow, Mandelkow (b0055) 1998; 143
Ballatore, Lee, Trojanowski (b0025) 2007; 8
Stokin, Lillo, Falzone, Brusch, Rockenstein, Mount, Raman, Davies, Masliah, Williams, Goldstein (b0050) 2005; 307
Carter, Cross (b0170) 2005; 435
Goldstein, Yang (b0180) 2000; 23
Saha, Hill, Utton, Asuni, Ackerley, Grierson, Miller, Davies, Buchman, Anderton, Hanger (b0195) 2004; 117
Reck-Peterson, Yildiz, Carter, Gennerich, Zhang, Vale (b0150) 2006; 126
Morris (10.1016/j.mbs.2014.04.001_b0020) 2011; 70
King (10.1016/j.mbs.2014.04.001_b0145) 2000; 2
Ballatore (10.1016/j.mbs.2014.04.001_b0025) 2007; 8
Mandell (10.1016/j.mbs.2014.04.001_b0095) 1996; 16
Gerson (10.1016/j.mbs.2014.04.001_b0040) 2013; 4
Stamer (10.1016/j.mbs.2014.04.001_b0060) 2002; 156
Kempf (10.1016/j.mbs.2014.04.001_b0090) 1996; 16
Vale (10.1016/j.mbs.2014.04.001_b0160) 1996; 380
Cohen (10.1016/j.mbs.2014.04.001_b0030) 2013; 20
McVicker (10.1016/j.mbs.2014.04.001_b0085) 2011; 286
Beeg (10.1016/j.mbs.2014.04.001_b0135) 2008; 94
Kirk (10.1016/j.mbs.2014.04.001_b0120) 2004
Utton (10.1016/j.mbs.2014.04.001_b0185) 2002; 22
Morfini (10.1016/j.mbs.2014.04.001_b0075) 2007; 85
Yuan (10.1016/j.mbs.2014.04.001_b0080) 2008; 28
Peter (10.1016/j.mbs.2014.04.001_b0010) 2012; 102
Dixit (10.1016/j.mbs.2014.04.001_b0005) 2008; 319
Reck-Peterson (10.1016/j.mbs.2014.04.001_b0150) 2006; 126
Saha (10.1016/j.mbs.2014.04.001_b0195) 2004; 117
Athans (10.1016/j.mbs.2014.04.001_b0115) 2007
10.1016/j.mbs.2014.04.001_b0070
Artstein (10.1016/j.mbs.2014.04.001_b0125) 1980; 22
Xu (10.1016/j.mbs.2014.04.001_b0065) 2013; 105
10.1016/j.mbs.2014.04.001_b0175
Lasagna-Reeves (10.1016/j.mbs.2014.04.001_b0045) 2011; 6
Debanne (10.1016/j.mbs.2014.04.001_b0165) 2011; 91
Goldstein (10.1016/j.mbs.2014.04.001_b0180) 2000; 23
Black (10.1016/j.mbs.2014.04.001_b0100) 1996; 16
Conde (10.1016/j.mbs.2014.04.001_b0015) 2009; 10
Müller (10.1016/j.mbs.2014.04.001_b0130) 2010; 98
Carter (10.1016/j.mbs.2014.04.001_b0170) 2005; 435
Schnitzer (10.1016/j.mbs.2014.04.001_b0155) 2000; 2
Stokin (10.1016/j.mbs.2014.04.001_b0050) 2005; 307
Smith (10.1016/j.mbs.2014.04.001_b0110) 2001; 80
Utton (10.1016/j.mbs.2014.04.001_b0190) 2005; 118
Selkoe (10.1016/j.mbs.2014.04.001_b0035) 2013; 18
Ebneth (10.1016/j.mbs.2014.04.001_b0055) 1998; 143
Leduc (10.1016/j.mbs.2014.04.001_b0140) 2010; 1798
Cuchillo-Ibanez (10.1016/j.mbs.2014.04.001_b0200) 2008; 22
Seitz (10.1016/j.mbs.2014.04.001_b0105) 2002; 21
References_xml – volume: 307
  start-page: 1282
  year: 2005
  ident: b0050
  article-title: Axonopathy and transport deficits early in the pathogenesis of alzheimer’s disease
  publication-title: Science
– volume: 1798
  start-page: 1418
  year: 2010
  ident: b0140
  article-title: Mechanism of membrane nanotube formation by molecular motors
  publication-title: Biochimica Et Biophysica Acta-Biomembranes
– volume: 117
  start-page: 1017
  year: 2004
  ident: b0195
  article-title: Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons
  publication-title: J. Cell Sci.
– volume: 70
  start-page: 410
  year: 2011
  ident: b0020
  article-title: The many faces of tau
  publication-title: Neuron
– volume: 94
  start-page: 532
  year: 2008
  ident: b0135
  article-title: Transport of beads by several kinesin motors
  publication-title: Biophys. J.
– volume: 21
  start-page: 4896
  year: 2002
  ident: b0105
  article-title: Single-molecule investigation of the interference between kinesin, tau and MAP2c
  publication-title: Embo J.
– volume: 22
  start-page: 3186
  year: 2008
  ident: b0200
  article-title: Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin
  publication-title: Faseb J.
– year: 2007
  ident: b0115
  article-title: Optimal Contol Theory: An Introduction
– volume: 16
  start-page: 5583
  year: 1996
  ident: b0090
  article-title: Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner
  publication-title: J. Neurosci.
– volume: 16
  start-page: 5727
  year: 1996
  ident: b0095
  article-title: A spatial gradient of tau protein phosphorylation in nascent axons
  publication-title: J. Neurosci.
– reference: M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, S.P. Gross, Multiple-motor based transport and its regulation by tau, Proc Natl Acad Sci USA 104 (2007) 87.
– volume: 80
  start-page: 45
  year: 2001
  ident: b0110
  article-title: Models of motor-assisted transport of intracellular particles
  publication-title: Biophys. J.
– volume: 2
  start-page: 718
  year: 2000
  ident: b0155
  article-title: Force production by single kinesin motors
  publication-title: Nat. Cell Biol.
– volume: 16
  start-page: 3601
  year: 1996
  ident: b0100
  article-title: Tau is enriched on dynamic microtubules in the distal region of growing axons
  publication-title: J. Neurosci.
– volume: 98
  start-page: 2610
  year: 2010
  ident: b0130
  article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces
  publication-title: Biophys. J.
– volume: 23
  start-page: 39
  year: 2000
  ident: b0180
  article-title: Microtubule-based transport systems in neurons: the roles of kinesins and dyneins
  publication-title: Annu. Rev. Neurosci.
– volume: 126
  start-page: 335
  year: 2006
  ident: b0150
  article-title: Single-molecule analysis of dynein processivity and stepping behavior
  publication-title: Cell
– volume: 435
  start-page: 308
  year: 2005
  ident: b0170
  article-title: Mechanics of the kinesin step
  publication-title: Nature
– volume: 319
  start-page: 1086
  year: 2008
  ident: b0005
  article-title: Differential regulation of dynein and kinesin motor proteins by tau
  publication-title: Science
– volume: 18
  year: 2013
  ident: b0035
  article-title: Snapshot: pathology of alzheimer’s disease
  publication-title: Cell
– volume: 105
  start-page: L23
  year: 2013
  ident: b0065
  article-title: Interplay between velocity and travel distance of kinesin-based transport in the presence of tau
  publication-title: Biophys. J.
– volume: 286
  start-page: 42873
  year: 2011
  ident: b0085
  article-title: The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of tau to inhibit kinesin-mediated transport
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 663
  year: 2007
  ident: b0025
  article-title: Tau-mediated neurodegeneration in alzheimer’s disease and related disorders
  publication-title: Nat. Rev. Neurosci.
– volume: 28
  start-page: 1682
  year: 2008
  ident: b0080
  article-title: Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice
  publication-title: J. Neurosci.
– volume: 102
  start-page: 749
  year: 2012
  ident: b0010
  article-title: Computational modeling of axonal microtubule bundles under tension
  publication-title: Biophys. J.
– volume: 22
  start-page: 172
  year: 1980
  ident: b0125
  article-title: Discrete and continuous bang–bang and facial spaces or – look for the extreme-points
  publication-title: SIAM Rev.
– volume: 380
  start-page: 451
  year: 1996
  ident: b0160
  article-title: Direct observation of single kinesin molecules moving along microtubules
  publication-title: Nature
– volume: 91
  start-page: 555
  year: 2011
  ident: b0165
  article-title: Axon physiology
  publication-title: Physiol. Rev.
– volume: 6
  start-page: 39
  year: 2011
  ident: b0045
  article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice
  publication-title: Mol. Neurodegener.
– volume: 156
  start-page: 1051
  year: 2002
  ident: b0060
  article-title: Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress
  publication-title: J. Cell Biol.
– year: 2004
  ident: b0120
  article-title: Optimal Control Theory: An Introduction
– volume: 20
  start-page: 756
  year: 2013
  ident: b0030
  article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 2
  start-page: 20
  year: 2000
  ident: b0145
  article-title: Dynactin increases the processivity of the cytoplasmic dynein motor
  publication-title: Nat. Cell Biol.
– reference: S. Toba, T.M. Watanabe, L. Yamaguchi-Okimoto, Y.Y. Toyoshima, H. Higuchi, Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein, Proc Natl Acad Sci USA 103 (2006) 5741.
– volume: 118
  start-page: 4645
  year: 2005
  ident: b0190
  article-title: Molecular motors implicated in the axonal transport of tau and alpha-synuclein
  publication-title: J. Cell Sci.
– volume: 85
  start-page: 2620
  year: 2007
  ident: b0075
  article-title: Tau binding to microtubules does not directly affect microtubule-based vesicle motility
  publication-title: J. Neurosci. Res.
– volume: 143
  start-page: 777
  year: 1998
  ident: b0055
  article-title: Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for alzheimer’s disease
  publication-title: J. Cell Biol.
– volume: 22
  start-page: 6394
  year: 2002
  ident: b0185
  article-title: The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons
  publication-title: J. Neurosci.
– volume: 4
  start-page: 93
  year: 2013
  ident: b0040
  article-title: Formation and propagation of tau oligomeric seeds
  publication-title: Front. Neurol.
– volume: 10
  start-page: 319
  year: 2009
  ident: b0015
  article-title: Microtubule assembly, organization and dynamics in axons and dendrites
  publication-title: Nat. Rev. Neurosci.
– volume: 22
  start-page: 172
  year: 1980
  ident: 10.1016/j.mbs.2014.04.001_b0125
  article-title: Discrete and continuous bang–bang and facial spaces or – look for the extreme-points
  publication-title: SIAM Rev.
  doi: 10.1137/1022026
– volume: 319
  start-page: 1086
  year: 2008
  ident: 10.1016/j.mbs.2014.04.001_b0005
  article-title: Differential regulation of dynein and kinesin motor proteins by tau
  publication-title: Science
  doi: 10.1126/science.1152993
– volume: 102
  start-page: 749
  year: 2012
  ident: 10.1016/j.mbs.2014.04.001_b0010
  article-title: Computational modeling of axonal microtubule bundles under tension
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.11.4024
– volume: 20
  start-page: 756
  year: 2013
  ident: 10.1016/j.mbs.2014.04.001_b0030
  article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2555
– volume: 91
  start-page: 555
  year: 2011
  ident: 10.1016/j.mbs.2014.04.001_b0165
  article-title: Axon physiology
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00048.2009
– volume: 105
  start-page: L23
  year: 2013
  ident: 10.1016/j.mbs.2014.04.001_b0065
  article-title: Interplay between velocity and travel distance of kinesin-based transport in the presence of tau
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.10.006
– ident: 10.1016/j.mbs.2014.04.001_b0070
– volume: 156
  start-page: 1051
  year: 2002
  ident: 10.1016/j.mbs.2014.04.001_b0060
  article-title: Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200108057
– volume: 2
  start-page: 718
  year: 2000
  ident: 10.1016/j.mbs.2014.04.001_b0155
  article-title: Force production by single kinesin motors
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35036345
– volume: 70
  start-page: 410
  year: 2011
  ident: 10.1016/j.mbs.2014.04.001_b0020
  article-title: The many faces of tau
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.009
– volume: 94
  start-page: 532
  year: 2008
  ident: 10.1016/j.mbs.2014.04.001_b0135
  article-title: Transport of beads by several kinesin motors
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097881
– volume: 307
  start-page: 1282
  year: 2005
  ident: 10.1016/j.mbs.2014.04.001_b0050
  article-title: Axonopathy and transport deficits early in the pathogenesis of alzheimer’s disease
  publication-title: Science
  doi: 10.1126/science.1105681
– volume: 21
  start-page: 4896
  year: 2002
  ident: 10.1016/j.mbs.2014.04.001_b0105
  article-title: Single-molecule investigation of the interference between kinesin, tau and MAP2c
  publication-title: Embo J.
  doi: 10.1093/emboj/cdf503
– volume: 8
  start-page: 663
  year: 2007
  ident: 10.1016/j.mbs.2014.04.001_b0025
  article-title: Tau-mediated neurodegeneration in alzheimer’s disease and related disorders
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2194
– year: 2004
  ident: 10.1016/j.mbs.2014.04.001_b0120
– volume: 380
  start-page: 451
  year: 1996
  ident: 10.1016/j.mbs.2014.04.001_b0160
  article-title: Direct observation of single kinesin molecules moving along microtubules
  publication-title: Nature
  doi: 10.1038/380451a0
– volume: 16
  start-page: 5727
  year: 1996
  ident: 10.1016/j.mbs.2014.04.001_b0095
  article-title: A spatial gradient of tau protein phosphorylation in nascent axons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-18-05727.1996
– ident: 10.1016/j.mbs.2014.04.001_b0175
– volume: 143
  start-page: 777
  year: 1998
  ident: 10.1016/j.mbs.2014.04.001_b0055
  article-title: Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for alzheimer’s disease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.3.777
– volume: 98
  start-page: 2610
  year: 2010
  ident: 10.1016/j.mbs.2014.04.001_b0130
  article-title: Bidirectional transport by molecular motors: enhanced processivity and response to external forces
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.02.037
– volume: 22
  start-page: 6394
  year: 2002
  ident: 10.1016/j.mbs.2014.04.001_b0185
  article-title: The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-15-06394.2002
– volume: 1798
  start-page: 1418
  year: 2010
  ident: 10.1016/j.mbs.2014.04.001_b0140
  article-title: Mechanism of membrane nanotube formation by molecular motors
  publication-title: Biochimica Et Biophysica Acta-Biomembranes
  doi: 10.1016/j.bbamem.2009.11.012
– volume: 6
  start-page: 39
  year: 2011
  ident: 10.1016/j.mbs.2014.04.001_b0045
  article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-6-39
– volume: 22
  start-page: 3186
  year: 2008
  ident: 10.1016/j.mbs.2014.04.001_b0200
  article-title: Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin
  publication-title: Faseb J.
  doi: 10.1096/fj.08-109181
– volume: 4
  start-page: 93
  year: 2013
  ident: 10.1016/j.mbs.2014.04.001_b0040
  article-title: Formation and propagation of tau oligomeric seeds
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2013.00093
– volume: 18
  year: 2013
  ident: 10.1016/j.mbs.2014.04.001_b0035
  article-title: Snapshot: pathology of alzheimer’s disease
  publication-title: Cell
– volume: 16
  start-page: 5583
  year: 1996
  ident: 10.1016/j.mbs.2014.04.001_b0090
  article-title: Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-18-05583.1996
– volume: 23
  start-page: 39
  year: 2000
  ident: 10.1016/j.mbs.2014.04.001_b0180
  article-title: Microtubule-based transport systems in neurons: the roles of kinesins and dyneins
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.39
– volume: 80
  start-page: 45
  year: 2001
  ident: 10.1016/j.mbs.2014.04.001_b0110
  article-title: Models of motor-assisted transport of intracellular particles
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)75994-2
– volume: 117
  start-page: 1017
  year: 2004
  ident: 10.1016/j.mbs.2014.04.001_b0195
  article-title: Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00967
– year: 2007
  ident: 10.1016/j.mbs.2014.04.001_b0115
– volume: 435
  start-page: 308
  year: 2005
  ident: 10.1016/j.mbs.2014.04.001_b0170
  article-title: Mechanics of the kinesin step
  publication-title: Nature
  doi: 10.1038/nature03528
– volume: 118
  start-page: 4645
  year: 2005
  ident: 10.1016/j.mbs.2014.04.001_b0190
  article-title: Molecular motors implicated in the axonal transport of tau and alpha-synuclein
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02558
– volume: 10
  start-page: 319
  year: 2009
  ident: 10.1016/j.mbs.2014.04.001_b0015
  article-title: Microtubule assembly, organization and dynamics in axons and dendrites
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2631
– volume: 286
  start-page: 42873
  year: 2011
  ident: 10.1016/j.mbs.2014.04.001_b0085
  article-title: The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of tau to inhibit kinesin-mediated transport
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.292987
– volume: 16
  start-page: 3601
  year: 1996
  ident: 10.1016/j.mbs.2014.04.001_b0100
  article-title: Tau is enriched on dynamic microtubules in the distal region of growing axons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-11-03601.1996
– volume: 85
  start-page: 2620
  year: 2007
  ident: 10.1016/j.mbs.2014.04.001_b0075
  article-title: Tau binding to microtubules does not directly affect microtubule-based vesicle motility
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.21154
– volume: 28
  start-page: 1682
  year: 2008
  ident: 10.1016/j.mbs.2014.04.001_b0080
  article-title: Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5242-07.2008
– volume: 126
  start-page: 335
  year: 2006
  ident: 10.1016/j.mbs.2014.04.001_b0150
  article-title: Single-molecule analysis of dynein processivity and stepping behavior
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.046
– volume: 2
  start-page: 20
  year: 2000
  ident: 10.1016/j.mbs.2014.04.001_b0145
  article-title: Dynactin increases the processivity of the cytoplasmic dynein motor
  publication-title: Nat. Cell Biol.
  doi: 10.1038/71338
SSID ssj0017116
Score 2.0995276
Snippet •We developed a model describing the effect of tau protein distribution on fast axonal transport.•We investigated the effect of various tau distributions along...
This theoretical research is aimed at investigating the question of why tau protein concentration exhibits a proximal-distal increase in healthy axons and a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Alzheimer’s disease
Axonal Transport - physiology
Axons - metabolism
Humans
Kinesin - metabolism
Mathematical Concepts
Microtubules - metabolism
Models, Neurological
Optimal control
Organelle transport
Synapses - metabolism
Tau protein
tau Proteins - metabolism
Title What tau distribution maximizes fast axonal transport toward the axonal synapse?
URI https://dx.doi.org/10.1016/j.mbs.2014.04.001
https://www.ncbi.nlm.nih.gov/pubmed/24747683
https://www.proquest.com/docview/1529843680
https://www.proquest.com/docview/1540220794
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EEfQgvl1fRPAkVNtN2m1PIqKsLoqI4t5C0qSw4tbFdkE9-NudSdsFQffgqbSdljCTznxpZr4BOOQqMW3BtZdpoT1hdOKpjPuespFxHFPK_e-4uY26j-K6H_Zn4LyphaG0ytr3Vz7deev6ykmtzZPRYEA1vgiHw0jgEoH2m_pUwS46NMuPvyZpHkEncO1PXdtWkm52Nl2O11ATY3cgHNtp3Rfml9j0F_Z0MehyGZZq8MjOqvGtwIzNV2G-aif5sQqLNxMO1mIN7oiVm5VqzAyR49Z9rdhQvQ-Gg09bsEwVJVPvBMVZ2XCcs9Ll0TJ8UXOv-MjVqLCn6_B4efFw3vXq_gleyuOo9LROOEbrxKgsa-sU4xUaICQMSLinzW0aZrigMRoxYawD42c8Q21aBJGhMlrwDZjNX3O7BSxGWBZHCiNqqoQKA42ozBo_ilGsYzp-C_xGczKtycWpx8WLbLLIniUqW5KypS8ok64FR5NHRhWzxjRh0ZhD_pgeEj3_tMcOGtNJ_GxoL0Tl9nVcSNRBEhP7vj9NRlAdMnqsFmxWdp-MtC1wHRbFfPt_A9uBBTqr8n53YbZ8G9s9RDel3nfTdx_mzq563Vs69u6fet-W9vnX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6xomnwMDE2oAw2T9rTpIi0dtLkCVUIVFZa7QGkvll27EhBNFQklYBfz53jVEIafeA19kXWnXP3OXf-DuA3V6npC66DXAsdCKPTQOU8DJSNjeOYUu5_x2Qaj27E31k024Cz9i4MlVV639_4dOet_ZMTr82TRVHQHV-Ew1Es8IhA-abZB9gkdqqoA5vDy_FoukomDHquA6rr3EoCbXLTlXnNNZF294QjPPWtYf4Tnt6Cny4MXezAZ48f2bBZ4hfYsOUufGw6Sj7twvZkRcNafYV_RMzNarVkhvhxfWsrNlePxbx4thXLVVUz9UhonNUtzTmrXSktwxe1Y9VTqRaVPf0GNxfn12ejwLdQCDKexHWgdcoxYKdG5XlfZxiy0AYRwUCCPn1usyjHM43RCAsT3TNhznNUqEUcGSmjBd-DTnlf2gNgCSKzJFYYVDMlVNTTCMysCeMEpw3MIOxC2GpOZp5fnNpc3Mm2kOxWorIlKVuGgorpuvBnJbJoyDXWTRatOeSrHSLR-a8T-9WaTuKXQ-kQVdr7ZSVRB2lCBPzhujmCriKj0-rCfmP31Ur7Ao9iccIP37ewn_BpdD25kleX0_F32KKRpgz4CDr1w9IeI9ip9Q-_mV8AU1H65Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+tau+distribution+maximizes+fast+axonal+transport+toward+the+axonal+synapse%3F&rft.jtitle=Mathematical+biosciences&rft.au=Kuznetsov%2C+I.A.&rft.au=Kuznetsov%2C+A.V.&rft.date=2014-07-01&rft.issn=0025-5564&rft.volume=253&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1016%2Fj.mbs.2014.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mbs_2014_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon