Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams
A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can dete...
Saved in:
Published in | IEEE/ACM transactions on networking Vol. 15; no. 5; pp. 1059 - 1072 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can detect heavy changes online for high speed links, and thus support various aggregate queries in both temporal and spatial domains. However, it does not preserve the keys (e. g., source IP address) of flows, making it difficult to reconstruct the desired set of anomalous keys. To address this challenge, we propose the reversible sketch data structure along with reverse hashing algorithms to infer the keys of culprit flows. There are two phases. The first operates online, recording the packet stream in a compact representation with negligible extra memory and few extra memory accesses. Our prototype single FPGA board implementation can achieve a throughput of over 16 Gb/s for 40-byte packet streams (the worst case). The second phase identifies heavy changes and their keys from the representation in nearly real time. We evaluate our scheme using traces from large edge routers with OC-12 or higher links. Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size. To the best of our knowledge, our system is the first to achieve these properties simultaneously. |
---|---|
AbstractList | A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an important primitive which can be extended to construct many aggregate queries. The recently proposed sketches are among the very few that can detect heavy changes online for high speed links, and thus support various aggregate queries in both temporal and spatial domains. However, it does not preserve the keys (e. g., source IP address) of flows, making it difficult to reconstruct the desired set of anomalous keys. To address this challenge, we propose the reversible sketch data structure along with reverse hashing algorithms to infer the keys of culprit flows. There are two phases. The first operates online, recording the packet stream in a compact representation with negligible extra memory and few extra memory accesses. Our prototype single FPGA board implementation can achieve a throughput of over 16 Gb/s for 40-byte packet streams (the worst case). The second phase identifies heavy changes and their keys from the representation in nearly real time. We evaluate our scheme using traces from large edge routers with OC-12 or higher links. Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size. To the best of our knowledge, our system is the first to achieve these properties simultaneously. Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive data streams on high speed links, all in a manner that scales to large key space size. |
Author | Dinda, P.A. Ming-Yang Kao Yan Chen Yan Gao Yin Zhang Zhichun Li Memik, G. Gupta, A. Schweller, R. |
Author_xml | – sequence: 1 givenname: R. surname: Schweller fullname: Schweller, R. organization: Northwestern Univ., Evanston – sequence: 2 surname: Zhichun Li fullname: Zhichun Li organization: Northwestern Univ., Evanston – sequence: 3 surname: Yan Chen fullname: Yan Chen organization: Northwestern Univ., Evanston – sequence: 4 surname: Yan Gao fullname: Yan Gao organization: Northwestern Univ., Evanston – sequence: 5 givenname: A. surname: Gupta fullname: Gupta, A. organization: Northwestern Univ., Evanston – sequence: 6 surname: Yin Zhang fullname: Yin Zhang – sequence: 7 givenname: P.A. surname: Dinda fullname: Dinda, P.A. organization: Northwestern Univ., Evanston – sequence: 8 surname: Ming-Yang Kao fullname: Ming-Yang Kao organization: Northwestern Univ., Evanston – sequence: 9 givenname: G. surname: Memik fullname: Memik, G. organization: Northwestern Univ., Evanston |
BookMark | eNp9kUFvEzEQRi1UJNrCHYnLigNw2eCx17NrblUJLVKhUhPOK9s7aV023tR2kPrvcRrEoYecZg7vzYzmO2FHYQrE2FvgMwCuPy9_zpczwXk76zSC4i_YMSjV1UIhHpWeo6wRtXjFTlK65xwkF3jMbm7oD8Xk7UjV4jdld0fpSzUPxo4-3FY_puDzFHetCUN1Fsz4mHyqrotUXfrbu3qxIRqqryabapEjmXV6zV6uzJjozb96yn59my_PL-ur64vv52dXtZMd5rolEFo5FKazuuUanGgkCpCK46pZqWForW2HdmjKoVY4O6AD23USJXS2AXnKPu7nbuL0sKWU-7VPjsbRBJq2qS9_EAAoRSE_HCRlo6RSui3gp4MglDtbpTutCvr-GXo_bWP5T1mMjYYWnubhHnJxSinSqnc-m-ynkKPxYw-834XX78Lrd-H1-_CKyJ-Jm-jXJj4eUt7tFU9E__FGNqgUyr9QT6RP |
CODEN | IEANEP |
CitedBy_id | crossref_primary_10_1002_spe_2420 crossref_primary_10_1109_TPDS_2017_2766633 crossref_primary_10_1016_j_comnet_2021_108155 crossref_primary_10_1109_TPDS_2018_2865452 crossref_primary_10_1109_TIFS_2014_2312544 crossref_primary_10_1145_3588933 crossref_primary_10_1109_TIFS_2015_2503269 crossref_primary_10_1145_3588935 crossref_primary_10_1016_j_jnca_2013_10_008 crossref_primary_10_1109_TKDE_2018_2873319 crossref_primary_10_1016_j_comnet_2012_03_025 crossref_primary_10_3390_s19040958 crossref_primary_10_1002_nem_2188 crossref_primary_10_1109_TDSC_2021_3111328 crossref_primary_10_3390_s22207932 crossref_primary_10_1002_cpe_4435 crossref_primary_10_1007_s00778_019_00560_1 crossref_primary_10_1109_TKDE_2022_3223686 crossref_primary_10_1145_3588690 crossref_primary_10_1007_s13278_017_0443_4 crossref_primary_10_1109_TNET_2022_3232098 crossref_primary_10_1016_j_comnet_2015_08_025 crossref_primary_10_1145_2927964_2927977 crossref_primary_10_1109_TKDE_2023_3278028 crossref_primary_10_3390_electronics13010222 crossref_primary_10_1007_s00778_009_0172_z crossref_primary_10_3390_electronics9071160 crossref_primary_10_1007_s10922_024_09824_w crossref_primary_10_1016_j_comnet_2010_06_018 crossref_primary_10_1109_TIFS_2011_2123094 crossref_primary_10_1109_TNET_2020_3011798 crossref_primary_10_1360_SSI_2022_0387 crossref_primary_10_1109_TKDE_2012_215 crossref_primary_10_14778_3467861_3467868 crossref_primary_10_3390_eng4020063 crossref_primary_10_1016_j_micpro_2014_04_005 crossref_primary_10_1016_j_jnca_2011_06_006 crossref_primary_10_1145_3687477 crossref_primary_10_1109_TNET_2023_3272287 crossref_primary_10_1007_s00778_024_00869_6 crossref_primary_10_14778_1454159_1454225 crossref_primary_10_1016_j_ins_2017_04_047 crossref_primary_10_1109_TIFS_2019_2933731 crossref_primary_10_1002_nem_748 crossref_primary_10_1109_TNET_2020_2982739 crossref_primary_10_1109_TNSM_2020_3034278 crossref_primary_10_1016_j_jisa_2019_102403 crossref_primary_10_1109_TIFS_2010_2066970 crossref_primary_10_1007_s10922_023_09745_0 crossref_primary_10_1016_j_inffus_2018_10_013 crossref_primary_10_1109_JIOT_2024_3442808 crossref_primary_10_1109_TDSC_2015_2423675 crossref_primary_10_14778_3523210_3523220 crossref_primary_10_1145_3276799_3276800 crossref_primary_10_1109_TNET_2018_2877700 crossref_primary_10_1109_TKDE_2020_2975625 crossref_primary_10_1587_transcom_E94_B_2274 crossref_primary_10_1109_TPDS_2020_2991007 crossref_primary_10_1109_TNET_2022_3198738 crossref_primary_10_1145_2043164_2018462 crossref_primary_10_1109_TSC_2021_3103968 crossref_primary_10_1109_TKDE_2024_3523033 crossref_primary_10_1016_j_inffus_2021_12_007 |
Cites_doi | 10.1080/01621459.1986.10478250 10.1109/INFCOM.2004.1354567 10.1145/948205.948236 10.1145/781027.781045 10.1145/637201.637210 10.1109/SECPRI.2004.1301325 10.1145/637201.637225 10.1016/0022-0000(85)90041-8 10.1145/863955.863972 10.1016/B978-155860869-6/50038-X 10.1109/SFCS.2000.892082 10.1016/B978-012722442-8/50048-3 10.1145/509907.509966 10.1016/S1389-1286(99)00112-7 10.1145/1007568.1007575 10.1145/633025.633056 10.1145/1028788.1028812 10.3233/JCS-2002-101-205 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7QH 7UA C1K F1W H96 L.G |
DOI | 10.1109/TNET.2007.896150 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2566 |
EndPage | 1072 |
ExternalDocumentID | 2338423121 10_1109_TNET_2007_896150 4346556 |
Genre | orig-research |
GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E 9M8 AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AETIX AFWIH AFWXC AGQYO AGSQL AHBIQ AI. AIBXA AIKLT AKJIK AKQYR AKRVB ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS EJD FEDTE GUFHI HF~ HGAVV HZ~ H~9 I07 ICLAB IEDLZ IES IFIPE IFJZH IPLJI JAVBF LAI LHSKQ M43 MVM O9- OCL P1C P2P PQQKQ RIA RIE RNS ROL TN5 UPT UQL VH1 XOL YR2 ZCA AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 7QH 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-c386t-7e1295c62a8b97091c2436213506f4f5dd7bb7d7d4026b2cbd6c1b8836318b413 |
IEDL.DBID | RIE |
ISSN | 1063-6692 |
IngestDate | Fri Jul 11 07:32:52 EDT 2025 Thu Jul 10 23:53:53 EDT 2025 Thu Jul 10 23:37:12 EDT 2025 Sun Jun 29 15:35:14 EDT 2025 Tue Jul 01 01:49:12 EDT 2025 Thu Apr 24 23:08:59 EDT 2025 Tue Aug 26 16:47:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-7e1295c62a8b97091c2436213506f4f5dd7bb7d7d4026b2cbd6c1b8836318b413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 864917197 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_journals_864917197 ieee_primary_4346556 proquest_miscellaneous_34535597 crossref_primary_10_1109_TNET_2007_896150 proquest_miscellaneous_1709759895 proquest_miscellaneous_896211632 crossref_citationtrail_10_1109_TNET_2007_896150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ACM transactions on networking |
PublicationTitleAbbrev | TNET |
PublicationYear | 2007 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref30 ref32 cormode (ref13) 2003 ref2 ref1 ref16 roesch (ref17) 2001 muthukrishnan (ref11) 2003 wang (ref18) 2002 (ref28) 0 gao (ref15) 2006 ref24 ref20 weaver (ref23) 2004 ref22 ref21 wang (ref19) 2004; 1 cormode (ref8) 2003 widom (ref31) 2003 ref29 gilbert (ref10) 2001 ref7 ref9 ref4 ref3 ref6 (ref26) 2001 ref5 staniford (ref25) 2002 (ref27) 0 hadlock (ref14) 1978 |
References_xml | – year: 2001 ident: ref10 publication-title: QuickSAND Quick Summary and Analysis of Network Data – ident: ref7 doi: 10.1080/01621459.1986.10478250 – ident: ref2 doi: 10.1109/INFCOM.2004.1354567 – year: 2002 ident: ref18 article-title: Detecting SYN flooding attacks publication-title: Proc IEEE InfoCom – ident: ref1 doi: 10.1145/948205.948236 – ident: ref24 doi: 10.1145/781027.781045 – year: 2001 ident: ref17 article-title: Snort: The lightweight network intrusion detection system – year: 2003 ident: ref13 article-title: Estimating dominance norms on multiple data streams publication-title: Proc 11th European Symp Algorithms (ESA) – year: 0 ident: ref28 publication-title: Dshield org Distributed Intrusion Detection System – year: 2004 ident: ref23 article-title: Very fast containment of scanning worms publication-title: Proc Usenix Security Symp – year: 0 ident: ref27 publication-title: Synlipfy Pro – ident: ref20 doi: 10.1145/637201.637210 – volume: 1 year: 2004 ident: ref19 article-title: Change-point monitoring for detection of DoS attacks publication-title: IEEE Trans Dependable and Secure Computing – ident: ref22 doi: 10.1109/SECPRI.2004.1301325 – year: 1978 ident: ref14 publication-title: Field Theory and Its Classical Problems – ident: ref29 doi: 10.1145/637201.637225 – ident: ref9 doi: 10.1016/0022-0000(85)90041-8 – year: 2003 ident: ref8 publication-title: Improved data stream summaries the count-min sketch and its applications – ident: ref30 doi: 10.1145/863955.863972 – ident: ref6 doi: 10.1016/B978-155860869-6/50038-X – year: 2006 ident: ref15 article-title: A DoS resilient flow-level intrusion detection approach for high-speed networks publication-title: Proc 26th Int Conf Distributed Computing Systems (ICDCS) – ident: ref12 doi: 10.1109/SFCS.2000.892082 – ident: ref4 doi: 10.1016/B978-012722442-8/50048-3 – year: 2001 ident: ref26 publication-title: SPEEDRouter vl l Product Specification – ident: ref32 doi: 10.1145/509907.509966 – year: 2003 ident: ref11 article-title: Data streams: Algorithms and applications (short) publication-title: Proc ACM SODA – ident: ref16 doi: 10.1016/S1389-1286(99)00112-7 – ident: ref5 doi: 10.1145/1007568.1007575 – start-page: 563 year: 2003 ident: ref31 article-title: Adaptive filters for continuous queries over distributed data streams publication-title: Proc ACM SIGMOD – ident: ref3 doi: 10.1145/633025.633056 – ident: ref21 doi: 10.1145/1028788.1028812 – year: 2002 ident: ref25 article-title: Practical automated detection of stealthy portscans publication-title: J Computer Security doi: 10.3233/JCS-2002-101-205 |
SSID | ssj0013026 |
Score | 2.2686875 |
Snippet | A key function for network traffic monitoring and analysis is the ability to perform aggregate queries over multiple data streams. Change detection is an... Both the analytical and experimental results show that we are able to achieve online traffic monitoring and accurate change/intrusion detection over massive... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1059 |
SubjectTerms | Aggregates Data analysis Data structures Field programmable gate arrays High speed Intrusion detection Keys Links Monitoring Performance analysis Prototypes Queries Sketches Streams Studies Telecommunication traffic Throughput |
Title | Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams |
URI | https://ieeexplore.ieee.org/document/4346556 https://www.proquest.com/docview/864917197 https://www.proquest.com/docview/1709759895 https://www.proquest.com/docview/34535597 https://www.proquest.com/docview/896211632 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3qgPFqRUsCVeqlU72Zjx465IViEkAAJFolb5FcuQBZ1s5f--o6dZKG0IG6RPI4mM3ZmxjP-BuA7LgllrZRUZCqlXJqKGiYVVTZ0P-K8MrEly_mFOL3hZ7f57RL8XNyF8d7H4jM_CI8xl--mdh6OyoacBbQvsQzLGLi1d7WeMgZpbK2GEQ6jQqisT0mmaji5GE9asMJCBfzzv0xQ7Knyz484WpeTj3De89UWldwN5o0Z2N8vIBvfy_g6rHVuJjls18UGLPl6Ez48Ax_cgqsrH0syzL0n13dRe7MDMg53qXCctJs9kBJdO9KDl5BLnERCdQi9fkTLR451o0nIbeuH2Se4ORlPjk5p12GBWlaIhkqP5j63ItOFURJdB5txtGgjlqei4lXunDRGOukwyhQms8YJOzJFwQT-Cgzav8-wUk9rvw2EO-bwHVnuDOO55ppp7hVGV0VwkWyVwLAXemk7-PHQBeO-jGFIqsqgptAVU5atmhL4sZjx2EJvvEG7FaS-oOsEnsBOr9ey25uzshAcY9SRkgl8W4zipgqZEl376XxWjlAWMleFyhPYf4UGv5KFcCwB8goFsobhtWDZl_9ztwOr8aQ4lgZ-hZXm19zvoovTmL24tv8Ak7X2AA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvAoiFKiR4MAhu4nt2DESB0S32tJ2kdqt1FuIH7m0ZCuSFYLfwl_hvzF2kuVZbpW4RfLY8uPLPDzjGYBnCAlljJSxoCqJudRVrJlUsTK--hHnlQ4lWQ5mYnrM355kJ2vwdfUWxjkXgs_cyH8GX75dmKW_Khtz5rN9iT6Ecs99_oQGWvNqdxtP8zmlO5P5m2nc1xCIDctFG0uHAi0zgpa5VhKFo6EceXbKskRUvMqslVpLKy3aUUJTo60wqc5zJhDsGjk8jnsFrqKekdHuddgPH0USirmhTcViIRQdnKCJGs9nk3mXHjFXPuP6L0IvVHH5g_UHebZzC74NO9GFsZyOlq0emS-_JYn8X7fqNtzsFWnyukP-HVhz9V248VN6xQ04PHQh6ESfOXJ0GvDZvCQT_1oM20nHzjwpKWtLhvQs5B12Ij7-JT46R9lOtsu2JN57X35o7sHxpSzqPqzXi9o9AMItszgGzaxmPCt5yUruFNqPuVcCTRXBeDjkwvQJ1n2dj7MiGFqJKjwsfN1PWXSwiODFqsd5l1zkH7Qb_pRXdP0BR7A54KjouU9T5IKjFZ4qGcHTVSuyDe8LKmu3WDZFinshM5WrLIKtC2hwlcwbnBGQCyhwajRFjZ4-_PvstuDadH6wX-zvzvY24Xq4Fw-BkI9gvf24dI9RoWv1k_BfEXh_2ej8Drj4UPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+Sketches%3A+Enabling+Monitoring+and+Analysis+Over+High-Speed+Data+Streams&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Schweller%2C+Robert&rft.au=Li%2C+Zhichun&rft.au=Chen%2C+Yan&rft.au=Gao%2C+Yan&rft.date=2007-10-01&rft.issn=1063-6692&rft.volume=15&rft.issue=5&rft.spage=1059&rft.epage=1072&rft_id=info:doi/10.1109%2FTNET.2007.896150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2007_896150 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |