scDM: A deep generative method for cell surface protein prediction with diffusion model
[Display omitted] •Considering both RNA and protein expression could obtain more biological evidence.•We propose a method for predicting protein expression based on the diffusion model.•The diffusion model is the first to be used in the field of single-cell analysis.•The proposed method was validate...
Saved in:
Published in | Journal of molecular biology Vol. 436; no. 12; p. 168610 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
15.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-2836 1089-8638 1089-8638 |
DOI | 10.1016/j.jmb.2024.168610 |
Cover
Loading…
Abstract | [Display omitted]
•Considering both RNA and protein expression could obtain more biological evidence.•We propose a method for predicting protein expression based on the diffusion model.•The diffusion model is the first to be used in the field of single-cell analysis.•The proposed method was validated on three single-cell sequencing datasets.•Our results provide new directions for the identification of novel drug targets.
The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores. |
---|---|
AbstractList | The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores. The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores.The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores. [Display omitted] •Considering both RNA and protein expression could obtain more biological evidence.•We propose a method for predicting protein expression based on the diffusion model.•The diffusion model is the first to be used in the field of single-cell analysis.•The proposed method was validated on three single-cell sequencing datasets.•Our results provide new directions for the identification of novel drug targets. The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores. |
ArticleNumber | 168610 |
Author | Yang, Xinbo Zheng, Yuanjie Yu, Hanlei |
Author_xml | – sequence: 1 givenname: Hanlei surname: Yu fullname: Yu, Hanlei – sequence: 2 givenname: Yuanjie surname: Zheng fullname: Zheng, Yuanjie email: yjzheng@sdnu.edu.cn – sequence: 3 givenname: Xinbo surname: Yang fullname: Yang, Xinbo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38754773$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtvFDEUhS0URDaBH0CDXNLM4sf4sVBFgQSkIBoQpWV7rolXM-PF9gTx7_GwSUMRqivL5xzde74zdDKnGRB6ScmWEirf7Lf7yW0ZYf2WSi0peYI2lOhdpyXXJ2hDCGMd01yeorNS9oQQwXv9DJ1yrUSvFN-g78W___wWX-AB4IB_wAzZ1ngHeIJ6mwYcUsYexhGXJQfrAR9yqhDnNmGIvsY041-x3uIhhrCU9TmlAcbn6GmwY4EX9_Mcfbv68PXyY3fz5frT5cVN57mWtbNWOaWVcpJIIAE8d7onzAIhNnBvhVAyONaOFTvq2h8LjBMnHGUwyJ3i5-j1Mbft9XOBUs0Uy7qwnSEtxXAquNK94OL_UiKklHr3N_XVvXRxEwzmkONk82_z0FsTqKPA51RKhmB8rHZto2YbR0OJWQmZvWmEzErIHAk1J_3H-RD-mOfd0QOtybsI2RQfYfaNQAZfzZDiI-4_zNOnSg |
CitedBy_id | crossref_primary_10_1038_s41540_024_00484_9 |
Cites_doi | 10.1038/nmeth.3742 10.1093/nar/gkac1042 10.1038/s42256-022-00518-z 10.1109/ICCV.2015.169 10.1158/1535-7163.MCT-10-0106 10.1016/j.jmb.2023.168121 10.1038/nbt.3129 10.1093/bib/bbad313 10.1093/bib/bbad081 10.1038/s41592-020-01050-x 10.1038/s41467-022-35094-8 10.1158/0008-5472.CAN-12-3342 10.1038/s41576-019-0093-7 10.1146/annurev-genom-091416-035324 10.1038/s41467-020-14391-0 10.1038/nmeth.3370 10.1038/nrc2294 10.1016/j.ymeth.2020.10.001 10.1016/j.cell.2019.05.034 10.1038/s42256-022-00545-w 10.1126/science.aan6826 10.1038/s42256-022-00534-z 10.1016/j.jmb.2009.03.002 10.1093/bib/bbad266 10.7554/eLife.23203 10.1371/journal.pone.0202753 10.1038/s41467-022-35692-6 10.1016/j.cell.2021.04.048 10.1038/nmeth.4380 10.1093/bioinformatics/btad596 10.1186/s13059-016-0950-z 10.1038/s41467-022-33758-z 10.15252/msb.20167144 10.1038/nprot.2014.006 10.1038/nbt.3973 10.1038/nmeth.1315 10.1038/s41467-022-35031-9 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jmb.2024.168610 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
ExternalDocumentID | 38754773 10_1016_j_jmb_2024_168610 S0022283624002055 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX ADVLN AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- RIG SBG SIN SSH UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c386t-aa7b7877b606e0fec3b8402ae00af3ca5576fb2016591bb842f230b5b12ed6973 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Wed Jul 02 03:17:41 EDT 2025 Fri Jul 11 08:37:39 EDT 2025 Wed Feb 19 02:05:49 EST 2025 Tue Jul 01 03:05:37 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Dec 03 03:44:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | CITE-seq technology deep learning generating predictions Gaussian noise Technical noise |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-aa7b7877b606e0fec3b8402ae00af3ca5576fb2016591bb842f230b5b12ed6973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38754773 |
PQID | 3056668997 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153784535 proquest_miscellaneous_3056668997 pubmed_primary_38754773 crossref_citationtrail_10_1016_j_jmb_2024_168610 crossref_primary_10_1016_j_jmb_2024_168610 elsevier_sciencedirect_doi_10_1016_j_jmb_2024_168610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stoeckius, Hafemeister, Stephenson, Houck-Loomis, Chattopadhyay, Swerdlow, Satija, Smibert (b0070) 2017; 14 Cao, Gong, Hong, Wan (b0105) 2022; 13 Dhariwal, Nichol (b0205) 2021 Dey, Kester, Spanjaard, Bienko, Van Oudenaarden (b0025) 2015; 33 Peterson, Zhang, Kumar, Wong, Li, Wilson, Moore, McClanahan, Sadekova, Klappenbach (b0065) 2017; 35 Gao, Zhang, Liu, Li, Gao, Yu (b0020) 2023; 24 Lakkis, Schroeder, Su, Lee, Bashore, Reilly, Li (b0075) 2022; 4 Xiong, Tian, Li, Ning, Gao, Zhang (b0115) 2022; 13 Kalakoti, Peter, Gawande, Sundar (b0085) 2023; 435 Macaulay, Haerty, Kumar, Li, Hu, Teng, Goolam, Saurat, Coupland, Shirley (b0030) 2015; 12 Edfors, Danielsson, Hallström, Käll, Lundberg, Pontén, Forsström, Uhlén (b0080) 2016; 12 Yang, Wang, Wang, Fang, Tang, Huang, Lu, Yao (b0120) 2022; 4 Pott (b0045) 2017; 6 Elizaga, Li, Kochar, Wilson, Allen, Tieu, Frank, Sobieszczyk, Cohen, Sanchez (b0175) 2018; 13 Abaan, Polley, Davis, Zhu, Bilke, Walker, Pineda, Gindin, Jiang, Reinhold (b0190) 2013; 73 Lin, Tian, Wei, Hakonarson (b0100) 2022; 13 Cha, Yu, Cho, Hemberg, Lee (b0110) 2023; 51 Tang, Barbacioru, Wang, Nordman, Lee, Xu, Wang, Bodeau, Tuch, Siddiqui (b0010) 2009; 6 Hu, Huang, An, Du, Hu, Xue, Zhu, Wang, Xue, Fan (b0040) 2016; 17 Stuart, Satija (b0055) 2019; 20 Adey (b0135) 2019; 177 Moret, Pachon Angona, Cotos, Yan, Atz, Brunner, Baumgartner, Grisoni, Schneider (b0180) 2023; 14 Frei, Bava, Zunder, Hsieh, Chen, Nolan, Gherardini (b0060) 2016; 13 Zhou, Ye, Wang, Zhang (b0140) 2020; 11 Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (b0145) 2021; 184 Jia, Lysenko, Boroevich, Sharma, Tsunoda (b0155) 2023; 24 Ho, Jain, Abbeel (b0200) 2020; 33 Picelli, Faridani, Björklund, Winberg, Sagasser, Sandberg (b0035) 2014; 9 Chappell, Russell, Voet (b0050) 2018; 19 Kelsey, Stegle, Reik (b0015) 2017; 358 Yang, Wang, Luo, Cai, Xu, Xue, Xu (b0160) 2023; 39 Xu, Wang, Dai, Mundra, Zheng (b0130) 2021; 189 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0170) 2017 Holbeck, Collins, Doroshow (b0185) 2010; 9 Gayoso, Steier, Lopez, Regier, Nazor, Streets, Yosef (b0150) 2021; 18 Xu, Xu, Meng, Lu, Cai, Zeng, Nussinov, Cheng (b0095) 2023; 3 Yang, Yang, Xie, Ni, Liu, Yang, Mu, Wang (b0125) 2022; 4 Tartaglia, Pechmann, Dobson, Vendruscolo (b0090) 2009; 388 Clarke, Ressom, Wang, Xuan, Liu, Gehan, Wang (b0195) 2008; 8 R. Girshick, . Fast r-cnn, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, p. 1440–1448. Athaya, Ripan, Li, Hu (b0005) 2023; 24 Cao (10.1016/j.jmb.2024.168610_b0105) 2022; 13 Abaan (10.1016/j.jmb.2024.168610_b0190) 2013; 73 Yang (10.1016/j.jmb.2024.168610_b0120) 2022; 4 Gayoso (10.1016/j.jmb.2024.168610_b0150) 2021; 18 Elizaga (10.1016/j.jmb.2024.168610_b0175) 2018; 13 Gao (10.1016/j.jmb.2024.168610_b0020) 2023; 24 Yang (10.1016/j.jmb.2024.168610_b0160) 2023; 39 Athaya (10.1016/j.jmb.2024.168610_b0005) 2023; 24 Jia (10.1016/j.jmb.2024.168610_b0155) 2023; 24 Zhou (10.1016/j.jmb.2024.168610_b0140) 2020; 11 Ho (10.1016/j.jmb.2024.168610_b0200) 2020; 33 Stuart (10.1016/j.jmb.2024.168610_b0055) 2019; 20 Vaswani (10.1016/j.jmb.2024.168610_b0170) 2017 Xu (10.1016/j.jmb.2024.168610_b0095) 2023; 3 Chappell (10.1016/j.jmb.2024.168610_b0050) 2018; 19 Dey (10.1016/j.jmb.2024.168610_b0025) 2015; 33 Hu (10.1016/j.jmb.2024.168610_b0040) 2016; 17 Clarke (10.1016/j.jmb.2024.168610_b0195) 2008; 8 Tang (10.1016/j.jmb.2024.168610_b0010) 2009; 6 Tartaglia (10.1016/j.jmb.2024.168610_b0090) 2009; 388 10.1016/j.jmb.2024.168610_b0165 Hao (10.1016/j.jmb.2024.168610_b0145) 2021; 184 Macaulay (10.1016/j.jmb.2024.168610_b0030) 2015; 12 Moret (10.1016/j.jmb.2024.168610_b0180) 2023; 14 Yang (10.1016/j.jmb.2024.168610_b0125) 2022; 4 Pott (10.1016/j.jmb.2024.168610_b0045) 2017; 6 Lin (10.1016/j.jmb.2024.168610_b0100) 2022; 13 Kalakoti (10.1016/j.jmb.2024.168610_b0085) 2023; 435 Edfors (10.1016/j.jmb.2024.168610_b0080) 2016; 12 Picelli (10.1016/j.jmb.2024.168610_b0035) 2014; 9 Frei (10.1016/j.jmb.2024.168610_b0060) 2016; 13 Lakkis (10.1016/j.jmb.2024.168610_b0075) 2022; 4 Xiong (10.1016/j.jmb.2024.168610_b0115) 2022; 13 Kelsey (10.1016/j.jmb.2024.168610_b0015) 2017; 358 Cha (10.1016/j.jmb.2024.168610_b0110) 2023; 51 Stoeckius (10.1016/j.jmb.2024.168610_b0070) 2017; 14 Holbeck (10.1016/j.jmb.2024.168610_b0185) 2010; 9 Adey (10.1016/j.jmb.2024.168610_b0135) 2019; 177 Peterson (10.1016/j.jmb.2024.168610_b0065) 2017; 35 Xu (10.1016/j.jmb.2024.168610_b0130) 2021; 189 Dhariwal (10.1016/j.jmb.2024.168610_b0205) 2021 |
References_xml | – volume: 6 start-page: e23203 year: 2017 ident: b0045 article-title: Simultaneous measurement of chromatin accessibility, dna methylation, and nucleosome phasing in single cells publication-title: elife – volume: 13 start-page: e0202753 year: 2018 ident: b0175 article-title: Safety and tolerability of hiv-1 multiantigen pdna vaccine given with il-12 plasmid dna via electroporation, boosted with a recombinant vesicular stomatitis virus hiv gag vaccine in healthy volunteers in a randomized, controlled clinical trial publication-title: PLOS ONE. – volume: 9 start-page: 1451 year: 2010 end-page: 1460 ident: b0185 article-title: Analysis of food and drug administration–approved anticancer agents in the nci60 panel of human tumor cell lines publication-title: Mol. Cancer Ther. – volume: 33 start-page: 6840 year: 2020 end-page: 6851 ident: b0200 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. (NeurIPS) – volume: 24 start-page: bbad081 year: 2023 ident: b0020 article-title: A universal framework for single-cell multi-omics data integration with graph convolutional networks publication-title: Brief. Bioinform. – volume: 18 start-page: 272 year: 2021 end-page: 282 ident: b0150 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalvi publication-title: Nat. Methods. – volume: 388 start-page: 381 year: 2009 end-page: 389 ident: b0090 article-title: A relationship between mRNA expression levels and protein solubility in E. coli publication-title: J. Mol. Biol. – volume: 13 start-page: 269 year: 2016 end-page: 275 ident: b0060 article-title: Highly multiplexed simultaneous detection of rnas and proteins in single cells publication-title: Nat. Methods. – volume: 24 start-page: bbad266 year: 2023 ident: b0155 article-title: scdeepinsight: a supervised cell-type identification method for scrna-seq data with deep learning publication-title: Brief. Bioinform. – volume: 14 start-page: 114 year: 2023 ident: b0180 article-title: Leveraging molecular structure and bioactivity with chemical language models for de novo drug design publication-title: Nat. Commun. – volume: 14 start-page: 865 year: 2017 end-page: 868 ident: b0070 article-title: Simultaneous epitope and transcriptome measurement in single cells publication-title: Nat. Methods. – volume: 33 start-page: 285 year: 2015 end-page: 289 ident: b0025 article-title: Integrated genome and transcriptome sequencing of the same cell publication-title: Nat. Biotechnol. – volume: 20 start-page: 257 year: 2019 end-page: 272 ident: b0055 article-title: Integrative single-cell analysis publication-title: Nat. Rev. Genet. – volume: 12 start-page: 883 year: 2016 ident: b0080 article-title: Gene-specific correlation of rna and protein levels in human cells and tissues publication-title: Mol. Syst. Biol. – volume: 4 start-page: 852 year: 2022 end-page: 866 ident: b0120 article-title: scbert as a large-scale pretrained deep language model for cell type annotation of single-cell rna-seq data publication-title: Nat. Mach. Intell. – volume: 189 start-page: 65 year: 2021 end-page: 73 ident: b0130 article-title: Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data publication-title: Methods – volume: 13 start-page: 7419 year: 2022 ident: b0105 article-title: A unified computational framework for single-cell data integration with optimal transport publication-title: Nat. Commun. – volume: 73 start-page: 4372 year: 2013 end-page: 4382 ident: b0190 article-title: The exomes of the nci-60 panel: a genomic resource for cancer biology and systems pharmacology publication-title: Cancer Res. – volume: 358 start-page: 69 year: 2017 end-page: 75 ident: b0015 article-title: Single-cell epigenomics: recording the past and predicting the future publication-title: Science – volume: 4 start-page: 940 year: 2022 end-page: 952 ident: b0075 article-title: A multi-use deep learning method for cite-seq and single-cell rna-seq data integration with cell surface protein prediction and imputation publication-title: Nat. Mach. Intell. – volume: 184 start-page: 3573 year: 2021 end-page: 3587 ident: b0145 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell. – year: 2017 ident: b0170 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst.(NeurIPS) – volume: 24 start-page: bbad313 year: 2023 ident: b0005 article-title: Multimodal deep learning approaches for single-cell multi-omics data integration publication-title: Brief. Bioinform. – volume: 177 start-page: 1677 year: 2019 end-page: 1679 ident: b0135 article-title: Integration of single-cell genomics datasets publication-title: Cell. – volume: 4 start-page: 696 year: 2022 end-page: 709 ident: b0125 article-title: Contrastive learning enables rapid mapping to multimodal single-cell atlas of multimillion scale publication-title: Nat. Mach. Intell. – volume: 51 year: 2023 ident: b0110 article-title: schumannet: a single-cell network analysis platform for the study of cell-type specificity of disease genes publication-title: Nucl. Acids Res. – volume: 35 start-page: 936 year: 2017 end-page: 939 ident: b0065 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat. Biotechnol. – reference: R. Girshick, . Fast r-cnn, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, p. 1440–1448. – volume: 8 start-page: 37 year: 2008 end-page: 49 ident: b0195 article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data publication-title: Nat. Rev. Cancer. – volume: 435 start-page: 168121 year: 2023 ident: b0085 article-title: Modulation of DNA-protein Interactions by Proximal Genetic Elements as Uncovered by Interpretable Deep Learning publication-title: J. Mol. Biol. – volume: 13 start-page: 7705 year: 2022 ident: b0100 article-title: Clustering of single-cell multi-omics data with a multimodal deep learning method publication-title: Nat. Commun. – volume: 11 start-page: 651 year: 2020 ident: b0140 article-title: Surface protein imputation from single cell transcriptomes by deep neural networks publication-title: Nat. Commun. – volume: 3 year: 2023 ident: b0095 article-title: Graph embedding and gaussian mixture variational autoencoder network for end-to-end analysis of single-cell rna sequencing data publication-title: Cell Rep. Methods – volume: 13 start-page: 6118 year: 2022 ident: b0115 article-title: Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space publication-title: Nat. Commun. – year: 2021 ident: b0205 article-title: Diffusion models beat gans on image synthesis publication-title: Adv. Neural Inf. Process. Syst.(NeurIPS) – volume: 19 start-page: 15 year: 2018 end-page: 41 ident: b0050 article-title: Single-cell (multi) omics technologies publication-title: Annu. Rev. Genom. Hum. Genet. – volume: 6 start-page: 377 year: 2009 end-page: 382 ident: b0010 article-title: mrna-seq whole-transcriptome analysis of a single cell publication-title: Nat. Methods – volume: 17 start-page: 1 year: 2016 end-page: 11 ident: b0040 article-title: Simultaneous profiling of transcriptome and dna methylome from a single cell publication-title: Genome Biol. – volume: 9 start-page: 171 year: 2014 end-page: 181 ident: b0035 article-title: Full-length rna-seq from single cells using smart-seq2 publication-title: Nat. Protoc. – volume: 12 start-page: 519 year: 2015 end-page: 522 ident: b0030 article-title: G&t-seq: parallel sequencing of single-cell genomes and transcriptomes publication-title: Nat. Methods – volume: 39 start-page: btad596 year: 2023 ident: b0160 article-title: DeepCCI: a deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data publication-title: Bioinformatics. – volume: 13 start-page: 269 issue: 3 year: 2016 ident: 10.1016/j.jmb.2024.168610_b0060 article-title: Highly multiplexed simultaneous detection of rnas and proteins in single cells publication-title: Nat. Methods. doi: 10.1038/nmeth.3742 – volume: 51 issue: 2 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0110 article-title: schumannet: a single-cell network analysis platform for the study of cell-type specificity of disease genes publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkac1042 – volume: 4 start-page: 696 issue: 8 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0125 article-title: Contrastive learning enables rapid mapping to multimodal single-cell atlas of multimillion scale publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00518-z – ident: 10.1016/j.jmb.2024.168610_b0165 doi: 10.1109/ICCV.2015.169 – volume: 9 start-page: 1451 issue: 5 year: 2010 ident: 10.1016/j.jmb.2024.168610_b0185 article-title: Analysis of food and drug administration–approved anticancer agents in the nci60 panel of human tumor cell lines publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-10-0106 – volume: 435 start-page: 168121 issue: 13 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0085 article-title: Modulation of DNA-protein Interactions by Proximal Genetic Elements as Uncovered by Interpretable Deep Learning publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2023.168121 – volume: 33 start-page: 285 issue: 3 year: 2015 ident: 10.1016/j.jmb.2024.168610_b0025 article-title: Integrated genome and transcriptome sequencing of the same cell publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3129 – volume: 24 start-page: bbad313 issue: 5 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0005 article-title: Multimodal deep learning approaches for single-cell multi-omics data integration publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad313 – volume: 24 start-page: bbad081 issue: 3 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0020 article-title: A universal framework for single-cell multi-omics data integration with graph convolutional networks publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad081 – volume: 18 start-page: 272 issue: 3 year: 2021 ident: 10.1016/j.jmb.2024.168610_b0150 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalvi publication-title: Nat. Methods. doi: 10.1038/s41592-020-01050-x – volume: 13 start-page: 7419 issue: 1 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0105 article-title: A unified computational framework for single-cell data integration with optimal transport publication-title: Nat. Commun. doi: 10.1038/s41467-022-35094-8 – volume: 73 start-page: 4372 issue: 14 year: 2013 ident: 10.1016/j.jmb.2024.168610_b0190 article-title: The exomes of the nci-60 panel: a genomic resource for cancer biology and systems pharmacology publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3342 – volume: 20 start-page: 257 issue: 5 year: 2019 ident: 10.1016/j.jmb.2024.168610_b0055 article-title: Integrative single-cell analysis publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0093-7 – volume: 19 start-page: 15 year: 2018 ident: 10.1016/j.jmb.2024.168610_b0050 article-title: Single-cell (multi) omics technologies publication-title: Annu. Rev. Genom. Hum. Genet. doi: 10.1146/annurev-genom-091416-035324 – volume: 11 start-page: 651 issue: 1 year: 2020 ident: 10.1016/j.jmb.2024.168610_b0140 article-title: Surface protein imputation from single cell transcriptomes by deep neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-020-14391-0 – volume: 12 start-page: 519 issue: 6 year: 2015 ident: 10.1016/j.jmb.2024.168610_b0030 article-title: G&t-seq: parallel sequencing of single-cell genomes and transcriptomes publication-title: Nat. Methods doi: 10.1038/nmeth.3370 – volume: 8 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.jmb.2024.168610_b0195 article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data publication-title: Nat. Rev. Cancer. doi: 10.1038/nrc2294 – volume: 189 start-page: 65 year: 2021 ident: 10.1016/j.jmb.2024.168610_b0130 article-title: Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data publication-title: Methods doi: 10.1016/j.ymeth.2020.10.001 – volume: 177 start-page: 1677 issue: 7 year: 2019 ident: 10.1016/j.jmb.2024.168610_b0135 article-title: Integration of single-cell genomics datasets publication-title: Cell. doi: 10.1016/j.cell.2019.05.034 – volume: 4 start-page: 940 issue: 11 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0075 article-title: A multi-use deep learning method for cite-seq and single-cell rna-seq data integration with cell surface protein prediction and imputation publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00545-w – volume: 358 start-page: 69 issue: 6359 year: 2017 ident: 10.1016/j.jmb.2024.168610_b0015 article-title: Single-cell epigenomics: recording the past and predicting the future publication-title: Science doi: 10.1126/science.aan6826 – volume: 4 start-page: 852 issue: 10 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0120 article-title: scbert as a large-scale pretrained deep language model for cell type annotation of single-cell rna-seq data publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00534-z – volume: 388 start-page: 381 issue: 2 year: 2009 ident: 10.1016/j.jmb.2024.168610_b0090 article-title: A relationship between mRNA expression levels and protein solubility in E. coli publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.03.002 – volume: 24 start-page: bbad266 issue: 5 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0155 article-title: scdeepinsight: a supervised cell-type identification method for scrna-seq data with deep learning publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad266 – volume: 6 start-page: e23203 year: 2017 ident: 10.1016/j.jmb.2024.168610_b0045 article-title: Simultaneous measurement of chromatin accessibility, dna methylation, and nucleosome phasing in single cells publication-title: elife doi: 10.7554/eLife.23203 – volume: 13 start-page: e0202753 issue: 9 year: 2018 ident: 10.1016/j.jmb.2024.168610_b0175 article-title: Safety and tolerability of hiv-1 multiantigen pdna vaccine given with il-12 plasmid dna via electroporation, boosted with a recombinant vesicular stomatitis virus hiv gag vaccine in healthy volunteers in a randomized, controlled clinical trial publication-title: PLOS ONE. doi: 10.1371/journal.pone.0202753 – volume: 14 start-page: 114 issue: 1 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0180 article-title: Leveraging molecular structure and bioactivity with chemical language models for de novo drug design publication-title: Nat. Commun. doi: 10.1038/s41467-022-35692-6 – volume: 184 start-page: 3573 issue: 13 year: 2021 ident: 10.1016/j.jmb.2024.168610_b0145 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell. doi: 10.1016/j.cell.2021.04.048 – volume: 14 start-page: 865 issue: 9 year: 2017 ident: 10.1016/j.jmb.2024.168610_b0070 article-title: Simultaneous epitope and transcriptome measurement in single cells publication-title: Nat. Methods. doi: 10.1038/nmeth.4380 – volume: 39 start-page: btad596 issue: 10 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0160 article-title: DeepCCI: a deep learning framework for identifying cell–cell interactions from single-cell RNA sequencing data publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btad596 – volume: 33 start-page: 6840 year: 2020 ident: 10.1016/j.jmb.2024.168610_b0200 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. (NeurIPS) – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jmb.2024.168610_b0040 article-title: Simultaneous profiling of transcriptome and dna methylome from a single cell publication-title: Genome Biol. doi: 10.1186/s13059-016-0950-z – volume: 13 start-page: 6118 issue: 1 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0115 article-title: Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space publication-title: Nat. Commun. doi: 10.1038/s41467-022-33758-z – volume: 12 start-page: 883 issue: 10 year: 2016 ident: 10.1016/j.jmb.2024.168610_b0080 article-title: Gene-specific correlation of rna and protein levels in human cells and tissues publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20167144 – volume: 3 issue: 1 year: 2023 ident: 10.1016/j.jmb.2024.168610_b0095 article-title: Graph embedding and gaussian mixture variational autoencoder network for end-to-end analysis of single-cell rna sequencing data publication-title: Cell Rep. Methods – volume: 9 start-page: 171 issue: 1 year: 2014 ident: 10.1016/j.jmb.2024.168610_b0035 article-title: Full-length rna-seq from single cells using smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 35 start-page: 936 issue: 10 year: 2017 ident: 10.1016/j.jmb.2024.168610_b0065 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3973 – year: 2017 ident: 10.1016/j.jmb.2024.168610_b0170 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst.(NeurIPS) – year: 2021 ident: 10.1016/j.jmb.2024.168610_b0205 article-title: Diffusion models beat gans on image synthesis – volume: 6 start-page: 377 issue: 5 year: 2009 ident: 10.1016/j.jmb.2024.168610_b0010 article-title: mrna-seq whole-transcriptome analysis of a single cell publication-title: Nat. Methods doi: 10.1038/nmeth.1315 – volume: 13 start-page: 7705 issue: 1 year: 2022 ident: 10.1016/j.jmb.2024.168610_b0100 article-title: Clustering of single-cell multi-omics data with a multimodal deep learning method publication-title: Nat. Commun. doi: 10.1038/s41467-022-35031-9 |
SSID | ssj0005348 |
Score | 2.4567497 |
Snippet | [Display omitted]
•Considering both RNA and protein expression could obtain more biological evidence.•We propose a method for predicting protein expression... The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 168610 |
SubjectTerms | Algorithms CITE-seq technology Computational Biology - methods data collection deep learning drugs epitopes Gaussian noise Gene Expression Profiling - methods generating predictions Humans Membrane Proteins - genetics Membrane Proteins - metabolism molecular biology multiomics neoplasm cells prediction protein synthesis RNA Single-Cell Analysis - methods surface proteins Technical noise therapeutics Transcriptome |
Title | scDM: A deep generative method for cell surface protein prediction with diffusion model |
URI | https://dx.doi.org/10.1016/j.jmb.2024.168610 https://www.ncbi.nlm.nih.gov/pubmed/38754773 https://www.proquest.com/docview/3056668997 https://www.proquest.com/docview/3153784535 |
Volume | 436 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WRfQivl1fRPAkVLdN2jTellVZFT0p7i0kbSq7aHfZx8GLv92ZPkRB9-CptE0hzKQz8yUz3wCcpOTzXKQ8mQoEKIJnnnKp8KzNYqES9FgFb8H9Q9R9Ere9sNeATl0LQ2mVle0vbXphrasn55U0z0f9PtX40u4FGmBBMU9IhebEXodr-uzjW5oHF3HNGE6j65PNIsdr8GYRIgbizI_iiIpof_dNf8WehQ-6XoPVKnhk7XJ-69Bw-QYsle0k3zdguVN3b9uE50lyeX_B2ix1bsReCnJpsmysbBnNMFZltGnPJrNxZhLHCsKGfo5XOrohdTHao2XUQWVGW2qsaJqzBU_XV4-drlc1UfASHkdTzxhp8aeUFpGKa2Uu4RYxXWBcq2UynpgQAUdmA6pqUr7Fd0GGqMSG1g9cGinJt2EhH-ZuFxgGIz6iKyWE4UJJo1RK7HkOY0zl0Dg0oVWLTycVwzg1unjVdSrZQKPENUlclxJvwunXJ6OSXmPeYFHrRP9YIxrN_7zPjmv9aVQCydbkbjibaIJPUYSIU84Zgy5BxiLkYRN2SuV_zZQj2BNS8r3_TWwfVuiOEs_88AAWpuOZO8QQZ2qPijV8BIvtm7vuwyfvyvav |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgCMEF8WY8g8QJqbA2adNwmwZoPLYTCG5R0qZoCMrEtgP_HrsPEBLswKlSm0iRndr-EvszwFFKPs9FypOpQIAieOYplwrP2iwWKkGPVfAW9PpR915cP4aPM9Cpa2EorbKy_aVNL6x19ea0kubpcDCgGl86vUADLCjmCcNZmCN2KtGAufbVTbf_nenBRVyThtOE-nKzSPN6frWIEgNx4kdxRHW0v7unv8LPwg1dLsNSFT-ydrnEFZhx-SrMlx0lP1ZhoVM3cFuDh1Fy3jtjbZY6N2RPBb80GTdWdo1mGK4yOrdno8l7ZhLHCs6GQY5Pur0hjTE6pmXURGVCp2qs6JuzDveXF3edrlf1UfASHkdjzxhp8b-UFsGKa2Uu4RZhXWBcq2UynpgQMUdmAypsUr7Fb0GGwMSG1g9cGinJN6CRv-VuCxjGIz4CLCWE4UJJo1RKBHoOw0zl0D40oVWLTycVyTj1unjRdTbZs0aJa5K4LiXehOOvKcOSYWPaYFHrRP_YJho9wLRph7X-NCqBZGty9zYZaUJQUYSgU04Zg15BxiLkYRM2S-V_rZQj3hNS8u3_LewAFrp3vVt9e9W_2YFF-kJ5aH64C43x-8TtYcQztvvVjv4EbCH5YA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scDM%3A+A+deep+generative+method+for+cell+surface+protein+prediction+with+diffusion+model&rft.jtitle=Journal+of+molecular+biology&rft.au=Yu%2C+Hanlei&rft.au=Zheng%2C+Yuanjie&rft.au=Yang%2C+Xinbo&rft.date=2024-06-15&rft.issn=0022-2836&rft.volume=436&rft.issue=12&rft.spage=168610&rft_id=info:doi/10.1016%2Fj.jmb.2024.168610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmb_2024_168610 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |