Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI
Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise...
Saved in:
Published in | Journal of neurophysiology Vol. 103; no. 5; pp. 2544 - 2556 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.05.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 1522-1598 |
DOI | 10.1152/jn.01017.2009 |
Cover
Loading…
Abstract | Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A “traveling wave” paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning. |
---|---|
AbstractList | Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A “traveling wave” paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning. Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning. |
Author | Francis, S. Sanchez-Panchuelo, R. M. Bowtell, R. Schluppeck, D. |
Author_xml | – sequence: 1 givenname: R. M. surname: Sanchez-Panchuelo fullname: Sanchez-Panchuelo, R. M. organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and – sequence: 2 givenname: S. surname: Francis fullname: Francis, S. organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and – sequence: 3 givenname: R. surname: Bowtell fullname: Bowtell, R. organization: Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy and – sequence: 4 givenname: D. surname: Schluppeck fullname: Schluppeck, D. organization: Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20164393$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1v2zAMFYYOa9L1uOug205OScuW7cuAIWiXACk2rB16FGRZThTYUmrJxfLvq_QLbbETCb7H9wi-KTmyzmpCviDMEPP0bGtngIDFLAWoPpBJnKUJ5lV5RCYAsWdQFMdk6v0WAIoc0k_kOAXkGavYhPy-lLudsWu6GHtp6ZXrZXBeW--GPZ27Ieh_1Fi6tI25M80oO3o11lutgqc3JmxocU0vRquCcTZil3-Wn8nHVnZenz7VE_L34vx6vkhWv34u5z9WiWIlD0nVxHt5XWVKZTWHpmSqbVNVA88zLvNM5ijTSpctNlwhZ4rXCBlKhrKEipfshHx_1N2Nda8bpW0YZCd2g-nlsBdOGvEWsWYj1u5OpCUvcs6iwLcngcHdjtoH0RuvdNdJq93oRcFYjlAhRubX11YvHs9fjAT2SFCD837QrVAmyMNPorPpBII4ZCW2VjxkJQ5Zxa3k3daz8P_59wwslTg |
CitedBy_id | crossref_primary_10_1016_j_cub_2020_10_034 crossref_primary_10_1093_cercor_bhy267 crossref_primary_10_1007_s00062_015_0437_4 crossref_primary_10_1523_JNEUROSCI_1742_15_2016 crossref_primary_10_1016_j_neuroimage_2017_03_060 crossref_primary_10_1097_RMR_0000000000000080 crossref_primary_10_1152_jn_00633_2015 crossref_primary_10_1098_rstb_2020_0040 crossref_primary_10_1002_hbm_70118 crossref_primary_10_1364_BOE_7_004275 crossref_primary_10_1016_j_neuroimage_2017_07_007 crossref_primary_10_1016_j_neuroimage_2023_120228 crossref_primary_10_1016_j_neuroimage_2020_117187 crossref_primary_10_3389_fneur_2019_00593 crossref_primary_10_1002_hbm_23767 crossref_primary_10_3390_app10176142 crossref_primary_10_1016_j_neuroimage_2014_06_045 crossref_primary_10_1093_cercor_bhab097 crossref_primary_10_1002_hbm_22031 crossref_primary_10_1002_hbm_22310 crossref_primary_10_1016_j_neuroimage_2023_119932 crossref_primary_10_1109_TNSRE_2019_2891362 crossref_primary_10_1002_ajmg_c_31795 crossref_primary_10_1038_srep30243 crossref_primary_10_1055_s_0042_1748790 crossref_primary_10_1523_JNEUROSCI_2501_12_2012 crossref_primary_10_7554_eLife_15292 crossref_primary_10_1093_cercor_bhu294 crossref_primary_10_1371_journal_pone_0236416 crossref_primary_10_1016_j_neuroimage_2011_11_062 crossref_primary_10_1523_JNEUROSCI_1318_24_2024 crossref_primary_10_1016_j_neuroimage_2012_11_041 crossref_primary_10_1152_physrev_00034_2020 crossref_primary_10_3171_2014_11_JNS14315 crossref_primary_10_1016_j_cortex_2023_12_019 crossref_primary_10_1016_j_neuroimage_2020_116880 crossref_primary_10_1016_j_neuroimage_2014_06_042 crossref_primary_10_1142_S0129065721500490 crossref_primary_10_1016_j_neuroimage_2018_06_041 crossref_primary_10_1088_0967_3334_35_9_R167 crossref_primary_10_1016_j_neuroimage_2017_06_021 crossref_primary_10_1111_ejn_12547 crossref_primary_10_1016_j_neuroimage_2013_03_044 crossref_primary_10_3389_fnhum_2014_00658 crossref_primary_10_1523_ENEURO_0069_22_2022 crossref_primary_10_1016_j_yebeh_2012_09_016 crossref_primary_10_1152_jn_00106_2011 crossref_primary_10_3389_fnint_2017_00004 crossref_primary_10_1371_journal_pone_0124577 crossref_primary_10_3389_fnhum_2019_00427 crossref_primary_10_1016_j_biopsycho_2023_108626 crossref_primary_10_1523_JNEUROSCI_2005_18_2019 crossref_primary_10_3390_vision5040052 crossref_primary_10_1007_s10548_013_0322_x crossref_primary_10_2147_NDT_S488059 crossref_primary_10_1016_j_neuroimage_2014_06_011 crossref_primary_10_1002_hbm_22172 crossref_primary_10_1038_s41598_018_26287_7 crossref_primary_10_1098_rstb_2014_0209 crossref_primary_10_3389_fnins_2020_598482 crossref_primary_10_1007_s10548_019_00728_6 crossref_primary_10_1007_s00429_021_02309_5 crossref_primary_10_1016_j_neuropsychologia_2018_07_012 crossref_primary_10_3389_fncom_2023_1232005 crossref_primary_10_1038_s41551_020_00630_8 crossref_primary_10_1016_j_neuroimage_2010_09_058 crossref_primary_10_1002_jmri_28173 crossref_primary_10_1016_j_neuroimage_2018_10_023 crossref_primary_10_1093_brain_awx242 crossref_primary_10_1016_j_neuroimage_2021_117730 crossref_primary_10_1097_MD_0000000000003714 crossref_primary_10_1016_j_neuroscience_2022_05_012 crossref_primary_10_1097_MD_0000000000001657 crossref_primary_10_1002_acn3_51545 crossref_primary_10_1016_j_neuroimage_2025_121126 crossref_primary_10_1088_1741_2560_12_6_066026 crossref_primary_10_1152_jn_00939_2014 crossref_primary_10_1162_jocn_a_00272 crossref_primary_10_1002_nbm_1783 crossref_primary_10_1523_ENEURO_0238_24_2024 crossref_primary_10_3389_fnana_2022_866848 crossref_primary_10_1016_j_neuroimage_2016_11_029 crossref_primary_10_1155_2018_8472807 crossref_primary_10_7554_eLife_17280 crossref_primary_10_1002_jmri_22822 crossref_primary_10_1111_psyp_13030 crossref_primary_10_1002_hbm_22517 crossref_primary_10_1146_annurev_neuro_070815_014045 crossref_primary_10_3389_fnhum_2018_00235 crossref_primary_10_1007_s00429_012_0489_z crossref_primary_10_1186_s12868_024_00892_x crossref_primary_10_3389_fnins_2023_1071749 crossref_primary_10_1126_sciadv_abk2393 crossref_primary_10_1016_j_neuroimage_2011_09_059 crossref_primary_10_1016_j_neuroimage_2017_08_014 crossref_primary_10_1016_j_neuroimage_2019_116201 crossref_primary_10_1016_j_brs_2021_01_006 crossref_primary_10_1111_ejn_12978 crossref_primary_10_1523_ENEURO_0090_15_2016 crossref_primary_10_1097_WNR_0b013e32835c369a crossref_primary_10_1002_nbm_3275 crossref_primary_10_1016_j_neuroimage_2017_01_081 crossref_primary_10_1016_j_neuroimage_2014_07_044 crossref_primary_10_1016_j_nic_2014_07_003 crossref_primary_10_1152_jn_00499_2012 crossref_primary_10_1016_j_neuroimage_2014_07_042 crossref_primary_10_1111_jon_12481 crossref_primary_10_1016_j_neuroimage_2020_117255 crossref_primary_10_1007_s10548_022_00932_x crossref_primary_10_1016_j_neuroimage_2011_03_038 crossref_primary_10_1016_j_neuroimage_2011_08_096 crossref_primary_10_3389_fnins_2024_1425032 crossref_primary_10_1002_jmri_27144 crossref_primary_10_1093_scan_nsv031 crossref_primary_10_7554_eLife_12812 crossref_primary_10_1007_s42979_023_02596_1 crossref_primary_10_1016_j_neuroimage_2019_116335 crossref_primary_10_1152_jn_00485_2021 crossref_primary_10_2337_db21_1147 crossref_primary_10_1002_hbm_24323 crossref_primary_10_1371_journal_pone_0134610 crossref_primary_10_3390_biomedicines10071633 crossref_primary_10_1038_s41598_022_20322_4 crossref_primary_10_1016_j_tics_2014_03_008 crossref_primary_10_1098_rstb_2015_0361 crossref_primary_10_1016_j_neuroimage_2021_118737 crossref_primary_10_1016_j_neuroimage_2013_05_012 crossref_primary_10_1093_psyrad_kkae027 crossref_primary_10_17816_DD624967 crossref_primary_10_3389_fnhum_2018_00492 crossref_primary_10_1038_484024a crossref_primary_10_1016_j_neuroimage_2019_116051 crossref_primary_10_1163_22134808_00002530 crossref_primary_10_1002_hbm_25243 crossref_primary_10_1097_WCO_0b013e3283489711 crossref_primary_10_1002_hbm_26298 crossref_primary_10_1016_j_neuroimage_2019_116465 crossref_primary_10_1016_j_neuroimage_2017_01_028 crossref_primary_10_1002_hbm_25365 crossref_primary_10_1016_j_pnmrs_2018_06_001 crossref_primary_10_1109_TBME_2014_2313619 crossref_primary_10_1093_cercor_bhx024 crossref_primary_10_1016_j_neuroimage_2012_07_066 crossref_primary_10_1007_s10548_023_01000_8 crossref_primary_10_1080_02643294_2016_1159547 crossref_primary_10_1007_s10548_017_0547_1 crossref_primary_10_1016_j_neuroimage_2020_116943 crossref_primary_10_1038_s41598_022_06113_x crossref_primary_10_1002_hbm_21310 crossref_primary_10_1097_WNR_0000000000001909 crossref_primary_10_1016_j_jocn_2011_06_020 |
Cites_doi | 10.1093/cercor/bhm015 10.1006/nimg.2000.0541 10.1152/jn.01290.2004 10.1073/pnas.200033797 10.1016/j.neuroimage.2004.09.013 10.1016/j.neuroimage.2008.02.015 10.1093/cercor/bhm257 10.1523/JNEUROSCI.16-13-04207.1996 10.1016/j.neuroimage.2006.08.020 10.1006/nimg.1997.0306 10.1006/nimg.2000.0548 10.1146/annurev.ps.33.020182.001103 10.1016/j.neuroimage.2009.02.009 10.1152/jn.1984.51.4.724 10.1002/mds.10416 10.3109/07367228709144612 10.1093/cercor/7.2.181 10.1016/j.neuroimage.2004.09.033 10.1002/mrm.1910380220 10.1016/j.neuron.2007.10.012 10.1006/nimg.1998.0419 10.1093/brain/60.4.389 10.1016/0304-4165(82)90333-6 10.1016/S0896-6273(00)80456-0 10.1093/cercor/7.1.18 10.1002/mrm.1080 10.1093/cercor/bhl090 10.1146/annurev.biophys.27.1.447 10.1016/j.neuroimage.2008.04.184 10.1006/nimg.1998.0341 10.1006/nimg.2002.1103 10.1016/j.neuroimage.2004.06.024 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R 10.1016/j.neuroimage.2008.03.061 10.1002/mrm.10433 10.1016/j.neuroimage.2006.10.024 10.1007/s10334-007-0102-2 10.1038/369525a0 10.1097/00001756-200005150-00026 10.1006/nimg.1999.0440 10.1371/journal.pone.0001505 10.1016/j.neuroimage.2004.07.051 10.1016/S0304-3940(99)00835-6 10.1006/nimg.2002.1172 10.1002/mrm.10472 10.1523/JNEUROSCI.5330-05.2006 10.1016/S0891-0618(00)00076-4 10.1006/nimg.2001.0858 10.1016/j.neuroimage.2009.05.015 10.1016/j.neuroimage.2005.08.016 10.1006/nimg.1999.0448 10.1002/mrm.1910290613 10.1016/j.neuron.2005.07.016 10.1016/j.neuroimage.2005.10.022 10.1097/00001756-199811160-00030 10.1126/science.1063695 10.1097/00001756-199803090-00008 10.1152/jn.2000.84.1.558 10.1002/hbm.10062 10.1016/j.neuroimage.2006.12.030 |
ContentType | Journal Article |
Copyright | Copyright © 2010 the American Physiological Society |
Copyright_xml | – notice: Copyright © 2010 the American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.01017.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2556 |
ExternalDocumentID | PMC2867563 20164393 10_1152_jn_01017_2009 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: Cancer Research UK – fundername: Medical Research Council grantid: G9900259 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G008906/1 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c386t-9d2006b94cc4b60d83cff2cb06546a54a51a29e8f1d6c163c6b1041a31a809683 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:24:26 EDT 2025 Thu Sep 04 18:11:58 EDT 2025 Sat May 31 02:09:31 EDT 2025 Tue Jul 01 04:08:54 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c386t-9d2006b94cc4b60d83cff2cb06546a54a51a29e8f1d6c163c6b1041a31a809683 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2867563 |
PMID | 20164393 |
PQID | 733510911 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867563 proquest_miscellaneous_733510911 pubmed_primary_20164393 crossref_citationtrail_10_1152_jn_01017_2009 crossref_primary_10_1152_jn_01017_2009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Koopmans PJ (B26) B60 B61 B62 |
References_xml | – ident: B7 doi: 10.1093/cercor/bhm015 – ident: B13 doi: 10.1006/nimg.2000.0541 – ident: B43 doi: 10.1152/jn.01290.2004 – ident: B12 doi: 10.1073/pnas.200033797 – ident: B6 doi: 10.1016/j.neuroimage.2004.09.013 – ident: B58 doi: 10.1016/j.neuroimage.2008.02.015 – ident: B31 doi: 10.1093/cercor/bhm257 – ident: B1 doi: 10.1523/JNEUROSCI.16-13-04207.1996 – ident: B40 doi: 10.1016/j.neuroimage.2006.08.020 – ident: B14 doi: 10.1006/nimg.1997.0306 – ident: B19 doi: 10.1006/nimg.2000.0548 – ident: B5 doi: 10.1146/annurev.ps.33.020182.001103 – ident: B55 doi: 10.1016/j.neuroimage.2009.02.009 – ident: B53 doi: 10.1152/jn.1984.51.4.724 – ident: B4 doi: 10.1002/mds.10416 – ident: B38 doi: 10.3109/07367228709144612 – ident: B10 doi: 10.1093/cercor/7.2.181 – ident: B25 doi: 10.1016/j.neuroimage.2004.09.033 – ident: B16 doi: 10.1002/mrm.1910380220 – ident: B28 – ident: B57 doi: 10.1016/j.neuron.2007.10.012 – ident: B20 doi: 10.1006/nimg.1998.0419 – ident: B36 doi: 10.1093/brain/60.4.389 – ident: B54 doi: 10.1016/0304-4165(82)90333-6 – ident: B2 doi: 10.1016/S0896-6273(00)80456-0 – ident: B59 doi: 10.1093/cercor/7.1.18 – ident: B62 doi: 10.1002/mrm.1080 – ident: B9 doi: 10.1093/cercor/bhl090 – ident: B33 doi: 10.1146/annurev.biophys.27.1.447 – ident: B44 doi: 10.1016/j.neuroimage.2008.04.184 – ident: B17 doi: 10.1006/nimg.1998.0341 – ident: B37 doi: 10.1006/nimg.2002.1103 – ident: B34 doi: 10.1016/j.neuroimage.2004.06.024 – ident: B32 doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R – ident: B51 doi: 10.1016/j.neuroimage.2008.03.061 – ident: B61 doi: 10.1002/mrm.10433 – ident: B24 doi: 10.1016/j.neuroimage.2006.10.024 – ident: B39 doi: 10.1007/s10334-007-0102-2 – ident: B11 doi: 10.1038/369525a0 – ident: B27 doi: 10.1097/00001756-200005150-00026 – ident: B18 doi: 10.1006/nimg.1999.0440 – ident: B35 doi: 10.1371/journal.pone.0001505 – ident: B50 doi: 10.1016/j.neuroimage.2004.07.051 – ident: B52 doi: 10.1016/S0304-3940(99)00835-6 – ident: B60 doi: 10.1006/nimg.2002.1172 – ident: B8 doi: 10.1002/mrm.10472 – ident: B42 doi: 10.1523/JNEUROSCI.5330-05.2006 – ident: B41 doi: 10.1016/S0891-0618(00)00076-4 – ident: B26 publication-title: Hum Brain Mapp – ident: B21 doi: 10.1006/nimg.2001.0858 – ident: B56 doi: 10.1016/j.neuroimage.2009.05.015 – ident: B23 doi: 10.1016/j.neuroimage.2005.08.016 – ident: B29 doi: 10.1006/nimg.1999.0448 – ident: B22 doi: 10.1002/mrm.1910290613 – ident: B15 doi: 10.1016/j.neuron.2005.07.016 – ident: B45 doi: 10.1016/j.neuroimage.2005.10.022 – ident: B3 doi: 10.1097/00001756-199811160-00030 – ident: B46 doi: 10.1126/science.1063695 – ident: B47 doi: 10.1097/00001756-199803090-00008 – ident: B30 doi: 10.1152/jn.2000.84.1.558 – ident: B49 doi: 10.1002/hbm.10062 – ident: B48 doi: 10.1016/j.neuroimage.2006.12.030 |
SSID | ssj0007502 |
Score | 2.3975143 |
Snippet | Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2544 |
SubjectTerms | Brain Mapping - instrumentation Brain Mapping - methods Cerebrovascular Circulation Evoked Potentials, Somatosensory Fingers - physiology Fourier Analysis Functional Laterality Humans Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Oxygen - blood Physical Stimulation Signal Processing, Computer-Assisted Somatosensory Cortex - blood supply Somatosensory Cortex - physiology Thumb - physiology Time Factors Touch Perception - physiology |
Title | Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20164393 https://www.proquest.com/docview/733510911 https://pubmed.ncbi.nlm.nih.gov/PMC2867563 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpDOQHtBfIaOI4iR8HbBqwjrKlUt-i2HHVViOp1kTAfj3n2Lk0bBOXl7RyLbfN-XJ8Lj7fIeQVbAvuTIQKeSqFg6BwIi-NnDAFxZCB2hxmmNEdnQRHE__TlE-7rqimuqSUe-ry2rqS_5EqjIFcsUr2HyTbLgoD8B7kC1eQMFz_SsajdGXKnWyjvXUB1mexBr8U8-YKT9H-wHDGoqu5WldyaY5vmPBrGL_Gba2OBo5OP95gqRrOSxMC6cXgzwAwc33pjPG10jaHc9qFV-ueHb346rvie1lnOtoU05man1erlbaK-cNmHMKm0Os4RK06wa0F48hqU33NWKNvh2wDWHxTe3LLBXlVrXOkiV3me8iIF5qSzW7_anL2J1-Sw8nxcRIfTOPb5I4HfgP28vj8taOPB_PIpL-bn9WQrnLvbW_xvpFyxfP4_QDthkUS3yf3agHRfYuLB-SWzh-S7f0cQPDtJ92l41Zi22RcQ4UaqNAeVKiFCl3ktIMKbaBCESo0jGkHFQpQeUQmhwfx-yOnbqbhKBYFpSMyDB5J4SvlywCeQKZmM09JLC4OUu6n3E09oaOZmwUKjHQVSPDU3ZS5aQRubsQek628yPVTQiNQ1VkW-WIofN-XLJLC9TytJVISMMkH5E1z9xJVM81jw5PzxHic3EuWeWJuNjZBFQOy205fWYqVmybSRhQJKEHMbKW5Lqp1EjLGkeHWHZAnVjLtSh5yyDHBBiTsyaydgPzq_U_yxdzwrMO_CXnAnv35a5-Tu90jsUO2yotKvwBjtZQvDQB_AeYnlkY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+human+somatosensory+cortex+in+individual+subjects+with+7T+functional+MRI&rft.jtitle=Journal+of+neurophysiology&rft.au=Sanchez-Panchuelo%2C+R+M&rft.au=Francis%2C+S&rft.au=Bowtell%2C+R&rft.au=Schluppeck%2C+D&rft.date=2010-05-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=103&rft.issue=5&rft.spage=2544&rft_id=info:doi/10.1152%2Fjn.01017.2009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |