Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams

A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can dete...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 15; no. 5; pp. 1059 - 1072
Main Authors Schweller, R., Zhichun Li, Yan Chen, Yan Gao, Gupta, A., Yin Zhang, Dinda, P.A., Ming-Yang Kao, Memik, G.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can detect heavy changes online for high speed links, and thus support various aggregate queries in both temporal and spatial domains. However, it does not preserve the keys (e. g., source IP address) of flows, making it difficult to reconstruct the desired set of anomalous keys. To address this challenge, we propose the reversible sketch data structure along with reverse hashing algorithms to infer the keys of culprit flows. There are two phases. The first operates online, recording the packet stream in a compact representation with negligible extra memory and few extra memory accesses. Our prototype single FPGA board implementation can achieve a throughput of over 16 Gb/s for 40-byte packet streams (the worst case). The second phase identifies heavy changes and their keys from the representation in nearly real time. We evaluate our scheme using traces from large edge routers with OC-12 or higher links. Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size. To the best of our knowledge, our system is the first to achieve these properties simultaneously.
AbstractList A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can detect heavy changes online for high speed links, and thus support various aggregate queries in both temporal and spatial domains. However, it does not preserve the keys (e. g., source IP address) of flows, making it difficult to reconstruct the desired set of anomalous keys. To address this challenge, we propose the reversible sketch data structure along with reverse hashing algorithms to infer the keys of culprit flows. There are two phases. The first operates online, recording the packet stream in a compact representation with negligible extra memory and few extra memory accesses. Our prototype single FPGA board implementation can achieve a throughput of over 16 Gb/s for 40-byte packet streams (the worst case). The second phase identifies heavy changes and their keys from the representation in nearly real time. We evaluate our scheme using traces from large edge routers with OC-12 or higher links. Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size. To the best of our knowledge, our system is the first to achieve these properties simultaneously.
Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size.
Author Dinda, P.A.
Ming-Yang Kao
Yan Chen
Yan Gao
Yin Zhang
Zhichun Li
Memik, G.
Gupta, A.
Schweller, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Schweller
  fullname: Schweller, R.
  organization: Northwestern Univ., Evanston
– sequence: 2
  surname: Zhichun Li
  fullname: Zhichun Li
  organization: Northwestern Univ., Evanston
– sequence: 3
  surname: Yan Chen
  fullname: Yan Chen
  organization: Northwestern Univ., Evanston
– sequence: 4
  surname: Yan Gao
  fullname: Yan Gao
  organization: Northwestern Univ., Evanston
– sequence: 5
  givenname: A.
  surname: Gupta
  fullname: Gupta, A.
  organization: Northwestern Univ., Evanston
– sequence: 6
  surname: Yin Zhang
  fullname: Yin Zhang
– sequence: 7
  givenname: P.A.
  surname: Dinda
  fullname: Dinda, P.A.
  organization: Northwestern Univ., Evanston
– sequence: 8
  surname: Ming-Yang Kao
  fullname: Ming-Yang Kao
  organization: Northwestern Univ., Evanston
– sequence: 9
  givenname: G.
  surname: Memik
  fullname: Memik, G.
  organization: Northwestern Univ., Evanston
BookMark eNp9kUFvEzEQRi1UJNrCHYnLigNw2eCx17NrblUJLVKhUhPOK9s7aV023tR2kPrvcRrEoYecZg7vzYzmO2FHYQrE2FvgMwCuPy9_zpczwXk76zSC4i_YMSjV1UIhHpWeo6wRtXjFTlK65xwkF3jMbm7oD8Xk7UjV4jdld0fpSzUPxo4-3FY_puDzFHetCUN1Fsz4mHyqrotUXfrbu3qxIRqqryabapEjmXV6zV6uzJjozb96yn59my_PL-ur64vv52dXtZMd5rolEFo5FKazuuUanGgkCpCK46pZqWForW2HdmjKoVY4O6AD23USJXS2AXnKPu7nbuL0sKWU-7VPjsbRBJq2qS9_EAAoRSE_HCRlo6RSui3gp4MglDtbpTutCvr-GXo_bWP5T1mMjYYWnubhHnJxSinSqnc-m-ynkKPxYw-834XX78Lrd-H1-_CKyJ-Jm-jXJj4eUt7tFU9E__FGNqgUyr9QT6RP
CODEN IEANEP
CitedBy_id crossref_primary_10_1002_spe_2420
crossref_primary_10_1109_TPDS_2017_2766633
crossref_primary_10_1016_j_comnet_2021_108155
crossref_primary_10_1109_TPDS_2018_2865452
crossref_primary_10_1109_TIFS_2014_2312544
crossref_primary_10_1145_3588933
crossref_primary_10_1109_TIFS_2015_2503269
crossref_primary_10_1145_3588935
crossref_primary_10_1016_j_jnca_2013_10_008
crossref_primary_10_1109_TKDE_2018_2873319
crossref_primary_10_1016_j_comnet_2012_03_025
crossref_primary_10_3390_s19040958
crossref_primary_10_1002_nem_2188
crossref_primary_10_1109_TDSC_2021_3111328
crossref_primary_10_3390_s22207932
crossref_primary_10_1002_cpe_4435
crossref_primary_10_1007_s00778_019_00560_1
crossref_primary_10_1109_TKDE_2022_3223686
crossref_primary_10_1145_3588690
crossref_primary_10_1007_s13278_017_0443_4
crossref_primary_10_1109_TNET_2022_3232098
crossref_primary_10_1016_j_comnet_2015_08_025
crossref_primary_10_1145_2927964_2927977
crossref_primary_10_1109_TKDE_2023_3278028
crossref_primary_10_3390_electronics13010222
crossref_primary_10_1007_s00778_009_0172_z
crossref_primary_10_3390_electronics9071160
crossref_primary_10_1007_s10922_024_09824_w
crossref_primary_10_1016_j_comnet_2010_06_018
crossref_primary_10_1109_TIFS_2011_2123094
crossref_primary_10_1109_TNET_2020_3011798
crossref_primary_10_1360_SSI_2022_0387
crossref_primary_10_1109_TKDE_2012_215
crossref_primary_10_14778_3467861_3467868
crossref_primary_10_3390_eng4020063
crossref_primary_10_1016_j_micpro_2014_04_005
crossref_primary_10_1016_j_jnca_2011_06_006
crossref_primary_10_1145_3687477
crossref_primary_10_1109_TNET_2023_3272287
crossref_primary_10_1007_s00778_024_00869_6
crossref_primary_10_14778_1454159_1454225
crossref_primary_10_1016_j_ins_2017_04_047
crossref_primary_10_1109_TIFS_2019_2933731
crossref_primary_10_1002_nem_748
crossref_primary_10_1109_TNET_2020_2982739
crossref_primary_10_1109_TNSM_2020_3034278
crossref_primary_10_1016_j_jisa_2019_102403
crossref_primary_10_1109_TIFS_2010_2066970
crossref_primary_10_1007_s10922_023_09745_0
crossref_primary_10_1016_j_inffus_2018_10_013
crossref_primary_10_1109_JIOT_2024_3442808
crossref_primary_10_1109_TDSC_2015_2423675
crossref_primary_10_14778_3523210_3523220
crossref_primary_10_1145_3276799_3276800
crossref_primary_10_1109_TNET_2018_2877700
crossref_primary_10_1109_TKDE_2020_2975625
crossref_primary_10_1587_transcom_E94_B_2274
crossref_primary_10_1109_TPDS_2020_2991007
crossref_primary_10_1109_TNET_2022_3198738
crossref_primary_10_1145_2043164_2018462
crossref_primary_10_1109_TSC_2021_3103968
crossref_primary_10_1109_TKDE_2024_3523033
crossref_primary_10_1016_j_inffus_2021_12_007
Cites_doi 10.1080/01621459.1986.10478250
10.1109/INFCOM.2004.1354567
10.1145/948205.948236
10.1145/781027.781045
10.1145/637201.637210
10.1109/SECPRI.2004.1301325
10.1145/637201.637225
10.1016/0022-0000(85)90041-8
10.1145/863955.863972
10.1016/B978-155860869-6/50038-X
10.1109/SFCS.2000.892082
10.1016/B978-012722442-8/50048-3
10.1145/509907.509966
10.1016/S1389-1286(99)00112-7
10.1145/1007568.1007575
10.1145/633025.633056
10.1145/1028788.1028812
10.3233/JCS-2002-101-205
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7QH
7UA
C1K
F1W
H96
L.G
DOI 10.1109/TNET.2007.896150
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 1072
ExternalDocumentID 2338423121
10_1109_TNET_2007_896150
4346556
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
ROL
TN5
UPT
UQL
VH1
XOL
YR2
ZCA
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7QH
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-c386t-7e1295c62a8b97091c2436213506f4f5dd7bb7d7d4026b2cbd6c1b8836318b413
IEDL.DBID RIE
ISSN 1063-6692
IngestDate Fri Jul 11 07:32:52 EDT 2025
Thu Jul 10 23:53:53 EDT 2025
Thu Jul 10 23:37:12 EDT 2025
Sun Jun 29 15:35:14 EDT 2025
Tue Jul 01 01:49:12 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Tue Aug 26 16:47:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-7e1295c62a8b97091c2436213506f4f5dd7bb7d7d4026b2cbd6c1b8836318b413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 864917197
PQPubID 23500
PageCount 14
ParticipantIDs proquest_journals_864917197
ieee_primary_4346556
proquest_miscellaneous_34535597
crossref_primary_10_1109_TNET_2007_896150
proquest_miscellaneous_1709759895
proquest_miscellaneous_896211632
crossref_citationtrail_10_1109_TNET_2007_896150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2007
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref30
ref32
cormode (ref13) 2003
ref2
ref1
ref16
roesch (ref17) 2001
muthukrishnan (ref11) 2003
wang (ref18) 2002
(ref28) 0
gao (ref15) 2006
ref24
ref20
weaver (ref23) 2004
ref22
ref21
wang (ref19) 2004; 1
cormode (ref8) 2003
widom (ref31) 2003
ref29
gilbert (ref10) 2001
ref7
ref9
ref4
ref3
ref6
(ref26) 2001
ref5
staniford (ref25) 2002
(ref27) 0
hadlock (ref14) 1978
References_xml – year: 2001
  ident: ref10
  publication-title: QuickSAND Quick Summary and Analysis of Network Data
– ident: ref7
  doi: 10.1080/01621459.1986.10478250
– ident: ref2
  doi: 10.1109/INFCOM.2004.1354567
– year: 2002
  ident: ref18
  article-title: Detecting SYN flooding attacks
  publication-title: Proc IEEE InfoCom
– ident: ref1
  doi: 10.1145/948205.948236
– ident: ref24
  doi: 10.1145/781027.781045
– year: 2001
  ident: ref17
  article-title: Snort: The lightweight network intrusion detection system
– year: 2003
  ident: ref13
  article-title: Estimating dominance norms on multiple data streams
  publication-title: Proc 11th European Symp Algorithms (ESA)
– year: 0
  ident: ref28
  publication-title: Dshield org Distributed Intrusion Detection System
– year: 2004
  ident: ref23
  article-title: Very fast containment of scanning worms
  publication-title: Proc Usenix Security Symp
– year: 0
  ident: ref27
  publication-title: Synlipfy Pro
– ident: ref20
  doi: 10.1145/637201.637210
– volume: 1
  year: 2004
  ident: ref19
  article-title: Change-point monitoring for detection of DoS attacks
  publication-title: IEEE Trans Dependable and Secure Computing
– ident: ref22
  doi: 10.1109/SECPRI.2004.1301325
– year: 1978
  ident: ref14
  publication-title: Field Theory and Its Classical Problems
– ident: ref29
  doi: 10.1145/637201.637225
– ident: ref9
  doi: 10.1016/0022-0000(85)90041-8
– year: 2003
  ident: ref8
  publication-title: Improved data stream summaries the count-min sketch and its applications
– ident: ref30
  doi: 10.1145/863955.863972
– ident: ref6
  doi: 10.1016/B978-155860869-6/50038-X
– year: 2006
  ident: ref15
  article-title: A DoS resilient flow-level intrusion detection approach for high-speed networks
  publication-title: Proc 26th Int Conf Distributed Computing Systems (ICDCS)
– ident: ref12
  doi: 10.1109/SFCS.2000.892082
– ident: ref4
  doi: 10.1016/B978-012722442-8/50048-3
– year: 2001
  ident: ref26
  publication-title: SPEEDRouter vl l Product Specification
– ident: ref32
  doi: 10.1145/509907.509966
– year: 2003
  ident: ref11
  article-title: Data streams: Algorithms and applications (short)
  publication-title: Proc ACM SODA
– ident: ref16
  doi: 10.1016/S1389-1286(99)00112-7
– ident: ref5
  doi: 10.1145/1007568.1007575
– start-page: 563
  year: 2003
  ident: ref31
  article-title: Adaptive filters for continuous queries over distributed data streams
  publication-title: Proc ACM SIGMOD
– ident: ref3
  doi: 10.1145/633025.633056
– ident: ref21
  doi: 10.1145/1028788.1028812
– year: 2002
  ident: ref25
  article-title: Practical automated detection of stealthy portscans
  publication-title: J Computer Security
  doi: 10.3233/JCS-2002-101-205
SSID ssj0013026
Score 2.2686875
Snippet A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an...
Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1059
SubjectTerms Aggregates
Data analysis
Data structures
Field programmable gate arrays
High speed
Intrusion detection
Keys
Links
Monitoring
Performance analysis
Prototypes
Queries
Sketches
Streams
Studies
Telecommunication traffic
Throughput
Title Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams
URI https://ieeexplore.ieee.org/document/4346556
https://www.proquest.com/docview/864917197
https://www.proquest.com/docview/1709759895
https://www.proquest.com/docview/34535597
https://www.proquest.com/docview/896211632
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qgPFqRUsCVeqlU72Zjx465IViEkAAJFolb5FcuQBZ1s5f--o6dZKG0IG6RPI4mM3ZmxjP-BuA7LgllrZRUZCqlXJqKGiYVVTZ0P-K8MrEly_mFOL3hZ7f57RL8XNyF8d7H4jM_CI8xl--mdh6OyoacBbQvsQzLGLi1d7WeMgZpbK2GEQ6jQqisT0mmaji5GE9asMJCBfzzv0xQ7Knyz484WpeTj3De89UWldwN5o0Z2N8vIBvfy_g6rHVuJjls18UGLPl6Ez48Ax_cgqsrH0syzL0n13dRe7MDMg53qXCctJs9kBJdO9KDl5BLnERCdQi9fkTLR451o0nIbeuH2Se4ORlPjk5p12GBWlaIhkqP5j63ItOFURJdB5txtGgjlqei4lXunDRGOukwyhQms8YJOzJFwQT-Cgzav8-wUk9rvw2EO-bwHVnuDOO55ppp7hVGV0VwkWyVwLAXemk7-PHQBeO-jGFIqsqgptAVU5atmhL4sZjx2EJvvEG7FaS-oOsEnsBOr9ey25uzshAcY9SRkgl8W4zipgqZEl376XxWjlAWMleFyhPYf4UGv5KFcCwB8goFsobhtWDZl_9ztwOr8aQ4lgZ-hZXm19zvoovTmL24tv8Ak7X2AA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAoiFKiR4MAhu4nt2DESB0S32tJ2kdqt1FuIH7m0ZCuSFYLfwl_hvzF2kuVZbpW4RfLY8uPLPDzjGYBnCAlljJSxoCqJudRVrJlUsTK--hHnlQ4lWQ5mYnrM355kJ2vwdfUWxjkXgs_cyH8GX75dmKW_Khtz5rN9iT6Ecs99_oQGWvNqdxtP8zmlO5P5m2nc1xCIDctFG0uHAi0zgpa5VhKFo6EceXbKskRUvMqslVpLKy3aUUJTo60wqc5zJhDsGjk8jnsFrqKekdHuddgPH0USirmhTcViIRQdnKCJGs9nk3mXHjFXPuP6L0IvVHH5g_UHebZzC74NO9GFsZyOlq0emS-_JYn8X7fqNtzsFWnyukP-HVhz9V248VN6xQ04PHQh6ESfOXJ0GvDZvCQT_1oM20nHzjwpKWtLhvQs5B12Ij7-JT46R9lOtsu2JN57X35o7sHxpSzqPqzXi9o9AMItszgGzaxmPCt5yUruFNqPuVcCTRXBeDjkwvQJ1n2dj7MiGFqJKjwsfN1PWXSwiODFqsd5l1zkH7Qb_pRXdP0BR7A54KjouU9T5IKjFZ4qGcHTVSuyDe8LKmu3WDZFinshM5WrLIKtC2hwlcwbnBGQCyhwajRFjZ4-_PvstuDadH6wX-zvzvY24Xq4Fw-BkI9gvf24dI9RoWv1k_BfEXh_2ej8Drj4UPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Sketches%3A+Enabling+Monitoring+and+Analysis+Over+High-Speed+Data+Streams&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Schweller%2C+Robert&rft.au=Li%2C+Zhichun&rft.au=Chen%2C+Yan&rft.au=Gao%2C+Yan&rft.date=2007-10-01&rft.issn=1063-6692&rft.volume=15&rft.issue=5&rft.spage=1059&rft.epage=1072&rft_id=info:doi/10.1109%2FTNET.2007.896150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2007_896150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon