Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases
Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral system...
Saved in:
Published in | Annals of physics Vol. 340; no. 1; pp. 37 - 59 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.01.2014
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot).
It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated.
•Approximate solution for the low-lying eigenstates for two Coulomb charges given.•Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered.•A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u. |
---|---|
AbstractList | Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field BB perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated. -- Highlights: •Approximate solution for the low-lying eigenstates for two Coulomb charges given. •Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered. •A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u. Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions are factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.<B<2000a.u. (hydrogen atom) and 0.025a.u.⋜B⋜1000a.u. (two electrons). The evolution of nodes of excited states with the magnetic field change is indicated. In the framework of convergent perturbation theory the corrections to proposed approximations are evaluated. •Approximate solution for the low-lying eigenstates for two Coulomb charges given.•Factorization of eigenfunctions in double polar center-of-mass coordinates uncovered.•A magnetic field range varies from weak to ultra-strong, 1000–2000 a.u. |
Author | Turbiner, A.V. Escobar-Ruiz, M.A. |
Author_xml | – sequence: 1 givenname: M.A. surname: Escobar-Ruiz fullname: Escobar-Ruiz, M.A. email: mauricio.escobar@nucleares.unam.mx – sequence: 2 givenname: A.V. surname: Turbiner fullname: Turbiner, A.V. email: turbiner@nucleares.unam.mx |
BackLink | https://www.osti.gov/biblio/22224278$$D View this record in Osti.gov |
BookMark | eNp9kc1q3TAQhUVJoTdpH6A7QTfd2BnZknVFVyX0JxAohRS6E7I8TnSxpRtJbsguD9K-XJ6kMjek0EW0ERp9Z5g555gc-eCRkLcMagasO93VJuzrBlhb3jUweEE2DFRXQSt-HpENALQVV6x7RY5T2gEwxsV2Q_zlbaD22sQrTDR4up-MR-o8NXQ2Vx6zs3R0OA30vKYP97-_Lya5Cm8WMz3c_3lSGj9Qj0uOZqLlz-dlpukuZZypyTRiytSahOk1eTmaKeGbx_uE_Pj86fLsa3Xx7cv52ceLyrbbLldyFMxyxQfDGq62SjDJOQjb92K0zTDAwHre94b3grdjr_rOSCsKKAGNHbftCXl36BtSdjpZl9Fe2-A92qybcngjV-r9gdrHcLOUIfXsksVp9SAsSTPRglJSQPOv4RO6C0v0ZQfNuCzmCpCqUOxA2RhSijjqfXSziXeagV5z0jtdctJrTmup5FQ08j9NmdZkF3xx003PKj8clFic_OUwrouitzi4uO45BPeM-i_WOK_f |
CODEN | APNYA6 |
CitedBy_id | crossref_primary_10_1016_j_aop_2018_12_007 crossref_primary_10_1016_j_aop_2014_07_010 crossref_primary_10_1142_S0217979215502045 crossref_primary_10_1016_j_physleta_2017_11_001 crossref_primary_10_1016_j_physd_2020_132349 crossref_primary_10_1016_j_physleta_2016_03_038 crossref_primary_10_1088_0031_8949_90_7_074014 crossref_primary_10_1140_epjp_i2018_12126_7 crossref_primary_10_1016_j_aop_2014_09_025 crossref_primary_10_1016_j_physe_2017_06_010 crossref_primary_10_1134_S106377611707007X |
Cites_doi | 10.1103/PhysRevB.72.165350 10.1103/PhysRev.123.1242 10.1142/S021830130600482X 10.1088/0305-4470/36/29/304 10.1016/0375-9601(92)91056-W 10.1103/PhysRevLett.65.108 10.1088/1751-8113/46/29/295204 10.1103/PhysRevB.65.235304 10.1007/s11005-005-0012-z 10.1103/PhysRevB.27.3383 10.1063/1.4792478 10.1007/BF01466727 10.1016/S0921-4526(98)00461-X 10.1016/0009-2614(93)87188-9 10.1103/PhysRevB.55.13707 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7U5 8FD L7M OTOTI |
DOI | 10.1016/j.aop.2013.10.010 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1096-035X |
EndPage | 59 |
ExternalDocumentID | 22224278 3162676921 10_1016_j_aop_2013_10_010 S0003491613002455 |
Genre | News |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABPPZ ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AFDAS AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LZ4 M37 M41 MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSZ T5K TN5 TWZ UNMZH UPT UQL VH1 VQA WH7 WUQ XOL XPP XSW YYP ZCG ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7U5 8FD EFKBS L7M AALMO ABPIF ABPTK ABQIS EFJIC OTOTI PQEST |
ID | FETCH-LOGICAL-c386t-7f51c494da1249895174405cbb5fc2dd0d1b4bba4b543fb9b6a7c598970eacf83 |
IEDL.DBID | .~1 |
ISSN | 0003-4916 |
IngestDate | Thu May 18 22:30:46 EDT 2023 Fri Jul 11 13:24:51 EDT 2025 Fri Jul 25 07:30:02 EDT 2025 Tue Jul 01 00:57:51 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Fri Feb 23 02:23:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Two-body planar Coulomb system Magnetic field |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-7f51c494da1249895174405cbb5fc2dd0d1b4bba4b543fb9b6a7c598970eacf83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-News-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1470035079 |
PQPubID | 43554 |
PageCount | 23 |
ParticipantIDs | osti_scitechconnect_22224278 proquest_miscellaneous_1530997502 proquest_journals_1470035079 crossref_primary_10_1016_j_aop_2013_10_010 crossref_citationtrail_10_1016_j_aop_2013_10_010 elsevier_sciencedirect_doi_10_1016_j_aop_2013_10_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Annals of physics |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Turbiner, Escobar-Ruiz (br000070) 2013; 46 Taut (br000080) 1994; A27 Maksym, Chakraborty (br000025) 1990; 65 Robnik, Romanovski (br000040) 2003; 36 Escobar-Ruiz, Turbiner (br000075) 2013; 54 Laughlin (br000005) 1983; 27 Turbiner (br000065) 1994; 50 Turbiner (br000110) 1988; 118 Turbiner (br000115) 2013; A46 Kohn (br000100) 1961; 123 Burkova, Dzyaloshinskii, Drukarev, Monozon (br000060) 1976; 44 Turbiner (br000105) 1988; 94 Dzyaloshinskii (br000015) 1992; 165 Taut (br000085) 1999; A32 Turbiner (br000095) 2005; 74 Kandemir (br000035) 2005; 72 Schmelcher, Cederbaum (br000020) 1993; 208 Dineykhan, Nazmitdinov (br000045) 1997; 55 Harju, Sverdlov, Barbiellini, Nieminen (br000030) 1998; 225 Lozovik, Ovchinnikov, Volkov, Butov, Chemla (br000055) 2002; 65 Turbiner (br000090) 1979; 30 Soylu, Bayrak, Boztosun (br000050) 2006; 15 Gorkov, Dzyaloshinskii (br000010) 1967; 53 M.A. Escobar-Ruiz, A.V. Turbiner, Two charges on plane in a magnetic field II. Moving neutral quantum system, (in preparation). Dzyaloshinskii (10.1016/j.aop.2013.10.010_br000015) 1992; 165 Maksym (10.1016/j.aop.2013.10.010_br000025) 1990; 65 Kohn (10.1016/j.aop.2013.10.010_br000100) 1961; 123 Gorkov (10.1016/j.aop.2013.10.010_br000010) 1967; 53 Turbiner (10.1016/j.aop.2013.10.010_br000090) 1979; 30 Turbiner (10.1016/j.aop.2013.10.010_br000070) 2013; 46 Turbiner (10.1016/j.aop.2013.10.010_br000105) 1988; 94 Harju (10.1016/j.aop.2013.10.010_br000030) 1998; 225 Turbiner (10.1016/j.aop.2013.10.010_br000115) 2013; A46 10.1016/j.aop.2013.10.010_br000120 Robnik (10.1016/j.aop.2013.10.010_br000040) 2003; 36 Dineykhan (10.1016/j.aop.2013.10.010_br000045) 1997; 55 Taut (10.1016/j.aop.2013.10.010_br000085) 1999; A32 Laughlin (10.1016/j.aop.2013.10.010_br000005) 1983; 27 Kandemir (10.1016/j.aop.2013.10.010_br000035) 2005; 72 Turbiner (10.1016/j.aop.2013.10.010_br000065) 1994; 50 Escobar-Ruiz (10.1016/j.aop.2013.10.010_br000075) 2013; 54 Burkova (10.1016/j.aop.2013.10.010_br000060) 1976; 44 Turbiner (10.1016/j.aop.2013.10.010_br000110) 1988; 118 Schmelcher (10.1016/j.aop.2013.10.010_br000020) 1993; 208 Taut (10.1016/j.aop.2013.10.010_br000080) 1994; A27 Lozovik (10.1016/j.aop.2013.10.010_br000055) 2002; 65 Turbiner (10.1016/j.aop.2013.10.010_br000095) 2005; 74 Soylu (10.1016/j.aop.2013.10.010_br000050) 2006; 15 |
References_xml | – volume: 225 start-page: 145 year: 1998 ident: br000030 publication-title: Physica B – volume: 30 start-page: 379 year: 1979 end-page: 383 ident: br000090 publication-title: Soviet Phys.–Pisma ZhETF – volume: 118 start-page: 467 year: 1988 end-page: 474 ident: br000110 publication-title: Comm. Math. Phys. – volume: 36 start-page: 7923 year: 2003 ident: br000040 publication-title: J. Phys. A: Math. Gen. – volume: A32 start-page: 5509 year: 1999 end-page: 5515 ident: br000085 publication-title: J. Phys. – volume: 74 start-page: 169 year: 2005 end-page: 180 ident: br000095 publication-title: Lett. Math. Phys. – volume: 65 start-page: 108 year: 1990 ident: br000025 publication-title: Phys. Rev. Lett. – volume: 65 start-page: 235304 year: 2002 ident: br000055 publication-title: Phys. Rev. B – volume: 94 start-page: 33 year: 1988 end-page: 45 ident: br000105 publication-title: Soviet Phys. - ZhETF – volume: 15 start-page: 1263 year: 2006 ident: br000050 publication-title: Internat. J. Modern Phys. E – volume: 53 start-page: 717 year: 1967 end-page: 722 ident: br000010 publication-title: ZhETF – volume: 165 start-page: 69 year: 1992 ident: br000015 publication-title: Phys. Lett. A – volume: 50 start-page: 5335 year: 1994 ident: br000065 publication-title: J. Phys. A – volume: 27 start-page: 3383 year: 1983 end-page: 3389 ident: br000005 publication-title: Phys. Rev. – volume: A46 start-page: 025203 year: 2013 ident: br000115 publication-title: J. Phys. – volume: 44 start-page: 276 year: 1976 ident: br000060 publication-title: Sov. Phys.—JETP – volume: A27 start-page: 1045 year: 1994 ident: br000080 publication-title: J. Phys. – volume: 208 start-page: 548 year: 1993 ident: br000020 publication-title: Chem. Phys. Lett. – volume: 54 start-page: 022901 year: 2013 ident: br000075 publication-title: J. Math Phys. – volume: 55 start-page: 13707 year: 1997 ident: br000045 publication-title: Phys. Rev. B – volume: 46 start-page: 295204 year: 2013 ident: br000070 publication-title: J. Phys. A – volume: 72 start-page: 165350 year: 2005 ident: br000035 publication-title: Phys. Rev. B – reference: M.A. Escobar-Ruiz, A.V. Turbiner, Two charges on plane in a magnetic field II. Moving neutral quantum system, (in preparation). – volume: 123 start-page: 1242 year: 1961 end-page: 1244 ident: br000100 publication-title: Phys. Rev. – volume: 72 start-page: 165350 year: 2005 ident: 10.1016/j.aop.2013.10.010_br000035 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.165350 – volume: 123 start-page: 1242 year: 1961 ident: 10.1016/j.aop.2013.10.010_br000100 publication-title: Phys. Rev. doi: 10.1103/PhysRev.123.1242 – volume: A27 start-page: 1045 year: 1994 ident: 10.1016/j.aop.2013.10.010_br000080 publication-title: J. Phys. – volume: 15 start-page: 1263 year: 2006 ident: 10.1016/j.aop.2013.10.010_br000050 publication-title: Internat. J. Modern Phys. E doi: 10.1142/S021830130600482X – volume: 44 start-page: 276 year: 1976 ident: 10.1016/j.aop.2013.10.010_br000060 publication-title: Sov. Phys.—JETP – volume: 36 start-page: 7923 year: 2003 ident: 10.1016/j.aop.2013.10.010_br000040 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/36/29/304 – volume: 165 start-page: 69 year: 1992 ident: 10.1016/j.aop.2013.10.010_br000015 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(92)91056-W – volume: 65 start-page: 108 year: 1990 ident: 10.1016/j.aop.2013.10.010_br000025 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.108 – volume: 46 start-page: 295204 year: 2013 ident: 10.1016/j.aop.2013.10.010_br000070 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/29/295204 – ident: 10.1016/j.aop.2013.10.010_br000120 – volume: 65 start-page: 235304 year: 2002 ident: 10.1016/j.aop.2013.10.010_br000055 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.235304 – volume: 30 start-page: 379 year: 1979 ident: 10.1016/j.aop.2013.10.010_br000090 publication-title: Soviet Phys.–Pisma ZhETF – volume: 94 start-page: 33 year: 1988 ident: 10.1016/j.aop.2013.10.010_br000105 publication-title: Soviet Phys. - ZhETF – volume: 74 start-page: 169 year: 2005 ident: 10.1016/j.aop.2013.10.010_br000095 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-005-0012-z – volume: 27 start-page: 3383 year: 1983 ident: 10.1016/j.aop.2013.10.010_br000005 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.27.3383 – volume: A46 start-page: 025203 year: 2013 ident: 10.1016/j.aop.2013.10.010_br000115 publication-title: J. Phys. – volume: 50 start-page: 5335 year: 1994 ident: 10.1016/j.aop.2013.10.010_br000065 publication-title: J. Phys. A – volume: 54 start-page: 022901 year: 2013 ident: 10.1016/j.aop.2013.10.010_br000075 publication-title: J. Math Phys. doi: 10.1063/1.4792478 – volume: A32 start-page: 5509 year: 1999 ident: 10.1016/j.aop.2013.10.010_br000085 publication-title: J. Phys. – volume: 118 start-page: 467 year: 1988 ident: 10.1016/j.aop.2013.10.010_br000110 publication-title: Comm. Math. Phys. doi: 10.1007/BF01466727 – volume: 225 start-page: 145 year: 1998 ident: 10.1016/j.aop.2013.10.010_br000030 publication-title: Physica B doi: 10.1016/S0921-4526(98)00461-X – volume: 53 start-page: 717 year: 1967 ident: 10.1016/j.aop.2013.10.010_br000010 publication-title: ZhETF – volume: 208 start-page: 548 year: 1993 ident: 10.1016/j.aop.2013.10.010_br000020 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)87188-9 – volume: 55 start-page: 13707 year: 1997 ident: 10.1016/j.aop.2013.10.010_br000045 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.13707 |
SSID | ssj0011458 |
Score | 2.1353493 |
Snippet | Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are... Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field BB perpendicular to the plane... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | ANGULAR MOMENTUM APPROXIMATIONS BOUND STATE CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Coulomb friction EIGENFUNCTIONS ELECTRONS EXACT SOLUTIONS EXCITED STATES HYDROGEN Hydrogen atoms Magnetic field MAGNETIC FIELDS MASS Mathematical analysis PERTURBATION THEORY Planes POLYNOMIALS QUANTUM DOTS QUANTUM NUMBERS Quantum theory Rest Two-body planar Coulomb system VARIATIONAL METHODS WAVE FUNCTIONS |
Title | Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases |
URI | https://dx.doi.org/10.1016/j.aop.2013.10.010 https://www.proquest.com/docview/1470035079 https://www.proquest.com/docview/1530997502 https://www.osti.gov/biblio/22224278 |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS-QwEA6yItzLcXp33N7pMsI9HXRtm2SzfRRxWRUFQcG3kqTpsaLpYne5N9kf4v05f8nNpO2CKD7cY5sMlEkyM-l88w1jPwMli4uzyFglIpGWSaQNpzuPTrmyKlOOMrrnF6PptTi9kTcb7KirhSFYZWv7G5serHX75qDV5sF8NqMaX-JWSSgApvwhFZoLoWiXDx_XMA8M9-W465pHs7vMZsB46YooKxM-JIAXFdG-7Zt6FR63V8Y6eKDJJ_axDR3hsPm6bbbh_A7bChBOW39m_upPBYH4yNVQeZgTjBVmHjTc69-eihUh4NXgZAjPq6fLpa5nkaOqyufV37Wk9gV4t6QfIIBj6JLuoaF7Br0A6uQBFj1f_YVdT46vjqZR200hsnw8WkSqlIkVmSg09ZseZ0RRjdGaNUaWNi2KuEiMMEYLIwUvTWZGWlmJE1WMxrkc86-s5yvvvjFQzpSGY6CZOrxNCmc0T3gpR7bIjMsK1Wdxp8fctlTj1PHiLu8wZbc5qj4n1dMrVH2f_VqLzBuejfcmi25x8hebJUc_8J7YLi0kiRBBriUkEcpghJRSwxEc7hY4bw9yjTcjFZKvKuuz_fUwHkHKq-AyVkucIznVH8s4_f5_H_aDfcAn0fzZ2WW9xcPS7WGsszCDsJkHbPPw5Gx68Q96xf2_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NahwxDBbphtJeSn_ppmmqQk-FSWbG9nrnGELDbpMsFDaQ22B7PGVD41k6u-SaB2lfLk9SaX4WSkIOuVoWGNmWZEv6BPClgWTxcRZZp2Uk0zKJjBX85jGp0E5n2nNE92w2mpzL7xfqYguO-loYTqvsdH-r0xtt3Y0cdNI8WC4WXOPL2CoJO8AcP1RPYJvRqdQAtg-nJ5PZJpiQSDXuG-cxQx_cbNK8TMWolYnY5xwvrqO93zwNKrpxd_R1Y4SOX8KLznvEw3aBr2DLh9fwtMnidPUbCPPrChvsI19jFXDJmay4CGjwyvwMXK-ITcoaTvfx9ubPj7WpF5Hnwsrbm78bThMKDH7NfyBINLJKV9giPqNZITfzQEfGr34L58ff5keTqGuoEDkxHq0iXarEyUwWhltOjzNGqSaHzVmrSpcWRVwkVlprpFVSlDazI6Odook6Jv1cjsU7GIQq-PeA2tvSCvI1U08PSumtEYko1cgVmfVZoYcQ93LMXYc2zk0vfuV9WtllTqLPWfQ8RKIfwtcNy7KF2nhosuw3J__vvORkCh5i2-WNZBbGyHWcTEQ85CSl3HOEyP0G591drulxpJv4q86G8HlDplvIoRXaxmpNc5TgEmQVpzuPW9gneDaZn53mp9PZyQd4ThTZfvTswmD1e-0_kuuzsnvd0f4HJ_MAfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+charges+on+plane+in+a+magnetic+field+I.+%22Quasi-equal%22+charges+and+neutral+quantum+system+at+rest+cases&rft.jtitle=Annals+of+physics&rft.au=Escobar-Ruiz%2C+MA&rft.au=Turbiner%2C+A+V&rft.date=2014-01-01&rft.issn=0003-4916&rft.volume=340&rft.issue=1&rft.spage=37&rft.epage=59&rft_id=info:doi/10.1016%2Fj.aop.2013.10.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4916&client=summon |