Spatially resolved multimode excitation for smooth supercontinuum generation in a SiN waveguide

We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multim...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 31; no. 4; p. 6088
Main Authors Kou, Rai, Ishizawa, Atsushi, Yoshida, Koki, Yamamoto, Noritsugu, Xu, Xuejun, Kikkawa, Yugo, Kawashima, Kota, Aihara, Takuma, Tsuchizawa, Tai, Cong, Guangwei, Hitachi, Kenichi, Nishikawa, Tadashi, Oguri, Katsuya, Yamada, Koji
Format Journal Article
LanguageEnglish
Published United States 13.02.2023
Online AccessGet full text

Cover

Loading…
Abstract We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE 10 , and TE 01 modes.
AbstractList We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE , and TE modes.
We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE10, and TE01 modes.We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE10, and TE01 modes.
We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE 10 , and TE 01 modes.
Author Yamamoto, Noritsugu
Kikkawa, Yugo
Xu, Xuejun
Kawashima, Kota
Oguri, Katsuya
Aihara, Takuma
Yoshida, Koki
Tsuchizawa, Tai
Kou, Rai
Cong, Guangwei
Yamada, Koji
Hitachi, Kenichi
Nishikawa, Tadashi
Ishizawa, Atsushi
Author_xml – sequence: 1
  givenname: Rai
  orcidid: 0000-0002-1418-9137
  surname: Kou
  fullname: Kou, Rai
– sequence: 2
  givenname: Atsushi
  orcidid: 0000-0003-4643-7614
  surname: Ishizawa
  fullname: Ishizawa, Atsushi
– sequence: 3
  givenname: Koki
  surname: Yoshida
  fullname: Yoshida, Koki
– sequence: 4
  givenname: Noritsugu
  surname: Yamamoto
  fullname: Yamamoto, Noritsugu
– sequence: 5
  givenname: Xuejun
  surname: Xu
  fullname: Xu, Xuejun
– sequence: 6
  givenname: Yugo
  surname: Kikkawa
  fullname: Kikkawa, Yugo
– sequence: 7
  givenname: Kota
  surname: Kawashima
  fullname: Kawashima, Kota
– sequence: 8
  givenname: Takuma
  surname: Aihara
  fullname: Aihara, Takuma
– sequence: 9
  givenname: Tai
  surname: Tsuchizawa
  fullname: Tsuchizawa, Tai
– sequence: 10
  givenname: Guangwei
  orcidid: 0000-0003-3519-635X
  surname: Cong
  fullname: Cong, Guangwei
– sequence: 11
  givenname: Kenichi
  orcidid: 0000-0003-2215-4863
  surname: Hitachi
  fullname: Hitachi, Kenichi
– sequence: 12
  givenname: Tadashi
  orcidid: 0000-0003-4804-999X
  surname: Nishikawa
  fullname: Nishikawa, Tadashi
– sequence: 13
  givenname: Katsuya
  surname: Oguri
  fullname: Oguri, Katsuya
– sequence: 14
  givenname: Koji
  surname: Yamada
  fullname: Yamada, Koji
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36823874$$D View this record in MEDLINE/PubMed
BookMark eNplkDtPwzAUhS1URB8w8AeQRxhS7NiJnRFV5SFVdCjMlpPcFKMkDnZS6L8nKK2EYLpHut85wzdFo9rWgNAlJXPKYn67Xs65kFzSEzShJOEBJ1KMfuUxmnr_TgjlIhFnaMxiGTIp-ASpTaNbo8tyjx14W-4gx1VXtqayOWD4ykzb_22NC-uwr6xt37DvGnCZrVtTd12Ft1CDGyBTY4035hl_6h1sO5PDOTotdOnh4nBn6PV--bJ4DFbrh6fF3SrImIzbQKc8CVmcy1RGGZUFjYTOKHDJNSGQSIgiFoVhSmTOokjQNMxISgkVPI5IKHI2Q9fDbuPsRwe-VZXxGZSlrsF2XoVCEhKzmMgevTqgXVpBrhpnKu326iilB24HIHPWeweFOlponTalokT9aFfrpRq0942bP43j6H_2G2rogb4
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_110127
crossref_primary_10_1016_j_optlastec_2024_111409
crossref_primary_10_1038_s41598_023_35674_8
crossref_primary_10_1364_PRJ_506691
crossref_primary_10_1088_2040_8986_acc673
crossref_primary_10_1109_LPT_2024_3426925
crossref_primary_10_1007_s00340_025_08422_1
Cites_doi 10.1364/OL.42.002314
10.1364/OE.22.032039
10.1038/ncomms7299
10.1063/1.4986444
10.1038/s41598-021-84397-1
10.1038/s41467-018-04350-1
10.1364/OL.41.002117
10.1364/OE.24.030338
10.1109/JSTQE.2010.2089430
10.1063/1.2814040
10.1364/OE.27.030262
10.1364/OE.449575
10.1364/OL.43.001527
10.1364/OL.41.002553
10.1364/OE.16.012987
10.1515/nanoph-2013-0020
10.1109/JSTQE.2004.841479
10.1109/JLT.2021.3066203
10.1038/s41566-018-0144-1
10.1038/s41586-018-0065-7
10.1063/1.5045645
10.1364/PRJ.6.000805
10.1038/srep24621
10.1364/OE.25.026678
10.1364/OE.20.024218
10.1364/OE.25.015336
10.1364/OL.42.004091
10.1364/OE.25.001542
10.1038/s41467-022-29776-6
10.1364/OE.22.001629
10.1038/s42005-019-0249-y
10.1364/OE.25.015370
10.1038/nphoton.2014.320
10.1109/JPHOT.2017.2731996
10.1038/srep45520
10.1063/1.5114675
10.1103/PhysRevLett.120.053903
10.1038/nphoton.2014.57
10.1364/PRJ.6.000B50
10.1126/science.aay3676
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.478481
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 36823874
10_1364_OE_478481
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c386t-ab49236d8b85c18f157ac1e484a00e98e553522b08d35571b2c0b1017465027d3
ISSN 1094-4087
IngestDate Fri Jul 11 02:41:04 EDT 2025
Mon Jul 21 05:54:51 EDT 2025
Tue Jul 01 04:01:37 EDT 2025
Thu Apr 24 22:58:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-ab49236d8b85c18f157ac1e484a00e98e553522b08d35571b2c0b1017465027d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4643-7614
0000-0003-4804-999X
0000-0003-3519-635X
0000-0003-2215-4863
0000-0002-1418-9137
OpenAccessLink https://doi.org/10.1364/oe.478481
PMID 36823874
PQID 2780063608
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2780063608
pubmed_primary_36823874
crossref_citationtrail_10_1364_OE_478481
crossref_primary_10_1364_OE_478481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-13
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2023
References Yonezu (oe-31-4-6088-R7) 2019; 27
Zhang (oe-31-4-6088-R20) 2014; 3
Porcel (oe-31-4-6088-R25) 2017; 25
Guo (oe-31-4-6088-R26) 2018; 12
Ishizawa (oe-31-4-6088-R36) 2017; 7
Siew (oe-31-4-6088-R3) 2021; 39
Takesue (oe-31-4-6088-R6) 2007; 91
Eslami (oe-31-4-6088-R30) 2022; 13
Ishizawa (oe-31-4-6088-R32) 2022; 30
Chiles (oe-31-4-6088-R24) 2018; 43
Ishizawa (oe-31-4-6088-R9) 2016; 6
Cheng (oe-31-4-6088-R16) 2016; 41
Marandi (oe-31-4-6088-R14) 2012; 20
Petersen (oe-31-4-6088-R17) 2017; 25
Pfeifle (oe-31-4-6088-R12) 2014; 8
Hiraki (oe-31-4-6088-R38) 2017; 9
Agrawal (oe-31-4-6088-R37) 2013
Hitachi (oe-31-4-6088-R34) 2017; 110
Tsuchizawa (oe-31-4-6088-R1) 2005; 11
Jiang (oe-31-4-6088-R15) 2015; 9
Tan (oe-31-4-6088-R21) 2018; 6
Hickstein (oe-31-4-6088-R31) 2018; 120
Ikeda (oe-31-4-6088-R19) 2008; 16
Tsuchizawa (oe-31-4-6088-R2) 2011; 17
Perret (oe-31-4-6088-R27) 2019; 4
Kou (oe-31-4-6088-R22) 2019; 126
Poulton (oe-31-4-6088-R4) 2017; 42
Friis (oe-31-4-6088-R40) 2016; 24
Yu (oe-31-4-6088-R11) 2018; 9
Carlson (oe-31-4-6088-R18) 2017; 42
Fülöp (oe-31-4-6088-R13) 2017; 25
Lopez-Galmiche (oe-31-4-6088-R29) 2016; 41
Hitachi (oe-31-4-6088-R33) 2014; 22
Fortier (oe-31-4-6088-R8) 2019; 2
Griffith (oe-31-4-6088-R10) 2015; 6
Spencer (oe-31-4-6088-R5) 2018; 557
Scheibinger (oe-31-4-6088-R28) 2021; 11
Signorini (oe-31-4-6088-R41) 2018; 6
Diddams (oe-31-4-6088-R35) 2020; 369
Xiao (oe-31-4-6088-R39) 2014; 22
Kruckel (oe-31-4-6088-R23) 2017; 25
References_xml – volume: 42
  start-page: 2314
  year: 2017
  ident: oe-31-4-6088-R18
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002314
– volume: 22
  start-page: 32039
  year: 2014
  ident: oe-31-4-6088-R39
  publication-title: Opt. Express
  doi: 10.1364/OE.22.032039
– volume: 6
  start-page: 6299
  year: 2015
  ident: oe-31-4-6088-R10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7299
– volume: 110
  start-page: 241107
  year: 2017
  ident: oe-31-4-6088-R34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4986444
– volume: 11
  start-page: 5270
  year: 2021
  ident: oe-31-4-6088-R28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84397-1
– volume: 9
  start-page: 1869
  year: 2018
  ident: oe-31-4-6088-R11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04350-1
– volume: 41
  start-page: 2117
  year: 2016
  ident: oe-31-4-6088-R16
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002117
– volume: 24
  start-page: 30338
  year: 2016
  ident: oe-31-4-6088-R40
  publication-title: Opt. Express
  doi: 10.1364/OE.24.030338
– volume: 17
  start-page: 516
  year: 2011
  ident: oe-31-4-6088-R2
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2010.2089430
– volume: 91
  start-page: 201108
  year: 2007
  ident: oe-31-4-6088-R6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2814040
– volume: 27
  start-page: 30262
  year: 2019
  ident: oe-31-4-6088-R7
  publication-title: Opt. Express
  doi: 10.1364/OE.27.030262
– volume: 30
  start-page: 5265
  year: 2022
  ident: oe-31-4-6088-R32
  publication-title: Opt. Express
  doi: 10.1364/OE.449575
– volume: 43
  start-page: 1527
  year: 2018
  ident: oe-31-4-6088-R24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001527
– volume: 41
  start-page: 2553
  year: 2016
  ident: oe-31-4-6088-R29
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002553
– year: 2013
  ident: oe-31-4-6088-R37
– volume: 16
  start-page: 12987
  year: 2008
  ident: oe-31-4-6088-R19
  publication-title: Opt. Express
  doi: 10.1364/OE.16.012987
– volume: 3
  start-page: 247
  year: 2014
  ident: oe-31-4-6088-R20
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2013-0020
– volume: 11
  start-page: 232
  year: 2005
  ident: oe-31-4-6088-R1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2004.841479
– volume: 39
  start-page: 4374
  year: 2021
  ident: oe-31-4-6088-R3
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3066203
– volume: 12
  start-page: 330
  year: 2018
  ident: oe-31-4-6088-R26
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0144-1
– volume: 557
  start-page: 81
  year: 2018
  ident: oe-31-4-6088-R5
  publication-title: Nature
  doi: 10.1038/s41586-018-0065-7
– volume: 4
  start-page: 022905
  year: 2019
  ident: oe-31-4-6088-R27
  publication-title: APL Photonics
  doi: 10.1063/1.5045645
– volume: 6
  start-page: 805
  year: 2018
  ident: oe-31-4-6088-R41
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.6.000805
– volume: 6
  start-page: 24621
  year: 2016
  ident: oe-31-4-6088-R9
  publication-title: Sci. Rep.
  doi: 10.1038/srep24621
– volume: 25
  start-page: 26678
  year: 2017
  ident: oe-31-4-6088-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.25.026678
– volume: 20
  start-page: 24218
  year: 2012
  ident: oe-31-4-6088-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.20.024218
– volume: 25
  start-page: 15336
  year: 2017
  ident: oe-31-4-6088-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.25.015336
– volume: 42
  start-page: 4091
  year: 2017
  ident: oe-31-4-6088-R4
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.004091
– volume: 25
  start-page: 1542
  year: 2017
  ident: oe-31-4-6088-R25
  publication-title: Opt. Express
  doi: 10.1364/OE.25.001542
– volume: 13
  start-page: 2126
  year: 2022
  ident: oe-31-4-6088-R30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29776-6
– volume: 22
  start-page: 1629
  year: 2014
  ident: oe-31-4-6088-R33
  publication-title: Opt. Express
  doi: 10.1364/OE.22.001629
– volume: 2
  start-page: 153
  year: 2019
  ident: oe-31-4-6088-R8
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0249-y
– volume: 25
  start-page: 15370
  year: 2017
  ident: oe-31-4-6088-R23
  publication-title: Opt. Express
  doi: 10.1364/OE.25.015370
– volume: 9
  start-page: 133
  year: 2015
  ident: oe-31-4-6088-R15
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.320
– volume: 9
  start-page: 1
  year: 2017
  ident: oe-31-4-6088-R38
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2017.2731996
– volume: 7
  start-page: 45520
  year: 2017
  ident: oe-31-4-6088-R36
  publication-title: Sci. Rep.
  doi: 10.1038/srep45520
– volume: 126
  start-page: 133101
  year: 2019
  ident: oe-31-4-6088-R22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5114675
– volume: 120
  start-page: 053903
  year: 2018
  ident: oe-31-4-6088-R31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.053903
– volume: 8
  start-page: 375
  year: 2014
  ident: oe-31-4-6088-R12
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.57
– volume: 6
  start-page: B50
  year: 2018
  ident: oe-31-4-6088-R21
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.6.000B50
– volume: 369
  start-page: eaay3676
  year: 2020
  ident: oe-31-4-6088-R35
  publication-title: Science
  doi: 10.1126/science.aay3676
SSID ssj0014797
Score 2.4588075
Snippet We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 6088
Title Spatially resolved multimode excitation for smooth supercontinuum generation in a SiN waveguide
URI https://www.ncbi.nlm.nih.gov/pubmed/36823874
https://www.proquest.com/docview/2780063608
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXxJvwqBbEAcly8WNtb44IuapQmxxIpNys8XpdViR21Nht6YHfzuz6lYggFS6WPbLX9s7n8czOi5APIuc-eAD4IY1TW5d8swF4aEsObp6LDALQucNnk_Bkzr4ugsXQFdVkl1TpkbjZm1fyP1xFGvJVZ8n-A2f7QZGA-8hf3CKHcXsrHut-wniX5U8LjeZyeYnKowkQ1O1tLHkt1FYo4WZVliYafS0vdHy6Kup6pRsoyxYDqrDA-qYm1hVcyvNaZTtBQtO1qecsr9d9zIZJmKkNj0ANEPuubuCqWa2tNjUeDoIFD7ImBa38MZBhBYiXsvUiKbzovN5ejPC0C9hucklb-YnWIpqk7T9U7qG1QrcV_Wp7RcFI0NBp2vz9Idr9kCE_pvERi3QLgOH_1fnsJ9PkeH56mszixewuueeh3aAF39mvuHcrsajpttM9UVtqCof-1A-8q6D8xeow2sfsEXnYmg30c4OBx-SOLJ6Q-yZ8V2yekqRHAu2QQHsk0AEJFJFAGyTQXSTQAQlUFRQoIoH2SHhG5sfx7MuJ3bbOsIXPw8qGVBfeCzOe8kC4PHeDCIQrGWfgOHLMZaDL-nipwzNUOCM39YSTaunMUGP3osx_Tg6KspAvCZVZqs3iEHgwZhmXPHTTnOVIFr5gHozIx26-ku5tdHuTZWKcpSFLpnHSTO2IvO9PXTfFVPad9K6b9ARFnfZfQSHLepN4EdcaNSJkRF403OiH8UOOymfEXt3i6tfkwYDdN-SguqjlW1Qtq_TQLMkcGtD8BuavgGM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+resolved+multimode+excitation+for+smooth+supercontinuum+generation+in+a+SiN+waveguide&rft.jtitle=Optics+express&rft.au=Kou%2C+Rai&rft.au=Ishizawa%2C+Atsushi&rft.au=Yoshida%2C+Koki&rft.au=Yamamoto%2C+Noritsugu&rft.date=2023-02-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=4&rft.spage=6088&rft_id=info:doi/10.1364%2FOE.478481&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon