Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases

Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral system...

Full description

Saved in:
Bibliographic Details
Published inAnnals of physics Vol. 340; no. 1; pp. 37 - 59
Main Authors Escobar-Ruiz, M.A., Turbiner, A.V.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2014
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated. •Approximate solution for the low-lying eigenstates for two Coulomb charges given.•Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered.•A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u.
AbstractList Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field BB perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot).
Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated. -- Highlights: •Approximate solution for the low-lying eigenstates for two Coulomb charges given. •Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered. •A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u.
Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated. •Approximate solution for the low-lying eigenstates for two Coulomb charges given.•Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered.•A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u.
Author Turbiner, A.V.
Escobar-Ruiz, M.A.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Escobar-Ruiz
  fullname: Escobar-Ruiz, M.A.
  email: mauricio.escobar@nucleares.unam.mx
– sequence: 2
  givenname: A.V.
  surname: Turbiner
  fullname: Turbiner, A.V.
  email: turbiner@nucleares.unam.mx
BackLink https://www.osti.gov/biblio/22224278$$D View this record in Osti.gov
BookMark eNp9kc1q3TAQhUVJoTdpH6A7QTfd2BnZknVFVyX0JxAohRS6E7I8TnSxpRtJbsguD9K-XJ6kMjek0EW0ERp9Z5g555gc-eCRkLcMagasO93VJuzrBlhb3jUweEE2DFRXQSt-HpENALQVV6x7RY5T2gEwxsV2Q_zlbaD22sQrTDR4up-MR-o8NXQ2Vx6zs3R0OA30vKYP97-_Lya5Cm8WMz3c_3lSGj9Qj0uOZqLlz-dlpukuZZypyTRiytSahOk1eTmaKeGbx_uE_Pj86fLsa3Xx7cv52ceLyrbbLldyFMxyxQfDGq62SjDJOQjb92K0zTDAwHre94b3grdjr_rOSCsKKAGNHbftCXl36BtSdjpZl9Fe2-A92qybcngjV-r9gdrHcLOUIfXsksVp9SAsSTPRglJSQPOv4RO6C0v0ZQfNuCzmCpCqUOxA2RhSijjqfXSziXeagV5z0jtdctJrTmup5FQ08j9NmdZkF3xx003PKj8clFic_OUwrouitzi4uO45BPeM-i_WOK_f
CODEN APNYA6
CitedBy_id crossref_primary_10_1016_j_aop_2018_12_007
crossref_primary_10_1016_j_aop_2014_07_010
crossref_primary_10_1142_S0217979215502045
crossref_primary_10_1016_j_physleta_2017_11_001
crossref_primary_10_1016_j_physd_2020_132349
crossref_primary_10_1016_j_physleta_2016_03_038
crossref_primary_10_1088_0031_8949_90_7_074014
crossref_primary_10_1140_epjp_i2018_12126_7
crossref_primary_10_1016_j_aop_2014_09_025
crossref_primary_10_1016_j_physe_2017_06_010
crossref_primary_10_1134_S106377611707007X
Cites_doi 10.1103/PhysRevB.72.165350
10.1103/PhysRev.123.1242
10.1142/S021830130600482X
10.1088/0305-4470/36/29/304
10.1016/0375-9601(92)91056-W
10.1103/PhysRevLett.65.108
10.1088/1751-8113/46/29/295204
10.1103/PhysRevB.65.235304
10.1007/s11005-005-0012-z
10.1103/PhysRevB.27.3383
10.1063/1.4792478
10.1007/BF01466727
10.1016/S0921-4526(98)00461-X
10.1016/0009-2614(93)87188-9
10.1103/PhysRevB.55.13707
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7U5
8FD
L7M
OTOTI
DOI 10.1016/j.aop.2013.10.010
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1096-035X
EndPage 59
ExternalDocumentID 22224278
3162676921
10_1016_j_aop_2013_10_010
S0003491613002455
Genre News
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFDAS
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LZ4
M37
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
TWZ
UNMZH
UPT
UQL
VH1
VQA
WH7
WUQ
XOL
XPP
XSW
YYP
ZCG
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7U5
8FD
EFKBS
L7M
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
PQEST
ID FETCH-LOGICAL-c386t-7f51c494da1249895174405cbb5fc2dd0d1b4bba4b543fb9b6a7c598970eacf83
IEDL.DBID .~1
ISSN 0003-4916
IngestDate Thu May 18 22:30:46 EDT 2023
Fri Jul 11 13:24:51 EDT 2025
Fri Jul 25 07:30:02 EDT 2025
Tue Jul 01 00:57:51 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Fri Feb 23 02:23:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Two-body planar Coulomb system
Magnetic field
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-7f51c494da1249895174405cbb5fc2dd0d1b4bba4b543fb9b6a7c598970eacf83
Notes SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1470035079
PQPubID 43554
PageCount 23
ParticipantIDs osti_scitechconnect_22224278
proquest_miscellaneous_1530997502
proquest_journals_1470035079
crossref_primary_10_1016_j_aop_2013_10_010
crossref_citationtrail_10_1016_j_aop_2013_10_010
elsevier_sciencedirect_doi_10_1016_j_aop_2013_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Annals of physics
PublicationYear 2014
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Turbiner, Escobar-Ruiz (br000070) 2013; 46
Taut (br000080) 1994; A27
Maksym, Chakraborty (br000025) 1990; 65
Robnik, Romanovski (br000040) 2003; 36
Escobar-Ruiz, Turbiner (br000075) 2013; 54
Laughlin (br000005) 1983; 27
Turbiner (br000065) 1994; 50
Turbiner (br000110) 1988; 118
Turbiner (br000115) 2013; A46
Kohn (br000100) 1961; 123
Burkova, Dzyaloshinskii, Drukarev, Monozon (br000060) 1976; 44
Turbiner (br000105) 1988; 94
Dzyaloshinskii (br000015) 1992; 165
Taut (br000085) 1999; A32
Turbiner (br000095) 2005; 74
Kandemir (br000035) 2005; 72
Schmelcher, Cederbaum (br000020) 1993; 208
Dineykhan, Nazmitdinov (br000045) 1997; 55
Harju, Sverdlov, Barbiellini, Nieminen (br000030) 1998; 225
Lozovik, Ovchinnikov, Volkov, Butov, Chemla (br000055) 2002; 65
Turbiner (br000090) 1979; 30
Soylu, Bayrak, Boztosun (br000050) 2006; 15
Gorkov, Dzyaloshinskii (br000010) 1967; 53
M.A. Escobar-Ruiz, A.V. Turbiner, Two charges on plane in a magnetic field II. Moving neutral quantum system, (in preparation).
Dzyaloshinskii (10.1016/j.aop.2013.10.010_br000015) 1992; 165
Maksym (10.1016/j.aop.2013.10.010_br000025) 1990; 65
Kohn (10.1016/j.aop.2013.10.010_br000100) 1961; 123
Gorkov (10.1016/j.aop.2013.10.010_br000010) 1967; 53
Turbiner (10.1016/j.aop.2013.10.010_br000090) 1979; 30
Turbiner (10.1016/j.aop.2013.10.010_br000070) 2013; 46
Turbiner (10.1016/j.aop.2013.10.010_br000105) 1988; 94
Harju (10.1016/j.aop.2013.10.010_br000030) 1998; 225
Turbiner (10.1016/j.aop.2013.10.010_br000115) 2013; A46
10.1016/j.aop.2013.10.010_br000120
Robnik (10.1016/j.aop.2013.10.010_br000040) 2003; 36
Dineykhan (10.1016/j.aop.2013.10.010_br000045) 1997; 55
Taut (10.1016/j.aop.2013.10.010_br000085) 1999; A32
Laughlin (10.1016/j.aop.2013.10.010_br000005) 1983; 27
Kandemir (10.1016/j.aop.2013.10.010_br000035) 2005; 72
Turbiner (10.1016/j.aop.2013.10.010_br000065) 1994; 50
Escobar-Ruiz (10.1016/j.aop.2013.10.010_br000075) 2013; 54
Burkova (10.1016/j.aop.2013.10.010_br000060) 1976; 44
Turbiner (10.1016/j.aop.2013.10.010_br000110) 1988; 118
Schmelcher (10.1016/j.aop.2013.10.010_br000020) 1993; 208
Taut (10.1016/j.aop.2013.10.010_br000080) 1994; A27
Lozovik (10.1016/j.aop.2013.10.010_br000055) 2002; 65
Turbiner (10.1016/j.aop.2013.10.010_br000095) 2005; 74
Soylu (10.1016/j.aop.2013.10.010_br000050) 2006; 15
References_xml – volume: 225
  start-page: 145
  year: 1998
  ident: br000030
  publication-title: Physica B
– volume: 30
  start-page: 379
  year: 1979
  end-page: 383
  ident: br000090
  publication-title: Soviet Phys.–Pisma ZhETF
– volume: 118
  start-page: 467
  year: 1988
  end-page: 474
  ident: br000110
  publication-title: Comm. Math. Phys.
– volume: 36
  start-page: 7923
  year: 2003
  ident: br000040
  publication-title: J. Phys. A: Math. Gen.
– volume: A32
  start-page: 5509
  year: 1999
  end-page: 5515
  ident: br000085
  publication-title: J. Phys.
– volume: 74
  start-page: 169
  year: 2005
  end-page: 180
  ident: br000095
  publication-title: Lett. Math. Phys.
– volume: 65
  start-page: 108
  year: 1990
  ident: br000025
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 235304
  year: 2002
  ident: br000055
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 33
  year: 1988
  end-page: 45
  ident: br000105
  publication-title: Soviet Phys. - ZhETF
– volume: 15
  start-page: 1263
  year: 2006
  ident: br000050
  publication-title: Internat. J. Modern Phys. E
– volume: 53
  start-page: 717
  year: 1967
  end-page: 722
  ident: br000010
  publication-title: ZhETF
– volume: 165
  start-page: 69
  year: 1992
  ident: br000015
  publication-title: Phys. Lett. A
– volume: 50
  start-page: 5335
  year: 1994
  ident: br000065
  publication-title: J. Phys. A
– volume: 27
  start-page: 3383
  year: 1983
  end-page: 3389
  ident: br000005
  publication-title: Phys. Rev.
– volume: A46
  start-page: 025203
  year: 2013
  ident: br000115
  publication-title: J. Phys.
– volume: 44
  start-page: 276
  year: 1976
  ident: br000060
  publication-title: Sov. Phys.—JETP
– volume: A27
  start-page: 1045
  year: 1994
  ident: br000080
  publication-title: J. Phys.
– volume: 208
  start-page: 548
  year: 1993
  ident: br000020
  publication-title: Chem. Phys. Lett.
– volume: 54
  start-page: 022901
  year: 2013
  ident: br000075
  publication-title: J. Math Phys.
– volume: 55
  start-page: 13707
  year: 1997
  ident: br000045
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 295204
  year: 2013
  ident: br000070
  publication-title: J. Phys. A
– volume: 72
  start-page: 165350
  year: 2005
  ident: br000035
  publication-title: Phys. Rev. B
– reference: M.A. Escobar-Ruiz, A.V. Turbiner, Two charges on plane in a magnetic field II. Moving neutral quantum system, (in preparation).
– volume: 123
  start-page: 1242
  year: 1961
  end-page: 1244
  ident: br000100
  publication-title: Phys. Rev.
– volume: 72
  start-page: 165350
  year: 2005
  ident: 10.1016/j.aop.2013.10.010_br000035
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.165350
– volume: 123
  start-page: 1242
  year: 1961
  ident: 10.1016/j.aop.2013.10.010_br000100
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.123.1242
– volume: A27
  start-page: 1045
  year: 1994
  ident: 10.1016/j.aop.2013.10.010_br000080
  publication-title: J. Phys.
– volume: 15
  start-page: 1263
  year: 2006
  ident: 10.1016/j.aop.2013.10.010_br000050
  publication-title: Internat. J. Modern Phys. E
  doi: 10.1142/S021830130600482X
– volume: 44
  start-page: 276
  year: 1976
  ident: 10.1016/j.aop.2013.10.010_br000060
  publication-title: Sov. Phys.—JETP
– volume: 36
  start-page: 7923
  year: 2003
  ident: 10.1016/j.aop.2013.10.010_br000040
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/29/304
– volume: 165
  start-page: 69
  year: 1992
  ident: 10.1016/j.aop.2013.10.010_br000015
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)91056-W
– volume: 65
  start-page: 108
  year: 1990
  ident: 10.1016/j.aop.2013.10.010_br000025
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.108
– volume: 46
  start-page: 295204
  year: 2013
  ident: 10.1016/j.aop.2013.10.010_br000070
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/29/295204
– ident: 10.1016/j.aop.2013.10.010_br000120
– volume: 65
  start-page: 235304
  year: 2002
  ident: 10.1016/j.aop.2013.10.010_br000055
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.235304
– volume: 30
  start-page: 379
  year: 1979
  ident: 10.1016/j.aop.2013.10.010_br000090
  publication-title: Soviet Phys.–Pisma ZhETF
– volume: 94
  start-page: 33
  year: 1988
  ident: 10.1016/j.aop.2013.10.010_br000105
  publication-title: Soviet Phys. - ZhETF
– volume: 74
  start-page: 169
  year: 2005
  ident: 10.1016/j.aop.2013.10.010_br000095
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-005-0012-z
– volume: 27
  start-page: 3383
  year: 1983
  ident: 10.1016/j.aop.2013.10.010_br000005
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.27.3383
– volume: A46
  start-page: 025203
  year: 2013
  ident: 10.1016/j.aop.2013.10.010_br000115
  publication-title: J. Phys.
– volume: 50
  start-page: 5335
  year: 1994
  ident: 10.1016/j.aop.2013.10.010_br000065
  publication-title: J. Phys. A
– volume: 54
  start-page: 022901
  year: 2013
  ident: 10.1016/j.aop.2013.10.010_br000075
  publication-title: J. Math Phys.
  doi: 10.1063/1.4792478
– volume: A32
  start-page: 5509
  year: 1999
  ident: 10.1016/j.aop.2013.10.010_br000085
  publication-title: J. Phys.
– volume: 118
  start-page: 467
  year: 1988
  ident: 10.1016/j.aop.2013.10.010_br000110
  publication-title: Comm. Math. Phys.
  doi: 10.1007/BF01466727
– volume: 225
  start-page: 145
  year: 1998
  ident: 10.1016/j.aop.2013.10.010_br000030
  publication-title: Physica B
  doi: 10.1016/S0921-4526(98)00461-X
– volume: 53
  start-page: 717
  year: 1967
  ident: 10.1016/j.aop.2013.10.010_br000010
  publication-title: ZhETF
– volume: 208
  start-page: 548
  year: 1993
  ident: 10.1016/j.aop.2013.10.010_br000020
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)87188-9
– volume: 55
  start-page: 13707
  year: 1997
  ident: 10.1016/j.aop.2013.10.010_br000045
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.13707
SSID ssj0011458
Score 2.1353493
Snippet Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are...
Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field BB perpendicular to the plane...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms ANGULAR MOMENTUM
APPROXIMATIONS
BOUND STATE
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coulomb friction
EIGENFUNCTIONS
ELECTRONS
EXACT SOLUTIONS
EXCITED STATES
HYDROGEN
Hydrogen atoms
Magnetic field
MAGNETIC FIELDS
MASS
Mathematical analysis
PERTURBATION THEORY
Planes
POLYNOMIALS
QUANTUM DOTS
QUANTUM NUMBERS
Quantum theory
Rest
Two-body planar Coulomb system
VARIATIONAL METHODS
WAVE FUNCTIONS
Title Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases
URI https://dx.doi.org/10.1016/j.aop.2013.10.010
https://www.proquest.com/docview/1470035079
https://www.proquest.com/docview/1530997502
https://www.osti.gov/biblio/22224278
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS-QwEA6yItzLcXp33N7pMsI9HXRtm2SzfRRxWRUFQcG3kqTpsaLpYne5N9kf4v05f8nNpO2CKD7cY5sMlEkyM-l88w1jPwMli4uzyFglIpGWSaQNpzuPTrmyKlOOMrrnF6PptTi9kTcb7KirhSFYZWv7G5serHX75qDV5sF8NqMaX-JWSSgApvwhFZoLoWiXDx_XMA8M9-W465pHs7vMZsB46YooKxM-JIAXFdG-7Zt6FR63V8Y6eKDJJ_axDR3hsPm6bbbh_A7bChBOW39m_upPBYH4yNVQeZgTjBVmHjTc69-eihUh4NXgZAjPq6fLpa5nkaOqyufV37Wk9gV4t6QfIIBj6JLuoaF7Br0A6uQBFj1f_YVdT46vjqZR200hsnw8WkSqlIkVmSg09ZseZ0RRjdGaNUaWNi2KuEiMMEYLIwUvTWZGWlmJE1WMxrkc86-s5yvvvjFQzpSGY6CZOrxNCmc0T3gpR7bIjMsK1Wdxp8fctlTj1PHiLu8wZbc5qj4n1dMrVH2f_VqLzBuejfcmi25x8hebJUc_8J7YLi0kiRBBriUkEcpghJRSwxEc7hY4bw9yjTcjFZKvKuuz_fUwHkHKq-AyVkucIznVH8s4_f5_H_aDfcAn0fzZ2WW9xcPS7WGsszCDsJkHbPPw5Gx68Q96xf2_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahwxDBbphtJeSn_ppmmqQk-FSWbG9nrnGELDbpMsFDaQ22B7PGVD41k6u-SaB2lfLk9SaX4WSkIOuVoWGNmWZEv6BPClgWTxcRZZp2Uk0zKJjBX85jGp0E5n2nNE92w2mpzL7xfqYguO-loYTqvsdH-r0xtt3Y0cdNI8WC4WXOPL2CoJO8AcP1RPYJvRqdQAtg-nJ5PZJpiQSDXuG-cxQx_cbNK8TMWolYnY5xwvrqO93zwNKrpxd_R1Y4SOX8KLznvEw3aBr2DLh9fwtMnidPUbCPPrChvsI19jFXDJmay4CGjwyvwMXK-ITcoaTvfx9ubPj7WpF5Hnwsrbm78bThMKDH7NfyBINLJKV9giPqNZITfzQEfGr34L58ff5keTqGuoEDkxHq0iXarEyUwWhltOjzNGqSaHzVmrSpcWRVwkVlprpFVSlDazI6Odook6Jv1cjsU7GIQq-PeA2tvSCvI1U08PSumtEYko1cgVmfVZoYcQ93LMXYc2zk0vfuV9WtllTqLPWfQ8RKIfwtcNy7KF2nhosuw3J__vvORkCh5i2-WNZBbGyHWcTEQ85CSl3HOEyP0G591drulxpJv4q86G8HlDplvIoRXaxmpNc5TgEmQVpzuPW9gneDaZn53mp9PZyQd4ThTZfvTswmD1e-0_kuuzsnvd0f4HJ_MAfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+charges+on+plane+in+a+magnetic+field+I.+%22Quasi-equal%22+charges+and+neutral+quantum+system+at+rest+cases&rft.jtitle=Annals+of+physics&rft.au=Escobar-Ruiz%2C+MA&rft.au=Turbiner%2C+A+V&rft.date=2014-01-01&rft.issn=0003-4916&rft.volume=340&rft.issue=1&rft.spage=37&rft.epage=59&rft_id=info:doi/10.1016%2Fj.aop.2013.10.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon