Process Mining for Dynamic Modeling of Smart Manufacturing Systems: Data Requirements
Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability...
Saved in:
Published in | Procedia CIRP Vol. 107; pp. 546 - 551 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2022
ELSEVIER |
Subjects | |
Online Access | Get full text |
ISSN | 2212-8271 2212-8271 |
DOI | 10.1016/j.procir.2022.05.023 |
Cover
Abstract | Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability to dynamically generate models of production systems is essential to guarantee their exploitation on the shop-floors as decision-support systems. The literature offers approaches for generating digital models based on real-time data streams. These models can represent a system more precisely at any point in time, as they are continuously updated based on the data. However, most approaches consider only isolated aspects of systems (e.g., reliability models) and focus on a specific modeling purpose (e.g., material flow identification). The research challenge is therefore to develop a novel framework that systematically enables the combination of models extracted through different process mining algorithms. To tackle this challenge, it is critical to define the requirements that enable the emergence of automated modeling and simulation tasks. In this paper, we therefore derive and define data requirements for the models that need to be extracted. We include aspects such as the structure of the manufacturing system and the behavior of its machines. The paper aims at guiding practitioners in designing coherent data structures to enable the coupling of model generation techniques within the digital support system of manufacturing companies. |
---|---|
AbstractList | Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high level of complexity and are frequently subject to modifications that can quickly make the digital tools obsolete. In this context, the ability to dynamically generate models of production systems is essential to guarantee their exploitation on the shop-floors as decision-support systems. The literature offers approaches for generating digital models based on real-time data streams. These models can represent a system more precisely at any point in time, as they are continuously updated based on the data. However, most approaches consider only isolated aspects of systems (e.g., reliability models) and focus on a specific modeling purpose (e.g., material flow identification). The research challenge is therefore to develop a novel framework that systematically enables the combination of models extracted through different process mining algorithms. To tackle this challenge, it is critical to define the requirements that enable the emergence of automated modeling and simulation tasks. In this paper, we therefore derive and define data requirements for the models that need to be extracted. We include aspects such as the structure of the manufacturing system and the behavior of its machines. The paper aims at guiding practitioners in designing coherent data structures to enable the coupling of model generation techniques within the digital support system of manufacturing companies. |
Author | Matta, Andrea Lugaresi, Giovanni Friederich, Jonas Lazarova-Molnar, Sanja |
Author_xml | – sequence: 1 givenname: Jonas surname: Friederich fullname: Friederich, Jonas email: jofr@mmmi.sdu.dk organization: Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, DENMARK – sequence: 2 givenname: Giovanni surname: Lugaresi fullname: Lugaresi, Giovanni organization: Politecnico di Milano, Via La Masa 1, 20156 Milano, ITALY – sequence: 3 givenname: Sanja surname: Lazarova-Molnar fullname: Lazarova-Molnar, Sanja organization: Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, DENMARK – sequence: 4 givenname: Andrea surname: Matta fullname: Matta, Andrea organization: Politecnico di Milano, Via La Masa 1, 20156 Milano, ITALY |
BackLink | https://hal.science/hal-03880491$$DView record in HAL |
BookMark | eNqFkE1LAzEQhoMoWGv_gYe9euiaZLPNpgeh-FWhRbH2HLLpRFPapCZpof_eXaogHnQuGV7mmQnPGTp23gFCFwTnBJPB1TLfBK9tyCmmNMdljmlxhDqUEtqvKCfHP_pT1ItxiZviDBeEdtD8uYEhxmxqnXVvmfEhu907tbY6m_oFrNrQm2y2ViFlU-W2Rum0DW0828cE6zjMblVS2Qt8bG2ANbgUz9GJUasIva-3i-b3d6834_7k6eHxZjTp66IapP6AMkYFE8ow4EALygRUShSmHmhOag5E14yIujbABBeiXPCKl7w2vCx5VVZFF10e9r6rldwE23xyL72ycjyayDbDRVVhJsiONLPDw6wOPsYARmqbVLLepaDsShIsW59yKQ8-ZetT4lI2PhuY_YK_r_2DXR8waCTsLAQZtQWnYdGY0kkuvP17wSfWK5Lm |
CitedBy_id | crossref_primary_10_1007_s10270_024_01175_z crossref_primary_10_1080_00207543_2023_2281665 crossref_primary_10_1177_00375497241302866 crossref_primary_10_1177_00368504241292196 crossref_primary_10_1016_j_is_2024_102512 crossref_primary_10_1016_j_procir_2023_09_050 |
Cites_doi | 10.1080/00207543.2013.869632 10.1016/S0007-8506(07)60023-7 10.1016/j.compind.2015.02.009 10.1016/j.cie.2019.106099 10.1016/j.jmsy.2018.04.006 10.1109/WSC.2015.7408344 10.1016/j.jmsy.2021.01.005 10.1287/isre.2014.0513 10.1016/j.procir.2013.09.074 10.1016/j.procir.2021.01.024 10.1016/j.compind.2021.103586 10.1109/WSC40007.2019.9004702 10.1016/j.jmsy.2020.06.003 10.1016/j.procir.2012.07.110 10.1109/WSC52266.2021.9715410 10.1016/j.procs.2021.03.073 10.1109/EDOC.2016.7579385 10.1109/WSC.2015.7408223 10.1016/j.ijpe.2014.06.012 10.1115/1.2194554 10.1109/TII.2018.2873186 |
ContentType | Journal Article |
Copyright | 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.procir.2022.05.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2212-8271 |
EndPage | 551 |
ExternalDocumentID | oai_HAL_hal_03880491v1 10_1016_j_procir_2022_05_023 S2212827122003079 |
GroupedDBID | 0R~ 0SF 4.4 457 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c386t-62442949af4e7e23249e8a93fb6c71b7e1cb419bbfe497995d78757bf75578583 |
IEDL.DBID | IXB |
ISSN | 2212-8271 |
IngestDate | Fri May 09 12:23:01 EDT 2025 Tue Jul 01 02:31:27 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Sat Sep 07 15:51:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | reliability models Model generation process mining discrete event simulation machine behavior Model generation discrete event simulation process mining machine behavior reliability models |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c386t-62442949af4e7e23249e8a93fb6c71b7e1cb419bbfe497995d78757bf75578583 |
ORCID | 0000-0001-9625-6622 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2212827122003079 |
PageCount | 6 |
ParticipantIDs | hal_primary_oai_HAL_hal_03880491v1 crossref_citationtrail_10_1016_j_procir_2022_05_023 crossref_primary_10_1016_j_procir_2022_05_023 elsevier_sciencedirect_doi_10_1016_j_procir_2022_05_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | Procedia CIRP |
PublicationYear | 2022 |
Publisher | Elsevier B.V ELSEVIER |
Publisher_xml | – name: Elsevier B.V – name: ELSEVIER |
References | Choueiri, Sato, Scalabrin, Santos (bib0004) 2020; 56 van der Aalst (bib0001) 2016 Dörgo, Varga, Haragovics, Szabó, Abonyi (bib0007) 2018; 70 Lugaresi, G., Friederich, J., Lazarova-Molnar, S., Matta, A., 2021. Data Requirements for Automated Simulation Modelling of Production Sys- tems with Varying Resource Behavior. URL Milde, M., Reinhart, G., 2019. Automated Model Development and Parametrization of Material Flow Simulations, in: 2019 Winter Simulation Conference (WSC), IEEE. pp. 2166-2177. Ortmeier, Henningsen, Langer, Reiswich, Karl, Herrmann (bib00024) 2021 Lugaresi, Matta (bib00018) 2021; 59 Popovics, Monostori (bib00026) 2013; 12 Park, Lee, Zhu (bib00025) 2014; 156 Belhadi, Zkik, Cherrafi, Sha’ri (bib0002) 2019; 137 Tao, F., Zhang, H., Liu, A., Nee, A.Y.C., 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics 15, 2405- 2415. Conference Name: IEEE Transactions on Industrial Informatics. Friederich, Francis, Lazarova-Molnar, Mohamed (bib00010) 2022; 136 Martin, N., Bax, F., Depaire, B., Caris, A., 2016. Retrieving resource availability insights from event logs, in: Proceedings - 2016 IEEE 20th International Enterprise Distributed Object Computing Conference, EDOC 2016. doi Hon (bib00014) 2005; 54 Meyer, Adomavicius, Johnson, Elidrisi, Rush, Sperl-Hillen, O’Connor (bib00022) 2014; 25 Ferreira, Vasilyev (bib0009) 2015; 70 Efthymiou, Pagoropoulos, Papakostas, Mourtzis, Chrys-solouris (bib0008) 2012; 3 Martin, N., Depaire, B., Caris, A., 2015. Using process mining to model interarrival times: investigating the sensitivity of the ARPRA framework, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 868-879. Stefanovic, Dakic, Stevanov, Lolic (bib00027) 2020 Denno, Dickerson, Harding (bib0005) 2018; 48 Friederich, J., Jepsen, S.C., Lazarova-Molnar, S., Worm, T., 2021. Requirements for Data-Driven Reliability Modeling and Simulation of Smart Manufacturing Systems, in: 2021 Winter Simulation Conference (WSC), pp. 1-12. doi Martin, Swennen, Depaire, Jans, Caris, Vanhoof (bib00021) 2017 Harding, Shahbaz, Srinivas, Kusiak (bib00013) 2005; 128 Bergmann, S., Feldkamp, N., Strassburger, S., 2015. Approximation of dispatching rules for manufacturing simulation using data mining methods, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 2329-2340. Friederich, Lazarova-Molnar (bib00012) 2021; 184C iSSN: 1558-4305. Dogan, O., Gurcan, O., 2018. Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 943-953. Kurscheidt, R.J., Santos, E.A.P., de FR Loures, E., Pecora Jr, J.E., Cestari, J.M.A.P., 2015. A Methodology for Discovering Bayesian Networks Based on Process Mining, in: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE). p. 2322. Lee, Ho, Choy, Pang (bib00016) 2014; 52 10.1016/j.procir.2022.05.023_bib00023 10.1016/j.procir.2022.05.023_bib00020 van der Aalst (10.1016/j.procir.2022.05.023_bib0001) 2016 Stefanovic (10.1016/j.procir.2022.05.023_bib00027) 2020 Friederich (10.1016/j.procir.2022.05.023_bib00010) 2022; 136 Friederich (10.1016/j.procir.2022.05.023_bib00012) 2021; 184C Efthymiou (10.1016/j.procir.2022.05.023_bib0008) 2012; 3 Harding (10.1016/j.procir.2022.05.023_bib00013) 2005; 128 10.1016/j.procir.2022.05.023_bib00028 Hon (10.1016/j.procir.2022.05.023_bib00014) 2005; 54 10.1016/j.procir.2022.05.023_bib00015 Park (10.1016/j.procir.2022.05.023_bib00025) 2014; 156 Dörgo (10.1016/j.procir.2022.05.023_bib0007) 2018; 70 10.1016/j.procir.2022.05.023_bib00011 Martin (10.1016/j.procir.2022.05.023_bib00021) 2017 Belhadi (10.1016/j.procir.2022.05.023_bib0002) 2019; 137 Lugaresi (10.1016/j.procir.2022.05.023_bib00018) 2021; 59 Ferreira (10.1016/j.procir.2022.05.023_bib0009) 2015; 70 Meyer (10.1016/j.procir.2022.05.023_bib00022) 2014; 25 10.1016/j.procir.2022.05.023_bib0003 Denno (10.1016/j.procir.2022.05.023_bib0005) 2018; 48 Popovics (10.1016/j.procir.2022.05.023_bib00026) 2013; 12 10.1016/j.procir.2022.05.023_bib0006 Choueiri (10.1016/j.procir.2022.05.023_bib0004) 2020; 56 Lee (10.1016/j.procir.2022.05.023_bib00016) 2014; 52 10.1016/j.procir.2022.05.023_bib00019 Ortmeier (10.1016/j.procir.2022.05.023_bib00024) 2021 10.1016/j.procir.2022.05.023_bib00017 |
References_xml | – start-page: 100 year: 2017 ident: bib00021 article-title: Retrieving batch organisation of work insights from event logs publication-title: Decision Support Systems – volume: 70 start-page: 829 year: 2018 end-page: 834 ident: bib0007 article-title: Towards operator 4.0, increasing production efficiency and reducing operator workload by process mining of alarm data publication-title: Chemical Engineering Transactions – reference: Martin, N., Depaire, B., Caris, A., 2015. Using process mining to model interarrival times: investigating the sensitivity of the ARPRA framework, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 868-879. – volume: 156 start-page: 214 year: 2014 end-page: 222 ident: bib00025 article-title: An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company publication-title: International Journal of Production Economics – volume: 70 start-page: 194 year: 2015 end-page: 207 ident: bib0009 article-title: Using logical decision trees to discover the cause of process delays from event logs publication-title: Computers in Industry – volume: 136 start-page: 103586 year: 2022 ident: bib00010 article-title: A framework for data-driven digital twins of smart manufacturing systems publication-title: Computers in Industry – reference: Lugaresi, G., Friederich, J., Lazarova-Molnar, S., Matta, A., 2021. Data Requirements for Automated Simulation Modelling of Production Sys- tems with Varying Resource Behavior. URL: – start-page: 125 year: 2016 end-page: 162 ident: bib0001 article-title: Getting the data publication-title: Process mining – volume: 48 start-page: 192 year: 2018 end-page: 203 ident: bib0005 article-title: Dynamic production system identification for smart manufacturing systems publication-title: Journal of Manufacturing Systems – volume: 3 start-page: 644 year: 2012 end-page: 649 ident: bib0008 article-title: Manufacturing Systems Complexity Review: Challenges and Outlook publication-title: Procedia CIRP – volume: 128 start-page: 969 year: 2005 end-page: 976 ident: bib00013 article-title: Data Mining in Manufacturing: A Review publication-title: Journal of Manufacturing Science and Engineering – volume: 56 start-page: 188 year: 2020 end-page: 201 ident: bib0004 article-title: An extended model for remaining time prediction in manufacturing systems using process mining publication-title: Journal of Manufacturing Systems – reference: Bergmann, S., Feldkamp, N., Strassburger, S., 2015. Approximation of dispatching rules for manufacturing simulation using data mining methods, in: 2015 Winter Simulation Conference (WSC), IEEE. pp. 2329-2340. – start-page: 163 year: 2021 end-page: 168 ident: bib00024 article-title: Framework for the integration of Process Mining into Life Cycle Assessment publication-title: Procedia CIRP – reference: Martin, N., Bax, F., Depaire, B., Caris, A., 2016. Retrieving resource availability insights from event logs, in: Proceedings - 2016 IEEE 20th International Enterprise Distributed Object Computing Conference, EDOC 2016. doi: – volume: 59 start-page: 51 year: 2021 end-page: 66 ident: bib00018 article-title: Automated manufacturing system discovery and digital twin generation publication-title: Journal of Manufacturing Systems – volume: 25 start-page: 239 year: 2014 end-page: 263 ident: bib00022 article-title: A machine learning approach to improving dynamic decision making publication-title: Information Systems Research – volume: 12 start-page: 432 year: 2013 end-page: 437 ident: bib00026 article-title: ISA standard simulation model generation supported by data stored in low level controllers publication-title: Procedia CIRP – reference: Milde, M., Reinhart, G., 2019. Automated Model Development and Parametrization of Material Flow Simulations, in: 2019 Winter Simulation Conference (WSC), IEEE. pp. 2166-2177. – volume: 137 start-page: 106099 year: 2019 ident: bib0002 article-title: Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies publication-title: Computers & Industrial Engineering – volume: 52 start-page: 4216 year: 2014 end-page: 4238 ident: bib00016 article-title: A RFID-based recursive process mining system for quality assurance in the garment industry publication-title: International Journal of Production Research – reference: iSSN: 1558-4305. – reference: Kurscheidt, R.J., Santos, E.A.P., de FR Loures, E., Pecora Jr, J.E., Cestari, J.M.A.P., 2015. A Methodology for Discovering Bayesian Networks Based on Process Mining, in: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE). p. 2322. – reference: Tao, F., Zhang, H., Liu, A., Nee, A.Y.C., 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics 15, 2405- 2415. Conference Name: IEEE Transactions on Industrial Informatics. – volume: 54 start-page: 139 year: 2005 end-page: 154 ident: bib00014 article-title: Performance and Evaluation of Manufacturing Systems publication-title: CIRP Annals – reference: Dogan, O., Gurcan, O., 2018. Data perspective of lean six sigma in industry 4.0 era: A guide to improve quality, in: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 943-953. – start-page: 54 year: 2020 end-page: 62 ident: bib00027 article-title: Process Mining in Manufacturing: Goals, Techniques and Applications publication-title: Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management Systems – reference: Friederich, J., Jepsen, S.C., Lazarova-Molnar, S., Worm, T., 2021. Requirements for Data-Driven Reliability Modeling and Simulation of Smart Manufacturing Systems, in: 2021 Winter Simulation Conference (WSC), pp. 1-12. doi: – volume: 184C start-page: 589 year: 2021 end-page: 596 ident: bib00012 article-title: Towards Data-Driven Reliability Modeling for Cyber-Physical Production Systems publication-title: Procedia Computer Science – volume: 52 start-page: 4216 year: 2014 ident: 10.1016/j.procir.2022.05.023_bib00016 article-title: A RFID-based recursive process mining system for quality assurance in the garment industry publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.869632 – volume: 54 start-page: 139 year: 2005 ident: 10.1016/j.procir.2022.05.023_bib00014 article-title: Performance and Evaluation of Manufacturing Systems publication-title: CIRP Annals doi: 10.1016/S0007-8506(07)60023-7 – volume: 70 start-page: 194 year: 2015 ident: 10.1016/j.procir.2022.05.023_bib0009 article-title: Using logical decision trees to discover the cause of process delays from event logs publication-title: Computers in Industry doi: 10.1016/j.compind.2015.02.009 – volume: 137 start-page: 106099 year: 2019 ident: 10.1016/j.procir.2022.05.023_bib0002 article-title: Understanding big data analytics for manufacturing processes: insights from literature review and multiple case studies publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.106099 – start-page: 100 year: 2017 ident: 10.1016/j.procir.2022.05.023_bib00021 article-title: Retrieving batch organisation of work insights from event logs publication-title: Decision Support Systems – volume: 48 start-page: 192 year: 2018 ident: 10.1016/j.procir.2022.05.023_bib0005 article-title: Dynamic production system identification for smart manufacturing systems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2018.04.006 – ident: 10.1016/j.procir.2022.05.023_bib0003 doi: 10.1109/WSC.2015.7408344 – volume: 59 start-page: 51 year: 2021 ident: 10.1016/j.procir.2022.05.023_bib00018 article-title: Automated manufacturing system discovery and digital twin generation publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.01.005 – start-page: 125 year: 2016 ident: 10.1016/j.procir.2022.05.023_bib0001 article-title: Getting the data – volume: 25 start-page: 239 year: 2014 ident: 10.1016/j.procir.2022.05.023_bib00022 article-title: A machine learning approach to improving dynamic decision making publication-title: Information Systems Research doi: 10.1287/isre.2014.0513 – volume: 70 start-page: 829 year: 2018 ident: 10.1016/j.procir.2022.05.023_bib0007 article-title: Towards operator 4.0, increasing production efficiency and reducing operator workload by process mining of alarm data publication-title: Chemical Engineering Transactions – volume: 12 start-page: 432 year: 2013 ident: 10.1016/j.procir.2022.05.023_bib00026 article-title: ISA standard simulation model generation supported by data stored in low level controllers publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.09.074 – ident: 10.1016/j.procir.2022.05.023_bib0006 – start-page: 163 year: 2021 ident: 10.1016/j.procir.2022.05.023_bib00024 article-title: Framework for the integration of Process Mining into Life Cycle Assessment publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.01.024 – volume: 136 start-page: 103586 year: 2022 ident: 10.1016/j.procir.2022.05.023_bib00010 article-title: A framework for data-driven digital twins of smart manufacturing systems publication-title: Computers in Industry doi: 10.1016/j.compind.2021.103586 – ident: 10.1016/j.procir.2022.05.023_bib00023 doi: 10.1109/WSC40007.2019.9004702 – volume: 56 start-page: 188 year: 2020 ident: 10.1016/j.procir.2022.05.023_bib0004 article-title: An extended model for remaining time prediction in manufacturing systems using process mining publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.06.003 – volume: 3 start-page: 644 year: 2012 ident: 10.1016/j.procir.2022.05.023_bib0008 article-title: Manufacturing Systems Complexity Review: Challenges and Outlook publication-title: Procedia CIRP doi: 10.1016/j.procir.2012.07.110 – ident: 10.1016/j.procir.2022.05.023_bib00011 doi: 10.1109/WSC52266.2021.9715410 – ident: 10.1016/j.procir.2022.05.023_bib00017 – ident: 10.1016/j.procir.2022.05.023_bib00015 – volume: 184C start-page: 589 year: 2021 ident: 10.1016/j.procir.2022.05.023_bib00012 article-title: Towards Data-Driven Reliability Modeling for Cyber-Physical Production Systems publication-title: Procedia Computer Science doi: 10.1016/j.procs.2021.03.073 – ident: 10.1016/j.procir.2022.05.023_bib00019 doi: 10.1109/EDOC.2016.7579385 – ident: 10.1016/j.procir.2022.05.023_bib00020 doi: 10.1109/WSC.2015.7408223 – volume: 156 start-page: 214 year: 2014 ident: 10.1016/j.procir.2022.05.023_bib00025 article-title: An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2014.06.012 – volume: 128 start-page: 969 year: 2005 ident: 10.1016/j.procir.2022.05.023_bib00013 article-title: Data Mining in Manufacturing: A Review publication-title: Journal of Manufacturing Science and Engineering doi: 10.1115/1.2194554 – ident: 10.1016/j.procir.2022.05.023_bib00028 doi: 10.1109/TII.2018.2873186 – start-page: 54 year: 2020 ident: 10.1016/j.procir.2022.05.023_bib00027 article-title: Process Mining in Manufacturing: Goals, Techniques and Applications |
SSID | ssj0000740312 |
Score | 2.279853 |
Snippet | Modern manufacturing systems can benefit from the use of digital tools to support both short- and long-term decisions. Meanwhile, such systems reached a high... Modern manufacturing systems can benefit from the use of digital tools to support both short-and long-term decisions. Meanwhile, such systems reached a high... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 546 |
SubjectTerms | Computational Engineering, Finance, and Science Computer Aided Engineering Computer Science Data Structures and Algorithms discrete event simulation machine behavior Model generation process mining reliability models |
Title | Process Mining for Dynamic Modeling of Smart Manufacturing Systems: Data Requirements |
URI | https://dx.doi.org/10.1016/j.procir.2022.05.023 https://hal.science/hal-03880491 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gXOCAeIrxUoS4RiOPLi23MZgmXgfGxG5R0iRiCLoJNn4_cdpOcEBIHBslfTiW7Tr-PiN0ahnPrREJ0am2RHiqSSZtTpjWhlLpudOR7fO-3R-K61EyWkLdGgsDZZWV7S9terTW1UirkmZrOh63BixY3ZRJyljUVADxAaoUQHyji0WeJbjIoLdwmADzCSyoEXSxzAv8xBiIQRmLFJ6M_-ahlp_rXGv0Pb0NtF4FjbhTvtcmWnLFFlr7RiW4jYZVxT--ix0fcIhF8WXZbR5DvzNAneOJx4O38HX4ThdzgDREjCKuWMvP8aWeafzgoDg4Zg0_dtCwd_XY7ZOqZQLJedqekXbw1iwTmfbCSQfRUuZSnXFv2rmkRjqaG0EzY7wTcKCXWAmM9sbLBFhvUr6LGsWkcHsIn9nEB8l6Z5kRQgqTC-fDz0gIOCy33DcRr8Wk8opPHNpavKq6cOxFlcJVIFx1lqgg3CYii1XTkk_jj_my3gH1Qy9UMPl_rDwJG7Z4CNBo9zu3CsYiA47I6Cfd__ftD9AqXJXZmEPUmL3P3VGIT2bmGK10bh6ebo6jIn4Bxdnklw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4inGM0Jco5FHm5YbMNCAbQdg0m5R0iRiCLYJBr-fOG0nOCAkrm3dh2PZXx37M0InlvHCGpEQnWlLhKea5NIWhGltKJWeOx3ZPntpuy9uB8lgDl3WvTBQVln5_tKnR29dHWlW2mxOhsPmAwteN2OSMhYtNZ9HiwENpECgfzO4mCVaQowMhgu7CSBAQKJuoYt1XhAohsAMyljk8GT8txA1_1QnW2PwuV5DqxVqxOfli62jOTfaQCvfuAQ3Ub8q-cfdOPIBBzCKW-W4eQwDz6DtHI89fngNn4e7evQBPQ2xSRFXtOVnuKWnGt87qA6OacP3LdS_vnq8bJNqZgIpeJZOSRrCNctFrr1w0gFcyl2mc-5NWkhqpKOFETQ3xjsBO3qJlUBpb7xMgPYm49toYTQeuR2ET23ig2q9s8wIIYUphPPhbyQgDsst9w3EazWpoiIUh7kWL6quHHtWpXIVKFedJioot4HITGpSEmr8cb2sV0D9MAwVfP4fksdhwWYPAR7t9nlHwbFIgSNy-kl3_337I7TUfux2VOemd7eHluFMmZrZRwvTtw93EMDK1BxGY_wCJhfmGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Process+Mining+for+Dynamic+Modeling+of+Smart+Manufacturing+Systems%3A+Data+Requirements&rft.jtitle=Procedia+CIRP&rft.au=Friederich%2C+Jonas&rft.au=Lugaresi%2C+Giovanni&rft.au=Lazarova-Molnar%2C+Sanja&rft.au=Matta%2C+Andrea&rft.date=2022&rft.pub=ELSEVIER&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=107&rft.spage=546&rft.epage=551&rft_id=info:doi/10.1016%2Fj.procir.2022.05.023&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03880491v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon |