Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI

Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 103; no. 5; pp. 2544 - 2556
Main Authors Sanchez-Panchuelo, R. M., Francis, S., Bowtell, R., Schluppeck, D.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.05.2010
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
1522-1598
DOI10.1152/jn.01017.2009

Cover

Loading…
Abstract Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A “traveling wave” paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.
AbstractList Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A “traveling wave” paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.
Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.
Author Francis, S.
Sanchez-Panchuelo, R. M.
Bowtell, R.
Schluppeck, D.
Author_xml – sequence: 1
  givenname: R. M.
  surname: Sanchez-Panchuelo
  fullname: Sanchez-Panchuelo, R. M.
  organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and
– sequence: 2
  givenname: S.
  surname: Francis
  fullname: Francis, S.
  organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and
– sequence: 3
  givenname: R.
  surname: Bowtell
  fullname: Bowtell, R.
  organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and
– sequence: 4
  givenname: D.
  surname: Schluppeck
  fullname: Schluppeck, D.
  organization: Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20164393$$D View this record in MEDLINE/PubMed
BookMark eNptUU1v2zAMFYYOa9L1uOug205OScuW7cuAIWiXACk2rB16FGRZThTYUmrJxfLvq_QLbbETCb7H9wi-KTmyzmpCviDMEPP0bGtngIDFLAWoPpBJnKUJ5lV5RCYAsWdQFMdk6v0WAIoc0k_kOAXkGavYhPy-lLudsWu6GHtp6ZXrZXBeW--GPZ27Ieh_1Fi6tI25M80oO3o11lutgqc3JmxocU0vRquCcTZil3-Wn8nHVnZenz7VE_L34vx6vkhWv34u5z9WiWIlD0nVxHt5XWVKZTWHpmSqbVNVA88zLvNM5ijTSpctNlwhZ4rXCBlKhrKEipfshHx_1N2Nda8bpW0YZCd2g-nlsBdOGvEWsWYj1u5OpCUvcs6iwLcngcHdjtoH0RuvdNdJq93oRcFYjlAhRubX11YvHs9fjAT2SFCD837QrVAmyMNPorPpBII4ZCW2VjxkJQ5Zxa3k3daz8P_59wwslTg
CitedBy_id crossref_primary_10_1016_j_cub_2020_10_034
crossref_primary_10_1093_cercor_bhy267
crossref_primary_10_1007_s00062_015_0437_4
crossref_primary_10_1523_JNEUROSCI_1742_15_2016
crossref_primary_10_1016_j_neuroimage_2017_03_060
crossref_primary_10_1097_RMR_0000000000000080
crossref_primary_10_1152_jn_00633_2015
crossref_primary_10_1098_rstb_2020_0040
crossref_primary_10_1002_hbm_70118
crossref_primary_10_1364_BOE_7_004275
crossref_primary_10_1016_j_neuroimage_2017_07_007
crossref_primary_10_1016_j_neuroimage_2023_120228
crossref_primary_10_1016_j_neuroimage_2020_117187
crossref_primary_10_3389_fneur_2019_00593
crossref_primary_10_1002_hbm_23767
crossref_primary_10_3390_app10176142
crossref_primary_10_1016_j_neuroimage_2014_06_045
crossref_primary_10_1093_cercor_bhab097
crossref_primary_10_1002_hbm_22031
crossref_primary_10_1002_hbm_22310
crossref_primary_10_1016_j_neuroimage_2023_119932
crossref_primary_10_1109_TNSRE_2019_2891362
crossref_primary_10_1002_ajmg_c_31795
crossref_primary_10_1038_srep30243
crossref_primary_10_1055_s_0042_1748790
crossref_primary_10_1523_JNEUROSCI_2501_12_2012
crossref_primary_10_7554_eLife_15292
crossref_primary_10_1093_cercor_bhu294
crossref_primary_10_1371_journal_pone_0236416
crossref_primary_10_1016_j_neuroimage_2011_11_062
crossref_primary_10_1523_JNEUROSCI_1318_24_2024
crossref_primary_10_1016_j_neuroimage_2012_11_041
crossref_primary_10_1152_physrev_00034_2020
crossref_primary_10_3171_2014_11_JNS14315
crossref_primary_10_1016_j_cortex_2023_12_019
crossref_primary_10_1016_j_neuroimage_2020_116880
crossref_primary_10_1016_j_neuroimage_2014_06_042
crossref_primary_10_1142_S0129065721500490
crossref_primary_10_1016_j_neuroimage_2018_06_041
crossref_primary_10_1088_0967_3334_35_9_R167
crossref_primary_10_1016_j_neuroimage_2017_06_021
crossref_primary_10_1111_ejn_12547
crossref_primary_10_1016_j_neuroimage_2013_03_044
crossref_primary_10_3389_fnhum_2014_00658
crossref_primary_10_1523_ENEURO_0069_22_2022
crossref_primary_10_1016_j_yebeh_2012_09_016
crossref_primary_10_1152_jn_00106_2011
crossref_primary_10_3389_fnint_2017_00004
crossref_primary_10_1371_journal_pone_0124577
crossref_primary_10_3389_fnhum_2019_00427
crossref_primary_10_1016_j_biopsycho_2023_108626
crossref_primary_10_1523_JNEUROSCI_2005_18_2019
crossref_primary_10_3390_vision5040052
crossref_primary_10_1007_s10548_013_0322_x
crossref_primary_10_2147_NDT_S488059
crossref_primary_10_1016_j_neuroimage_2014_06_011
crossref_primary_10_1002_hbm_22172
crossref_primary_10_1038_s41598_018_26287_7
crossref_primary_10_1098_rstb_2014_0209
crossref_primary_10_3389_fnins_2020_598482
crossref_primary_10_1007_s10548_019_00728_6
crossref_primary_10_1007_s00429_021_02309_5
crossref_primary_10_1016_j_neuropsychologia_2018_07_012
crossref_primary_10_3389_fncom_2023_1232005
crossref_primary_10_1038_s41551_020_00630_8
crossref_primary_10_1016_j_neuroimage_2010_09_058
crossref_primary_10_1002_jmri_28173
crossref_primary_10_1016_j_neuroimage_2018_10_023
crossref_primary_10_1093_brain_awx242
crossref_primary_10_1016_j_neuroimage_2021_117730
crossref_primary_10_1097_MD_0000000000003714
crossref_primary_10_1016_j_neuroscience_2022_05_012
crossref_primary_10_1097_MD_0000000000001657
crossref_primary_10_1002_acn3_51545
crossref_primary_10_1016_j_neuroimage_2025_121126
crossref_primary_10_1088_1741_2560_12_6_066026
crossref_primary_10_1152_jn_00939_2014
crossref_primary_10_1162_jocn_a_00272
crossref_primary_10_1002_nbm_1783
crossref_primary_10_1523_ENEURO_0238_24_2024
crossref_primary_10_3389_fnana_2022_866848
crossref_primary_10_1016_j_neuroimage_2016_11_029
crossref_primary_10_1155_2018_8472807
crossref_primary_10_7554_eLife_17280
crossref_primary_10_1002_jmri_22822
crossref_primary_10_1111_psyp_13030
crossref_primary_10_1002_hbm_22517
crossref_primary_10_1146_annurev_neuro_070815_014045
crossref_primary_10_3389_fnhum_2018_00235
crossref_primary_10_1007_s00429_012_0489_z
crossref_primary_10_1186_s12868_024_00892_x
crossref_primary_10_3389_fnins_2023_1071749
crossref_primary_10_1126_sciadv_abk2393
crossref_primary_10_1016_j_neuroimage_2011_09_059
crossref_primary_10_1016_j_neuroimage_2017_08_014
crossref_primary_10_1016_j_neuroimage_2019_116201
crossref_primary_10_1016_j_brs_2021_01_006
crossref_primary_10_1111_ejn_12978
crossref_primary_10_1523_ENEURO_0090_15_2016
crossref_primary_10_1097_WNR_0b013e32835c369a
crossref_primary_10_1002_nbm_3275
crossref_primary_10_1016_j_neuroimage_2017_01_081
crossref_primary_10_1016_j_neuroimage_2014_07_044
crossref_primary_10_1016_j_nic_2014_07_003
crossref_primary_10_1152_jn_00499_2012
crossref_primary_10_1016_j_neuroimage_2014_07_042
crossref_primary_10_1111_jon_12481
crossref_primary_10_1016_j_neuroimage_2020_117255
crossref_primary_10_1007_s10548_022_00932_x
crossref_primary_10_1016_j_neuroimage_2011_03_038
crossref_primary_10_1016_j_neuroimage_2011_08_096
crossref_primary_10_3389_fnins_2024_1425032
crossref_primary_10_1002_jmri_27144
crossref_primary_10_1093_scan_nsv031
crossref_primary_10_7554_eLife_12812
crossref_primary_10_1007_s42979_023_02596_1
crossref_primary_10_1016_j_neuroimage_2019_116335
crossref_primary_10_1152_jn_00485_2021
crossref_primary_10_2337_db21_1147
crossref_primary_10_1002_hbm_24323
crossref_primary_10_1371_journal_pone_0134610
crossref_primary_10_3390_biomedicines10071633
crossref_primary_10_1038_s41598_022_20322_4
crossref_primary_10_1016_j_tics_2014_03_008
crossref_primary_10_1098_rstb_2015_0361
crossref_primary_10_1016_j_neuroimage_2021_118737
crossref_primary_10_1016_j_neuroimage_2013_05_012
crossref_primary_10_1093_psyrad_kkae027
crossref_primary_10_17816_DD624967
crossref_primary_10_3389_fnhum_2018_00492
crossref_primary_10_1038_484024a
crossref_primary_10_1016_j_neuroimage_2019_116051
crossref_primary_10_1163_22134808_00002530
crossref_primary_10_1002_hbm_25243
crossref_primary_10_1097_WCO_0b013e3283489711
crossref_primary_10_1002_hbm_26298
crossref_primary_10_1016_j_neuroimage_2019_116465
crossref_primary_10_1016_j_neuroimage_2017_01_028
crossref_primary_10_1002_hbm_25365
crossref_primary_10_1016_j_pnmrs_2018_06_001
crossref_primary_10_1109_TBME_2014_2313619
crossref_primary_10_1093_cercor_bhx024
crossref_primary_10_1016_j_neuroimage_2012_07_066
crossref_primary_10_1007_s10548_023_01000_8
crossref_primary_10_1080_02643294_2016_1159547
crossref_primary_10_1007_s10548_017_0547_1
crossref_primary_10_1016_j_neuroimage_2020_116943
crossref_primary_10_1038_s41598_022_06113_x
crossref_primary_10_1002_hbm_21310
crossref_primary_10_1097_WNR_0000000000001909
crossref_primary_10_1016_j_jocn_2011_06_020
Cites_doi 10.1093/cercor/bhm015
10.1006/nimg.2000.0541
10.1152/jn.01290.2004
10.1073/pnas.200033797
10.1016/j.neuroimage.2004.09.013
10.1016/j.neuroimage.2008.02.015
10.1093/cercor/bhm257
10.1523/JNEUROSCI.16-13-04207.1996
10.1016/j.neuroimage.2006.08.020
10.1006/nimg.1997.0306
10.1006/nimg.2000.0548
10.1146/annurev.ps.33.020182.001103
10.1016/j.neuroimage.2009.02.009
10.1152/jn.1984.51.4.724
10.1002/mds.10416
10.3109/07367228709144612
10.1093/cercor/7.2.181
10.1016/j.neuroimage.2004.09.033
10.1002/mrm.1910380220
10.1016/j.neuron.2007.10.012
10.1006/nimg.1998.0419
10.1093/brain/60.4.389
10.1016/0304-4165(82)90333-6
10.1016/S0896-6273(00)80456-0
10.1093/cercor/7.1.18
10.1002/mrm.1080
10.1093/cercor/bhl090
10.1146/annurev.biophys.27.1.447
10.1016/j.neuroimage.2008.04.184
10.1006/nimg.1998.0341
10.1006/nimg.2002.1103
10.1016/j.neuroimage.2004.06.024
10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
10.1016/j.neuroimage.2008.03.061
10.1002/mrm.10433
10.1016/j.neuroimage.2006.10.024
10.1007/s10334-007-0102-2
10.1038/369525a0
10.1097/00001756-200005150-00026
10.1006/nimg.1999.0440
10.1371/journal.pone.0001505
10.1016/j.neuroimage.2004.07.051
10.1016/S0304-3940(99)00835-6
10.1006/nimg.2002.1172
10.1002/mrm.10472
10.1523/JNEUROSCI.5330-05.2006
10.1016/S0891-0618(00)00076-4
10.1006/nimg.2001.0858
10.1016/j.neuroimage.2009.05.015
10.1016/j.neuroimage.2005.08.016
10.1006/nimg.1999.0448
10.1002/mrm.1910290613
10.1016/j.neuron.2005.07.016
10.1016/j.neuroimage.2005.10.022
10.1097/00001756-199811160-00030
10.1126/science.1063695
10.1097/00001756-199803090-00008
10.1152/jn.2000.84.1.558
10.1002/hbm.10062
10.1016/j.neuroimage.2006.12.030
ContentType Journal Article
Copyright Copyright © 2010 the American Physiological Society
Copyright_xml – notice: Copyright © 2010 the American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.01017.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2556
ExternalDocumentID PMC2867563
20164393
10_1152_jn_01017_2009
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Cancer Research UK
– fundername: Medical Research Council
  grantid: G9900259
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G008906/1
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c386t-9d2006b94cc4b60d83cff2cb06546a54a51a29e8f1d6c163c6b1041a31a809683
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:24:26 EDT 2025
Thu Sep 04 18:11:58 EDT 2025
Sat May 31 02:09:31 EDT 2025
Tue Jul 01 04:08:54 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c386t-9d2006b94cc4b60d83cff2cb06546a54a51a29e8f1d6c163c6b1041a31a809683
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2867563
PMID 20164393
PQID 733510911
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867563
proquest_miscellaneous_733510911
pubmed_primary_20164393
crossref_citationtrail_10_1152_jn_01017_2009
crossref_primary_10_1152_jn_01017_2009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Koopmans PJ (B26)
B60
B61
B62
References_xml – ident: B7
  doi: 10.1093/cercor/bhm015
– ident: B13
  doi: 10.1006/nimg.2000.0541
– ident: B43
  doi: 10.1152/jn.01290.2004
– ident: B12
  doi: 10.1073/pnas.200033797
– ident: B6
  doi: 10.1016/j.neuroimage.2004.09.013
– ident: B58
  doi: 10.1016/j.neuroimage.2008.02.015
– ident: B31
  doi: 10.1093/cercor/bhm257
– ident: B1
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– ident: B40
  doi: 10.1016/j.neuroimage.2006.08.020
– ident: B14
  doi: 10.1006/nimg.1997.0306
– ident: B19
  doi: 10.1006/nimg.2000.0548
– ident: B5
  doi: 10.1146/annurev.ps.33.020182.001103
– ident: B55
  doi: 10.1016/j.neuroimage.2009.02.009
– ident: B53
  doi: 10.1152/jn.1984.51.4.724
– ident: B4
  doi: 10.1002/mds.10416
– ident: B38
  doi: 10.3109/07367228709144612
– ident: B10
  doi: 10.1093/cercor/7.2.181
– ident: B25
  doi: 10.1016/j.neuroimage.2004.09.033
– ident: B16
  doi: 10.1002/mrm.1910380220
– ident: B28
– ident: B57
  doi: 10.1016/j.neuron.2007.10.012
– ident: B20
  doi: 10.1006/nimg.1998.0419
– ident: B36
  doi: 10.1093/brain/60.4.389
– ident: B54
  doi: 10.1016/0304-4165(82)90333-6
– ident: B2
  doi: 10.1016/S0896-6273(00)80456-0
– ident: B59
  doi: 10.1093/cercor/7.1.18
– ident: B62
  doi: 10.1002/mrm.1080
– ident: B9
  doi: 10.1093/cercor/bhl090
– ident: B33
  doi: 10.1146/annurev.biophys.27.1.447
– ident: B44
  doi: 10.1016/j.neuroimage.2008.04.184
– ident: B17
  doi: 10.1006/nimg.1998.0341
– ident: B37
  doi: 10.1006/nimg.2002.1103
– ident: B34
  doi: 10.1016/j.neuroimage.2004.06.024
– ident: B32
  doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
– ident: B51
  doi: 10.1016/j.neuroimage.2008.03.061
– ident: B61
  doi: 10.1002/mrm.10433
– ident: B24
  doi: 10.1016/j.neuroimage.2006.10.024
– ident: B39
  doi: 10.1007/s10334-007-0102-2
– ident: B11
  doi: 10.1038/369525a0
– ident: B27
  doi: 10.1097/00001756-200005150-00026
– ident: B18
  doi: 10.1006/nimg.1999.0440
– ident: B35
  doi: 10.1371/journal.pone.0001505
– ident: B50
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: B52
  doi: 10.1016/S0304-3940(99)00835-6
– ident: B60
  doi: 10.1006/nimg.2002.1172
– ident: B8
  doi: 10.1002/mrm.10472
– ident: B42
  doi: 10.1523/JNEUROSCI.5330-05.2006
– ident: B41
  doi: 10.1016/S0891-0618(00)00076-4
– ident: B26
  publication-title: Hum Brain Mapp
– ident: B21
  doi: 10.1006/nimg.2001.0858
– ident: B56
  doi: 10.1016/j.neuroimage.2009.05.015
– ident: B23
  doi: 10.1016/j.neuroimage.2005.08.016
– ident: B29
  doi: 10.1006/nimg.1999.0448
– ident: B22
  doi: 10.1002/mrm.1910290613
– ident: B15
  doi: 10.1016/j.neuron.2005.07.016
– ident: B45
  doi: 10.1016/j.neuroimage.2005.10.022
– ident: B3
  doi: 10.1097/00001756-199811160-00030
– ident: B46
  doi: 10.1126/science.1063695
– ident: B47
  doi: 10.1097/00001756-199803090-00008
– ident: B30
  doi: 10.1152/jn.2000.84.1.558
– ident: B49
  doi: 10.1002/hbm.10062
– ident: B48
  doi: 10.1016/j.neuroimage.2006.12.030
SSID ssj0007502
Score 2.3975143
Snippet Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2544
SubjectTerms Brain Mapping - instrumentation
Brain Mapping - methods
Cerebrovascular Circulation
Evoked Potentials, Somatosensory
Fingers - physiology
Fourier Analysis
Functional Laterality
Humans
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Oxygen - blood
Physical Stimulation
Signal Processing, Computer-Assisted
Somatosensory Cortex - blood supply
Somatosensory Cortex - physiology
Thumb - physiology
Time Factors
Touch Perception - physiology
Title Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/20164393
https://www.proquest.com/docview/733510911
https://pubmed.ncbi.nlm.nih.gov/PMC2867563
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpDOQHtBfIaOI4iR8HbBqwjrKlUt-i2HHVViOp1kTAfj3n2Lk0bBOXl7RyLbfN-XJ8Lj7fIeQVbAvuTIQKeSqFg6BwIi-NnDAFxZCB2hxmmNEdnQRHE__TlE-7rqimuqSUe-ry2rqS_5EqjIFcsUr2HyTbLgoD8B7kC1eQMFz_SsajdGXKnWyjvXUB1mexBr8U8-YKT9H-wHDGoqu5WldyaY5vmPBrGL_Gba2OBo5OP95gqRrOSxMC6cXgzwAwc33pjPG10jaHc9qFV-ueHb346rvie1lnOtoU05man1erlbaK-cNmHMKm0Os4RK06wa0F48hqU33NWKNvh2wDWHxTe3LLBXlVrXOkiV3me8iIF5qSzW7_anL2J1-Sw8nxcRIfTOPb5I4HfgP28vj8taOPB_PIpL-bn9WQrnLvbW_xvpFyxfP4_QDthkUS3yf3agHRfYuLB-SWzh-S7f0cQPDtJ92l41Zi22RcQ4UaqNAeVKiFCl3ktIMKbaBCESo0jGkHFQpQeUQmhwfx-yOnbqbhKBYFpSMyDB5J4SvlywCeQKZmM09JLC4OUu6n3E09oaOZmwUKjHQVSPDU3ZS5aQRubsQek628yPVTQiNQ1VkW-WIofN-XLJLC9TytJVISMMkH5E1z9xJVM81jw5PzxHic3EuWeWJuNjZBFQOy205fWYqVmybSRhQJKEHMbKW5Lqp1EjLGkeHWHZAnVjLtSh5yyDHBBiTsyaydgPzq_U_yxdzwrMO_CXnAnv35a5-Tu90jsUO2yotKvwBjtZQvDQB_AeYnlkY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+human+somatosensory+cortex+in+individual+subjects+with+7T+functional+MRI&rft.jtitle=Journal+of+neurophysiology&rft.au=Sanchez-Panchuelo%2C+R+M&rft.au=Francis%2C+S&rft.au=Bowtell%2C+R&rft.au=Schluppeck%2C+D&rft.date=2010-05-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=103&rft.issue=5&rft.spage=2544&rft_id=info:doi/10.1152%2Fjn.01017.2009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon