An efficient quantum blind digital signature scheme
Recently, many quantum digital signature(QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages,and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In t...
Saved in:
Published in | Science China. Information sciences Vol. 60; no. 8; pp. 222 - 235 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, many quantum digital signature(QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages,and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose a scheme based on an application of Fibonacci-, Lucas-and Fibonacci-Lucas matrix coding to quantum digital signatures based on a recently proposed quantum key distribution(QKD) system. Our scheme can sign a large number of digital messages every time. Moreover, these special matrices provide a method to verify the integration of information received by the participants, to authenticate the identity of the participants, and to improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing schemes. |
---|---|
AbstractList | Recently, many quantum digital signature(QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages,and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose a scheme based on an application of Fibonacci-, Lucas-and Fibonacci-Lucas matrix coding to quantum digital signatures based on a recently proposed quantum key distribution(QKD) system. Our scheme can sign a large number of digital messages every time. Moreover, these special matrices provide a method to verify the integration of information received by the participants, to authenticate the identity of the participants, and to improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing schemes. Recently, many quantum digital signature (QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages, and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose a scheme based on an application of Fibonacci-, Lucas- and Fibonacci-Lucas matrix coding to quantum digital signatures based on a recently proposed quantum key distribution (QKD) system. Our scheme can sign a large number of digital messages every time. Moreover, these special matrices provide a method to verify the integration of information received by the participants, to authenticate the identity of the participants, and to improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing schemes. |
ArticleNumber | 082501 |
Author | Hong LAI Mingxing LUO Josef PIEPRZYK Zhiguo QU Shudong LI Mehmet A.ORGUN |
AuthorAffiliation | College of Computer and Information Science, Southwest University, Chongqing 400715, China Information Security and National Computing Grid Laboratory, School of Information Science and Technology Southwest Jiaotong University, Chengdu 610031, China School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD 4000, Australia Institute of Computer Science, Polish Academy of Sciences, Warsaw 01-248, Poland School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China College of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China School of Computer Science, National University of Defense Technology, Changsha 410073, China Department of Computing, Macquarie University, Sydney NSW 2109, Australia Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Macau 519020, China |
Author_xml | – sequence: 1 givenname: Hong surname: Lai fullname: Lai, Hong email: hlai@swu.edu.cn organization: College of Computer and Information Science, Southwest University – sequence: 2 givenname: Mingxing surname: Luo fullname: Luo, Mingxing organization: Information Security and National Computing Grid Laboratory, School of Information Science and Technology, Southwest Jiaotong University – sequence: 3 givenname: Josef surname: Pieprzyk fullname: Pieprzyk, Josef organization: School of Electrical Engineering and Computer Science, Queensland University of Technology, Institute of Computer Science, Polish Academy of Sciences – sequence: 4 givenname: Zhiguo surname: Qu fullname: Qu, Zhiguo organization: School of Computer and Software, Nanjing University of Information Science and Technology – sequence: 5 givenname: Shudong surname: Li fullname: Li, Shudong organization: College of Mathematics and Information Science, Shandong Technology and Business University, School of Computer Science, National University of Defense Technology – sequence: 6 givenname: Mehmet A. surname: Orgun fullname: Orgun, Mehmet A. email: mehmet.orgun@mq.edu.au organization: Department of Computing, Macquarie University, Faculty of Information Technology, Macau University of Science and Technology |
BookMark | eNp9kL1uwyAUhVGVSk3TPEA3q51pucYBM0ZR_6RIXVqpG8IYO0QOTgAPffsSOWqlDrkDl-F8nMO5RhPXO4PQLZAHIIQ_BoCC5pgAw4IwwMUFmkLJBAYBYpLujBeYU_p1heYhbEkaSknOyymiS5eZprHaGhezw6BcHHZZ1VlXZ7VtbVRdFmzrVBy8yYLemJ25QZeN6oKZn_YMfT4_faxe8fr95W21XGNNSxax0FDXi1Io0Aqqqi55ISrFuDAL3VBeFcCE0aB0Y1gDwhC-0CUnhHEltAGgM3Q_vrv3_WEwIcptP3iXLGUu0v_SQfOk4qNK-z4EbxqpU-poexe9sp0EIo8lybEkmUqSx5JkkUj4R-693Sn_fZbJRyYkrWuN_8t0Dro7GW161x4S9-vEeM5ZWXBCfwALy4W3 |
CitedBy_id | crossref_primary_10_1007_s11432_017_9291_6 crossref_primary_10_3390_e21040336 crossref_primary_10_1007_s12190_019_01240_7 crossref_primary_10_1016_j_dsp_2024_104638 crossref_primary_10_1007_s11128_018_2169_2 crossref_primary_10_1088_1402_4896_aad67f crossref_primary_10_1016_j_ijleo_2018_03_048 crossref_primary_10_1007_s10773_022_04998_y crossref_primary_10_1016_j_optcom_2025_131629 crossref_primary_10_1142_S0219749924500114 crossref_primary_10_1142_S0217984924503871 crossref_primary_10_1007_s11128_021_03162_5 crossref_primary_10_1142_S0217732323501754 |
Cites_doi | 10.1007/s11432-010-4012-y 10.1103/PhysRevA.93.032325 10.1016/0025-5564(79)90080-4 10.1103/PhysRevA.93.032316 10.1007/s11128-014-0760-8 10.1103/PhysRevA.93.012329 10.1007/s11128-012-0398-3 10.1103/PhysRevLett.67.661 10.1103/PhysRevLett.113.040502 10.1145/357830.357847 10.3390/e17085635 10.1145/359340.359342 10.1007/s10773-014-2107-8 10.1038/srep09231 10.1016/j.optcom.2008.10.025 10.1007/s12095-015-0178-x 10.1137/S0036144598347011 10.1103/PhysRevA.91.042304 10.1016/j.chaos.2005.12.054 10.1103/PhysRevA.91.043806 10.1088/1674-1056/19/6/060307 10.1103/PhysRevLett.112.040502 10.1103/PhysRevA.87.032312 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany 2017 Science China Press and Springer-Verlag GmbH Germany 2017. |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany 2017 – notice: Science China Press and Springer-Verlag GmbH Germany 2017. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11432-016-9061-4 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
DocumentTitleAlternate | An efficient quantum blind digital signature scheme |
EISSN | 1869-1919 |
EndPage | 235 |
ExternalDocumentID | 10_1007_s11432_016_9061_4 672768470 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BENPR BGLVJ BGNMA CAG CCEZO CCPQU CHBEP COF CQIGP CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K7- KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9O PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7S Z7X Z7Z Z83 Z88 ZMTXR ~A9 ~WA -SI -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEI CJPJV H13 Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c386t-9c1dd589a1ca1bbd8749ba679e5cf37b4169ec1acfe6f19e075c870067a9ce113 |
IEDL.DBID | BENPR |
ISSN | 1674-733X |
IngestDate | Fri Jul 25 23:29:08 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Tue Jul 01 02:26:25 EDT 2025 Fri Feb 21 02:33:12 EST 2025 Wed Feb 14 10:00:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | blind quantum digital signature signing-verifying modality Fibonacci Lucas- and Fibonacci-Lucas matrix coding digital messages |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-9c1dd589a1ca1bbd8749ba679e5cf37b4169ec1acfe6f19e075c870067a9ce113 |
Notes | 11-5847/TP blind quantum digital signature, Fibonacci-, Lucas- and Fibonacci-Lucas matrix coding, digitalmessages, signing=verifying modality Recently, many quantum digital signature(QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages,and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose a scheme based on an application of Fibonacci-, Lucas-and Fibonacci-Lucas matrix coding to quantum digital signatures based on a recently proposed quantum key distribution(QKD) system. Our scheme can sign a large number of digital messages every time. Moreover, these special matrices provide a method to verify the integration of information received by the participants, to authenticate the identity of the participants, and to improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing schemes. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918629132 |
PQPubID | 2043626 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2918629132 crossref_citationtrail_10_1007_s11432_016_9061_4 crossref_primary_10_1007_s11432_016_9061_4 springer_journals_10_1007_s11432_016_9061_4 chongqing_primary_672768470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Information sciences |
PublicationTitleAbbrev | Sci. China Inf. Sci |
PublicationTitleAlternate | SCIENCE CHINA Information Sciences |
PublicationYear | 2017 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | DonaldsonR JCollinsR JKleczkowskaKExperimental demonstration of kilometer-range quantum digital signaturesPhys Rev A20169301232910.1103/PhysRevA.93.012329 ReyASanchezGOn the security of the golden cryptographyInt J Netw Secur20087448450 ShorP WPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev199941303332168454610.1137/S00361445983470111005.11507 StakhovA PFibonacci matrices, a generalization of the cassini formula and a new coding theoryChaos Soliton Fract2006305666223089110.1016/j.chaos.2005.12.0541149.94338 WilliamSCryptography and Network Security: Principles and Practice20032New JerseyPrentice Hall6768 RivestR LShamirAAdlemanLA method for obtaining digital signatures and public-key cryptosystemsCommun ACM19782112012670010310.1145/359340.3593420368.94005 BennettC HBrassardGQuantum cryptography: public-key distribution and coin tossing19841751791306.81030 ZengG HKeitelC HArbitrated quantum-signature schemePhys Rev A20026516 WenX JChenY ZFangJ BAn inter-bank E-payment protocol based on quantum proxy blind signatureQuant Inf Process201312549558313950610.1007/s11128-012-0398-31277.94044 GottesmanDChuangIQuantum digital signatures2001 WenX JNiuX MJiL PA weak blind signature scheme based on quantum cryptographyOptics Commun200928266666910.1016/j.optcom.2008.10.025 VogelHA better way to construct the sunflower headMath Biosci19794417918910.1016/0025-5564(79)90080-4 LiF GShiraseMTakagiTCryptanalysis of efficient proxy signature schemes for mobile communicationSci China Inf Sci20105320162021268490910.1007/s11432-010-4012-y CramerRShoupVSignature schemes based on the strong RSA assumptionACM Trans Inf Syst Secur2000316118510.1145/357830.357847 VajdaSFibonacci and Lucas Numbers, and the Golden Section: Theory and Applications1989New YorkEllis Horwood Ltd.-Halsted Press0695.10001 MishraMMishraPAdhikaryM CImage encryption using Fibonacci-Lucas transformationInt J Cryptogr Inf Secur20122131141 ArrazolaJ MWalldenPAnderssonEMultiparty quantum signature schemesQuantum Inf Comput2016604353496654 ChaumDHeystE VGroup signatures1991BerlinSpringer2572650791.68044 CollinsR JDonaldsonR JDunjkoVRealization of quantum digital signatures without the requirement of quantum memoryPhys Rev Lett201411304050210.1103/PhysRevLett.113.040502 SimonD SLawrenceNTrevinoJHigh-capacity quantum Fibonacci coding for key distributionPhys Rev A20138703231210.1103/PhysRevA.87.032312 WangT YCaiX QZhangR LSecurity of a sessional blind signature based on quantum cryptographQuant Inf Process20141316771685322853210.1007/s11128-014-0760-81305.81071 CaiX QZhengY HZhangR LCryptanalysis of a batch proxy quantum blind signature schemeInt J Theor Phys2014533109311510.1007/s10773-014-2107-81297.81058 DunjkoVWalldenPAnderssonEQuantum digital signatures without quantum memoryPhys Rev Lett201411204050210.1103/PhysRevLett.112.040502 ShiJ JShiR HGuoYBatch proxy quantum blind signature schemeSci China Inf Sci2013560521153067634 SimonD SFitzpatrickC ASergienkoA VDiscrimination and synthesis of recursive quantum states in highdimensional Hilbert spacesPhys Rev A20159104380610.1103/PhysRevA.91.043806 EkertA KQuantum cryptography based on Bell’s theoremPhys Rev Lett199167661663111881010.1103/PhysRevLett.67.6610990.94509 WalldenPDunjkoVKentAQuantum digital signatures with quantum-key-distribution componentsPhys Rev A20159104230410.1103/PhysRevA.91.042304 ElGamalTA public key cryptosystem and a signature scheme based on discrete logarithms1984BerlinSpringer10181359.94590 EsmaeiliMMoosaviMGulliverT AA new class of Fibonacci sequence based error correcting codesCryptogr Commun20179379396360679910.1007/s12095-015-0178-x06682784 WangT YWenQ YFair quantum blind signaturesChin Phys B20101906030710.1088/1674-1056/19/6/060307 AmiriRWalldenPKentASecure quantum signatures using insecure quantum channelsPhys Rev A20169303232510.1103/PhysRevA.93.032325 YinH LFuYChenZ BPractical quantum digital signaturePhys Rev A20169303231610.1103/PhysRevA.93.032316 WangT YCaiX QRenY LSecurity of quantum digital signatures for classical messagesSci Rep20145923110.1038/srep09231 AmiriRAnderssonEUnconditionally secure quantum signaturesEntropy20151756355659339401910.3390/e170856351338.81158 T Y Wang (9061_CR15) 2014; 5 R L Rivest (9061_CR2) 1978; 21 T ElGamal (9061_CR4) 1984 X Q Cai (9061_CR34) 2014; 53 V Dunjko (9061_CR12) 2014; 112 T Y Wang (9061_CR32) 2010; 19 G H Zeng (9061_CR9) 2002; 65 A K Ekert (9061_CR29) 1991; 67 R Cramer (9061_CR3) 2000; 3 J M Arrazola (9061_CR14) 2016; 6 M Mishra (9061_CR25) 2012; 2 R Amiri (9061_CR18) 2016; 93 S William (9061_CR1) 2003 R Amiri (9061_CR6) 2015; 17 F G Li (9061_CR17) 2010; 53 D Gottesman (9061_CR7) 2001 J J Shi (9061_CR11) 2013; 56 X J Wen (9061_CR16) 2009; 282 R J Donaldson (9061_CR20) 2016; 93 D S Simon (9061_CR21) 2013; 87 A P Stakhov (9061_CR26) 2006; 30 P W Shor (9061_CR5) 1999; 41 A Rey (9061_CR27) 2008; 7 H L Yin (9061_CR19) 2016; 93 H Vogel (9061_CR30) 1979; 44 T Y Wang (9061_CR31) 2014; 13 P Wallden (9061_CR10) 2015; 91 X J Wen (9061_CR33) 2013; 12 D Chaum (9061_CR8) 1991 R J Collins (9061_CR13) 2014; 113 M Esmaeili (9061_CR23) 2017; 9 S Vajda (9061_CR24) 1989 D S Simon (9061_CR22) 2015; 91 C H Bennett (9061_CR28) 1984 |
References_xml | – reference: WangT YCaiX QZhangR LSecurity of a sessional blind signature based on quantum cryptographQuant Inf Process20141316771685322853210.1007/s11128-014-0760-81305.81071 – reference: WilliamSCryptography and Network Security: Principles and Practice20032New JerseyPrentice Hall6768 – reference: BennettC HBrassardGQuantum cryptography: public-key distribution and coin tossing19841751791306.81030 – reference: ZengG HKeitelC HArbitrated quantum-signature schemePhys Rev A20026516 – reference: ReyASanchezGOn the security of the golden cryptographyInt J Netw Secur20087448450 – reference: WangT YWenQ YFair quantum blind signaturesChin Phys B20101906030710.1088/1674-1056/19/6/060307 – reference: StakhovA PFibonacci matrices, a generalization of the cassini formula and a new coding theoryChaos Soliton Fract2006305666223089110.1016/j.chaos.2005.12.0541149.94338 – reference: ArrazolaJ MWalldenPAnderssonEMultiparty quantum signature schemesQuantum Inf Comput2016604353496654 – reference: ChaumDHeystE VGroup signatures1991BerlinSpringer2572650791.68044 – reference: WenX JChenY ZFangJ BAn inter-bank E-payment protocol based on quantum proxy blind signatureQuant Inf Process201312549558313950610.1007/s11128-012-0398-31277.94044 – reference: WalldenPDunjkoVKentAQuantum digital signatures with quantum-key-distribution componentsPhys Rev A20159104230410.1103/PhysRevA.91.042304 – reference: VogelHA better way to construct the sunflower headMath Biosci19794417918910.1016/0025-5564(79)90080-4 – reference: ShorP WPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev199941303332168454610.1137/S00361445983470111005.11507 – reference: DunjkoVWalldenPAnderssonEQuantum digital signatures without quantum memoryPhys Rev Lett201411204050210.1103/PhysRevLett.112.040502 – reference: DonaldsonR JCollinsR JKleczkowskaKExperimental demonstration of kilometer-range quantum digital signaturesPhys Rev A20169301232910.1103/PhysRevA.93.012329 – reference: RivestR LShamirAAdlemanLA method for obtaining digital signatures and public-key cryptosystemsCommun ACM19782112012670010310.1145/359340.3593420368.94005 – reference: LiF GShiraseMTakagiTCryptanalysis of efficient proxy signature schemes for mobile communicationSci China Inf Sci20105320162021268490910.1007/s11432-010-4012-y – reference: MishraMMishraPAdhikaryM CImage encryption using Fibonacci-Lucas transformationInt J Cryptogr Inf Secur20122131141 – reference: ShiJ JShiR HGuoYBatch proxy quantum blind signature schemeSci China Inf Sci2013560521153067634 – reference: GottesmanDChuangIQuantum digital signatures2001 – reference: VajdaSFibonacci and Lucas Numbers, and the Golden Section: Theory and Applications1989New YorkEllis Horwood Ltd.-Halsted Press0695.10001 – reference: YinH LFuYChenZ BPractical quantum digital signaturePhys Rev A20169303231610.1103/PhysRevA.93.032316 – reference: CaiX QZhengY HZhangR LCryptanalysis of a batch proxy quantum blind signature schemeInt J Theor Phys2014533109311510.1007/s10773-014-2107-81297.81058 – reference: AmiriRAnderssonEUnconditionally secure quantum signaturesEntropy20151756355659339401910.3390/e170856351338.81158 – reference: EkertA KQuantum cryptography based on Bell’s theoremPhys Rev Lett199167661663111881010.1103/PhysRevLett.67.6610990.94509 – reference: WenX JNiuX MJiL PA weak blind signature scheme based on quantum cryptographyOptics Commun200928266666910.1016/j.optcom.2008.10.025 – reference: SimonD SFitzpatrickC ASergienkoA VDiscrimination and synthesis of recursive quantum states in highdimensional Hilbert spacesPhys Rev A20159104380610.1103/PhysRevA.91.043806 – reference: CramerRShoupVSignature schemes based on the strong RSA assumptionACM Trans Inf Syst Secur2000316118510.1145/357830.357847 – reference: EsmaeiliMMoosaviMGulliverT AA new class of Fibonacci sequence based error correcting codesCryptogr Commun20179379396360679910.1007/s12095-015-0178-x06682784 – reference: ElGamalTA public key cryptosystem and a signature scheme based on discrete logarithms1984BerlinSpringer10181359.94590 – reference: WangT YCaiX QRenY LSecurity of quantum digital signatures for classical messagesSci Rep20145923110.1038/srep09231 – reference: AmiriRWalldenPKentASecure quantum signatures using insecure quantum channelsPhys Rev A20169303232510.1103/PhysRevA.93.032325 – reference: SimonD SLawrenceNTrevinoJHigh-capacity quantum Fibonacci coding for key distributionPhys Rev A20138703231210.1103/PhysRevA.87.032312 – reference: CollinsR JDonaldsonR JDunjkoVRealization of quantum digital signatures without the requirement of quantum memoryPhys Rev Lett201411304050210.1103/PhysRevLett.113.040502 – start-page: 257 volume-title: Group signatures year: 1991 ident: 9061_CR8 – volume: 53 start-page: 2016 year: 2010 ident: 9061_CR17 publication-title: Sci China Inf Sci doi: 10.1007/s11432-010-4012-y – volume: 93 start-page: 032325 year: 2016 ident: 9061_CR18 publication-title: Phys Rev A doi: 10.1103/PhysRevA.93.032325 – volume-title: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications year: 1989 ident: 9061_CR24 – volume: 44 start-page: 179 year: 1979 ident: 9061_CR30 publication-title: Math Biosci doi: 10.1016/0025-5564(79)90080-4 – volume: 93 start-page: 032316 year: 2016 ident: 9061_CR19 publication-title: Phys Rev A doi: 10.1103/PhysRevA.93.032316 – volume: 13 start-page: 1677 year: 2014 ident: 9061_CR31 publication-title: Quant Inf Process doi: 10.1007/s11128-014-0760-8 – volume: 93 start-page: 012329 year: 2016 ident: 9061_CR20 publication-title: Phys Rev A doi: 10.1103/PhysRevA.93.012329 – volume: 65 start-page: 1 year: 2002 ident: 9061_CR9 publication-title: Phys Rev A – volume: 12 start-page: 549 year: 2013 ident: 9061_CR33 publication-title: Quant Inf Process doi: 10.1007/s11128-012-0398-3 – volume-title: Quantum digital signatures year: 2001 ident: 9061_CR7 – volume: 67 start-page: 661 year: 1991 ident: 9061_CR29 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.67.661 – volume: 113 start-page: 040502 year: 2014 ident: 9061_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.113.040502 – volume: 3 start-page: 161 year: 2000 ident: 9061_CR3 publication-title: ACM Trans Inf Syst Secur doi: 10.1145/357830.357847 – volume: 17 start-page: 5635 year: 2015 ident: 9061_CR6 publication-title: Entropy doi: 10.3390/e17085635 – volume: 21 start-page: 120 year: 1978 ident: 9061_CR2 publication-title: Commun ACM doi: 10.1145/359340.359342 – volume: 53 start-page: 3109 year: 2014 ident: 9061_CR34 publication-title: Int J Theor Phys doi: 10.1007/s10773-014-2107-8 – start-page: 67 volume-title: Cryptography and Network Security: Principles and Practice year: 2003 ident: 9061_CR1 – volume: 5 start-page: 9231 year: 2014 ident: 9061_CR15 publication-title: Sci Rep doi: 10.1038/srep09231 – volume: 282 start-page: 666 year: 2009 ident: 9061_CR16 publication-title: Optics Commun doi: 10.1016/j.optcom.2008.10.025 – volume: 9 start-page: 379 year: 2017 ident: 9061_CR23 publication-title: Cryptogr Commun doi: 10.1007/s12095-015-0178-x – start-page: 10 volume-title: A public key cryptosystem and a signature scheme based on discrete logarithms year: 1984 ident: 9061_CR4 – volume: 41 start-page: 303 year: 1999 ident: 9061_CR5 publication-title: SIAM Rev doi: 10.1137/S0036144598347011 – volume: 7 start-page: 448450 year: 2008 ident: 9061_CR27 publication-title: Int J Netw Secur – volume: 91 start-page: 042304 year: 2015 ident: 9061_CR10 publication-title: Phys Rev A doi: 10.1103/PhysRevA.91.042304 – volume: 30 start-page: 56 year: 2006 ident: 9061_CR26 publication-title: Chaos Soliton Fract doi: 10.1016/j.chaos.2005.12.054 – volume: 56 start-page: 052115 year: 2013 ident: 9061_CR11 publication-title: Sci China Inf Sci – start-page: 175 volume-title: Quantum cryptography: public-key distribution and coin tossing year: 1984 ident: 9061_CR28 – volume: 91 start-page: 043806 year: 2015 ident: 9061_CR22 publication-title: Phys Rev A doi: 10.1103/PhysRevA.91.043806 – volume: 19 start-page: 060307 year: 2010 ident: 9061_CR32 publication-title: Chin Phys B doi: 10.1088/1674-1056/19/6/060307 – volume: 2 start-page: 131 year: 2012 ident: 9061_CR25 publication-title: Int J Cryptogr Inf Secur – volume: 112 start-page: 040502 year: 2014 ident: 9061_CR12 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.112.040502 – volume: 87 start-page: 032312 year: 2013 ident: 9061_CR21 publication-title: Phys Rev A doi: 10.1103/PhysRevA.87.032312 – volume: 6 start-page: 0435 year: 2016 ident: 9061_CR14 publication-title: Quantum Inf Comput |
SSID | ssj0000330278 |
Score | 2.213524 |
Snippet | Recently, many quantum digital signature(QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes... Recently, many quantum digital signature (QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 222 |
SubjectTerms | Algorithms Computer Science Digital signatures Efficiency Fibonacci Fibonacci numbers Information science Information Systems and Communication Service Lucas Messages Quantum cryptography Research Paper 多量子 数字签名方案 斐波那契 矩阵编码 签名验证 量子密钥分发 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BWWDgo4AoLcgDEyhSHMdOPFaIqkKCiUrdrMR2ChJNKW3_P-c0bgABEkOmOBflHOfd5Z7fAVxJbrmRoQ4wOMAERVoTZMwR13iR5sxm4VrA9OFRDEfx_ZiP633cC8929yXJ6kvdbHZDaHc0AhFIBKEg3oYdjqm743GNov7mx0rIXCmu2gInHNeQsbGvZv5kxWkqPM_KyRzv-BWbmoDzW420gp7BIezXMSPpryf5CLZs2YYD34-B1MuzDXufxAWPgfVLYiuBCMQVMl-hC1dTkuOjG2JeJq5ZCHHsjUrZk2CSa6f2BEaDu6fbYVC3SAg0S8UykJoaw1OZUZ3RPDdpEss8E4m0XBcsyTHcklbTTBdWFFRaDBA0rlCEqExqSyk7hVY5K-0ZEI5GBItNHDM8JM94kYRGG1zztIiKuAPdjaPU21oKQ7k6rkCACzsQetcpXauLuyYXr6rRRXaeV45R5jyv0OD15hJv74_BPT8fql5lCxVJigmZxIS6Azd-jprTvxo7_9foLuxGDssr1l8PWsv3lb3ASGSZX1Zv3gfsbdFv priority: 102 providerName: Springer Nature |
Title | An efficient quantum blind digital signature scheme |
URI | http://lib.cqvip.com/qk/84009A/201708/672768470.html https://link.springer.com/article/10.1007/s11432-016-9061-4 https://www.proquest.com/docview/2918629132 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4IXPTgAzUiSHrwpNm4pdtlezJoeEQjMUYSPG122y6ayAIC_9_p0gU1kcNe9jGH6Xa-r53pNwCXgmuuhCsdJAe4QBFaOREzhWs8CWKmI3clYPrU93sD72HIh3bDbW7LKvOYmAVqNZFmj_ymISiSb4GLp9vpzDFdo0x21bbQKEAJQ3AQFKF01-4_v6x3WVxm8nLZeTjfFB4yNsxTm9n5OWQLpjLBdwTimuMZgYX3STqaIWz8BqoN-_yTMM1wqHMI-5ZAktZqxI9gR6dlOMibMxA7V8uw90Np8BhYKyU6U4tAkCGzJfpzOSYxckxF1MfIdA4hppQjk_kkuOLVY30Cg0779b7n2H4JjmSBv3CEpErxQERURjSOVdD0RBz5TaG5TFgzRu4ltKSRTLSfUKGRLUicrohXkZCaUnYKxXSS6jMgHI34zFOex_ASPOJJ01VSYQCgSSPxKlBdOyqcrnQxQpPU9RHt3Aq4uetCaaXGTceLz3Ajkmw8H5ryMuP5EA1erT_J7W15uZaPR2in3Dzc_CAVuM7HaPP4X2Pn241VYbdhkDyr-atBcfG11BfIQxZxHQpBp1uHUqv79tiu218P7w4arW9C7tm_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9swDCW67ND1sG7piqbtNh3aywZjlmU50WEoim1Z-pVTAuSm2pKcFmidpkkw7E_tN450rKQdsNxy8Mk2DxRNPprkI8CRkk5aFZoAwQEmKMrZIBXUuCbzViZcGs4JTK-6Sacfnw_kYAP--FkYaqv0PrF01HZk6B_5l0hxBN8Kk6eTh3FAW6OouupXaMzN4sL9_oUp2-Tr2Xc83-Moav_ofesE1VaBwIhWMg2U4dbKlkq5SXmW2VYzVlmaNJWTJhfNDBGKcoanJndJzpXDmGrQqNGrp8o4zgXKfQEvY4GRnCbT2z8X_3RCQVXAcvouoTZHIQa-kFpO6yE2oT6IJFAYRYOY6BxuRsVwjEHqeVhcYt1_yrNl1Gu_gdcVXGWnc_t6CxuuqMO2XwXBKs9Qh60nvIY7IE4L5kpuCgxpbDzD05vdswwRrWX2dkh7Shg1jpSkogzza3fv3kF_LXrchVoxKtweMIlCEhHbOBZ4KZnKvBlaY9Hd8DzK4wYcLBSlH-YsHJpKyAnG1rABoVedNhWxOe3XuNNLSmbSvKZmNtK8RoGfFq94eSsePvTnoasPfKKX5tiAz_6Mlrf_K2x_tbCPsNnpXV3qy7PuxQG8ighDlN2Gh1CbPs7ce0RA0-xDaXYMrtdt538BDiUS-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGSAgOvBFjA3KAC6ha0zTdcuAwAdN4TRyYtFtok3QgQdlgE-JX8RdxunYDBEgcOPTU1GptJ7Zr-zPAruCGa-EqB50DDFCE0U7IbOEaj2sRM6E7AjC9bAXNtn_W4Z0CvOW9MGm1e56SHPU0WJSmZFDp6bgyaXxDM29LCgJHoEFy_Kyq8ty8vmDM9nx4eowC3vO8xsn1UdPJxgo4itWCgSMU1ZrXREhVSKNI16q-iMKgKgxXMatG6KIIo2ioYhPEVBg0qgq1Go_1UChDKUO6UzDj2-Zj3EBtrz7-qeMymwZM2-8CW-fIWCfPpH731hbP4fYx6fbxaz_bxYmz-yU_m5q9xhIsZP4qqY8UbBkKJlmBxXwWBMmOhhWY_wBsuAqsnhCTglMgT0l_iOIbPpAI2a6JvuvaQSXEVo6kqKIEA2zzYNag_S98XIfp5DExG0A4EgmYr32f4SV4yOOqq5XG84bGXuwXoTRmlOyNYDikzSEHaFzdIrg566TKkM3tgI17OcFktpyXtprNcl4iwf3xIzm9XxaXc3nIbIc_S09QDAYFKkERDnIZTW7_SGzzT6t3YPbquCEvTlvnJZjzrEuRFh-WYXrwNDRb6BANou1UCQnc_LfWvwO_lhPE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+quantum+blind+digital+signature+scheme&rft.jtitle=Science+China.+Information+sciences&rft.au=Lai%2C+Hong&rft.au=Luo%2C+Mingxing&rft.au=Pieprzyk%2C+Josef&rft.au=Qu%2C+Zhiguo&rft.date=2017-08-01&rft.issn=1674-733X&rft.eissn=1869-1919&rft.volume=60&rft.issue=8&rft_id=info:doi/10.1007%2Fs11432-016-9061-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11432_016_9061_4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009A%2F84009A.jpg |