Process Mining for Dynamic Modeling of Smart Manufacturing Systems: Data Requirements

Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability...

Full description

Saved in:
Bibliographic Details
Published inProcedia CIRP Vol. 107; pp. 546 - 551
Main Authors Friederich, Jonas, Lugaresi, Giovanni, Lazarova-Molnar, Sanja, Matta, Andrea
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
ELSEVIER
Subjects
Online AccessGet full text
ISSN2212-8271
2212-8271
DOI10.1016/j.procir.2022.05.023

Cover

Abstract Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability to dynamically generate models of production systems is essential to guarantee their exploitation on the shop-floors as decision-support systems. The literature offers approaches for generating digital models based on real-time data streams. These models can represent a system more precisely at any point in time, as they are continuously updated based on the data. However, most approaches consider only isolated aspects of systems (e.g., reliability models) and focus on a specific modeling purpose (e.g., material flow identification). The research challenge is therefore to develop a novel framework that systematically enables the combination of models extracted through different process mining algorithms. To tackle this challenge, it is critical to define the requirements that enable the emergence of automated modeling and simulation tasks. In this paper, we therefore derive and define data requirements for the models that need to be extracted. We include aspects such as the structure of the manufacturing system and the behavior of its machines. The paper aims at guiding practitioners in designing coherent data structures to enable the coupling of model generation techniques within the digital support system of manufacturing companies.
AbstractList Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability to dynamically generate models of production systems is essential to guarantee their exploitation on the shop-floors as decision-support systems. The literature offers approaches for generating digital models based on real-time data streams. These models can represent a system more precisely at any point in time, as they are continuously updated based on the data. However, most approaches consider only isolated aspects of systems (e.g., reliability models) and focus on a specific modeling purpose (e.g., material flow identification). The research challenge is therefore to develop a novel framework that systematically enables the combination of models extracted through different process mining algorithms. To tackle this challenge, it is critical to define the requirements that enable the emergence of automated modeling and simulation tasks. In this paper, we therefore derive and define data requirements for the models that need to be extracted. We include aspects such as the structure of the manufacturing system and the behavior of its machines. The paper aims at guiding practitioners in designing coherent data structures to enable the coupling of model generation techniques within the digital support system of manufacturing companies.
Author Matta, Andrea
Lugaresi, Giovanni
Friederich, Jonas
Lazarova-Molnar, Sanja
Author_xml – sequence: 1
  givenname: Jonas
  surname: Friederich
  fullname: Friederich, Jonas
  email: jofr@mmmi.sdu.dk
  organization: Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, DENMARK
– sequence: 2
  givenname: Giovanni
  surname: Lugaresi
  fullname: Lugaresi, Giovanni
  organization: Politecnico di Milano, Via La Masa 1, 20156 Milano, ITALY
– sequence: 3
  givenname: Sanja
  surname: Lazarova-Molnar
  fullname: Lazarova-Molnar, Sanja
  organization: Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, DENMARK
– sequence: 4
  givenname: Andrea
  surname: Matta
  fullname: Matta, Andrea
  organization: Politecnico di Milano, Via La Masa 1, 20156 Milano, ITALY
BackLink https://hal.science/hal-03880491$$DView record in HAL
BookMark eNqFkE1LAzEQhoMoWGv_gYe9euiaZLPNpgeh-FWhRbH2HLLpRFPapCZpof_eXaogHnQuGV7mmQnPGTp23gFCFwTnBJPB1TLfBK9tyCmmNMdljmlxhDqUEtqvKCfHP_pT1ItxiZviDBeEdtD8uYEhxmxqnXVvmfEhu907tbY6m_oFrNrQm2y2ViFlU-W2Rum0DW0828cE6zjMblVS2Qt8bG2ANbgUz9GJUasIva-3i-b3d6834_7k6eHxZjTp66IapP6AMkYFE8ow4EALygRUShSmHmhOag5E14yIujbABBeiXPCKl7w2vCx5VVZFF10e9r6rldwE23xyL72ycjyayDbDRVVhJsiONLPDw6wOPsYARmqbVLLepaDsShIsW59yKQ8-ZetT4lI2PhuY_YK_r_2DXR8waCTsLAQZtQWnYdGY0kkuvP17wSfWK5Lm
CitedBy_id crossref_primary_10_1007_s10270_024_01175_z
crossref_primary_10_1080_00207543_2023_2281665
crossref_primary_10_1177_00375497241302866
crossref_primary_10_1177_00368504241292196
crossref_primary_10_1016_j_is_2024_102512
crossref_primary_10_1016_j_procir_2023_09_050
Cites_doi 10.1080/00207543.2013.869632
10.1016/S0007-8506(07)60023-7
10.1016/j.compind.2015.02.009
10.1016/j.cie.2019.106099
10.1016/j.jmsy.2018.04.006
10.1109/WSC.2015.7408344
10.1016/j.jmsy.2021.01.005
10.1287/isre.2014.0513
10.1016/j.procir.2013.09.074
10.1016/j.procir.2021.01.024
10.1016/j.compind.2021.103586
10.1109/WSC40007.2019.9004702
10.1016/j.jmsy.2020.06.003
10.1016/j.procir.2012.07.110
10.1109/WSC52266.2021.9715410
10.1016/j.procs.2021.03.073
10.1109/EDOC.2016.7579385
10.1109/WSC.2015.7408223
10.1016/j.ijpe.2014.06.012
10.1115/1.2194554
10.1109/TII.2018.2873186
ContentType Journal Article
Copyright 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.procir.2022.05.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2212-8271
EndPage 551
ExternalDocumentID oai_HAL_hal_03880491v1
10_1016_j_procir_2022_05_023
S2212827122003079
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c386t-62442949af4e7e23249e8a93fb6c71b7e1cb419bbfe497995d78757bf75578583
IEDL.DBID IXB
ISSN 2212-8271
IngestDate Fri May 09 12:23:01 EDT 2025
Tue Jul 01 02:31:27 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Sat Sep 07 15:51:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords reliability models
Model generation
process mining
discrete event simulation
machine behavior
Model generation discrete event simulation process mining machine behavior reliability models
Language English
License This is an open access article under the CC BY-NC-ND license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-62442949af4e7e23249e8a93fb6c71b7e1cb419bbfe497995d78757bf75578583
ORCID 0000-0001-9625-6622
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2212827122003079
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_03880491v1
crossref_citationtrail_10_1016_j_procir_2022_05_023
crossref_primary_10_1016_j_procir_2022_05_023
elsevier_sciencedirect_doi_10_1016_j_procir_2022_05_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Procedia CIRP
PublicationYear 2022
Publisher Elsevier B.V
ELSEVIER
Publisher_xml – name: Elsevier B.V
– name: ELSEVIER
References Choueiri, Sato, Scalabrin, Santos (bib0004) 2020; 56
van der Aalst (bib0001) 2016
Dörgo, Varga, Haragovics, Szabó, Abonyi (bib0007) 2018; 70
Lugaresi, G., Friederich, J., Lazarova-Molnar, S., Matta, A., 2021. Data Requirements for Automated Simulation Modelling of Production Sys- tems with Varying Resource Behavior. URL
Milde, M., Reinhart, G., 2019. Automated Model Development and Parametrization of Material Flow Simulations, in: 2019 Winter Simulation Conference (WSC), IEEE. pp. 2166-2177.
Ortmeier, Henningsen, Langer, Reiswich, Karl, Herrmann (bib00024) 2021
Lugaresi, Matta (bib00018) 2021; 59
Popovics, Monostori (bib00026) 2013; 12
Park, Lee, Zhu (bib00025) 2014; 156
Belhadi, Zkik, Cherrafi, Sha’ri (bib0002) 2019; 137
Tao, F., Zhang, H., Liu, A., Nee, A.Y.C., 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics 15, 2405- 2415. Conference Name: IEEE Transactions on Industrial Informatics.
Friederich, Francis, Lazarova-Molnar, Mohamed (bib00010) 2022; 136
Martin, N., Bax, F., Depaire, B., Caris, A., 2016. Retrieving resource availability insights from event logs, in: Proceedings - 2016 IEEE 20th International Enterprise Distributed Object Computing Conference, EDOC 2016. doi
Hon (bib00014) 2005; 54
Meyer, Adomavicius, Johnson, Elidrisi, Rush, Sperl-Hillen, O’Connor (bib00022) 2014; 25
Ferreira, Vasilyev (bib0009) 2015; 70
Efthymiou, Pagoropoulos, Papakostas, Mourtzis, Chrys-solouris (bib0008) 2012; 3
Martin, N., Depaire, B., Caris, A., 2015. Using process mining to model interarrival times: investigating the sensitivity of the ARPRA framework, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 868-879.
Stefanovic, Dakic, Stevanov, Lolic (bib00027) 2020
Denno, Dickerson, Harding (bib0005) 2018; 48
Friederich, J., Jepsen, S.C., Lazarova-Molnar, S., Worm, T., 2021. Requirements for Data-Driven Reliability Modeling and Simulation of Smart Manufacturing Systems, in: 2021 Winter Simulation Conference (WSC), pp. 1-12. doi
Martin, Swennen, Depaire, Jans, Caris, Vanhoof (bib00021) 2017
Harding, Shahbaz, Srinivas, Kusiak (bib00013) 2005; 128
Bergmann, S., Feldkamp, N., Strassburger, S., 2015. Approximation of dispatching rules for manufacturing simulation using data mining methods, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 2329-2340.
Friederich, Lazarova-Molnar (bib00012) 2021; 184C
iSSN: 1558-4305.
Dogan, O., Gurcan, O., 2018. Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 943-953.
Kurscheidt, R.J., Santos, E.A.P., de FR Loures, E., Pecora Jr, J.E., Cestari, J.M.A.P., 2015. A Methodology for Discovering Bayesian Networks Based on Process Mining, in: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE). p. 2322.
Lee, Ho, Choy, Pang (bib00016) 2014; 52
10.1016/j.procir.2022.05.023_bib00023
10.1016/j.procir.2022.05.023_bib00020
van der Aalst (10.1016/j.procir.2022.05.023_bib0001) 2016
Stefanovic (10.1016/j.procir.2022.05.023_bib00027) 2020
Friederich (10.1016/j.procir.2022.05.023_bib00010) 2022; 136
Friederich (10.1016/j.procir.2022.05.023_bib00012) 2021; 184C
Efthymiou (10.1016/j.procir.2022.05.023_bib0008) 2012; 3
Harding (10.1016/j.procir.2022.05.023_bib00013) 2005; 128
10.1016/j.procir.2022.05.023_bib00028
Hon (10.1016/j.procir.2022.05.023_bib00014) 2005; 54
10.1016/j.procir.2022.05.023_bib00015
Park (10.1016/j.procir.2022.05.023_bib00025) 2014; 156
Dörgo (10.1016/j.procir.2022.05.023_bib0007) 2018; 70
10.1016/j.procir.2022.05.023_bib00011
Martin (10.1016/j.procir.2022.05.023_bib00021) 2017
Belhadi (10.1016/j.procir.2022.05.023_bib0002) 2019; 137
Lugaresi (10.1016/j.procir.2022.05.023_bib00018) 2021; 59
Ferreira (10.1016/j.procir.2022.05.023_bib0009) 2015; 70
Meyer (10.1016/j.procir.2022.05.023_bib00022) 2014; 25
10.1016/j.procir.2022.05.023_bib0003
Denno (10.1016/j.procir.2022.05.023_bib0005) 2018; 48
Popovics (10.1016/j.procir.2022.05.023_bib00026) 2013; 12
10.1016/j.procir.2022.05.023_bib0006
Choueiri (10.1016/j.procir.2022.05.023_bib0004) 2020; 56
Lee (10.1016/j.procir.2022.05.023_bib00016) 2014; 52
10.1016/j.procir.2022.05.023_bib00019
Ortmeier (10.1016/j.procir.2022.05.023_bib00024) 2021
10.1016/j.procir.2022.05.023_bib00017
References_xml – start-page: 100
  year: 2017
  ident: bib00021
  article-title: Retrieving batch organisation of work insights from event logs
  publication-title: Decision Support Systems
– volume: 70
  start-page: 829
  year: 2018
  end-page: 834
  ident: bib0007
  article-title: Towards operator 4.0, increasing production efficiency and reducing operator workload by process mining of alarm data
  publication-title: Chemical Engineering Transactions
– reference: Martin, N., Depaire, B., Caris, A., 2015. Using process mining to model interarrival times: investigating the sensitivity of the ARPRA framework, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 868-879.
– volume: 156
  start-page: 214
  year: 2014
  end-page: 222
  ident: bib00025
  article-title: An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company
  publication-title: International Journal of Production Economics
– volume: 70
  start-page: 194
  year: 2015
  end-page: 207
  ident: bib0009
  article-title: Using logical decision trees to discover the cause of process delays from event logs
  publication-title: Computers in Industry
– volume: 136
  start-page: 103586
  year: 2022
  ident: bib00010
  article-title: A framework for data-driven digital twins of smart manufacturing systems
  publication-title: Computers in Industry
– reference: Lugaresi, G., Friederich, J., Lazarova-Molnar, S., Matta, A., 2021. Data Requirements for Automated Simulation Modelling of Production Sys- tems with Varying Resource Behavior. URL:
– start-page: 125
  year: 2016
  end-page: 162
  ident: bib0001
  article-title: Getting the data
  publication-title: Process mining
– volume: 48
  start-page: 192
  year: 2018
  end-page: 203
  ident: bib0005
  article-title: Dynamic production system identification for smart manufacturing systems
  publication-title: Journal of Manufacturing Systems
– volume: 3
  start-page: 644
  year: 2012
  end-page: 649
  ident: bib0008
  article-title: Manufacturing Systems Complexity Review: Challenges and Outlook
  publication-title: Procedia CIRP
– volume: 128
  start-page: 969
  year: 2005
  end-page: 976
  ident: bib00013
  article-title: Data Mining in Manufacturing: A Review
  publication-title: Journal of Manufacturing Science and Engineering
– volume: 56
  start-page: 188
  year: 2020
  end-page: 201
  ident: bib0004
  article-title: An extended model for remaining time prediction in manufacturing systems using process mining
  publication-title: Journal of Manufacturing Systems
– reference: Bergmann, S., Feldkamp, N., Strassburger, S., 2015. Approximation of dispatching rules for manufacturing simulation using data mining methods, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 2329-2340.
– start-page: 163
  year: 2021
  end-page: 168
  ident: bib00024
  article-title: Framework for the integration of Process Mining into Life Cycle Assessment
  publication-title: Procedia CIRP
– reference: Martin, N., Bax, F., Depaire, B., Caris, A., 2016. Retrieving resource availability insights from event logs, in: Proceedings - 2016 IEEE 20th International Enterprise Distributed Object Computing Conference, EDOC 2016. doi:
– volume: 59
  start-page: 51
  year: 2021
  end-page: 66
  ident: bib00018
  article-title: Automated manufacturing system discovery and digital twin generation
  publication-title: Journal of Manufacturing Systems
– volume: 25
  start-page: 239
  year: 2014
  end-page: 263
  ident: bib00022
  article-title: A machine learning approach to improving dynamic decision making
  publication-title: Information Systems Research
– volume: 12
  start-page: 432
  year: 2013
  end-page: 437
  ident: bib00026
  article-title: ISA standard simulation model generation supported by data stored in low level controllers
  publication-title: Procedia CIRP
– reference: Milde, M., Reinhart, G., 2019. Automated Model Development and Parametrization of Material Flow Simulations, in: 2019 Winter Simulation Conference (WSC), IEEE. pp. 2166-2177.
– volume: 137
  start-page: 106099
  year: 2019
  ident: bib0002
  article-title: Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies
  publication-title: Computers & Industrial Engineering
– volume: 52
  start-page: 4216
  year: 2014
  end-page: 4238
  ident: bib00016
  article-title: A RFID-based recursive process mining system for quality assurance in the garment industry
  publication-title: International Journal of Production Research
– reference: iSSN: 1558-4305.
– reference: Kurscheidt, R.J., Santos, E.A.P., de FR Loures, E., Pecora Jr, J.E., Cestari, J.M.A.P., 2015. A Methodology for Discovering Bayesian Networks Based on Process Mining, in: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE). p. 2322.
– reference: Tao, F., Zhang, H., Liu, A., Nee, A.Y.C., 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics 15, 2405- 2415. Conference Name: IEEE Transactions on Industrial Informatics.
– volume: 54
  start-page: 139
  year: 2005
  end-page: 154
  ident: bib00014
  article-title: Performance and Evaluation of Manufacturing Systems
  publication-title: CIRP Annals
– reference: Dogan, O., Gurcan, O., 2018. Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 943-953.
– start-page: 54
  year: 2020
  end-page: 62
  ident: bib00027
  article-title: Process Mining in Manufacturing: Goals, Techniques and Applications
  publication-title: Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management Systems
– reference: Friederich, J., Jepsen, S.C., Lazarova-Molnar, S., Worm, T., 2021. Requirements for Data-Driven Reliability Modeling and Simulation of Smart Manufacturing Systems, in: 2021 Winter Simulation Conference (WSC), pp. 1-12. doi:
– volume: 184C
  start-page: 589
  year: 2021
  end-page: 596
  ident: bib00012
  article-title: Towards Data-Driven Reliability Modeling for Cyber-Physical Production Systems
  publication-title: Procedia Computer Science
– volume: 52
  start-page: 4216
  year: 2014
  ident: 10.1016/j.procir.2022.05.023_bib00016
  article-title: A RFID-based recursive process mining system for quality assurance in the garment industry
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.869632
– volume: 54
  start-page: 139
  year: 2005
  ident: 10.1016/j.procir.2022.05.023_bib00014
  article-title: Performance and Evaluation of Manufacturing Systems
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)60023-7
– volume: 70
  start-page: 194
  year: 2015
  ident: 10.1016/j.procir.2022.05.023_bib0009
  article-title: Using logical decision trees to discover the cause of process delays from event logs
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2015.02.009
– volume: 137
  start-page: 106099
  year: 2019
  ident: 10.1016/j.procir.2022.05.023_bib0002
  article-title: Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.106099
– start-page: 100
  year: 2017
  ident: 10.1016/j.procir.2022.05.023_bib00021
  article-title: Retrieving batch organisation of work insights from event logs
  publication-title: Decision Support Systems
– volume: 48
  start-page: 192
  year: 2018
  ident: 10.1016/j.procir.2022.05.023_bib0005
  article-title: Dynamic production system identification for smart manufacturing systems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2018.04.006
– ident: 10.1016/j.procir.2022.05.023_bib0003
  doi: 10.1109/WSC.2015.7408344
– volume: 59
  start-page: 51
  year: 2021
  ident: 10.1016/j.procir.2022.05.023_bib00018
  article-title: Automated manufacturing system discovery and digital twin generation
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2021.01.005
– start-page: 125
  year: 2016
  ident: 10.1016/j.procir.2022.05.023_bib0001
  article-title: Getting the data
– volume: 25
  start-page: 239
  year: 2014
  ident: 10.1016/j.procir.2022.05.023_bib00022
  article-title: A machine learning approach to improving dynamic decision making
  publication-title: Information Systems Research
  doi: 10.1287/isre.2014.0513
– volume: 70
  start-page: 829
  year: 2018
  ident: 10.1016/j.procir.2022.05.023_bib0007
  article-title: Towards operator 4.0, increasing production efficiency and reducing operator workload by process mining of alarm data
  publication-title: Chemical Engineering Transactions
– volume: 12
  start-page: 432
  year: 2013
  ident: 10.1016/j.procir.2022.05.023_bib00026
  article-title: ISA standard simulation model generation supported by data stored in low level controllers
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.09.074
– ident: 10.1016/j.procir.2022.05.023_bib0006
– start-page: 163
  year: 2021
  ident: 10.1016/j.procir.2022.05.023_bib00024
  article-title: Framework for the integration of Process Mining into Life Cycle Assessment
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.01.024
– volume: 136
  start-page: 103586
  year: 2022
  ident: 10.1016/j.procir.2022.05.023_bib00010
  article-title: A framework for data-driven digital twins of smart manufacturing systems
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2021.103586
– ident: 10.1016/j.procir.2022.05.023_bib00023
  doi: 10.1109/WSC40007.2019.9004702
– volume: 56
  start-page: 188
  year: 2020
  ident: 10.1016/j.procir.2022.05.023_bib0004
  article-title: An extended model for remaining time prediction in manufacturing systems using process mining
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.06.003
– volume: 3
  start-page: 644
  year: 2012
  ident: 10.1016/j.procir.2022.05.023_bib0008
  article-title: Manufacturing Systems Complexity Review: Challenges and Outlook
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2012.07.110
– ident: 10.1016/j.procir.2022.05.023_bib00011
  doi: 10.1109/WSC52266.2021.9715410
– ident: 10.1016/j.procir.2022.05.023_bib00017
– ident: 10.1016/j.procir.2022.05.023_bib00015
– volume: 184C
  start-page: 589
  year: 2021
  ident: 10.1016/j.procir.2022.05.023_bib00012
  article-title: Towards Data-Driven Reliability Modeling for Cyber-Physical Production Systems
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.03.073
– ident: 10.1016/j.procir.2022.05.023_bib00019
  doi: 10.1109/EDOC.2016.7579385
– ident: 10.1016/j.procir.2022.05.023_bib00020
  doi: 10.1109/WSC.2015.7408223
– volume: 156
  start-page: 214
  year: 2014
  ident: 10.1016/j.procir.2022.05.023_bib00025
  article-title: An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2014.06.012
– volume: 128
  start-page: 969
  year: 2005
  ident: 10.1016/j.procir.2022.05.023_bib00013
  article-title: Data Mining in Manufacturing: A Review
  publication-title: Journal of Manufacturing Science and Engineering
  doi: 10.1115/1.2194554
– ident: 10.1016/j.procir.2022.05.023_bib00028
  doi: 10.1109/TII.2018.2873186
– start-page: 54
  year: 2020
  ident: 10.1016/j.procir.2022.05.023_bib00027
  article-title: Process Mining in Manufacturing: Goals, Techniques and Applications
SSID ssj0000740312
Score 2.279853
Snippet Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high...
Modern manufacturing systems can benefit from the use of digital tools to support both short-and long-term decisions. Meanwhile, such systems reached a high...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 546
SubjectTerms Computational Engineering, Finance, and Science
Computer Aided Engineering
Computer Science
Data Structures and Algorithms
discrete event simulation
machine behavior
Model generation
process mining
reliability models
Title Process Mining for Dynamic Modeling of Smart Manufacturing Systems: Data Requirements
URI https://dx.doi.org/10.1016/j.procir.2022.05.023
https://hal.science/hal-03880491
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeIrxUoS4RiOPLi23MZgmXgfGxG5R0iRiCLoJNn4_cdpOcEBIHBslfTiW7Tr-PiN0ahnPrREJ0am2RHiqSSZtTpjWhlLpudOR7fO-3R-K61EyWkLdGgsDZZWV7S9terTW1UirkmZrOh63BixY3ZRJyljUVADxAaoUQHyji0WeJbjIoLdwmADzCSyoEXSxzAv8xBiIQRmLFJ6M_-ahlp_rXGv0Pb0NtF4FjbhTvtcmWnLFFlr7RiW4jYZVxT--ix0fcIhF8WXZbR5DvzNAneOJx4O38HX4ThdzgDREjCKuWMvP8aWeafzgoDg4Zg0_dtCwd_XY7ZOqZQLJedqekXbw1iwTmfbCSQfRUuZSnXFv2rmkRjqaG0EzY7wTcKCXWAmM9sbLBFhvUr6LGsWkcHsIn9nEB8l6Z5kRQgqTC-fDz0gIOCy33DcRr8Wk8opPHNpavKq6cOxFlcJVIFx1lqgg3CYii1XTkk_jj_my3gH1Qy9UMPl_rDwJG7Z4CNBo9zu3CsYiA47I6Cfd__ftD9AqXJXZmEPUmL3P3VGIT2bmGK10bh6ebo6jIn4Bxdnklw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4inGM0Jco5FHm5YbMNCAbQdg0m5R0iRiCLYJBr-fOG0nOCAkrm3dh2PZXx37M0InlvHCGpEQnWlLhKea5NIWhGltKJWeOx3ZPntpuy9uB8lgDl3WvTBQVln5_tKnR29dHWlW2mxOhsPmAwteN2OSMhYtNZ9HiwENpECgfzO4mCVaQowMhgu7CSBAQKJuoYt1XhAohsAMyljk8GT8txA1_1QnW2PwuV5DqxVqxOfli62jOTfaQCvfuAQ3Ub8q-cfdOPIBBzCKW-W4eQwDz6DtHI89fngNn4e7evQBPQ2xSRFXtOVnuKWnGt87qA6OacP3LdS_vnq8bJNqZgIpeJZOSRrCNctFrr1w0gFcyl2mc-5NWkhqpKOFETQ3xjsBO3qJlUBpb7xMgPYm49toYTQeuR2ET23ig2q9s8wIIYUphPPhbyQgDsst9w3EazWpoiIUh7kWL6quHHtWpXIVKFedJioot4HITGpSEmr8cb2sV0D9MAwVfP4fksdhwWYPAR7t9nlHwbFIgSNy-kl3_337I7TUfux2VOemd7eHluFMmZrZRwvTtw93EMDK1BxGY_wCJhfmGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Mining+for+Dynamic+Modeling+of+Smart+Manufacturing+Systems%3A+Data+Requirements&rft.jtitle=Procedia+CIRP&rft.au=Friederich%2C+Jonas&rft.au=Lugaresi%2C+Giovanni&rft.au=Lazarova-Molnar%2C+Sanja&rft.au=Matta%2C+Andrea&rft.date=2022&rft.pub=ELSEVIER&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=107&rft.spage=546&rft.epage=551&rft_id=info:doi/10.1016%2Fj.procir.2022.05.023&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03880491v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon