Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement
Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize access...
Saved in:
Published in | Molecular plant Vol. 18; no. 4; pp. 619 - 638 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
07.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design.
A total of 3020 non-redundant metabolites (including 802 annotated metabolites) are identified from 452 diverse edible maize accessions worldwide. Seventeen and 15 hub genes are identified as key differentiation genes for flavonoids and lipids, respectively. Additional analyses reveal that ZmGPAT11 underwent diversifying selection during convergent metabolite differentiation in the lipid pathway. An edible maize metabolome database, EMMDB, is established for guiding improvement of maize nutritional and flavor traits. |
---|---|
AbstractList | Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design. Edible maize is an important food crop, providing energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the edible maize metabolome remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, comprising waxy, sweet, and field maize. A total of 3,020 non-redundant metabolites, including 802 annotated metabolites, were identified by a two-step optimized approach, which generated the most comprehensive annotated metabolites dataset in plants to date. Although specific metabolite differentiation was detected in Field-Sweet and Field-Waxy differentiations, convergent metabolite differentiation was the dominant differentiation pattern. We identified hub genes in all metabolite classes by mGWAS hotspot analysis. A total of 17 and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, which indicated diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Furthermore, the genetic and molecular studies reveal the roles and diversifying selection genetic mechanisms of ZmGPAT11 in convergent metabolite differentiation in lipid pathway. Based on our research, we established the first edible maize metabolome database, EMMDB (www.maizemdb.site/home/). We successfully applied EMMDB for precision improvement of nutritional and flavor traits, and an elite inbred line 6644_2 was bred with greatly improved in contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. These findings provide insights into the underlying genetic mechanisms of edible maize metabolite differentiation and provide a database for the breeding improvement of edible maize flavor and nutritional traits by metabolome precision design.Edible maize is an important food crop, providing energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the edible maize metabolome remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, comprising waxy, sweet, and field maize. A total of 3,020 non-redundant metabolites, including 802 annotated metabolites, were identified by a two-step optimized approach, which generated the most comprehensive annotated metabolites dataset in plants to date. Although specific metabolite differentiation was detected in Field-Sweet and Field-Waxy differentiations, convergent metabolite differentiation was the dominant differentiation pattern. We identified hub genes in all metabolite classes by mGWAS hotspot analysis. A total of 17 and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, which indicated diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Furthermore, the genetic and molecular studies reveal the roles and diversifying selection genetic mechanisms of ZmGPAT11 in convergent metabolite differentiation in lipid pathway. Based on our research, we established the first edible maize metabolome database, EMMDB (www.maizemdb.site/home/). We successfully applied EMMDB for precision improvement of nutritional and flavor traits, and an elite inbred line 6644_2 was bred with greatly improved in contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. These findings provide insights into the underlying genetic mechanisms of edible maize metabolite differentiation and provide a database for the breeding improvement of edible maize flavor and nutritional traits by metabolome precision design. Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design. A total of 3020 non-redundant metabolites (including 802 annotated metabolites) are identified from 452 diverse edible maize accessions worldwide. Seventeen and 15 hub genes are identified as key differentiation genes for flavonoids and lipids, respectively. Additional analyses reveal that ZmGPAT11 underwent diversifying selection during convergent metabolite differentiation in the lipid pathway. An edible maize metabolome database, EMMDB, is established for guiding improvement of maize nutritional and flavor traits. Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures and human activity have shaped the metabolome of edible maize remains unclear. In this study, we collected 452 diverse edible maize accessions worldwide, including waxy, sweet, and field maize. A total of 3020 non-redundant metabolites, including 802 annotated metabolites, were identified using a two-step optimized approach, which generated the most comprehensive annotated metabolite dataset in plants to date. Although specific metabolite differentiation was detected between field and sweet maize and between field and waxy maize, convergent metabolite differentiation was the dominant pattern. We identified hub genes in all metabolite classes by hotspot analysis in a metabolite genome-wide association study. Seventeen and 15 hub genes were selected as the key differentiation genes for flavonoids and lipids, respectively. Surprisingly, almost all of these genes were under diversifying selection, suggesting that diversifying selection was the main genetic mechanism of convergent metabolic differentiation. Further genetic and molecular studies revealed the roles and genetic diversifying selection mechanisms of ZmGPAT11 in convergent metabolite differentiation in the lipid pathway. On the basis of our research, we established the first edible maize metabolome database, EMMDB (https://www.maizemdb.site/home/). We successfully used EMMDB for precision improvement of nutritional and flavor traits and bred the elite inbred line 6644_2, with greatly increased contents of flavonoids, lysophosphatidylcholines, lysophosphatidylethanolamines, and vitamins. Collectively, our study sheds light on the genetic mechanisms of metabolite differentiation in edible maize and provides a database for breeding improvement of flavor and nutritional traits in edible maize by metabolome precision design. |
Author | Xu, Li Wang, Fengge Zhao, Jiuran Zhao, Yanxin Song, Wei Luo, Meijie Su, Aiguo Ge, Jianrong Yu, Ainian Lu, Baishan Lv, Yuanda Liu, Hui Xi, Shengli Li, Chunhui Wang, Xiaqing Zhang, Ruyang Li, Huihui Tian, Hongli Shi, Yaxing Wang, Shuai Jiao, Yanyan Li, Zhiyong Xiao, Senlin Wang, Ronghuan Dong, Hui Fan, Yanli Yi, Hongmei |
Author_xml | – sequence: 1 givenname: Chunhui surname: Li fullname: Li, Chunhui organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 2 givenname: Zhiyong surname: Li fullname: Li, Zhiyong organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 3 givenname: Baishan surname: Lu fullname: Lu, Baishan organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 4 givenname: Yaxing surname: Shi fullname: Shi, Yaxing organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 5 givenname: Senlin surname: Xiao fullname: Xiao, Senlin organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 6 givenname: Hui surname: Dong fullname: Dong, Hui organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 7 givenname: Ruyang surname: Zhang fullname: Zhang, Ruyang organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 8 givenname: Hui surname: Liu fullname: Liu, Hui organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 9 givenname: Yanyan surname: Jiao fullname: Jiao, Yanyan organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 10 givenname: Li surname: Xu fullname: Xu, Li organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 11 givenname: Aiguo surname: Su fullname: Su, Aiguo organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 12 givenname: Xiaqing surname: Wang fullname: Wang, Xiaqing organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 13 givenname: Yanxin surname: Zhao fullname: Zhao, Yanxin organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 14 givenname: Shuai surname: Wang fullname: Wang, Shuai organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 15 givenname: Yanli surname: Fan fullname: Fan, Yanli organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 16 givenname: Meijie surname: Luo fullname: Luo, Meijie organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 17 givenname: Shengli surname: Xi fullname: Xi, Shengli organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 18 givenname: Ainian surname: Yu fullname: Yu, Ainian organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 19 givenname: Fengge surname: Wang fullname: Wang, Fengge organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 20 givenname: Jianrong surname: Ge fullname: Ge, Jianrong organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 21 givenname: Hongli surname: Tian fullname: Tian, Hongli organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 22 givenname: Hongmei surname: Yi fullname: Yi, Hongmei organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 23 givenname: Yuanda surname: Lv fullname: Lv, Yuanda organization: Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China – sequence: 24 givenname: Huihui surname: Li fullname: Li, Huihui organization: State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China – sequence: 25 givenname: Ronghuan surname: Wang fullname: Wang, Ronghuan email: ronghuanwang@126.com organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 26 givenname: Wei surname: Song fullname: Song, Wei email: songwei1007@126.com organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China – sequence: 27 givenname: Jiuran surname: Zhao fullname: Zhao, Jiuran email: maizezhao@126.com organization: Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40025737$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2O1DAQhC20iP19AQ7IRy4JbWdiJxIXtOJPGmkvy9lynPbgUWIPdmYkeA1emI5mlyOcbLm_qparrtlFTBEZey2gFiDUu309p-lQS5BtDbIG0C_YldCtrPpO6Qu6K72pJLTykl2XsgdQ0KnmFbvcAGl0o6_Y763NO6yKsxPyGRc7pCnNwfHJxpFeD8iT5ziGYZ3b8At5xhPaqXCX4glJHBfuvtu4w8JDfPYIC_IxeI-Z5sEuIUVOjtxbF2hol5VeCh8yknnc8TAfcjrhTPgte-lpAd49nTfs26ePj_dfqu3D56_3H7aVazq1VAr90Ct02PbeeeW07gFhxF61Vg2o-mGUSC9916BUwwYceIlK2I2mHLRobtjbsy9t_nHEspg5FIcTfR3TsZhGghK90lr9HxW6Aam7RhP65gk9DjOO5pDDbPNP85w5AfIMuJxKyej_IgLMWqzZm7VYsxZrQBoqlkTvzyKkQE4BsykuYHQUXka3mDGFf8n_ALj8rv8 |
Cites_doi | 10.1111/j.1365-313X.1993.00657.x 10.1534/genetics.114.164442 10.1111/j.1365-313X.2011.04779.x 10.1111/tpj.14950 10.1186/s13059-022-02719-6 10.1016/j.molp.2019.10.009 10.1101/gr.100545.109 10.1038/ng.2310 10.1016/j.foodchem.2020.127337 10.1105/tpc.106.048033 10.1023/A:1005993408270 10.1098/rstb.2018.0245 10.1002/jsfa.1865 10.1016/j.molp.2017.12.011 10.1016/j.foodchem.2020.127198 10.1016/j.tplants.2021.02.005 10.1002/j.1460-2075.1990.tb08113.x 10.1016/j.molp.2015.01.016 10.1073/pnas.1413750111 10.1146/annurev-arplant-042817-040240 10.1126/science.abg7985 10.1038/s41598-020-62111-x 10.1104/pp.15.00515 10.1186/s13059-021-02481-1 10.1093/genetics/52.6.1175 10.1105/tpc.112.098004 10.1016/j.molp.2017.12.016 10.1038/s41467-022-32026-4 10.1105/tpc.19.00111 10.1080/09168451.2016.1184558 10.1007/s10722-008-9360-8 10.1093/bioinformatics/btu170 10.1093/jxb/erac270 10.1086/521987 10.1609/icwsm.v3i1.13937 10.1016/j.xplc.2019.100010 10.1093/nar/gkab447 10.1111/tpj.15617 10.1093/molbev/msw050 10.1111/pbi.13335 10.1016/j.plaphy.2011.01.010 10.1038/ncomms12767 10.1093/nar/8.19.4321 10.1016/j.tplants.2018.09.011 10.1038/ng.3634 10.1111/pce.13428 10.1093/nar/gkab382 10.1016/j.foodchem.2015.11.113 10.1038/ng.2484 10.1038/nature22971 10.1093/mp/sst080 10.1038/s41591-022-01980-3 10.1007/s00425-007-0634-8 10.1016/j.phytochem.2015.02.006 10.1101/gr.094052.109 10.1016/j.ijbiomac.2021.01.116 10.1038/ng.3007 10.1038/ng.2309 10.1111/nph.15457 10.3390/ijms18122780 10.1007/s00299-014-1623-6 10.1111/tpj.13983 10.1016/j.cell.2017.12.019 10.1111/tpj.14317 10.2134/agronj1930.00021962002200060004x 10.1016/j.ajhg.2010.11.011 10.1086/519795 10.2134/agronj1943.00021962003500090008x 10.1007/s11032-008-9178-2 10.1105/tpc.111.083279 10.1038/srep12412 10.1111/tpj.14856 10.1016/j.molp.2020.12.006 10.4161/fly.19695 10.1038/s41588-020-0616-3 10.1534/genetics.108.089656 10.1038/s41588-019-0518-4 10.1038/ng.3044 10.2307/210855 10.1101/gr.107524.110 10.1038/s41598-018-32212-9 10.1371/journal.pone.0007612 10.1073/pnas.1120813109 10.1021/jf050419e 10.1111/tpj.16123 10.3835/plantgenome2011.08.0024 10.1093/bioinformatics/btp324 10.1093/bioinformatics/btp352 10.1038/ncomms4438 10.1038/s41598-020-58341-8 10.1111/nph.18095 10.1038/s41467-021-21380-4 10.3390/foods12142665 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molp.2025.02.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 638 |
ExternalDocumentID | 40025737 10_1016_j_molp_2025_02_007 S1674205225000905 |
Genre | Journal Article |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 6I. 7-5 70D 8P~ AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATLK AATTM AAVLN AAXKI AAXUO ABGRD ABJNI ABMAC ABNKS ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADZTZ AEBSH AEGPL AEIPS AEKER AENEX AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIEXJ AIJHB AIKHN AITUG AKHUL AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 CZ4 DU5 E3Z EBS EE~ EFJIC F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 N9A O9- OAUVE OK1 P2P PQQKQ Q1. RD5 ROL RW1 RXO SPCBC SSA SSH T5K TR2 X7H ~91 ~G- 1RT AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI ADVLN AEUPX AEXQZ AFPUW AGCQF AGHFR AGRNS AIGII AIIUN AKBMS AKYEP CITATION CKLRP CW9 EJD H13 O0~ OVD SSZ TEORI TGP W8F CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c386t-6efb96ece59fcf6c7790e0de965a6be69bd2e0e0983e26b40c0f2e61a47608713 |
IEDL.DBID | AIKHN |
ISSN | 1674-2052 1752-9867 |
IngestDate | Wed Jul 02 03:18:08 EDT 2025 Fri Jul 11 06:04:35 EDT 2025 Fri Apr 11 01:31:54 EDT 2025 Tue Jul 01 05:06:48 EDT 2025 Sat Apr 19 15:47:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | metabolome database metabolite differentiation waxy maize sweet maize diversifying selection |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-6efb96ece59fcf6c7790e0de965a6be69bd2e0e0983e26b40c0f2e61a47608713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1674205225000905 |
PMID | 40025737 |
PQID | 3173027837 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_3206196776 proquest_miscellaneous_3173027837 pubmed_primary_40025737 crossref_primary_10_1016_j_molp_2025_02_007 elsevier_sciencedirect_doi_10_1016_j_molp_2025_02_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-07 |
PublicationDateYYYYMMDD | 2025-04-07 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Song, Kong, Liu, Zhang, Yang (bib80) 2018 Martin, Butelli, Petroni, Tonelli (bib60) 2011; 23 Wang, Yu, Haberer, Marri, Fan, Goicoechea, Zuccolo, Song, Kudrna, Ammiraju (bib87) 2014; 46 Deng, Zhang, Luo, Liu, Wen, Luo, Yan, Xiao (bib26) 2020; 103 Yun, Kang, Kim, Kim, Kim, Hong (bib102) 2020; 330 Chen, Wang, Peng, Gong, Gao, Wan, Wang, Shi, Zhou, Li (bib17) 2016; 7 Wang, Chen, Wu, Lemmon, Xu, Huang, Liang, Xu, Li, Doebley, Tian (bib89) 2018; 11 Bu, Luo, Huo, Wang, Zhang, He, Wu, Zhao, Liu, Guo (bib8) 2021; 49 Alseekh, Scossa, Wen, Luo, Yan, Beleggia, Klee, Huang, Papa, Fernie (bib2) 2021; 26 Beisson, Li, Bonaventure, Pollard, Ohlrogge (bib3) 2007; 19 Sprague, Brimhall, Hixon (bib81) 1943; 35 Berberich, Harada, Sugawara, Kodama, Iba, Kusano (bib5) 1998; 36 Yang, Lee, Goddard, Visscher (bib99) 2011; 88 Paz Ares, Ghosal, Saedler (bib71) 1990; 9 Paradis, Villasuso, Aguayo, Maldiney, Habricot, Zalejski, Machado, Sotta, Miginiac, Jeannette (bib70) 2011; 49 Righini, Rodriguez, Berosich, Grotewold, Casati, Falcone Ferreyra (bib77) 2019; 42 Xie, Yu, Mao, Liu, Hu, Li, Guo, Liu (bib95) 2017; 18 Dykes, Rooney, Waniska, Rooney (bib28) 2005; 53 Gao, Stumpe, Feussner, Kolomiets (bib33) 2008; 227 Vallarino, de Abreu e Lima, Soria, Tong, Pott, Willmitzer, Fernie, Nikoloski, Osorio (bib85) 2018; 8 Chen, Patterson, Reich (bib13) 2010; 20 Li, Liu, Zhang (bib52) 2010; 174 Chen, Gong, Guo, Wang, Zhang, Liu, Yu, Xiong, Luo (bib16) 2013; 6 Cheng, Sun, Hou, Zheng, Zhang, Zhang, Liu, Liang, Zhuang, Liu (bib20) 2016; 48 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib72) 2011; 12 Lu, Dong, Xu, Shi, Zhao, Fan, Yu (bib58) 2019; 34 Wang, Lin, Li, Zhao, Zhao, Wu, Ma, Wang, Xie, Li (bib86) 2020; 52 Fan, Quan, Leng, Guo, Hu, Ruan, Ma, Zeng (bib31) 2008; 22 Cao, Wang, Fang, Zhu, Chen, Wang, Li, Wu, Tang, Fei (bib10) 2022; 23 Xu, Cao, Wang, Chen, Jin, Li, Tian (bib96) 2019; 31 Pandey, Misra, Choudhary, Yadav, Goel, Bhambhani, Sanyal, Trivedi, Trivedi (bib68) 2015; 5 Zhou, Stephens (bib109) 2012; 44 Murray, Thompson (bib64) 1980; 8 Chen, Hu, Shi, Yin, Sun, Hao, Xia, Luo, Fernie, He, Chen (bib14) 2020; 18 Liu, Fernie, Yan (bib55) 2020; 1 Endelman (bib29) 2011; 4 Zhang, Shi, Wang, Ma, Wang, Xue, Shen, Hamaila, Tang, Qi (bib108) 2022; 109 Li, Durbin (bib48) 2009; 25 Hufford, Berny Mier y Teran, Gepts (bib40) 2019; 70 Creech (bib25) 1965; 52 Li, Fang, Lin, Rebetzke (bib53) 2022; 73 Janzen, Wang, Hufford (bib42) 2019; 221 Pang, Chong, Zhou, de Lima Morais, Chang, Barrette, Gauthier, Jacques, Li, Xia (bib69) 2021; 49 Bolger, Lohse, Usadel (bib6) 2014; 30 Kahrıman, Egesel, Gül (bib43) 2011; 33 Dussarrat, Prigent, Latorre, Bernillon, Flandin, Díaz, Cassan, Van Delft, Jacob, Varala (bib27) 2022; 234 Kuroda, Ikeda, Yamazaki, Ito, Uda, Wakabayashi, Watanabe (bib44) 2016; 80 Wang, Tu, Wan, Chen, Liu, Luo, Xu, Zhang (bib88) 2016; 199 Shang, Ma, Zhou, Zhang, Duan, Chen, Zeng, Zhou, Wang, Gu (bib78) 2014; 346 Zhang, Wu, Sade, Wu, Egbaria, Fernie, Yan, Qin, Chen, Brotman, Dai (bib105) 2021; 22 Corral, Haywood, Stehl, Stubbs, Murcha, Mylne (bib24) 2018; 95 Ståhl, Carlsson, Lenman, Dahlqvist, Huang, Banas, Banas, Stymne (bib82) 2004; 135 Wang, Wang, Shen, Zhang, Zheng (bib90) 2007; 33 Browning, Browning (bib7) 2007; 81 Grobman, Salhuana, Sevilla (bib34) 1961 Lu, Shi, Xu, Zhao (bib57) 2016; 35 Cingolani, Platts, Wang, Coon, Nguyen, Wang, Land, Lu, Ruden (bib22) 2012; 6 Wen, Li, Li, Gao, Li, Li, Liu, Liu, Chen, Luo (bib92) 2014; 5 Tian, Tan, Liu, Rong, Huang (bib84) 2009; 56 Olías, Delgado-Andrade, Padial, Marín-Manzano, Clemente (bib66) 2023; 12 Christ, Pluskal, Aubry, Weng (bib21) 2018; 23 Zeng (bib103) 1987; 3 Chen, Chen, Zhang, Yang, Guo, Wang, Ji, Zhao, Yin, Cai (bib19) 2022; 375 Lännenpää (bib46) 2014; 33 Shi, Dong, Lu (bib79) 2019; 190 Hovav, Chaudhary, Udall, Flagel, Wendel (bib38) 2008; 179 Guo, Zhao, Sun, Wang, Wu, Lin, Ren, Gao, Deng, Zhang (bib36) 2019; 51 Liu, Cui, Sun, Hu, Wang (bib56) 2019; 31 Yang, Chen, Hu, Yuan, Lu (bib100) 2021; 173 Li, Peng, Yang, Wang, Fu, Wang, Han, Chai, Guo, Yang (bib50) 2013; 45 Zeng, Yuan, Dong, Peng, Jing, Xu, Tang, Wang, Zha, Gao (bib104) 2020; 13 Zhang, Wang, Lu, Bhusal, Song, Cregan, Yen, Brown, Jiang (bib106) 2018; 11 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib49) 2009; 25 Orhun, Korkut (bib67) 2011; 6 Alexander, Novembre, Lange (bib1) 2009; 19 Morohashi, Casas, Falcone Ferreyra, Mejía-Guerra, Mejía-Guerra, Pourcel, Yilmaz, Feller, Carvalho, Emiliani (bib63) 2012; 24 Zhu, Wang, Huang, Zhang, Liao, Zhang, Lin, Qin, Peng, Yang (bib110) 2018; 172 Bastian, Heymann, Jacomy (bib111) 2009 Li, Wen, Alseekh, Yang, Guo, Li, Wang, Pan, Zhan, Liu (bib51) 2019; 99 Buergel, Steinfeldt, Ruyoga, Pietzner, Bizzarri, Vojinovic, Upmeier zu Belzen, Loock, Kittner, Christmann (bib9) 2022; 28 Carter (bib11) 1948; 38 Landoni, Puglisi, Cassani, Borlini, Brunoldi, Comaschi, Pilu (bib45) 2020; 10 Xu, Chen, Wang, Jia, Xu (bib97) 2020; 10 Riedelsheimer, Lisec, Czedik-Eysenberg, Sulpice, Flis, Grieder, Altmann, Stitt, Willmitzer, Melchinger (bib76) 2012; 109 Collins (bib23) 1909 Hendry (bib37) 1930; 22 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly, DePristo (bib61) 2010; 20 Beleggia, Rau, Laidò, Platani, Nigro, Fragasso, De Vita, Scossa, Fernie, Nikoloski, Papa (bib4) 2016; 33 Falcone Ferreyra, Emiliani, Rodriguez, Campos-Bermudez, Grotewold, Casati (bib30) 2015; 169 Marshall, Tracy (bib59) 2003 Woodhouse, Hufford (bib94) 2019; 374 Zhang, Alseekh, Zhu, Zhang, Fernie, Kuang, Wen (bib107) 2020; 104 Meyer, Whitaker, Little, Wu, Kennelly, Long, Litt (bib62) 2015; 115 Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly, Sham (bib74) 2007; 81 Will, Hyde (bib93) 1917 (bib75) 2013 Chen, Li, Tan, Tian (bib15) 2021; 14 Liu, Wang, Warburton, Wen, Jin, Deng, Liu, Tong, Pan, Yang, Yan (bib54) 2015; 8 Chen, Zhang, Ding, Wang, Deng, Wang, Yang, Pi, Zhang, Zhai (bib12) 2022; 13 Suzuki, Honda, Funatsuki, Nakatsuka (bib83) 2004; 84 Fan, Bao, Wang, Yao, Gui, Hu, Zhu, Zeng, Li, Xu (bib32) 2009; 4 Wellhausen, Roberts, Hernandez, Mangelsdorf (bib91) 1952; 19 Nunes, Coelho, Castro, Vidigal, Mendes, da Silva, Pires (bib65) 2020; 331 Yonekura-Sakakibara, Fukushima, Nakabayashi, Hanada, Matsuda, Sugawara, Inoue, Kuromori, Ito, Shinozaki (bib101) 2012; 69 Chen, Gao, Xie, Gong, Lu, Wang, Li, Liu, Zhang, Dong (bib18) 2014; 46 Pérez, de los Campos (bib73) 2014; 198 Hu, Colantonio, Müller, Leach, Nanni, Finegan, Wang, Baseggio, Newton, Juhl (bib39) 2021; 12 Jiao, Peluso, Shi, Liang, Stitzer, Wang, Campbell, Stein, Wei, Chin (bib112) 2017; 546 Grzybowski, Mural, Xu, Turkus, Yang, Schnable (bib35) 2023; 113 Lazar, Zhang, Goodman (bib47) 1993; 3 Xu, Zhu, Zhang (bib98) 2014; 111 Hufford, Xu, Van Heerwaarden, Pyhäjärvi, Chia, Cartwright, Elshire, Glaubitz, Guill, Kaeppler (bib41) 2012; 44 Liu (10.1016/j.molp.2025.02.007_bib56) 2019; 31 Morohashi (10.1016/j.molp.2025.02.007_bib63) 2012; 24 Browning (10.1016/j.molp.2025.02.007_bib7) 2007; 81 Li (10.1016/j.molp.2025.02.007_bib48) 2009; 25 Zhu (10.1016/j.molp.2025.02.007_bib110) 2018; 172 Woodhouse (10.1016/j.molp.2025.02.007_bib94) 2019; 374 Xie (10.1016/j.molp.2025.02.007_bib95) 2017; 18 Berberich (10.1016/j.molp.2025.02.007_bib5) 1998; 36 Xu (10.1016/j.molp.2025.02.007_bib96) 2019; 31 Pérez (10.1016/j.molp.2025.02.007_bib73) 2014; 198 Riedelsheimer (10.1016/j.molp.2025.02.007_bib76) 2012; 109 Zhang (10.1016/j.molp.2025.02.007_bib108) 2022; 109 Pedregosa (10.1016/j.molp.2025.02.007_bib72) 2011; 12 Chen (10.1016/j.molp.2025.02.007_bib15) 2021; 14 Bastian (10.1016/j.molp.2025.02.007_bib111) 2009; 3 Righini (10.1016/j.molp.2025.02.007_bib77) 2019; 42 Pang (10.1016/j.molp.2025.02.007_bib69) 2021; 49 Wang (10.1016/j.molp.2025.02.007_bib86) 2020; 52 Cheng (10.1016/j.molp.2025.02.007_bib20) 2016; 48 Olías (10.1016/j.molp.2025.02.007_bib66) 2023; 12 Grobman (10.1016/j.molp.2025.02.007_bib34) 1961 Grzybowski (10.1016/j.molp.2025.02.007_bib35) 2023; 113 Wang (10.1016/j.molp.2025.02.007_bib88) 2016; 199 Lu (10.1016/j.molp.2025.02.007_bib57) 2016; 35 Chen (10.1016/j.molp.2025.02.007_bib17) 2016; 7 Chen (10.1016/j.molp.2025.02.007_bib18) 2014; 46 Landoni (10.1016/j.molp.2025.02.007_bib45) 2020; 10 Alseekh (10.1016/j.molp.2025.02.007_bib2) 2021; 26 Shang (10.1016/j.molp.2025.02.007_bib78) 2014; 346 Lu (10.1016/j.molp.2025.02.007_bib58) 2019; 34 Li (10.1016/j.molp.2025.02.007_bib50) 2013; 45 Hu (10.1016/j.molp.2025.02.007_bib39) 2021; 12 Cao (10.1016/j.molp.2025.02.007_bib10) 2022; 23 Pandey (10.1016/j.molp.2025.02.007_bib68) 2015; 5 Will (10.1016/j.molp.2025.02.007_bib93) 1917 Hufford (10.1016/j.molp.2025.02.007_bib41) 2012; 44 Beleggia (10.1016/j.molp.2025.02.007_bib4) 2016; 33 Xu (10.1016/j.molp.2025.02.007_bib98) 2014; 111 Li (10.1016/j.molp.2025.02.007_bib53) 2022; 73 Yang (10.1016/j.molp.2025.02.007_bib99) 2011; 88 Alexander (10.1016/j.molp.2025.02.007_bib1) 2009; 19 Paradis (10.1016/j.molp.2025.02.007_bib70) 2011; 49 Chen (10.1016/j.molp.2025.02.007_bib13) 2010; 20 Deng (10.1016/j.molp.2025.02.007_bib26) 2020; 103 Ståhl (10.1016/j.molp.2025.02.007_bib82) 2004; 135 Christ (10.1016/j.molp.2025.02.007_bib21) 2018; 23 Chen (10.1016/j.molp.2025.02.007_bib14) 2020; 18 Purcell (10.1016/j.molp.2025.02.007_bib74) 2007; 81 Liu (10.1016/j.molp.2025.02.007_bib54) 2015; 8 Jiao (10.1016/j.molp.2025.02.007_bib112) 2017; 546 Li (10.1016/j.molp.2025.02.007_bib52) 2010; 174 Yonekura-Sakakibara (10.1016/j.molp.2025.02.007_bib101) 2012; 69 Zeng (10.1016/j.molp.2025.02.007_bib103) 1987; 3 Beisson (10.1016/j.molp.2025.02.007_bib3) 2007; 19 Bolger (10.1016/j.molp.2025.02.007_bib6) 2014; 30 Sprague (10.1016/j.molp.2025.02.007_bib81) 1943; 35 Corral (10.1016/j.molp.2025.02.007_bib24) 2018; 95 Liu (10.1016/j.molp.2025.02.007_bib55) 2020; 1 Orhun (10.1016/j.molp.2025.02.007_bib67) 2011; 6 Vallarino (10.1016/j.molp.2025.02.007_bib85) 2018; 8 Tian (10.1016/j.molp.2025.02.007_bib84) 2009; 56 McKenna (10.1016/j.molp.2025.02.007_bib61) 2010; 20 Murray (10.1016/j.molp.2025.02.007_bib64) 1980; 8 Nunes (10.1016/j.molp.2025.02.007_bib65) 2020; 331 Yun (10.1016/j.molp.2025.02.007_bib102) 2020; 330 Zeng (10.1016/j.molp.2025.02.007_bib104) 2020; 13 Li (10.1016/j.molp.2025.02.007_bib51) 2019; 99 Hovav (10.1016/j.molp.2025.02.007_bib38) 2008; 179 Shi (10.1016/j.molp.2025.02.007_bib79) 2019; 190 Wang (10.1016/j.molp.2025.02.007_bib87) 2014; 46 Zhang (10.1016/j.molp.2025.02.007_bib107) 2020; 104 Wang (10.1016/j.molp.2025.02.007_bib90) 2007; 33 Cingolani (10.1016/j.molp.2025.02.007_bib22) 2012; 6 Collins (10.1016/j.molp.2025.02.007_bib23) 1909 Zhang (10.1016/j.molp.2025.02.007_bib105) 2021; 22 Endelman (10.1016/j.molp.2025.02.007_bib29) 2011; 4 Martin (10.1016/j.molp.2025.02.007_bib60) 2011; 23 Paz Ares (10.1016/j.molp.2025.02.007_bib71) 1990; 9 Fan (10.1016/j.molp.2025.02.007_bib32) 2009; 4 Zhou (10.1016/j.molp.2025.02.007_bib109) 2012; 44 Wen (10.1016/j.molp.2025.02.007_bib92) 2014; 5 Wang (10.1016/j.molp.2025.02.007_bib89) 2018; 11 Chen (10.1016/j.molp.2025.02.007_bib12) 2022; 13 Janzen (10.1016/j.molp.2025.02.007_bib42) 2019; 221 Meyer (10.1016/j.molp.2025.02.007_bib62) 2015; 115 Xu (10.1016/j.molp.2025.02.007_bib97) 2020; 10 Song (10.1016/j.molp.2025.02.007_bib80) 2018 Dussarrat (10.1016/j.molp.2025.02.007_bib27) 2022; 234 Bu (10.1016/j.molp.2025.02.007_bib8) 2021; 49 Kuroda (10.1016/j.molp.2025.02.007_bib44) 2016; 80 Lännenpää (10.1016/j.molp.2025.02.007_bib46) 2014; 33 Dykes (10.1016/j.molp.2025.02.007_bib28) 2005; 53 Buergel (10.1016/j.molp.2025.02.007_bib9) 2022; 28 Hufford (10.1016/j.molp.2025.02.007_bib40) 2019; 70 Chen (10.1016/j.molp.2025.02.007_bib16) 2013; 6 Kahrıman (10.1016/j.molp.2025.02.007_bib43) 2011; 33 Zhang (10.1016/j.molp.2025.02.007_bib106) 2018; 11 Chen (10.1016/j.molp.2025.02.007_bib19) 2022; 375 Gao (10.1016/j.molp.2025.02.007_bib33) 2008; 227 Hendry (10.1016/j.molp.2025.02.007_bib37) 1930; 22 Suzuki (10.1016/j.molp.2025.02.007_bib83) 2004; 84 Li (10.1016/j.molp.2025.02.007_bib49) 2009; 25 Creech (10.1016/j.molp.2025.02.007_bib25) 1965; 52 Yang (10.1016/j.molp.2025.02.007_bib100) 2021; 173 Guo (10.1016/j.molp.2025.02.007_bib36) 2019; 51 Marshall (10.1016/j.molp.2025.02.007_bib59) 2003 Fan (10.1016/j.molp.2025.02.007_bib31) 2008; 22 Falcone Ferreyra (10.1016/j.molp.2025.02.007_bib30) 2015; 169 Wellhausen (10.1016/j.molp.2025.02.007_bib91) 1952; 19 Lazar (10.1016/j.molp.2025.02.007_bib47) 1993; 3 Carter (10.1016/j.molp.2025.02.007_bib11) 1948; 38 |
References_xml | – volume: 73 start-page: 6089 year: 2022 end-page: 6102 ident: bib53 article-title: Convergent loss of anthocyanin pigments is controlled by the same MYB gene in cereals publication-title: J. Exp. Bot. – volume: 111 start-page: 12456 year: 2014 end-page: 12461 ident: bib98 article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1417 year: 2020 ident: bib45 article-title: Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins publication-title: Sci. Rep. – volume: 234 start-page: 1614 year: 2022 end-page: 1628 ident: bib27 article-title: Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience publication-title: New Phytol. – volume: 6 start-page: 2115 year: 2011 end-page: 2117 ident: bib67 article-title: Interrelationships among the oil and fatty acids in maize publication-title: Afr. J. Agric. Res. – volume: 3 start-page: 657 year: 1993 end-page: 668 ident: bib47 article-title: The origin of the bifunctional dihydrofolate reductasethymidylate synthase isogenes of publication-title: Plant J. – volume: 52 start-page: 565 year: 2020 end-page: 571 ident: bib86 article-title: Genome-wide selection and genetic improvement during modern maize breeding publication-title: Nat. Genet. – volume: 169 start-page: 1090 year: 2015 end-page: 1107 ident: bib30 article-title: The Identification of Maize and publication-title: Plant Physiol. – volume: 19 start-page: 351 year: 2007 end-page: 368 ident: bib3 article-title: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of publication-title: Plant Cell – volume: 6 start-page: 80 year: 2012 end-page: 92 ident: bib22 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms publication-title: SnpEff. Fly – volume: 330 year: 2020 ident: bib102 article-title: Metabotyping of different soybean genotypes and distinct metabolism in their seeds and leaves publication-title: Food Chem. – volume: 19 start-page: 1655 year: 2009 end-page: 1664 ident: bib1 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. – volume: 7 year: 2016 ident: bib17 article-title: Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals publication-title: Nat. Commun. – volume: 48 start-page: 1218 year: 2016 end-page: 1224 ident: bib20 article-title: Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea publication-title: Nat. Genet. – volume: 5 start-page: 3438 year: 2014 ident: bib92 article-title: Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights publication-title: Nat. Commun. – volume: 18 start-page: 1722 year: 2020 end-page: 1735 ident: bib14 article-title: Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels publication-title: Plant Biotechnol. J. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib49 article-title: The sequence alignment/map format and SAMtools publication-title: bioinformatics – volume: 19 year: 1952 ident: bib91 article-title: Races of maize in Mexico publication-title: Their origin, characteristics and distribution – volume: 99 start-page: 216 year: 2019 end-page: 230 ident: bib51 article-title: Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement publication-title: Plant J. – volume: 35 start-page: 817 year: 1943 end-page: 822 ident: bib81 article-title: Some effects of the waxy gene in corn on properties of the endosperm starch 1 publication-title: Agron. J. – volume: 6 start-page: 1769 year: 2013 end-page: 1780 ident: bib16 article-title: A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics publication-title: Mol. Plant – volume: 12 start-page: 1227 year: 2021 ident: bib39 article-title: Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn publication-title: Nat. Commun. – volume: 174 start-page: 52 year: 2010 end-page: 53+63 ident: bib52 article-title: Origin, research and development of waxy maize publication-title: Tillage and Cultivation – volume: 9 start-page: 315 year: 1990 end-page: 321 ident: bib71 article-title: Molecular analysis of the C1-I allele from Zea mays: a dominant mutant of the regulatory C1 locus publication-title: EMBO J. – volume: 81 start-page: 1084 year: 2007 end-page: 1097 ident: bib7 article-title: Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering publication-title: Am. J. Hum. Genet. – volume: 36 start-page: 297 year: 1998 end-page: 306 ident: bib5 article-title: Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature publication-title: Plant Mol. Biol. – volume: 1 year: 2020 ident: bib55 article-title: The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement publication-title: Plant Communications – volume: 331 year: 2020 ident: bib65 article-title: Naringenin-lactoferrin binding: Impact on naringenin bitterness and thermodynamic characterization of the complex publication-title: Food Chem. – volume: 109 start-page: 1116 year: 2022 end-page: 1133 ident: bib108 article-title: Jujube metabolome selection determined the edible properties acquired during domestication publication-title: Plant J. – volume: 173 start-page: 219 year: 2021 end-page: 224 ident: bib100 article-title: Starch physicochemical properties of double recessive sweet-waxy maize publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: 871 year: 2015 end-page: 884 ident: bib54 article-title: Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding publication-title: Mol. Plant – volume: 33 start-page: 1740 year: 2016 end-page: 1753 ident: bib4 article-title: Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels publication-title: Mol. Biol. Evol. – year: 1909 ident: bib23 article-title: A New Type of Indian Corn from China – volume: 179 start-page: 1725 year: 2008 end-page: 1733 ident: bib38 article-title: Parallel Domestication, Convergent Evolution and Duplicated Gene Recruitment in Allopolyploid Cotton publication-title: Genetics – volume: 49 start-page: 357 year: 2011 end-page: 362 ident: bib70 article-title: lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves publication-title: Plant Physiol. Biochem. – start-page: 361 year: 2009 end-page: 362 ident: bib111 article-title: Gephi: an open source software for exploring and manipulating networks publication-title: Proc. Int. AAAI Conf. Web Soc. Media – volume: 70 start-page: 727 year: 2019 end-page: 751 ident: bib40 article-title: Crop biodiversity: an unfinished magnum opus of nature publication-title: Annu. Rev. Plant Biol. – volume: 84 start-page: 1691 year: 2004 end-page: 1694 ident: bib83 article-title: In-gel detection and study of the role of flavonol 3-glucosidase in the bitter taste generation in tartary buckwheat publication-title: J. Sci. Food Agric. – volume: 69 start-page: 154 year: 2012 end-page: 167 ident: bib101 article-title: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in publication-title: Plant J. – volume: 24 start-page: 2745 year: 2012 end-page: 2764 ident: bib63 article-title: A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes publication-title: Plant Cell – volume: 113 start-page: 1109 year: 2023 end-page: 1121 ident: bib35 article-title: A common resequencing-based genetic marker data set for global maize diversity publication-title: Plant J. – volume: 38 start-page: 206 year: 1948 end-page: 221 ident: bib11 article-title: Sweet corn among the Indians publication-title: Geogr. Rev. – volume: 33 start-page: 97 year: 2007 end-page: 102 ident: bib90 article-title: Orlgin, classification, variety improvement and industry development of waxy corn publication-title: Hunan Nongye Daxue Xuebao (Journal of Hunan Agricultural University) – year: 1961 ident: bib34 – volume: 26 start-page: 650 year: 2021 end-page: 661 ident: bib2 article-title: Domestication of Crop Metabolomes: Desired and Unintended Consequences publication-title: Trends Plant Sci. – volume: 190 start-page: 112 year: 2019 end-page: 117 ident: bib79 article-title: Grain dehydration and gelatinization characteristics of waxy maize at different harvesting time publication-title: Crops – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib48 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 3 start-page: 8 year: 1987 ident: bib103 article-title: The Relationship of waxy maize in China publication-title: Crop breed resource – volume: 10 start-page: 5242 year: 2020 ident: bib97 article-title: Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation publication-title: Sci. Rep. – volume: 346 start-page: 1084 year: 2014 end-page: 1088 ident: bib78 article-title: Biosynthesis, regulation, and domestication of bitterness in cucumber publication-title: Sci. Technol. Humanit. – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: bib6 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics – volume: 49 start-page: W317 year: 2021 end-page: W325 ident: bib8 article-title: KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis publication-title: Nucleic Acids Res. – volume: 109 start-page: 8872 year: 2012 end-page: 8877 ident: bib76 article-title: Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize publication-title: Proc. Natl. Acad. Sci. USA – volume: 375 year: 2022 ident: bib19 article-title: Convergent selection of a WD40 protein that enhances grain yield in maize and rice publication-title: Science – volume: 172 start-page: 249 year: 2018 end-page: 261 ident: bib110 article-title: Rewiring of the Fruit Metabolome in Tomato Breeding publication-title: Cellule – volume: 34 start-page: 69 year: 2019 end-page: 77 ident: bib58 article-title: Relationship Between Water Content and Physical Properties and Quality of Sweet Corn at Different Harvesting Periods publication-title: Acta Agriculturae Boreali-Sinica – volume: 53 start-page: 6813 year: 2005 end-page: 6818 ident: bib28 article-title: Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes publication-title: J. Agric. Food Chem. – volume: 88 start-page: 76 year: 2011 end-page: 82 ident: bib99 article-title: GCTA: A Tool for Genome-wide Complex Trait Analysis publication-title: Am. J. Hum. Genet. – volume: 5 year: 2015 ident: bib68 article-title: AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues publication-title: Sci. Rep. – volume: 81 start-page: 559 year: 2007 end-page: 575 ident: bib74 article-title: PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses publication-title: Am. J. Hum. Genet. – volume: 46 start-page: 982 year: 2014 end-page: 988 ident: bib87 article-title: The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication publication-title: Nat. Genet. – volume: 44 start-page: 808 year: 2012 end-page: 811 ident: bib41 article-title: Comparative population genomics of maize domestication and improvement publication-title: Nat. Genet. – start-page: 28 year: 2018 end-page: 32 ident: bib80 article-title: Creation method and identification technology for sweet-waxy maize of double recessive genotype publication-title: China Veg. – volume: 22 start-page: 329 year: 2008 end-page: 338 ident: bib31 article-title: Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize publication-title: Mol. Breed. – volume: 135 start-page: 1324 year: 2004 end-page: 1335 ident: bib82 article-title: Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from publication-title: Planta – volume: 31 start-page: 1990 year: 2019 end-page: 2009 ident: bib96 article-title: Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte publication-title: Plant Cell – volume: 31 start-page: 11 year: 2019 end-page: 16 ident: bib56 article-title: Growth and development characteristics and linoleic acid content of new variety of high linoleic corn publication-title: Acta Agriculturae Jiangxi – volume: 4 year: 2009 ident: bib32 article-title: Post-Domestication Selection in the Maize Starch Pathway publication-title: PLoS One – volume: 52 start-page: 1175 year: 1965 end-page: 1186 ident: bib25 article-title: Genetic control of carbohydrate synthesis in maize endosperm publication-title: Gene – volume: 23 start-page: 1685 year: 2011 end-page: 1699 ident: bib60 article-title: How can research on plants contribute to promoting human health? publication-title: Plant Cell – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bib61 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 28 start-page: 2309 year: 2022 end-page: 2320 ident: bib9 article-title: Metabolomic profiles predict individual multidisease outcomes publication-title: Nat. Med. – volume: 4 start-page: 250 year: 2011 end-page: 255 ident: bib29 article-title: Ridge regression and other kernels for genomic selection with R package rrBLUP publication-title: Plant Genome – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib72 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 221 start-page: 1279 year: 2019 end-page: 1288 ident: bib42 article-title: The extent of adaptive wild introgression in crops publication-title: New Phytol. – volume: 115 start-page: 194 year: 2015 end-page: 206 ident: bib62 article-title: Parallel reductions in phenolic constituents resulting from the domestication of eggplant publication-title: Phytochemistry – volume: 104 start-page: 613 year: 2020 end-page: 630 ident: bib107 article-title: Dissection of the domestication-shaped genetic architecture of lettuce primary metabolism publication-title: Plant J. – volume: 56 start-page: 247 year: 2009 end-page: 255 ident: bib84 article-title: Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene publication-title: Genet. Resour. Crop Evol. – volume: 199 start-page: 8 year: 2016 end-page: 17 ident: bib88 article-title: Spatio-temporal distribution and natural variation of metabolites in citrus fruits publication-title: Food Chem. – volume: 103 start-page: 1710 year: 2020 end-page: 1722 ident: bib26 article-title: Metabolomics analysis reveals differences in evolution between maize and rice publication-title: Plant J. – volume: 8 start-page: 4321 year: 1980 end-page: 4325 ident: bib64 article-title: Rapid isolation of high molecular weight plant DNA publication-title: Nucleic Acids Res. – volume: 35 start-page: 106 year: 2016 end-page: 107 ident: bib57 article-title: Breeding of sweet-waxy corn variety, a new type of fresh corn nongkeyu368 publication-title: Seed – volume: 13 start-page: 4392 year: 2022 ident: bib12 article-title: Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora publication-title: Nat. Commun. – volume: 46 start-page: 714 year: 2014 end-page: 721 ident: bib18 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. – volume: 22 start-page: 508 year: 1930 end-page: 514 ident: bib37 article-title: Archaeological evidence concerning the origin of sweet maize publication-title: J. Am. Soc. Agron. – volume: 33 start-page: 613 year: 2011 end-page: 620 ident: bib43 article-title: Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique publication-title: Acta Sci. Agron. – volume: 374 year: 2019 ident: bib94 article-title: Parallelism and convergence in post-domestication adaptation in cereal grasses publication-title: Phil. Trans. Biol. Sci. – volume: 227 start-page: 491 year: 2008 end-page: 503 ident: bib33 article-title: A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection publication-title: Planta – volume: 14 start-page: 9 year: 2021 end-page: 26 ident: bib15 article-title: Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding publication-title: Mol. Plant – volume: 13 start-page: 112 year: 2020 end-page: 127 ident: bib104 article-title: Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke publication-title: Mol. Plant – start-page: 537 year: 2003 end-page: 569 ident: bib59 article-title: Sweet corn – volume: 23 start-page: 1047 year: 2018 end-page: 1056 ident: bib21 article-title: Contribution of untargeted metabolomics for future assessment of biotech crops publication-title: Trends Plant Sci. – volume: 49 start-page: W388 year: 2021 end-page: W396 ident: bib69 article-title: MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights publication-title: Nucleic Acids Res. – volume: 44 start-page: 821 year: 2012 end-page: 824 ident: bib109 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat. Genet. – volume: 51 start-page: 1616 year: 2019 end-page: 1623 ident: bib36 article-title: Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits publication-title: Nat. Genet. – volume: 33 start-page: 1377 year: 2014 end-page: 1388 ident: bib46 article-title: Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation publication-title: Plant Cell Rep. – volume: 42 start-page: 495 year: 2019 end-page: 508 ident: bib77 article-title: Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage publication-title: Plant Cell Environ. – year: 2013 ident: bib75 article-title: R: A Language and Environment for Statistical Computing – volume: 22 year: 2021 ident: bib105 article-title: Genomic basis underlying the metabolome-mediated drought adaptation of maize publication-title: Genome Biol. – volume: 23 start-page: 146 year: 2022 ident: bib10 article-title: Combined nature and human selections reshaped peach fruit metabolome publication-title: Genome Biol. – volume: 20 start-page: 393 year: 2010 end-page: 402 ident: bib13 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res. – volume: 11 start-page: 443 year: 2018 end-page: 459 ident: bib89 article-title: Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population publication-title: Mol. Plant – volume: 12 start-page: 2665 year: 2023 ident: bib66 article-title: An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity publication-title: Foods – volume: 198 start-page: 483 year: 2014 end-page: 495 ident: bib73 article-title: Genome-Wide Regression and Prediction with the BGLR Statistical Package publication-title: Genetics – volume: 95 start-page: 727 year: 2018 end-page: 742 ident: bib24 article-title: Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance publication-title: Plant J. – volume: 546 start-page: 524 year: 2017 end-page: 527 ident: bib112 article-title: Improved maize reference genome with single-molecule technologies publication-title: Nature – volume: 45 start-page: 43 year: 2013 end-page: 50 ident: bib50 article-title: Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels publication-title: Nat. Genet. – volume: 18 year: 2017 ident: bib95 article-title: Evaluation of Biosynthesis, Accumulation and Antioxidant Activity of Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development publication-title: Int. J. Mol. Sci. – volume: 80 start-page: 2014 year: 2016 end-page: 2017 ident: bib44 article-title: Activation of human bitter taste receptors by polymethoxylated flavonoids publication-title: Biosci. Biotechnol. Biochem. – volume: 8 year: 2018 ident: bib85 article-title: Genetic diversity of strawberry germplasm using metabolomic biomarkers publication-title: Sci. Rep. – year: 1917 ident: bib93 publication-title: Corn among the Indians of the Upper Missouri – volume: 11 start-page: 460 year: 2018 end-page: 472 ident: bib106 article-title: Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding publication-title: Mol. Plant – volume: 3 start-page: 657 year: 1993 ident: 10.1016/j.molp.2025.02.007_bib47 article-title: The origin of the bifunctional dihydrofolate reductasethymidylate synthase isogenes of Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.1993.00657.x – volume: 198 start-page: 483 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib73 article-title: Genome-Wide Regression and Prediction with the BGLR Statistical Package publication-title: Genetics doi: 10.1534/genetics.114.164442 – volume: 69 start-page: 154 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib101 article-title: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04779.x – volume: 104 start-page: 613 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib107 article-title: Dissection of the domestication-shaped genetic architecture of lettuce primary metabolism publication-title: Plant J. doi: 10.1111/tpj.14950 – volume: 23 start-page: 146 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib10 article-title: Combined nature and human selections reshaped peach fruit metabolome publication-title: Genome Biol. doi: 10.1186/s13059-022-02719-6 – volume: 13 start-page: 112 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib104 article-title: Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke publication-title: Mol. Plant doi: 10.1016/j.molp.2019.10.009 – volume: 20 start-page: 393 year: 2010 ident: 10.1016/j.molp.2025.02.007_bib13 article-title: Population differentiation as a test for selective sweeps publication-title: Genome Res. doi: 10.1101/gr.100545.109 – volume: 44 start-page: 821 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib109 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nat. Genet. doi: 10.1038/ng.2310 – volume: 33 start-page: 613 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib43 article-title: Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique publication-title: Acta Sci. Agron. – volume: 331 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib65 article-title: Naringenin-lactoferrin binding: Impact on naringenin bitterness and thermodynamic characterization of the complex publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127337 – volume: 19 start-page: 351 year: 2007 ident: 10.1016/j.molp.2025.02.007_bib3 article-title: The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.048033 – volume: 36 start-page: 297 year: 1998 ident: 10.1016/j.molp.2025.02.007_bib5 article-title: Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature publication-title: Plant Mol. Biol. doi: 10.1023/A:1005993408270 – volume: 374 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib94 article-title: Parallelism and convergence in post-domestication adaptation in cereal grasses publication-title: Phil. Trans. Biol. Sci. doi: 10.1098/rstb.2018.0245 – volume: 84 start-page: 1691 year: 2004 ident: 10.1016/j.molp.2025.02.007_bib83 article-title: In-gel detection and study of the role of flavonol 3-glucosidase in the bitter taste generation in tartary buckwheat publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.1865 – volume: 11 start-page: 443 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib89 article-title: Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population publication-title: Mol. Plant doi: 10.1016/j.molp.2017.12.011 – volume: 190 start-page: 112 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib79 article-title: Grain dehydration and gelatinization characteristics of waxy maize at different harvesting time publication-title: Crops – volume: 330 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib102 article-title: Metabotyping of different soybean genotypes and distinct metabolism in their seeds and leaves publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127198 – volume: 26 start-page: 650 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib2 article-title: Domestication of Crop Metabolomes: Desired and Unintended Consequences publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.02.005 – year: 1961 ident: 10.1016/j.molp.2025.02.007_bib34 – start-page: 28 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib80 article-title: Creation method and identification technology for sweet-waxy maize of double recessive genotype publication-title: China Veg. – volume: 33 start-page: 97 year: 2007 ident: 10.1016/j.molp.2025.02.007_bib90 article-title: Orlgin, classification, variety improvement and industry development of waxy corn publication-title: Hunan Nongye Daxue Xuebao (Journal of Hunan Agricultural University) – volume: 9 start-page: 315 year: 1990 ident: 10.1016/j.molp.2025.02.007_bib71 article-title: Molecular analysis of the C1-I allele from Zea mays: a dominant mutant of the regulatory C1 locus publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb08113.x – volume: 8 start-page: 871 year: 2015 ident: 10.1016/j.molp.2025.02.007_bib54 article-title: Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding publication-title: Mol. Plant doi: 10.1016/j.molp.2015.01.016 – volume: 111 start-page: 12456 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib98 article-title: Predicting hybrid performance in rice using genomic best linear unbiased prediction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1413750111 – volume: 70 start-page: 727 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib40 article-title: Crop biodiversity: an unfinished magnum opus of nature publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040240 – volume: 375 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib19 article-title: Convergent selection of a WD40 protein that enhances grain yield in maize and rice publication-title: Science doi: 10.1126/science.abg7985 – volume: 10 start-page: 5242 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib97 article-title: Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation publication-title: Sci. Rep. doi: 10.1038/s41598-020-62111-x – volume: 169 start-page: 1090 year: 2015 ident: 10.1016/j.molp.2025.02.007_bib30 article-title: The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions publication-title: Plant Physiol. doi: 10.1104/pp.15.00515 – volume: 22 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib105 article-title: Genomic basis underlying the metabolome-mediated drought adaptation of maize publication-title: Genome Biol. doi: 10.1186/s13059-021-02481-1 – volume: 52 start-page: 1175 year: 1965 ident: 10.1016/j.molp.2025.02.007_bib25 article-title: Genetic control of carbohydrate synthesis in maize endosperm publication-title: Gene doi: 10.1093/genetics/52.6.1175 – volume: 35 start-page: 106 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib57 article-title: Breeding of sweet-waxy corn variety, a new type of fresh corn nongkeyu368 publication-title: Seed – volume: 24 start-page: 2745 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib63 article-title: A Genome-Wide Regulatory Framework Identifies Maize Pericarp Color1 Controlled Genes publication-title: Plant Cell doi: 10.1105/tpc.112.098004 – volume: 11 start-page: 460 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib106 article-title: Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding publication-title: Mol. Plant doi: 10.1016/j.molp.2017.12.016 – volume: 13 start-page: 4392 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib12 article-title: Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora publication-title: Nat. Commun. doi: 10.1038/s41467-022-32026-4 – volume: 31 start-page: 1990 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib96 article-title: Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte publication-title: Plant Cell doi: 10.1105/tpc.19.00111 – start-page: 537 year: 2003 ident: 10.1016/j.molp.2025.02.007_bib59 article-title: Sweet corn – volume: 80 start-page: 2014 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib44 article-title: Activation of human bitter taste receptors by polymethoxylated flavonoids publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2016.1184558 – volume: 56 start-page: 247 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib84 article-title: Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene publication-title: Genet. Resour. Crop Evol. doi: 10.1007/s10722-008-9360-8 – volume: 30 start-page: 2114 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib6 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 73 start-page: 6089 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib53 article-title: Convergent loss of anthocyanin pigments is controlled by the same MYB gene in cereals publication-title: J. Exp. Bot. doi: 10.1093/jxb/erac270 – volume: 81 start-page: 1084 year: 2007 ident: 10.1016/j.molp.2025.02.007_bib7 article-title: Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering publication-title: Am. J. Hum. Genet. doi: 10.1086/521987 – volume: 3 start-page: 361 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib111 article-title: Gephi: an open source software for exploring and manipulating networks publication-title: Proc. Int. AAAI Conf. Web Soc. Media doi: 10.1609/icwsm.v3i1.13937 – volume: 1 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib55 article-title: The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement publication-title: Plant Communications doi: 10.1016/j.xplc.2019.100010 – volume: 3 start-page: 8 year: 1987 ident: 10.1016/j.molp.2025.02.007_bib103 article-title: The Relationship of waxy maize in China publication-title: Crop breed resource – volume: 49 start-page: W317 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib8 article-title: KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab447 – volume: 109 start-page: 1116 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib108 article-title: Jujube metabolome selection determined the edible properties acquired during domestication publication-title: Plant J. doi: 10.1111/tpj.15617 – volume: 346 start-page: 1084 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib78 article-title: Biosynthesis, regulation, and domestication of bitterness in cucumber publication-title: Sci. Technol. Humanit. – volume: 33 start-page: 1740 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib4 article-title: Evolutionary Metabolomics Reveals Domestication-Associated Changes in Tetraploid Wheat Kernels publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw050 – volume: 18 start-page: 1722 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib14 article-title: Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13335 – volume: 49 start-page: 357 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib70 article-title: Arabidopsis thaliana lipid phosphate phosphatase 2 is involved in abscisic acid signalling in leaves publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.01.010 – volume: 135 start-page: 1324 year: 2004 ident: 10.1016/j.molp.2025.02.007_bib82 article-title: Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis publication-title: Planta – volume: 7 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib17 article-title: Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals publication-title: Nat. Commun. doi: 10.1038/ncomms12767 – volume: 8 start-page: 4321 year: 1980 ident: 10.1016/j.molp.2025.02.007_bib64 article-title: Rapid isolation of high molecular weight plant DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/8.19.4321 – volume: 23 start-page: 1047 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib21 article-title: Contribution of untargeted metabolomics for future assessment of biotech crops publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.09.011 – volume: 48 start-page: 1218 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib20 article-title: Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea publication-title: Nat. Genet. doi: 10.1038/ng.3634 – volume: 42 start-page: 495 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib77 article-title: Apigenin produced by maize flavone synthase I and II protects plants against UV-B-induced damage publication-title: Plant Cell Environ. doi: 10.1111/pce.13428 – volume: 49 start-page: W388 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib69 article-title: MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab382 – volume: 199 start-page: 8 year: 2016 ident: 10.1016/j.molp.2025.02.007_bib88 article-title: Spatio-temporal distribution and natural variation of metabolites in citrus fruits publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.11.113 – volume: 45 start-page: 43 year: 2013 ident: 10.1016/j.molp.2025.02.007_bib50 article-title: Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels publication-title: Nat. Genet. doi: 10.1038/ng.2484 – volume: 546 start-page: 524 year: 2017 ident: 10.1016/j.molp.2025.02.007_bib112 article-title: Improved maize reference genome with single-molecule technologies publication-title: Nature doi: 10.1038/nature22971 – volume: 6 start-page: 1769 year: 2013 ident: 10.1016/j.molp.2025.02.007_bib16 article-title: A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics publication-title: Mol. Plant doi: 10.1093/mp/sst080 – volume: 6 start-page: 2115 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib67 article-title: Interrelationships among the oil and fatty acids in maize publication-title: Afr. J. Agric. Res. – volume: 28 start-page: 2309 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib9 article-title: Metabolomic profiles predict individual multidisease outcomes publication-title: Nat. Med. doi: 10.1038/s41591-022-01980-3 – volume: 227 start-page: 491 year: 2008 ident: 10.1016/j.molp.2025.02.007_bib33 article-title: A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection publication-title: Planta doi: 10.1007/s00425-007-0634-8 – volume: 115 start-page: 194 year: 2015 ident: 10.1016/j.molp.2025.02.007_bib62 article-title: Parallel reductions in phenolic constituents resulting from the domestication of eggplant publication-title: Phytochemistry doi: 10.1016/j.phytochem.2015.02.006 – volume: 19 start-page: 1655 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib1 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Res. doi: 10.1101/gr.094052.109 – volume: 173 start-page: 219 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib100 article-title: Starch physicochemical properties of double recessive sweet-waxy maize publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.01.116 – volume: 46 start-page: 714 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib18 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. doi: 10.1038/ng.3007 – volume: 44 start-page: 808 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib41 article-title: Comparative population genomics of maize domestication and improvement publication-title: Nat. Genet. doi: 10.1038/ng.2309 – volume: 221 start-page: 1279 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib42 article-title: The extent of adaptive wild introgression in crops publication-title: New Phytol. doi: 10.1111/nph.15457 – volume: 18 year: 2017 ident: 10.1016/j.molp.2025.02.007_bib95 article-title: Evaluation of Biosynthesis, Accumulation and Antioxidant Activity of Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18122780 – volume: 33 start-page: 1377 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib46 article-title: Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation publication-title: Plant Cell Rep. doi: 10.1007/s00299-014-1623-6 – volume: 95 start-page: 727 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib24 article-title: Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance publication-title: Plant J. doi: 10.1111/tpj.13983 – volume: 172 start-page: 249 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib110 article-title: Rewiring of the Fruit Metabolome in Tomato Breeding publication-title: Cellule doi: 10.1016/j.cell.2017.12.019 – volume: 99 start-page: 216 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib51 article-title: Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement publication-title: Plant J. doi: 10.1111/tpj.14317 – volume: 22 start-page: 508 year: 1930 ident: 10.1016/j.molp.2025.02.007_bib37 article-title: Archaeological evidence concerning the origin of sweet maize publication-title: J. Am. Soc. Agron. doi: 10.2134/agronj1930.00021962002200060004x – volume: 31 start-page: 11 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib56 article-title: Growth and development characteristics and linoleic acid content of new variety of high linoleic corn publication-title: Acta Agriculturae Jiangxi – volume: 34 start-page: 69 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib58 article-title: Relationship Between Water Content and Physical Properties and Quality of Sweet Corn at Different Harvesting Periods publication-title: Acta Agriculturae Boreali-Sinica – volume: 88 start-page: 76 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib99 article-title: GCTA: A Tool for Genome-wide Complex Trait Analysis publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.011 – volume: 81 start-page: 559 year: 2007 ident: 10.1016/j.molp.2025.02.007_bib74 article-title: PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses publication-title: Am. J. Hum. Genet. doi: 10.1086/519795 – volume: 35 start-page: 817 year: 1943 ident: 10.1016/j.molp.2025.02.007_bib81 article-title: Some effects of the waxy gene in corn on properties of the endosperm starch 1 publication-title: Agron. J. doi: 10.2134/agronj1943.00021962003500090008x – volume: 22 start-page: 329 year: 2008 ident: 10.1016/j.molp.2025.02.007_bib31 article-title: Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize publication-title: Mol. Breed. doi: 10.1007/s11032-008-9178-2 – volume: 23 start-page: 1685 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib60 article-title: How can research on plants contribute to promoting human health? publication-title: Plant Cell doi: 10.1105/tpc.111.083279 – volume: 174 start-page: 52 year: 2010 ident: 10.1016/j.molp.2025.02.007_bib52 article-title: Origin, research and development of waxy maize publication-title: Tillage and Cultivation – year: 1909 ident: 10.1016/j.molp.2025.02.007_bib23 – volume: 5 year: 2015 ident: 10.1016/j.molp.2025.02.007_bib68 article-title: AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues publication-title: Sci. Rep. doi: 10.1038/srep12412 – volume: 103 start-page: 1710 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib26 article-title: Metabolomics analysis reveals differences in evolution between maize and rice publication-title: Plant J. doi: 10.1111/tpj.14856 – volume: 14 start-page: 9 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib15 article-title: Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding publication-title: Mol. Plant doi: 10.1016/j.molp.2020.12.006 – volume: 6 start-page: 80 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib22 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms publication-title: SnpEff. Fly doi: 10.4161/fly.19695 – volume: 52 start-page: 565 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib86 article-title: Genome-wide selection and genetic improvement during modern maize breeding publication-title: Nat. Genet. doi: 10.1038/s41588-020-0616-3 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib72 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 179 start-page: 1725 year: 2008 ident: 10.1016/j.molp.2025.02.007_bib38 article-title: Parallel Domestication, Convergent Evolution and Duplicated Gene Recruitment in Allopolyploid Cotton publication-title: Genetics doi: 10.1534/genetics.108.089656 – volume: 51 start-page: 1616 year: 2019 ident: 10.1016/j.molp.2025.02.007_bib36 article-title: Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits publication-title: Nat. Genet. doi: 10.1038/s41588-019-0518-4 – volume: 46 start-page: 982 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib87 article-title: The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication publication-title: Nat. Genet. doi: 10.1038/ng.3044 – volume: 38 start-page: 206 year: 1948 ident: 10.1016/j.molp.2025.02.007_bib11 article-title: Sweet corn among the Indians publication-title: Geogr. Rev. doi: 10.2307/210855 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.molp.2025.02.007_bib61 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 8 year: 2018 ident: 10.1016/j.molp.2025.02.007_bib85 article-title: Genetic diversity of strawberry germplasm using metabolomic biomarkers publication-title: Sci. Rep. doi: 10.1038/s41598-018-32212-9 – volume: 4 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib32 article-title: Post-Domestication Selection in the Maize Starch Pathway publication-title: PLoS One doi: 10.1371/journal.pone.0007612 – volume: 19 year: 1952 ident: 10.1016/j.molp.2025.02.007_bib91 article-title: Races of maize in Mexico publication-title: Their origin, characteristics and distribution – volume: 109 start-page: 8872 year: 2012 ident: 10.1016/j.molp.2025.02.007_bib76 article-title: Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1120813109 – volume: 53 start-page: 6813 year: 2005 ident: 10.1016/j.molp.2025.02.007_bib28 article-title: Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes publication-title: J. Agric. Food Chem. doi: 10.1021/jf050419e – volume: 113 start-page: 1109 year: 2023 ident: 10.1016/j.molp.2025.02.007_bib35 article-title: A common resequencing-based genetic marker data set for global maize diversity publication-title: Plant J. doi: 10.1111/tpj.16123 – volume: 4 start-page: 250 year: 2011 ident: 10.1016/j.molp.2025.02.007_bib29 article-title: Ridge regression and other kernels for genomic selection with R package rrBLUP publication-title: Plant Genome doi: 10.3835/plantgenome2011.08.0024 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib48 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.molp.2025.02.007_bib49 article-title: The sequence alignment/map format and SAMtools publication-title: bioinformatics doi: 10.1093/bioinformatics/btp352 – year: 1917 ident: 10.1016/j.molp.2025.02.007_bib93 – volume: 5 start-page: 3438 year: 2014 ident: 10.1016/j.molp.2025.02.007_bib92 article-title: Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights publication-title: Nat. Commun. doi: 10.1038/ncomms4438 – volume: 10 start-page: 1417 year: 2020 ident: 10.1016/j.molp.2025.02.007_bib45 article-title: Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins publication-title: Sci. Rep. doi: 10.1038/s41598-020-58341-8 – volume: 234 start-page: 1614 year: 2022 ident: 10.1016/j.molp.2025.02.007_bib27 article-title: Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience publication-title: New Phytol. doi: 10.1111/nph.18095 – volume: 12 start-page: 1227 year: 2021 ident: 10.1016/j.molp.2025.02.007_bib39 article-title: Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn publication-title: Nat. Commun. doi: 10.1038/s41467-021-21380-4 – volume: 12 start-page: 2665 year: 2023 ident: 10.1016/j.molp.2025.02.007_bib66 article-title: An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity publication-title: Foods doi: 10.3390/foods12142665 |
SSID | ssj0060863 |
Score | 2.4119349 |
Snippet | Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental... Edible maize is an important food crop, providing energy and nutrients to meet human health and nutritional requirements. However, how environmental pressures... Edible maize is an important food crop that provides energy and nutrients to meet human health and nutritional requirements. However, how environmental... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 619 |
SubjectTerms | data collection diversifying selection energy flavonoids flavor food crops Genome-Wide Association Study human health humans landscapes lysophosphatidylcholine metabolite differentiation metabolites metabolome Metabolome - genetics metabolome database Metabolomics Plant Breeding sweet maize waxy corn waxy maize Zea mays - genetics Zea mays - metabolism |
Title | Large-scale metabolomic landscape of edible maize reveals convergent changes in metabolite differentiation and facilitates its breeding improvement |
URI | https://dx.doi.org/10.1016/j.molp.2025.02.007 https://www.ncbi.nlm.nih.gov/pubmed/40025737 https://www.proquest.com/docview/3173027837 https://www.proquest.com/docview/3206196776 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQcOBStaXQbaEyUm_I2uAkdnyEFavtB1wKEjfLTsZSECSoGw7t3-gf7oydVOIAhx6TOJHjNxk_J29eGPusy1DUvgnClMELnKEy4XVRC5X7JgOkGFm02Li4VKvr4utNebPBFlMtDMkqx9yfcnrM1uOe-Tia84e2nf8g_bzMkD9ET3_yMd2SuVEY2lunX76tLqeErJC1R509thd0wlg7k2Re9_0d2VbKMll36ufmp-f4Z5yHlq_Zq5FA8tPUxzdsA7q3bPusR5L3a5f9-U7KbrHGkQd-DwNCfEd1xzyW9JLYifeB4017Ou7a38DJwwljkEf9OZViDjxVA695203XQGLKp3-pDAlNjlfkwdXJ5ptaD2uOC-w4G_I2vqyI7x7fsevl-dViJcb_Log6r9QgFARvFFCBVqiDqsmSELIGjCqd8qCMbyTgHlPlIJUvsjoLEtSJKzSONa5699hm13fwnvGqcoDNKuORR-ShdBQYTuIipUEknJmx42m07UOy17CT7uzWEjaWsLGZtIjNjJUTIPZJkFjM_y-edzShZ_HpoU8iroP-cW2RPdGHW1ylv9BGIucxSms1Y_sJ-n99LYgz6lx_-M-efWQ7tBWlQPqAbQ4_H-EQWc7gP41R_BeZyf25 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2hpVJ7qfrdpbR1pd4qa9N82MkRUNFSlr0UJG6WnYylIEhQNxzK3-APM2MnlXqAQ6-JYzl-zvjZefMM8FUXPq9d42VVeCdphkqk03ktVeaaBIliJMFi42Stlmf5z_PifAsOplwYllWOsT_G9BCtxyuLsTcX1227-MX6-TQh_hA8_dnHdJvdqYoZbO8dHS_XU0BWxNqDzp7KS35gzJ2JMq-r_pJtK9MiWnfqh-anh_hnmIcOX8DzkUCKvdjGl7CF3St4st8TyfvzGu5WrOyWG-p5FFc4EMSXnHcsQkovi51E7wW9tOP7tr1FwR5ONAZF0J9zKuYgYjbwRrTdVAcRUzGdpTJENAXVKLyto803lx42ghbYYTYUbdisCHuPb-Ds8MfpwVKO5y7IOivVIBV6VynkBC1fe1WzJSEmDVaqsMqhqlyTIl2pygxT5fKkTnyK6rvNNfU1rXrfwqzrO3wPoiwtUrGycsQjMl9YHhg2pUVKQ0jYag7fpt4219Few0y6swvD2BjGxiSpIWzmUEyAmH8GiaH4_-hzXyb0DH09_EvEdtjfbAyxJ_5xS6v0R8qkxHkqpbWaw7sI_d-25swZdaZ3_rNln-Hp8vRkZVZH6-MP8IzvBFmQ3oXZ8PsGPxLjGdyncUTfA5NsAK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+metabolomic+landscape+of+edible+maize+reveals+convergent+changes+in+metabolite+differentiation+and+facilitates+its+breeding+improvement&rft.jtitle=Molecular+plant&rft.au=Li%2C+Chunhui&rft.au=Li%2C+Zhiyong&rft.au=Lu%2C+Baishan&rft.au=Shi%2C+Yaxing&rft.date=2025-04-07&rft.issn=1674-2052&rft.volume=18&rft.issue=4+p.619-638&rft.spage=619&rft.epage=638&rft_id=info:doi/10.1016%2Fj.molp.2025.02.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |